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Summary

Terahertz (THz) radiation lies between the micro and far-infrared range in the electro-
magnetic spectrum. Compared with microwave and millimeter waves, it has a larger
signal bandwidth and extremely narrow antenna beam. Thus, it is easier to achieve
high-resolution for imaging and detection applications. The unique properties, such as
penetration for majority non-polar materials, non-ionizing characteristic and the spectral
fingerprint of materials, makes THz imaging an appealing artifice in the military, biomedi-
cal, astronomical communications, and other areas. However, THz radiation’s current low
power level and detection sensitivity block THz imaging system from including fewer opti-
cal elements than the visible or infrared range. This leads to imaging resolution, contrast,
and imaging field of view degenerate and makes the aberration more serious. THz imag-
ing based on the space Fourier spectrum detection is developed in this thesis to achieve
high-quality imaging. The main concept of Fourier imaging is by recording the field dis-
tribution in the Fourier plane (focal plane) of the imaging system; the information of the
target is obtained. The numerical processing method is needed to extract the amplitude
and phase information of the imaged target. With additional process, three-dimensional
(3D) information can be obtained based on the phase information. The novel recording
and reconstructing ways of the Fourier imaging system enables it to have a higher reso-
lution, better contrast, and broader field of view than conventional imaging systems such
as microscopy and plane to plane telescopic imaging system.

The work presented in this thesis consists of two imaging systems, one is working at
300 GHz based on the fundamental heterodyne detection of the THz radiation, the other
is operated at 600 GHz by utilizing the sub-harmonic heterodyne detection technique.
The realization and test of the heterodyne detection are based on the THz antenna-
coupled field-effect transistor (TeraFET) detector developed by Dr. Alvydas Lisauskas.
Both systems use two synchronized electronic multiplier chains to radiate the THz waves.
One radiation works as the local oscillator (LO), the other works as illumination with a
slight frequency shift, the radiations are mixed on the detector scanning in the Fourier
plane to record the complex Fourier spectrum of the imaged target. The LO has the
same frequency range as the illuminating radiation for fundamental heterodyne detection
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but half the frequency range for the sub-harmonic heterodyne detection. The 2-mm
resolution, 60-dB contrast, and 5.5-cm diameter imaging area at 300 GHz and the of
500-µm resolution, 40-dB contrast, and 3.5-cm diameter imaging area at 600 GHz are
achieved (the 300-GHz illuminating radiation has the approximate power of 600 µW , the
600-GHz illuminating radiation has the approximate power of 60 µW ).
The thesis consists of 6 parts. After the introduction, the second chapter expands

on the topic of Fourier optics from a theoretical point of view and the simulations of
the Fourier imaging system. First, the theory of the electromagnetic field propagation in
free space and through an optical system are investigated to elicit the Fourier transform
function of the imaging system. The simulation is used for theoretical considerations
and the implementation of a Fourier optic script that allows for numerical investigations
on reconstruction. The preliminary imaging field of view and resolution are also demon-
strated. The third chapter describes the Fourier imaging system at 300 GHz based on
the fundamental heterodyne detection, including the experimental setup, the 2D, and 3D
imaging results. The following fourth chapter reports the integration of the TeraFET de-
tector with two substrate lenses (one is a Si lens on the back-side Si substrate, the other
is a wax/PTFE lens on the front side containing the bonding wires) for sub-harmonic
heterodyne detection at 600 GHz. The characteristic of the wax/PTFE lens at THz
range is presented. After that, the compared imaging results between the detector with
and without the wax/PTFE lens are shown. The fifth chapter extends the demonstration
on the lateral and depth resolution of the Fourier imaging system in detail and uses the
experimental results at 600 GHz to validate the analytical predictions. The comparison
of the resolution between the Fourier imaging system and the conventional microscopy
system proves that the Fourier imaging system has better imaging quality under the same
system configuration. The last chapter in this thesis concludes on the findings of the THz
Fourier imaging and gives an outlook for the enhancement of the Fourier imaging system
at THz range.
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Zusammenfassung

Das elektromagnetische Spektrum ist der Frequenzbereich der elektromagnetischen Strahlung,
die jeweiligen Wellenlängen und Photonenenergien. Es umfasst den Frequenzbereich von
unter 1 Hz bis über 1025 Hz, was Wellenlängen von Tausenden von Kilometern bis zu
einem Bruchteil der Größe eines Atomkerns entspricht. Man unterteilt das Spektrum in
verschiedene Bänder, die als Radiowellen, Mikrowellen, Infrarotstrahlen, sichtbares Licht,
Ultraviolett-, Röntgen- und Gammastrahlen bekannt sind, und zwar vom niederfrequenten
(langwelligen) Ende bis zum hochfrequenten (kurzwelligen) Ende. Jedes Band hat seine
einzigartigen Eigenschaften, z.B. wie es erzeugt wird, wie es mit Materie wechselwirkt
und seine praktischen Anwendungen. Das sichtbare Spektrum war wohl der erste Fre-
quenzbereich, der in der Geschichte der Erforschung des elektromagnetischen Spektrums
untersucht wurde, da es mit dem bloßen Auge des Menschen direkt beobachtet werden
kann. Mit der Entwicklung der Technologie wurde die Strahlung jenseits des sichtbaren
Spektrums kontinuierlich erforscht und für verschiedene Anwendungen genutzt. So ist z.B.
die Röntgenbildgebung für medizinische und Sicherheitszwecke von großer Bedeutung, in-
frarotbasierte Nachtsichtkameras sind für die polizeiliche Überwachung, das Militär und
die Naturwissenschaften kommerziell erhältlich, auch Strahlung im Radar-Frequenzband
wird mit moderner Technologie für Wetterbeobachtung, Topographieuntersuchungen oder
militärische Nutzung abgebildet.

Terahertz (THz)-Strahlung liegt im elektromagnetischen Spektrum zwischen demMikro-
und Ferninfrarotbereich. Die Strahlung bei THz-Frequenzen wurde viele Jahre lang als
"THz-Lücke" behandelt, weil die Erkennung schwierig war. Da jedoch die Detektionstech-
nik in den letzten Jahren mit immer höherer Empfindlichkeit bei verschiedenen Frequenzen
entwickelt wurde, wurde die THz-Strahlung der Beobachtung durch den Menschen und
verschiedenen Anwendungen näher gebracht. Die THz-Strahlung befindet sich zwischen
dem elektronischen und optischen Frequenzbereich und hat Eigenschaften aus beiden Fre-
quenzbereichen: Aus dem ersten, dass man die Kohärenz der Strahlung leicht kontrollieren
und ausnutzen kann und dass viele Materialien (halb-)transparent sind, aus dem zweiten,
dass quasi-optische Strahlpropagationstechniken eingesetzt werden können. Außerdem
hat es eine größere Signalbandbreite und einen extrem schmalen Antennenstrahl im Ver-
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gleich zu Mikrowellen und Millimeterwellen. Dadurch ist es einfacher, eine hochauflösende
Bildgebung zu erreichen. Die einzigartigen Eigenschaften, wie z.B. durchdringende und
nicht-ionisierende Eigenschaften, machen die THz-Bildgebung zu einer attraktiven Anwen-
dung in der militärischen, biomedizinischen, astronomischen Kommunikation und anderen
Bereichen. Die derzeit geringe Leistung und Nachweisempfindlichkeit der THz-Strahlung
schränkt das THz-Bildgebungssystem jedoch so ein, dass es viel weniger optische Elemente
enthält als der sichtbare oder infrarote Bereich. Dies führt zu einer Degeneration der Bil-
dauflösung, des Kontrasts und des Sichtfelds und macht die Aberration noch gravieren-
der. Die THz-Bildgebung auf der Grundlage der Raum-Fourier-Spektrum-Detektion wird
in dieser Arbeit entwickelt, um dieses Problem zu lösen und eine qualitativ hochwertige
Bildgebung zu erreichen. Das Hauptkonzept der Fourier-Abbildung besteht in der Aufze-
ichnung der Feldverteilung in der Fourier-Ebene (Brennebene) des Abbildungssystems;
die Information des Zielobjekts wird gewonnen. Die numerische Verarbeitungsmethode
wird benötigt, um die Amplituden- und Phaseninformation des abgebildeten Ziels zu ex-
trahieren. Nach dem weiteren Prozess kann auf der Basis der Phaseninformation dreidi-
mensionale Information gewonnen werden. Die neuartige Aufnahme- und Rekonstruktions-
methode des Fourier-Abbildungssystems ermöglicht eine höhere Auflösung, einen besseren
Kontrast und ein breiteres Sichtfeld als herkömmliche Abbildungssysteme wie Mikroskopie
und Teleskope.

Diese Arbeit demonstriert das Konzept, die Simulation, die Durchführung und die Au-
flösung der Fourier-Bildgebung bei Sub-THz-Frequenzen. Die Simulationen, die auf dem
Wellenausbreitungsintegral basieren, werden durchgeführt, um ein elektrisches Feld, das
ein Eingangsobjekt beleuchtet, und seine Ausbreitung zur Fokusebene zu untersuchen.
Numerische Studien helfen auch bei der Vorhersage von Eigenschaften, Merkmalen und
potenziellen Ergebnissen einer experimentellen Messung. Simulationen geben eine Vorstel-
lung davon, welche Objekte welche charakteristischen Intensitäts- und Phasenmuster
erzeugen. Numerische Berechnungen helfen auch bei der Vorhersage der Auswirkungen
von verrauschten Intensitäts- und Phasenmustern auf die Rückberechnung. Verschiedene
Objekte führen zu unterschiedlichen Fourier-Spektren mit den hervorgehobenen Raumfre-
quenzen aus den Merkmalen des Objekts. Nach der Einführung wird im zweiten Kapi-
tel das Thema Fourier-Optik aus theoretischer Sicht und die Simulationen des Fourier-
Abbildungssystems vertieft. Zunächst wird die Theorie der Ausbreitung des elektromag-
netischen Feldes im freien Raum und durch ein optisches System untersucht, um die
Fourier-Transformationsfunktion des abbildenden Systems zu erhalten. Die Simulation
wird für theoretische Überlegungen und die Implementierung eines optischen Fourier-
Skripts verwendet, das numerische Untersuchungen zur Rekonstruktion ermöglicht. Das
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vorläufige Abbildungssichtfeld und die Auflösung werden ebenfalls demonstriert. Im drit-
ten Kapitel wird das Fourier-Abbildungssystem bei 300 GHz beschrieben, einschließlich
des experimentellen Aufbaus, der auf der fundamentalen Heterodyn-Detektion, den 2D-
und 3D-Abbildungsergebnissen basiert. Das folgende vierte Kapitel berichtet über die In-
tegration des TeraFET-Detektors mit zwei Substratlinsen (eine ist eine Si-Linse auf dem
rückseitigen Si-Substrat, die andere ist die Paraffin-Wachs-Linse auf der Vorderseite, die
die Bonddrähte enthält) für die subharmonische Heterodyn-Detektion bei 600 GHz. Die
Charakteristik der Paraffin-Wachs-Linse im THz-Bereich wird vorgestellt. Danach werden
die verglichenen Bildergebnisse zwischen dem Detektor mit und ohne Paraffin-Wachs-Linse
gezeigt. Das fünfte Kapitel erweitert die Demonstration zur lateralen und Tiefenauflösung
des Fourier-Abbildungssystems im Detail und verwendet die experimentellen Ergebnisse
bei 600 GHz zur Validierung der analytischen Vorhersagen. Der Vergleich der Auflösung
zwischen dem Fourier-Abbildungssystem und dem konventionellen Mikroskopiesystem be-
weist, dass das Fourier-Abbildungssystem bei gleicher Systemkonfiguration eine bessere
Abbildungsqualität aufweist. Das letzte Kapitel dieser Arbeit schließt mit den Ergebnissen
der THz-Fourier-Bildgebung und gibt einen Ausblick auf die Verbesserung des Fourier-
Bildgebungssystems im THz-Bereich.

Die in dieser Arbeit vorgestellte Fourier-Bildgebung besteht aus zwei bildgebenden Sys-
temen, von denen eines bei 300 GHz arbeitet, basierend auf der fundamentalen het-
erodynen Detektion der THz-Strahlung, das andere wird bei 600 GHz betrieben, in-
dem die subharmonische Detektionstechnik verwendet wird. Die Realisierung und der
Test des Heterodyn-Nachweises basieren auf dem von Dr. Alvydas Lisauskas entwickel-
ten THz-Antennen-gekoppelten Feldeffekttransistor-Detektor (TeraFET). TeraFETs sind
als empfindliche Detektoren bekannt und werden meist mit modulierten (mechanischen
oder elektronischen) Dauerstrichquellen und einem Lock-in-Verstärker verwendet. Daher
ist die Verwendung von TeraFETs zur Echtzeitmessung von Einzelpulsen und zur het-
erodynen Detektion weitgehend unerforscht. Hier verwenden beide Heterodyn-Systeme
zwei synchronisierte elektronische Multiplikatorketten zur Abstrahlung der THz-Wellen.
Eine Strahlung arbeitet als lokaler Oszillator, die andere als Beleuchtung mit einer le-
ichten Frequenzverschiebung, die Strahlungen werden auf dem Detektor gemischt, der in
der Fourier-Ebene abtastet, um die komplexe Fourier-Spektrumsverteilung zu erfassen.
Der LO hat den gleichen Frequenzbereich wie die Beleuchtungsstrahlung für die funda-
mentale Heterodyn-Detektion, aber den halben Frequenzbereich für die subharmonische
Heterodyn-Detektion. Die Heterodyn-Detektion ermöglicht die Messung der komplexen
Amplitude (Intensität und Phase). Basierend auf der Phaseninformation kann die Rekon-
struktion der 3D-Strukturen mit dem Fourier-Bildgebungssystem durchgeführt werden.
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Experimentelle Ergebnisse zeigen, dass eine Auflösung von 2 mm, ein Kontrast von 60 dB
und ein Abbildungsbereich von 5,5 cm Durchmesser bei 300 GHz und eine Auflösung von
500µm, ein Kontrast von 30 dB und ein Abbildungsbereich von 4 cm Durchmesser bei
300 GHz erreicht werden (die 300-GHz-Beleuchtungsstrahlung hat die ungefähre Leistung
von 1 mW, die 600-GHz-Beleuchtungsstrahlung hat die ungefähre Leistung von 56µW ).

Im Gegensatz zum konventionellen Bildgebungssystem hat die Fourier-Bildgebung eine
höhere Auflösung. Dies kann darauf zurückgeführt werden, dass das Fourier-Abbildungssystem
die Fähigkeit besitzt, den Objektabstand zu verkürzen (je kürzer der Objektabstand ist,
desto bessere Auflösung wird erreicht). Das konventionelle Abbildungssystem muss im
realen Abbildungsregime arbeiten (der Objektabstand des Abbildungssystems ist größer
als die Brennweite des Systems), während das Fourier-Abbildungssystem das Objekt in
den virtuellen Abbildungsobjektabstandsbereich bringen kann (wobei der Objektabstand
kleiner als die Brennweite des Systems ist). Die entsprechenden experimentellen Ergeb-
nisse demonstrieren die Theorien. Darüber hinaus bietet das Fourier-Abbildungssystem
eine neue Möglichkeit der 3D-Abbildung bei THz-Frequenzen mit einer guten Tiefenau-
flösung.

Die vorliegende Arbeit ist wie folgt strukturiert. Es gab viele Ansätze bei der Real-
isierung der THz-Bildgebung für verschiedene Anwendungen mit unterschiedlichen Quellen,
Detektoren und Techniken mit Vor- und Nachteilen für jede Methode. Diese Arbeit stellt
die Fourier-Abbildungsmethode im THz-Bereich vor. Die THz-Fourier-Abbildung wird
durch die Verwendung fundamentaler und subharmonischer Heterodyn-Detektoren real-
isiert, um das Fourier-Spektrum aufzuzeichnen und das Bild durch numerische Berechnun-
gen wieder aufzubauen. Die numerische Rekonstruktion ermöglicht es dem System, die
Objektebene präzise zu fokussieren und die Tiefenauflösung durch Anwendung der Schär-
feextraktion zu finden. Die laterale Auflösung ist derzeit durch den Scanbereich/Blende
des Systems begrenzt. Um die Auflösung des abgebildeten Objekts zu erhöhen, müssen
zukünftige Experimente die Reichweite im k-Raum erhöhen. Dies kann entweder durch
eine Erhöhung des Verfahrwegs der Translationen, aufgrund der höheren Empfindlichkeit
des Detektors oder durch eine Verringerung der Fokuslänge erreicht werden. Wie bereits
erwähnt, ändern kohärente Reflexionen die Phase in der Fourierebene und haben daher
einen hohen Einfluss auf die Qualität der Rekonstruktion, insbesondere bei zwei Sub-
stratlinsen auf beiden Seiten des Detektors. Um die kohärente Länge zu verkürzen,
aber das Phasenverhalten des Fourier-Spektrums nicht zu zerstören, müssen schwach
absorbierende optische Elemente eingesetzt werden. Dies wird zur Reduzierung stehen-
der Wellen in nachfolgenden Experimenten beitragen. Um das Auflösungsvermögen der
Messung in der Fourier-Ebene zu nutzen, muss das Sichtfeld im Fourier-Aufbau verbreit-
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ert und der THz-Strahl gefiltert werden, so dass das Objekt mit einer homogenen statt
einer gaußschen Intensitätsverteilung beleuchtet wird. Mit dem jetzigen Aufbau lässt sich
nicht abschätzen, wie genau die Phasenkrümmung gemessen wurde und damit wie tiefen-
empfindlich die Messungen sind. Die zukünftigen Arbeiten können sich auf die Phasen-
rückgewinnung zur Eliminierung des Phasenrauschens konzentrieren, wodurch das System
eine bessere laterale und Tiefenauflösung, einen schärferen Kontrast und einen größeren
Dynamikbereich erreichen kann. Alles in allem realisierte diese Studie das hochauflösende,
großflächige Sichtfeld und das 3D-Fourier-Bildgebungssystem. Darüber hinaus wurde das
Potenzial der THz-Quellen und des TeraFET-Detektors für Anwendungen in der Bildge-
bung ausgeschöpft, so dass das System selbst potenziell für verschiedene Anwendungen
der zerstörungsfreien Prüfung, der Qualitätsüberwachung und der 3D-Bildgebung im THz-
Bereich eingesetzt werden kann.
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1 Introduction

The electromagnetic spectrum is the continuum of electromagnetic radiation frequencies,

their respective wavelengths and photon energies. It covers the range of frequency values

which vary from about 1 Hz to above 1025 Hz, corresponding to wavelengths from thou-

sands of kilometers down to a fraction of the size of an atomic nucleus. According to

the studies, the wavelength spectrum is divided into different bands, generally known as

radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays; from

the low frequency (long wavelength) band to the high-frequency (short wavelength) band.

Each band has its unique characteristics, such as the way it is produced, how it interacts

with matter and its practical applications. Visible spectrum is the first frequency range

being investigated in the electromagnetic spectrum research history as it can be directly

observed by the naked eye of the human being. With the development of technology,

the radiation beyond the visible spectrum has been continuously explored and further

undertaken to be used in different applications. For example, X-ray imaging is of major

importance for medical and security purposes - infrared based night vision cameras are

commercially available for police surveillance, military and natural science; also, radiation

in the radar frequency band is imaged with modern technology for weather screening,

topography investigations or military use.

The spectrum range between the electronic and optical frequency regimes, occupies

the frequency from 0.1 THz to 10 THz (wavelength from 30 µm to 3 mm, temperature

from 4.8 K to 487 K, photon energy from 0.4 meV to 41 meV), is called Terahertz (THz)

radiation. For many years these frequencies were treated as the “THz-gap” because

of the detection challenges. However, during recent years the development of detection

techniques has reached a new level of sensitivity. Inheriting the characteristics of electronic
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frequencies, the THz radiation is easy to be controlled, exploited the coherence and (semi-

) transparency for many materials, from the optical feature aspect, the quasi-optical beam

propagation techniques can be employed. All of these, thereby bring the THz radiation

to the eyesight of the mankind and open the potential for various practical applications in

areas of stand-off explosive detection [1], medical imaging [2], non-destructive real-time

imaging [3], biological and auto vielcle applications [4, 5], etc.. Recently, THz waves is

also under discussion as the main target frequency band for future communications (6G,

7G).

The two basic and crucial elements for the THz technology is the source and detector.

The emerged THz generation techniques in last decades including Gyrotrons [6], free elec-

tron lasers (FELs) [7], backward wave oscillators (BWOs) [8], resonant tunnelling diodes

(RTD) [9, 10], Gunn [11] or transferred electron devices (TED) [12–14], impact avalanche

transit time (IMPATT) diodes, tunnel injection transit time (TUNNETT) diodes, fre-

quency multiplier as the widely used electronic sources, Quantum cascade lasers, gas

lasers and terahertz optoelectronic sources as the common THz photonic sources. Fig.

1.1 displays the output power range of the sources. BWOs can be electrically tuned over

a bandwidth of more than 50% of their operational frequencies, and can generate up to

50 mW of power at 300 GHz going down to a few mW at 1 THz [15]. Gunn devices

could generate 0.2-5 µW power at 400-560 GHz frequency range. MMIC technology can

generate high output power above 100 GHz [16]. TUNNETT diodes with operational

frequency as high as 355 GHz with 140 µ W output power have been reported [17].

For detection technique, Golay cells, pyroelectric detectors, thermoelectric detectors or

thermopiles, and bolometers are the most widely used thermal detectors, in addition, the

merging semiconductor based transistors work well for heterodyne detecting configuration.

The typical responsivity of Golay cells at 1 THz with 10 Hz modulation frequency is around

105 V/W with the NEP of around 10−10 WHz −1/2, the NEP of pyroelectric detectors

are 5 × 10−10 WHz −1/2 at 1 MHz modulation frequency and λ = 10 µm wavelength

range, room temperature bolometers with normal metal absorbers is in the NEP range

of 5 × 10−10 WHz −1/2 with responsivity of 100 V/W and 1 s response time, under

liquid nitrogen cooled condition, the NEP can be as low as 2.5 × 10−12 WHz −1/2 with
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Figure 1.1: Typical output power of various THz sources as a funciton of frequency.
MMIC stands for microwave monolithic integrated circuit, TUNNET
stands for tunnel injection transit time, IMPATT stands for impact
ionisation avalanche transit-time diode, DFG stands for difference fre-
quency generation, Gunn stands for Gunn diodes, UTC-PD stands for
uni-travelling-carrier photodiode, Multiplier for frequency multiplier, op
THz laser stands for optical pumped THz laser and QCL for quantum
cascade laser [18–20].

responsivity of 4000 V/W and 200 ns response time. The NEP of semiconductor detector

is around 40× 10−12 WHz −1/2 at 300 GHz with room temperature.

This thesis will expand the demonstration on THz imaging technology which most

widely adopted in various applications based on the developed THz radiating and detec-

tion techniques. Regarding detection modalities, the THz imaging can be divided into

coherent and in-coherent approaches. The in-coherent modality with only amplitude de-

tection is more direct and compact compared to the coherent imaging, and thus has

been intensively investigated. Coherent imaging relies on interference [21], heterodyne

measurements [22, 23] or time-resolved detection of THz pulses to record not only the

intensity, but also the phase information. It is usually more demanding in its implemen-

tation, and has not been explored in THz range as extensively as in the optical range,

because of severe power limitations and the lack of sensitive and fast detectors, especially
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detector arrays for THz waves. At least with regard to detectors and arrays thereof, recent

years have seen important advances in silicon CMOS technology, which benefit coherent

imaging investigations [24–27]. The lack of the phase information limits conventional in-

coherent imaging to the recording of two-dimensional (2D) images. In order to achieve 3D

information, more advanced techniques such as multidirectional imaging (tomography) or

the application of light-field techniques [28] are required.

With considerable progress achieved in the field of THz radiation detection, 3D imaging

with THz radiation has been developed with different techniques [29–32]. However, most

of the conventional THz imaging methods are incompetent in covering a large field of

view and recording large space three-dimensional images. This work is mainly aiming at

investigating a large field, high-resolution, 3D imaging system working at THz frequen-

cies. The Fourier imaging method, which is an indirect imaging technique, recording the

complex Fourier-space spectrum of the object/scene by numerical calculation is adopted.

The Fourier-space spectrum is recorded by heterodyne detection in the focal plane of

the imaging system. In the focal plane, the energy area is the smallest of the system,

giving the possibility of integrating the small-pixel-number detector in the THz regime

in the system. Here the fundamental heterodyne detection (FHD) and the sub-harmonic

heterodyne detection (SHHD) are demonstrated. Both approaches mix the output of two

electronic multiplier chain THz radiations, the FHD mixes around the same frequencies

radiations while the sub-harmonic mixes the detection frequency and the unit fraction of

the frequency reference radiations. Furthermore, the Fourier THz imaging broadens the

application area of known sources as well as detectors.
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Fourier imaging is an indirect imaging technique which records the complex Fourier-space

spectrum of the object/scene and reconstructs the image by numerical calculation [33–

36]. As depicted in Fig. 2.1 (a), in the focal plane of the imaging system, the complex-

valued electromagnetic field is the Fourier-space spectrum of the object illuminated by

a collimated beam. Rather than direct observing the objects by intensity distribution in

the image plane as conventional imaging methods, the complex Fourier-space spectrum

is recorded, from which the observed scenery is derived by numerical inverse Fourier

transform. Fig. 2.1 (b) shows the relationship of the Fourier-space spectrum and the

imaged object by taking a picture as simulation example. The focal plane of the optical

system therefore is named as Fourier plane. In Fourier plane, the beam cross section

is smallest along the entire beam path, thus the detector array can have the smallest

size which fits the THz detection situation. In the following chapter, the basics of optical

diffraction is presented and formulas are derived to theoretically investigate Fourier optics.

The implementation of the formulas is considered in more detail, before a closer look is

taken on the role of the intensity and phase. The chapter finishes with further simulation

results focusing on experimental boundary conditions.

2.1 Optical Diffraction analysis in Fourier optics

The phenomenon known as diffraction is a fundamental phenomenon in the propagation of

light waves, plays a role of utmost importance in the branches of physics and engineering

[37]. It is an inevitable result of the superposition of light waves. The principle of super-

position is one of the basic principles of wave optics and the theoretical basis for solving
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(a) (b)

Figure 2.1: (a) Sketch of Fourier imaging and (b) simulation of the relationship be-
tween the recorded data (right panel) and the imaged target (left panel).

diffraction problems. The theoretical analysis of the superposition of the light waves can

be deduced as the Fourier transform in mathematics. Fourier imaging is therefore gener-

ated based on this concept. In this chapter, some of the foundations of scalar diffraction

theory analysis based on Fourier theorem in different situations will be developed. To fully

understand the properties of optical imaging and data processing systems, it is essential

that diffraction and the limitations it imposes on system performance be appreciated. A

variety of references to more comprehensive treatments of diffraction theory will be found

in the material that follows. After which the thin lens effect in Fourier optics is also

demonstrated to serve for the later Fourier imaging analysis.

2.1.1 Hugens-Fresnel principle

In 1690, Huygens published the book "Treatise on Light", in which the hypothesis "Each

surface element on the wave front can be regarded as a secondary disturbance center,

which can generate spherical wavelets", and "in the latter moment, the position of the

wave front is the envelope of all these wavelets. " were put forward [38, 39], Fig. 2.2

shows the spherical and plane wave propagations. However, this hypothesis is based on the

assumption. Although the inevitability of the diffraction phenomenon can be explained, it

is not possible to quantitatively calculate the law of light propagation in free space after the

diffracting object. Therefore, the irradiance distribution of the diffraction pattern on the

observation surface cannot be determined. Fresnel made an important supplementation

to Huygens principle, and proposed Huygens-Fresnel principle. It is expressed as: "Any
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2.1 Optical Diffraction analysis in Fourier optics

Figure 2.2: Hugens description of spherical and plane wave propagations.

surface element on the wave-front that is not blocked can be regarded as a wavelet

source. The wave-front wavelet that emits the same frequency as the incident wave,

and the optical vibration at any subsequent point is the result of the superposition of

all the wavelets." Essentially, It is the product of the combination of Huygens’ wavelet

hypothesis and the principle of interference superposition. As shown in Fig. 2.3, S is a

monochromatic point light source, the radiating intensity is A′ , the complex field on the

incident screen therefore is E0 = A
′
e(jkr0)/r0. According to Huygens-Fresnel principle,

the quantitative calculation of Eq. 2.1 can be used to describe the correlation of the field

distribution between any two surfaces (such as the diffracting diaphragm surface
∑

and

the observation surface
∏
) during the propagation.

E(P ) = KE0

∫∫
D(χ)

ejkr
′

r′
dξdη, (2.1)

where K is the complex cofficient, and E(P ) is the complex field at point P. D(χ) is the

"direction factor", which represents the relationship between the strength of the wavelets

in different directions. Fresnel had assumed that the value of D(χ) was between 0 and

1, D(0) = 1 and D(π/2) = 0 to avoid the retrogressive waves. The formula is based on

assumptions, and both the complex coefficient K and the direction factor D(χ) in the

formula are uncertain.
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Figure 2.3: Principle of Hugens-Fresnel.

2.1.2 Kirchhoff diffraction integral formula

In 1882, Kirchhoff applied the wave differential equation (D(χ)∆2E + k2E = 0) and the

Green’s theorem (selecting G = ejkr/r as the Green’s function) in diffraction calculation,

and derived a formula to solve the problem. It is relatively strict. The complex coefficient

K and the direction factor are specified [40].

Figure 2.4: Diffraction of spherical wave irradiation when meeting opening
∑

.

As shown in Fig. 2.4, an infinitely opaque screen
∑

1 with an break
∑

is illuminated

by a spherical wave emitted by the monochromatic point source S0. The linearity of
∑

is

much larger than the wavelength, but much smaller than the distance between
∑

and the

observed point P. Selecting a enclosed surface S that surrounds the point P, consisting
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2.1 Optical Diffraction analysis in Fourier optics

of
∑

,
∑

1, and a spherical surface
∑

2 with P as the center and a radius R tending to

infinity, i.e. S =
∑

+
∑

1 +
∑

2, the integral of electric field at P can be expressed as

E(P ) =
1

4π

∫∫
∑

+
∑

1 +
∑

2

[
∂E

∂n

ejkr

r
− E ∂

∂n
(
ejkr

r
)]dξdη. (2.2)

In order to determine the electric fields E and ∂E/∂n, Kirchhoff made the following

assumptions: i) In area of
∑

, E and ∂E/∂n are determined by the nature of the incident

wave rather than affected by
∑

1 at all. ii) On the right side of the
∑

1, E and ∂E/∂n

are always equal to 0, and has no relationship with
∑

at all. These two assumptions are

named as Kirchhoff boundary conditions. Combining Sommerfeld radiation conditions,

Eq. 2.2 can be simplified as

E(P ) =
1

jλ

∫∫
∑A

′ ejkr0

r0

ejkr

r

cosα1 + cosα2

2
dξdη, (2.3)

where D(α) = (cosα1 + cosα2)/2 is the direction factor, and the definitions of the

direction angles α1 and α2 are shown in Fig. 2.4. If the complex constant K = 1/jλ

is set, the Fresnel diffraction integrals of equations 2.3 and 2.2 have exactly the same

manifestation.

The Kirchhoff diffraction integral is based on a solid mathematical foundation. It

gives a specific form and physical meaning of the parameters and corrects some Fresnel’s

assumptions about the properties of wavelets. However, obvious inconsistencies are still

in the boundary conditions. Therefore, Sommerfeld modified the form of the Green’s

function G in this theory, simplified and generalized the Kirchhoff diffraction formula. It

can be shown as Fig. 2.5. In Cartesian coordinates, the plane
∑

(ξ, η) where diffraction

aperture exists is d distance away from the observation plane
∏

(x, y).
∑

and
∏

are parallel to each other. The field distribution propagated to
∑

plane is B(ξ, η).

With a transmission coefficient T (ξ, η) of a diffracting object, the transmitted wave can

be expressed as A(ξ, η) = B(ξ, η)T (ξ, η). Taking it into formula 2.3 and substituting
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D(α) = 1 under paraxial approximation, the diffraction pattern will be

E(x, y) =
1

jλ

∫∫
A(ξ, η)

ejkr

r
dξdη. (2.4)

This formula expresses the diffraction theory more concisely and clearly.

Figure 2.5: The model of diffraction.

2.1.3 Fresnel diffraction

In optics, the Fresnel diffraction is an approximation of the Kirchhoff–Fresnel diffraction

[41, 42]. It is used to calculate the diffraction pattern created by waves passing through an

aperture or around an object, when viewed from relatively close to the object. In contrast,

the diffraction pattern in the far field region is given by the Fraunhofer diffraction equation.

The diffracting device shown in Fig. 2.6 takes the origin of coordinates as the center

point θ . M(ξ, η) is the point on the diffraction aperture
∑

, and P (x, y) is the point

on the observation plane
∏
,
∑

and
∏

are parallel to each other with an interval of

d. The propagation distance r from M to P is r =
√

(x− ξ)2 + (y − η)2 + d2. When

d� max(ξ, η, x, y), r can be binomial expanded as

r = d+
((x− ξ)2 + (y − η)2)

2d
− [(x− ξ)2 + (y − η)2]2

8d3
+ · · · . (2.5)

Based on the paraxial axis approximation (i.e. d � max(ξ, η, x, y)), the denominator

r of the integral Eq. 2.4 can be substitute by d since higher order components in Eq. 2.5

are negligible for amplitude. However, for phase delay kr in Eq. 2.4, the third and higher
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Figure 2.6: Model of Fresnel diffraction.

terms in r expansion is required to be less than π/2 to meet the error limit, which means

2π

λ

[(x− ξ)2 + (y − η)2]2

8d3
≤ π

2
or d3 ≥ 1

2λ
[(x− ξ)2 + (y − η)2]2. (2.6)

With this condition, r in the exponential factor can be replaced by the first two terms of

Eq. 2.5. This is called Fresnel approximation. Under Fresnel approximation, the Kirchhoff

diffraction integral formula can be further simplified as

E(x, y) =
1

jλd
ejk(d+x2+y2

2d
)

∫∫
A(ξ, η)ej

k
2d

(ξ2+η2)e−j
k
d

(xξ+yη)dξdη. (2.7)

This formula is called "Fresnel diffraction integral", and the observation area satisfying

this formula is called "Fresnel diffraction area".

2.1.4 Fraunhofer diffraction

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves

when the diffraction pattern is viewed at a long distance from the diffracting object, and

also when it is viewed at the focal plane of an imaging lens [43]. If the size of the diffraction

aperture does not change in Fresnel diffraction pattern, and the distance z between the

diffraction aperture and the observation plane is further increased, the diffraction pattern

will be enlarged accordingly. Despite this, when the distance z of the observation surface

exceeds a certain value, the phase error introduced by the square term of the diffraction
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aperture will be less than π/2, which is

2π

λ

ξ2 + η2

2d
≤ π

2
. (2.8)

In this case, the (ξ2 + η2)/2d item in the second term of Eq. 2.7 can be omitted, and

further approximation of r in the complex exponent term in Eq. 2.5 is

r = d+
((x− ξ)2 + (y − η)2)

2d
− xξ + yη

d
. (2.9)

This approximation is called the Fraunhofer approximation. Under Fraunhofer approxi-

mation, the Kirchhoff diffraction integral formula is further simplified as

E(x, y) =
1

jλd
ejk(d+x2+y2

2d
)

∫∫
A(ξ, η)e−j

k
d

(xξ+yη)dξdη. (2.10)

2.1.5 Thin lens Fourier transform

From the perspective of wave optics [33], the role of the lens is nothing more than a phase

converter, which bends the light by introducing phase delay. The magnitude of the phase

delay is proportional to the optical thickness of the lens. In other words, the lens can be

used as a pure non-directional modulating element. The optical thickness corresponding

to a phase delay of an integer multiple of 2π in the lens can be bypassed in calculation

since the waves have a period of 2π, i.e. the geometric optical translation of the light

when passing through this part of the lens can be ignored. Such a lens is called a thin

lens. Referring to Fig. 2.7a, the lens locates in plane (ξ, η). The maximum thickness

of the lens is ∆0. The thickness at point (ξ, η) is ∆(ξ, η), which is called the thickness

function of the lens. When light passes through from the entrance pupil plane U1 to the

exit pupil plane U ′
1, the total phase delay is

φ(ξ, η) = kn∆(ξ, η) + k[∆0 −∆(ξ, η)], (2.11)
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where n is the refractive index of the lens material. Therefore, the effect of the lens on

the incident light wave can be described by a phase transformation factor, expressed as

Tl(ξ, η) = ejφ(ξ,η) = ejk∆0ejk(n−1)∆(ξ,η). (2.12)

(a) (b)

Figure 2.7: Model of thin lens (a) the whole lense and (b) the half lenses.

As long as the filed distribution of light ul(ξ, η) on the entrance pupil plane of the lens

is known, the field distribution u′

l(ξ, η) on the exit pupil plane of the thin lens can be

obtained immediately from the viewpoint of phase modulation, which is

u
′

l(ξ, η) = ul(ξ, η)Tl(ξ, η). (2.13)

In order to find ∆(ξ, η), the method shown in Fig. 2.7b splits the lens into two halves

are utilized. It specifies that when the light propagates from left to right, the radius of

curvature of the convex spherical surface is positive, the radius of the concave sphere

curvature is negative (in Fig. 2.7b, R1 > 0 and R2 < 0). It is easy to find applying the

geometric relationship, one can get

∆(ξ, η) = ∆1(ξ, η) + ∆2(ξ, η) = ∆0−R1(1−

√
1− ξ2 + η2

R2
1

) +R2(1−

√
1− ξ2 + η2

R2
2

).

(2.14)
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For a thin lens, the paraxial approximation holds for√
1− ξ2 + η2

R2
≈ 1− ξ2 + η2

R2
. (2.15)

The thickness function thus can be simplified as

∆(ξ, η) = ∆0 −
ξ2 + η2

2
(

1

R1

− 1

R2

). (2.16)

Bringing Eq. 2.16 in Eq. 2.12 and applying the focal length formula (1/f = (n −

1)(1/R1−1/R2)) of the lens, the phase transformation factor of the lens can be obtained

immediately as

Tl(ξ, η) = ejk∆0e−j
k
2f

(ξ2+η2). (2.17)

Although Eq. 2.17 is derived for convex lenses, the signing rules used make this result

fitting for other types of lenses. The first factor in the formula represents a uniform

phase delay. The second factor represents the Fresnel approximation of spherical waves.

When the focal length f is positive, it is a converging spherical wave. Tl(ξ, η) represents

the phase transformation factor of the convex lens. When f is negative, it corresponds

to a diverging spherical wave. Tl(ξ, η) is hence the phase transformation factor of the

concave lens. In addition, although the phase transformation effect represented by Eq.

2.17 depends on a large extent on the establishment of the paraxial approximation, this

conclusion remains true as long as the lens has undergone strict aberration correction.

The phase transformation effect of the lens is determined by the intrinsic nature of

the lens, regardless of the incident light, whether it is a plane wave, spherical wave or a

complex wave. As long as the aforementioned conditions , paraxial approximate or strict

phase difference correction is fulfilled, the lens can achieve phase transformation of the

incident light wave in the form of Eq.2.17.

2.1.6 Fraunhofer diffraction in a finite distance

According to Eq. 2.10, accurate Fraunhofer diffraction can be observed only on the plane

with the distance d = ∞. In order to observe the Fraunhofer diffraction at a limited
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2.1 Optical Diffraction analysis in Fourier optics

distance in the laboratory, the phase transformation property of a convex lens can be

used. The appropriate field distribution in the back focal plane of the lens is equivalent

to the Fraunhofer diffraction of the object. For simplicity, only the case of plane wave

illumination is described here. Other illuminating fashions can also be analyzed in the same

way. The sketch is shown in Fig. 2.8. Two cases with diffracting object in front of and

after the focusing lens L are specified. The diffracting object has a complex transmitting

coefficient of T (ξ, η). It is placed on the plane
∑

and illuminated by a monochromatic

plane wave with unit amplitude of B(ξ, η) = 1. With the phase conversion factor Tl(ξ, η)

of L, the complex light wave propagated from the diffracting aperture
∑

(Fig. 2.8a) or

the last surface of L (Fig. 2.8b) can be written immediately as

A
′
(ξ, η) = B(ξ, η)Tl(ξ, η)T (ξ, η) = A(ξ, η)El0e

−j k
2f

(ξ2+η2). (2.18)

The propagation of the waves from plane
∑

to plane
∏

is Fresnel diffraction. Thus

(a) (b)

Figure 2.8: Plane wave illumination diffraction device. (a) Diffracting object is lo-
cated behind the lens, (b) diffracting object is located before the lens.

using A′
(ξ, η) instead of A(ξ, η) in Eq. 2.7, one can obtained the field distribution on

∏
plane by

E(x, y) =
1

jdλ
ejk(d+x2+y2

2d
)

∫∫
A

′
(ξ, η)ej

k
2d

(ξ2+η2)e−j
k
d

(xξ+yη)dξdη. (2.19)
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If d = f , Eq. 2.19 can be simplified as

E(x, y) =
El0
jdλ

ejk(d+x2+y2

2d
)

∫∫
A(ξ, η)e−j

k
d

(xξ+yη)dξdη. (2.20)

One can find that Eq. 2.20 and Fraunhofer diffraction integral Eq. 2.10 have exactly

the same form, which shows that with the convex lens such as that shown in Fig. 2.8a,

the Fraunhofer diffraction can be observed in finite distance (on the back focal plane of

the convex lens). This has very important values in practical application.

2.1.7 Fourier transform in diffraction computing

Both Fresnel diffraction (Eq. 2.7) and Fraunhofer diffraction (Eq. 2.10) has the linear

complex exponential factor e−j
k
d

(xξ+yη) = e−j2π( x
λd
ξ+ y

λd
η). Holding fξ = x/(λd), fη =

y/(λd), the above exponential factor can be expressed as e−j2π(fξξ+fηη). In wave optics,

it can represent a three-dimensional simple harmonic plane wave with a spatial frequency

of (fξ, fη), and has the same form as the two-dimensional Fourier transform kernel in

Fourier analysis. The integral in Eq. 2.20 therefore can be expressed as

a(fξ, fη) =

∫∫
A(ξ, η)e−j2π(fξξ+fηη)dξdη. (2.21)

This is the two-dimensional Fourier transform of the transmitted wave A(ξ, η) after pass-

ing through a diffracting object, which means the Fraunhofer diffraction of A(ξ, η) is

equal to the product of the two-dimensional Fourier transform a(fξ, fη) by a complex

constant g(x, y)

E(x, y) = g(x, y)afξ, fη), (2.22)

where g(x, y) = El0
jdλ
ejk(d+x2+y2

2d
).
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2.2 Principle of Fourier imaging

2.2 Principle of Fourier imaging

Based on the demonstration of diffraction in Section 2.1 of this chapter, one can find

that the Fraunhofer diffraction E(x, y) is equal to the product of the Fourier transform

t(fξ, fη) of the complex aperture transmitted coefficient T (ξ, η) and a complex constant.

In other words, using the convex lens, a two-dimensional Fourier transform of the object

distribution can be achieved in the back focal plane. This opens up a new way to accom-

plish the Fourier transform by optical methods, which differs from the digital fast Fourier

transform (FFT). It is analog two-dimensional parallel processing. The speed is fast as

the speed of light. It is therefore called an optical analog Fourier transform, or simply an

optical Fourier transform. In the later chapter of this research, the Fraunhofer diffraction

pattern will also be called Fourier-space spectrum. An optical imaging system is used

to record, filter, and process the spatial field distribution of the Fourier-space spectrum,

thereby achieving a special functional imaging method which is called the Fourier imag-

ing technology. This research will mainly focus on recording the Fourier-space spectrum

coherently and reconstructing the observed information by numerical calculation.

2.2.1 Model of Fourier imaging

As Section 2.1.6 demonstrated, in the focal plane of a convex lens, one can observe the

Fraunhofer diffraction of the waves modulated by the imaged object directly in front of

the convex lens or just after the lens. However, in a practical experiment or 3D imaging

applications, it still has some difficulties to ideally comply the process. To have a larger

imaging range, observation of the object to be imaged away from the convex lens needs

to be considered. As Fig. 2.9 shows, the complex transmission coefficient of the object

is defined as T (ξ, η). It is located in a plane with a distance of d0 in front of the lens

and illuminated by a monochromatic plane wave with unit amplitude. Let us define the

Fourier-space spectrum of an object as t(fξ, fη), the complex amplitude of the radiation

projected onto the entrance pupil of the lens after going through the object as T ′
(ξ, η),

and its Fourier spectrum as t′(fξ, fη). The complex field distribution on the back focal

plane of the lens is E(x, y). Assuming that the aperture of the lens is large enough,
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2 Fourier imaging

thus it will not limit the high-frequency components of t(fξ, fη). Based on the Fresnel

diffraction and Fourier transform formulas we have

t
′
(fξ, fη) = ejkd0e−jπλd0(f2

ξ+f2
η )t(fξ, fη), (2.23)

where t(fξ, fη) = F[T (ξ, η)], F denotes Fourier transform.

Figure 2.9: Fourier transform beam path with object in front of lens.

According to the analysis in Section 2.1.6 and 2.1.7, the complex field distribution

E(x, y) on the back focal plane
∏

of the lens is equal to the Fraunhofer diffraction of

the object on the entrance plane of the lens. From Eq. 2.22 one will find

E(x, y) =
E0

jdλ
ejk(f+x2+y2

2f
)

∫∫
T

′
(ξ

′
, η

′
)e−j2π(fξξ

′
+fηη

′
)dξ

′
dη

′
, (2.24)

where fξ = x/(λf), fη = y/(λf). Bringing Eq. 2.23 into 2.24 one will get

E(x, y) =
E0

jdλ
ejk(d0+f)ej

k
2f

(1− d0
f

)(x2+y2)

∫∫
T (ξ, η)e−j2π(fξξ+fηη)dξdη. (2.25)

Suppose that g(x, y) = E0

jdλ
ejk(d0+f)ej

k
2f

(1− d0
f

)(x2+y2), Eq. 2.25 can be rewritten as

E(x, y) =
E0

jdλ
exp[jk(d+ f)]exp[j

k

2f
(1− d

f
)(x2 + y2)]t(fξ, fη), (2.26)
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2.2 Principle of Fourier imaging

E(x, y) = g(x, y)t(fξ, fη), (2.27)

where g(x, y) consists of a complex constant and a paraboloidal phase item related to

(x2 + y2), so the light field distribution E(x, y) on the back focal plane
∏

of the lens is

not equal to the exact Fourier transform of the amplitude transmission coefficient T (ξ, η).

It has the same amplitude distribution as the Fourier transform, but the phase is the sum

of the Fourier transform spectrum phase and the two-dimensional paraboloidal phase.

According to the second item in the phase part of g(x, y), the distance information is

mathematically encoded in the phase distribution in the focal plane of the imaging system

(“lens”). Thus recording the phase info in the focal plane enables the system 3D imaging

capability. The distance-encoding in the phase information is illustrated in Fig. 2.10,

which displays the phase profile of a circular aperture centered on the optical axis. Fig.

2.10(b) presents the phase term k
2f

(1 − d0

f
)(x2 + y2) for different object locations. For

an object placed at the front focal plane (d0 = f), one obtains a flat phase contribution.

Away from the focal plane, the phase has a paraboloidal shape, with a sign and magnitude

of the curvature unambiguously dependent on d0. This phase contribution is to be added

to that determined by the object itself which in our case is the circular aperture (with

the phase profile of Fig. 2.10(a)). Fig. 2.10(c) shows the total phase in the Fourier

plane for the five distances of the aperture of Fig. 2.10(b). Comparing the resultant

phase contours, one will find the influence of the distance. For more complex objects,

it is usually not straightforward to visually identify the distance information in a phase

image without the help of suitable computer-based analysis.

As illustrated above, the Fourier space spectrum theory can be integrated into the

THz regime to remove the barriers in the path of bringing THz technology into practical

applications. The model of the Fourier imaging in this research will be built to position

the detector in the focal plane (coordinates: x, y) of the optical system, where the beam

cross-section is smallest along the entire beam path. As with other coherent imaging

techniques such as phase-shift interference imaging, holography, in-line holography as

well as off-axis holography, near-field holography and time-reversal holographic imaging
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2 Fourier imaging

Figure 2.10: Phase simulation of Fourier imaging. (a) The phase profile of a circular
aperture. (b) Distance-related phase contribution for various positions
of the aperture. The paraboloidal phase surface is concave (convex) if
the aperture is placed more (less) than a distance d in front of the lens.
(c) Total phase in the focal plane (Fourier plane) of the lens.

of hidden objects, the image is then calculated numerically from the recorded data. The

field-of-view is determined by the pixel pitch with which the field has been recorded,

and not by the size of the detector array as in conventional imaging (with conventional

imaging, we mean here and in the following the recording of the spatial distribution of

the radiation intensity in the image plane of the lens for a given object distance).

2.2.2 Advantages of Fourier imaging

Large field-of-view

In imaging setups, diffraction limit affects THz radiation stronger than visible radiation

due to the much longer wavelength of the THz radiation, which also results in the cameras

at THz spectral regime will never have comparable high pixel density with cameras at the

visible spectral range and leads to a reduced field-of-view which can be obtained directly,

i.e., without scanning with the help of movable optical elements in the camera system.

Thus, the establishment of a Fourier imaging setup in THz frequencies enables a feasible

placement of detectors, only if the detectors meet the sub-Nyquist sampling rate, which

20



2.2 Principle of Fourier imaging

will solve the problems of lacking of megapixel cameras at this regime. Fig. 2.11 displays

the simulation results of the Fourier system and the traditional setup with the same

parameters, in contrary to the field-of-view cut-off in an ordinary system, image results

show, even if the detection area in the plane is limit, the reconstruction image from the

Fourier spectrum can still cover the whole area of the imaging target.

Figure 2.11: Generic Fourier imaging approach. Top: Schematic of a basic imaging
set-up for the example of a 2f geometry. The object (here a 1951 USAF
resolution test chart) is located at a distance 2f in front of the imaging
lens. Also shown is the real part of the spatial Fourier spectrum of the
object in the focal plane of the imaging lens and the intensity image in
the image plane at a distance 2f behind the lens. Bottom left: Example
of numerical image reconstruction with a detector array covering 50×50
mm2. With a pixel pitch of 0.1 mm, the whole test chart is covered.
Bottom right: Conventional imaging: The lens aperture only allows one
to cover the central region of the test chart.

3D imaging and error suppression

Being a coherent image recording technique, Fourier imaging has a close conceptual

relationship with other phase-resolving techniques such as phase-shift interference imaging

[44, 45], holography [46], in-line holography [47–49], off-axis holography [50–53], near-

field holography [54] and time-reversal holographic imaging of hidden objects [55]. There

exists, however, an important difference to these techniques. All of these capture the
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phase information by interfering with the beam arriving from the illuminated scene with a

reference beam. This approach has two disadvantages. First, it induces errors because the

reference beam is not ideally collimated as usually assumed in the calculations. Second

and more important, it tends to suffer from a limited lateral spatial resolution because

the (usually) weak signals of the high spatial frequency components are easily buried

in the noise. Single-pixel heterodyne detection, which we apply in our Fourier imaging

technique, in contrast, has an amplification aspect to it, as it mixes the weak signal with

a strong reference beam, concentrated on the detector to generate an enhanced signal at

the intermediate frequency for data processing. This leads to a diffraction-limited spatial

resolution as shown in [47].

Fourier imaging also offers the possibility of 3D imaging. As stated above (Fig. 2.10),

3D imaging means here to exploit the fact that the distance of any object point from

the lens is encoded in the phase-front curvature of the light arriving at the focal plane.

With this distance information, it is possible to numerically focus on any plane in front of

the imaging lens and to determine how the object looks like in this plane (provided THz

radiation from these object points has arrived in the detection plane).

Fourier imaging also allows to correct the image data for lens-induced aberrations

(deviations from the ideal thin-lens behavior). The computer calculations used for object

reconstruction allow compensating known aberrations induced by the optical system.

Compresses sensing capability

Another aspect which speaks for Fourier imaging as a modality to be applied more in the

THz frequency regime is that, conceptually, it lends itself to the application of compressed

sensing techniques [56–58] because much of the information of the Fourier spectrum is

sparse [57, 59]. The advantage of this technique is that it can detect an object obscured

by another object in the beam path with single frame recorded data if enough scattered

light from the targets arrives at the detection plane, which has never been reported in the

presented literature of 3D imaging, such as phase-shift interference imaging, holography,

in-line holography as well as off-axis holography, near-field holography [60, 61] and time-

reversal holographic imaging of hidden objects [62].
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Furthermore, because of the sparsity of the recorded data, part of the detection infor-

mation loss or low detection sampling rate will still have the a large field of view, and all

the information in the range rather than image information loss as shown in conventional

imaging method shown in Fig. 2.12. For single-pixel scanning detection system often

adopted in THz regime, this technique will reduce the imaging time, for camera detection

system, it can cut down pixel size requirements, which makes real-time imaging with high

quality is possible in THz range.

Figure 2.12: Imaging field of view comparison between Fourier imaging and conven-
tional direct imaging.

Numerical focusing makes the system more compact and enhances the

resolution

In Fourier optics, there is a typical 4-f imaging system as shown in Fig. 2.13, the first lens

focuses the beam into the Fourier space frequency domain, in the focal plane 2D analog

filter can be applied, then the second focal lens transfers the Fourier spectrum back to

the space domain for detection. In theory, both the focusing lens should be thin lenses,

but in reality, it is impossible, thus the aberrations exist in the imaging system. While

using computer calculation to substitute the second focal lens to act as the numerical

optical system virtually, one can compensate the aberrations induced by the first focal
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lens. The virtual system can be complex to achieve the function with multi-piece of lenses

but without radiation.

Figure 2.13: Typical 4-f imaging system.

Moreover, thanks to the computer numerical calculation of decoding of the Fourier

spectrum, the paraboloidal phase part in Eq. 2.25 can be removed numerically, the

object distance, therefore, can be extended/ shorten to any value rather than equal to the

focal length of the first focal lens in the 4-f system. Compared to conventional imaging

approaches where the imaging target must be placed more than the focal length away of

the focusing system to get the real image of the scene to be captured, Fourier imaging

enables the lateral resolution enhancement by allowing the placement of the imaging

target to break the location limit, positioned more close to the focusing system. The

higher resolution can be attributed to less higher space frequency components loss during

the shorter signal propagation.

THz camera integration potential

Finally – with a view towards future Fourier imaging with focal plane arrays operated

in heterodyne mode, one should note that Fourier imaging bears other advantages that

are exceptionally well suited to mitigate the challenges of imaging at terahertz (THz)

frequencies. These arise because the diffraction limit of the lateral spatial resolution

affects the practically attainable pixel numbers useful in THz imaging severely, and much

more strongly than imaging in the visible (VIS), which is a consequence of the much longer
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wavelength of the THz radiation (1 THz corresponds to a wavelength λ of 300 µm in free

space). As the diffraction-limited area of the focal spot for a given focal length of a lens

scales with λ2, the pixel area of a THz detector has to be by a factor of 105 larger than

that of a pixel for VIS light. As the price of semiconductor-based detectors scales with the

chip area, a focal-plane array of a THz camera will never have the multi-megapixel size

of modern VIS cameras. The effective pixel number may reach 105 perhaps and will be

significantly smaller for sub-THz frequencies. With conventional imaging (recording the

intensity profile in the image plane of the lens), one will then not be able to cover a large

field-of-view with good spatial resolution directly; one will be forced to scan the scene

with the help of movable optical elements. At the least, the scanning adds complexity

and costs, and increases the recording time. In contrast, Fourier imaging benefits from

the facts that the effective beam area is smallest in the Fourier plane and that the size

of the field-of-view of the scene is only determined by the pixel pitch with which the

field is recorded there. If one has only a small detector array (“small” meaning here to

have a comparatively low number of pixels in the array), then one can still monitor a

comparatively large field-of-view, as is illustrated in Fig. 2.11. This comes at the price of

a limited spatial resolution, which is determined by the size of the array (i.e., by how much

of the spatial Fourier spectrum one can cover with the detector array). Often in practical

applications, it is more important to obtain a fast overview of a scene to decide whether

an image with a better resolution is desired. This can then be achieved by translating the

detector array in the focal plane to record higher Fourier components in reciprocal space.

2.3 Simulation of Terahertz Fourier imaging

Imaging at terahertz (THz) frequencies offers interesting features for technical applica-

tions. Among these are the transparency of many materials which provides the ability to

look into and through objects such as packages and technical materials, the existence of

spectral fingerprints for the identification of substances, and the weak scattering by dust,

smoke and mist, which makes THz radiation interesting for imaging under challenging

ambient conditions in a radarlike fashion [63], but with better spatial resolution. The
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latter could be promising e.g. for robotics and autonomous vehicles. Many of these en-

visaged applications would operate in the deep sub-THz frequency regime (approximately

0.1-0.6 THz), where the large wavelength of the radiation makes it difficult and expensive

to build detector arrays which exhibit a sufficient number of detectors needed for high

frame rates together with good image quality, as defined by a sufficiently large field-of-

view with acceptable spatial resolution. For this reason, the integrated detector arrays

which are currently being available [64–69], with pixel numbers of less than ten thousand,

are only of limited usefulness for standard two-dimensional (2D) imaging as well as for

three-dimensional (3D) computed tomography [28, 32], because the detectors cover only

a small field-of-view with good resolution.

An alternative is Fourier imaging with the detector array being positioned in the focal

plane of the optical system, where the beam cross-section is smallest along the entire beam

path. As with other coherent microwave and THz imaging techniques such as phase-shift

interference imaging [44, 45], holography [46], in-line holography [49, 70] as well as off-

axis holography [50–53], near-field holography [54] and time-reversal holographic imaging

of hidden objects [55], the image is calculated numerically from the recorded data. The

field-of-view is determined by the pixel pitch with which the field has been recorded, and

not by the size of the detector array as in conventional imaging.

2.3.1 Simulation of THz Fourier imaging setup with simple

samples

To have an easier subsequent resolution demonstration and image quality comparison,

the work here will look at differences between the practical imaging system and the

simulation. The photo of a 1951 USAF test chart (microscopic optical resolution test

device originally defined by the U.S. Air Force MIL-STD-150A standard of 1951) as shown

in Fig. 2.14, a Siemens star (alias: spoke target, a device used to test the resolution of

optical instruments, printers, and displays) depicted in Fig. 2.19 and a two-dimension

grids drawn as Fig. 2.24 are utilized as the target objects for simulation. These three

objects are also used as the imaging targets in the experiment, the pictures of the real
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objects will be shown in the experimental part. Furthermore, in order to be as close to

the experimental scene, the collimated Gaussian beam with 2-inch aperture is projected

onto the simulated objects, the beam center is shifted a little bit from the optical axis,

and the pixel size of the simulated object is imitated and adjusted according to the actual

experimental scene. Next, the adjustment of different target objects and the Fourier

spectrum distribution generated by simulation will be analyzed.

Simulation of USAF chart

A 1951 USAF resolution test chart is a resolution test device originally defined by the

U.S. Air Force MIL-STD-150A standard of 1951 [71]. The design provides numerous small

target shapes exhibiting a stepped assortment of precise spatial frequency specimens. The

full standard pattern consists of 9 groups as Fig. 2.14 shows, with each group consisting

of 6 elements; thus there are 54 target elements provided in the full series. Each element

consists of three bars that form a minimal Ronchi Ruling. The scales and dimensions of

the bars are given by the expression of

Resolution(lp/mm) = 2Group+(element−1)/6. (2.28)

Figure 2.14: Photo of USAF chart test target.

The simulation of different selected parts will be presented depending on the imaging
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radiation wavelength, scales and the dimensions of the bars on the USAF chart. In

this thesis, the validation frequencies of the Fourier imaging are 300 GHz and 600 GHz.

Therefore, the areas circled by the red, yellow and blue dashed rings in Fig. 2.14 are

selected as the target for the 300-GHz radiation case, the ones indicated by the green

and purple dashed rings are used for the 600-GHz radiation case. The size of the rings

is decided by the aperture size of the quasi-Gaussian beam generated by the collimation

lens (the values will be analyzed in Section 3.1.2).

The selected targets (circled by the red, yellow and blue dashed rings) illuminated by

the 300-GHz Gaussian beam are shown as the top to the bottom panels in the first column

of Fig. 2.15. Here, the object distance for each sample is set as 10 cm, the focal length

of the Fourier lens is 15 cm, the effective aperture size of the illuminated Gaussian beam

is 5.5 cm. The corresponding intensity and phase of the Fourier spectrum, generated by

applying the mathematical principles as Eq. 2.27 describes can be displayed by the second

and third columns in Fig. 2.15, respectively. The corresponding reconstructed images are

shown in Fig. 2.16.

For practical experiment at 600 GHz, the utilized illuminating radiation has a relatively

low power of 56 pW. That only allows a relatively small aperture size of 4 cm. A 4-cm

aperture-size Gaussian beam is therefore projected onto the imaging targets to have the

closest simulation. The imaging results at 600 GHz will have a better resolution than that

at 300 GHz, thanks to the shorter intrinsic wavelength, thus the -2 and -1 group were

selected as the imaging targets (indicated by the green and purple dashed circles in Fig.

2.14). The corresponding Gaussian beam illuminated targets can be shown as the top and

bottom plots in the first column in Fig. 2.17. The generated intensity and phase Fourier

spectrum are shown in the top and bottom rows in the second and third columns. The

data in the second column are the intensities and those in the third column are the phase

spectrum. Here, a 6-cm object distance and a focusing lens with a 5-cm focal length are

adopted. From the Fourier spectrum, one can see, the focus point is smaller than that at

300 GHz. This is because of the shorter wavelength and focal length. Correspondingly,

the resolution will be better.

With the same reconstruction method as 300 GHz, the images retrieved based on the
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Figure 2.15: Fourier spectrum simulation of three different parts of the USAF chart.
The panels in the first column are the imaged targets illuminated by the
Gaussian beam. The panels in the second column are the intensity of
Fourier spectrum distributions. The panels in the third column are the
Fourier phase distributions.

Fourier spectrum in Fig. 2.17 are shown in Fig. 2.18, the top and bottom rows correspond

to the object order in Fig. 2.17. The plots in the first column show the absolute intensity

distributions, those in the second column display the intensity in log scale, the ones in

the last column present the phase. From the simulated reconstructed image, one could

get that, the resolution at 600 GHz is better than that at 300 GHz as conceived. The

relationship between the resolution and the wavelength, the focal length of the system

will be investigated in Chapter 5.
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Figure 2.16: The reconstructions of each imaged targets in Fig. 2.15. The plots in
the first column are the intensity reconstructed image. The plots in the
second column are the intensity in the log scale. The plots in the third
column are the phase reconstructed image.

Simulation of Siemens star

Siemens star is another resolution verification device, which is more representative in all

directions than the USAF resolution chart. Here, the simulations of the Siemens star

target will be presented. The Siemens star exists as Fig. 2.19. The area circled by the

red dashed line will be used for 300 GHz simulation and experiment, the green dashed

line separates the part for 600 GHz imaging.

At 300 GHz, the area of the Siemens star off the center is selected as the imaged

target to have a wider resolution validation range. The simulation of the selected area

illuminated by the 5.5 cm diameter Gaussian beam is shown as the left panels in Fig.

2.20. The generated intensity and phase Fourier spectrum are shown as the middle and

right plots in Fig. 2.20, respectively. Here, the object distance is set as 10 cm, the used

focal length of the Fourier lens is 15 cm.
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Figure 2.17: Simulation of Fourier spectrum of two different parts of the USAF chart.
The plots in the first column are the imaged targets illuminated by the
Gaussian beam. The plots in the second column are the intensity Fourier
spectrum distributions. The plots in the third column are the Fourier
phase distributions.

Figure 2.18: The reconstructions of imaged targets in Fig. 2.17. The plots in the first
column are the intensity reconstructed images. The plots in the second
column are the intensities in the log scale. The plots in the third column
are the phase reconstructed images.
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Figure 2.19: Photo of Siemens star test target. The dashed rings circled the areas
illuminated by the Gaussian beam.

The reconstructed results from the Fourier spectrum shown in Fig. 2.20 are shown

in Fig. 2.21. The left plot is the intensity distribution, the middle plot is the intensity

distribution in the log scale, the right plot is the phase distribution.

At 600 GHz, the selected area is focused to the center (as that circled by the green

dashed line in Fig. 2.19) to better display the detail structures of the Siemens star. The

Gaussian beam size is locked to 4 cm with the same reason demonstrated in the Section

of USAF chart simulation. The focal length of the convex lens is 5 cm. The Gaussian

beam illuminated image target is the left panel in Fig. 2.22, the corresponding intensity

and phase Fourier spectrum can be shown as the middle and the right panels, respectively.

The reconstructed results are displayed in Fig. 2.23. The left figure is the intensity

distribution, the middle figure is the intensity distribution in the log scale, the right

figure is the phase distribution. The comparison between the 300 GHz and the 600 GHz

reconstructed images again shows the imaging resolution principles. It is more obvious in

the Siemens star.
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2.3 Simulation of Terahertz Fourier imaging

Figure 2.20: Simulation of Fourier spectrum of Siemens star at 300 GHz. The left
panel is the image target illuminated by the Gaussian beam. The middle
panel is the intensity Fourier spectrum distribution. The right panel is
the Fourier phase distribution.

Figure 2.21: The reconstructed imaging results of the Siemens star at 300 GHz. The
left plot is the intensity distribution, the middle plot is the intensity
distribution in the log scale, the right plot is the phase distribution.

Simulation of 2D grids

In the last simulation, a 2D periodic grid with a 7.5 cm period in both directions is used

as the target. The simulated transmission distribution of the grid is shown in Fig. 2.24,

the black part 100% blocks the radiation, the white part presents 100% transmission area.

The red and green dashed lines here are used to show the imaging area at 300 GHz and

600 GHz, respectively.

Using the target in the red dashed circle in Fig. 2.24 as the target, projecting a 5.5-

cm diameter Gaussian beam composed of 300 GHz radiation, the imaged object can be

expressed as the left plot of Fig. 2.25. Following the Fourier transform principles with

a 10-cm object distance in front of a 15-cm focal-length Fourier lens, the intensity and
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Figure 2.22: Simulation of Fourier spectrum of Siemens star at 600 GHz. The left
figure is the image target illuminated by the Gaussian beam. The middle
figure is the intensity Fourier spectrum distribution. The right figure is
the Fourier phase distribution.

Figure 2.23: The reconstructed imaging results of the Siemens star at 600 GHz. The
left figure is the intensity distribution, the middle figure is the intensity
distribution in the log scale, the right figure is the phase distribution.

phase Fourier spectrum distribution will be as that shown in the middle and right plots

in Fig. 2.25. From the Fourier spectrum, one can see that, both the intensity and the

phase are the spread focus spots periodically shifted from the center. The intensity of the

focusing spots degrades with the order off the center, while, the phase nearly keeps the

same.

The reconstructed images based on the 300-GHz Fourier spectrum can be shown as

Fig. 2.26. The left, middle and right graphs display the intensity, log scale intensity

and phase images of the rebuilt results, respectively. From the results, one can see, the

sharp edge of the corner for each transmitted rectangular is round chamfered because of

the resolution limit. The phase looks better visually since it is more sensitive than the
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2.3 Simulation of Terahertz Fourier imaging

Figure 2.24: Photo of the 2D grid test target. The dashed rings circled the areas
illuminated by the Gaussian beam.

intensity.

A smaller illuminated area of the 2D grid with a 4-cm aperture at 600 GHz is shown

in the left figure of Fig. 2.27. By applying a 6-cm object distance and 5-cm Fourier

focal length, the Fourier spectrum in the middle and right graphs of Fig. 2.27 can be

generated. The middle one is the intensity spectrum and the right one is the phase

spectrum. Compared with the spectrum at 300 GHz, the period of the focusing points

are smaller, the size of each focusing point is smaller. This attributes to the imaging

wavelength and the focusing length of the Fourier lens.

The reconstructed images are stated as Fig. 2.28. The left, middle and right panels are

the intensity, log scale intensity and phase images, respectively. The imaging results show

a sharper edge and corner of the periodic structure than that with 300-GHz radiation,

presenting a better resolution.

2.3.2 Field of View of Fourier imaging setup

Considering now the images are reconstructed by applying the inverse Fourier transform

on the recorded Fourier spectrum. The field-of-view covered by the object reconstruction

is given approximately by (derived from the spatial frequency component fξ = λf/x,
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2 Fourier imaging

Figure 2.25: Simulation of Fourier spectrum of the 2D grid at 300 GHz. The left graph
is the image target illuminated by the Gaussian beam. The middle graph
is the intensity of the Fourier spectrum distribution. The right graph is
the Fourier phase distribution.

Figure 2.26: The reconstructed imaging results of the 2D grid at 300 GHz. The
left panel is the intensity distribution, the middle panel is the intensity
distribution in the log scale, the right panel is the phase distribution.

fη = λf/y)

Dtx ≈
λf

δx
,Dty ≈

λf

δy
, (2.29)

where δx, δy are the step width of the field scanning in the focal plane. For a 1-mm

pixel size in the focal plane and a Fourier focal length of 15 cm at 300 GHz, the inverse

transformation to the object plane yields a field-of-view of 15 cm.

Fig. 2.29 is the simulated images of the reconstructed USAF resolution chart under

different pixel pitch size and recording area range in the Fourier plane. To have a more

direct visual sense, the whole chart is squeezed to 100 × 100 mm2 and used for the

simulation at 300 GHz. The object distance is selected as 10 cm, the focal length of the
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2.3 Simulation of Terahertz Fourier imaging

Figure 2.27: Fourier spectrum simulation of the 2D grid at 300 GHz. The left map is
the image target illuminated by the Gaussian beam. The middle map is
the intensity of the Fourier spectrum distribution. The right map is the
Fourier phase distribution.

Figure 2.28: The reconstructed imaging results of the 2D grid at 600 GHz. The
left plot is the intensity distribution, the middle plot is the intensity
distribution in the log scale, the right plot is the phase distribution.

Fourier focusing lens is set for 15 cm. The graphs in the top and bottom rows are the

results for 50 × 50 mm2 and 100 × 100 mm2 recorded areas, respectively. The plots in

left and right columns are the results for 1-mm and 0.5-mm pixel sizes, correspondingly.

From Fig. 2.29, one will find the field-of-view of the reconstructed image based on the

0.5-mm pixel-size Fourier spectrum (100 × 100 mm2) is 2 times large of that generate

based on the 1-mm pixel-size Fourier spectrum (50 × 50 mm2). This validates the

mathematical expression in Eq. 2.29. The characteristic allows it to achieve large field-

of-view imaging in a specific recording range, as long as the pixel size in the Fourier plane

is small enough. This is consistent with what was discussed in Section 2.2.2.

37
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Figure 2.29: The simulation of the USAF resolution chart for different pixel pitch and
recording range.The plots in the top and bottom rows are the results for
50 × 50 mm2 and 100 × 100 mm2 recorded areas, respectively. The
plots in the left and right columns are the results for 1-mm and 0.5-mm
pixel sizes, correspondingly.

2.3.3 The primary analysis of Fourier imaging resolution

Owing to the properties of the spatial Fourier transformation, a higher scan resolution in

the focal plane results in a larger field-of-view in the object plane. A wider scanning area

in the focal plane of the lens, on the other hand, converts to a higher lateral resolution in

the object plane. The increased lateral resolution finds its limitation, however, when all

wave-vectors permitted by the diffraction limit of the lens (or more generally correct of the

entrance pupil of the imaging optics) are covered. The lens induces a soft cut-off for wave-

vectors with an absolute value of the lateral component k|| ≥ kcut = k D/
√
D2 + 4d2,

when d >> D/2, we have paraxial approximation k|| ≥ kcut = k D/2d where k is the
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absolute value of the wave-vector, d is the object distance from the lens, and D is the

diameter of the lens. In order to find the location of the kcut Fourier representation in

the focal plane of the lens, we can use geometrical optical arguments. For a point object

at d > f on the optical axis, the real image is located on the optical axis at the image

distance b = fd/(d− f). The kcut Fourier representation is then found in the focal plane

at a distance |Rcut| from the optical axis given by

|Rcut| =
b− f
b

D

2
=
f

d

D

2
. (2.30)

If the field map in the Fourier plane extends over a width of more than 2|Rcut|, then the

resolution, i.e. the smallest resolved distance Y> in the object plane, is given approximately

by

Y> =
λd

D
, (2.31)

while for a scan area with a diameter of 2|Rmax| less than 2|Rcut|, D must be replaced

by an effective lens aperture

Deff = 2b|Rmax|/(b− f) = 2|Rmax| d/f , which yields the resolution

Y< =
λd

Deff

=
λf

2|Rmax|
. (2.32)

These equations are not only applicable for d > f , but for all values d > 0.

With Eqn. 2.30, one finds for the simulation as Fig. 2.29 (with D = 10 cm, d = 10 cm,

f = 15 cm and λ = 1mm), the 2|Rcut| will be 15 cm, which is larger than both recording

area range. Thus, the resolution will be defined by Eq. 2.32 with the values of 3 mm

and 1.5 mm for the 50 × 50-mm2 and 100 × 100-mm2 recorded-area cases which is also

presented in Fg. 2.29.

2.4 Discussion and conclusions

In this chapter, optical analysis in Fourier optics was demonstrated. Based on that, with

the use of Fourier transformation, the principle of Fourier imaging is derived by enclosing
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the Fourier transform between the imaging targets and the space spectrum into the THz

range. The imaging is selected as the physically recorded complex field distribution in the

focal plane of the imaging system. After that, the target is reconstructed by numerically

applying the inverse Fourier transformation. The simulation of Fourier imaging at both

300 GHz and 600 GHz proves the imaging method to be more robust than conventional

methods in a couple of ways. It has a relatively large field-of-view, 3D imaging capability,

and compressed sensing possibility, which enables its camera-like professional potential.

The simulated Fourier-spectrum generation and the reconstruction of the USAF resolution

chart, Siemens star and the 2D grid show that the Fourier spectrum distribution is defined

by the imaging wavelength, the object distance and the focal length of the Fourier focusing

lens. The imaging field-of-view and resolution can be controlled by choosing a proper pixel

size and the recording area range in the Fourier plane, respectively. Although the solution

is limited, the fitting camera for the imaging demand is still on the way, the advantages of

the Fourier imaging geometry, makes this setup still interesting for potential applications.
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3 Fourier imaging at 300 GHz

Deep sub-THz radiation (approximately 0.1-0.6 THz) has the advantage of high power

and strong penetration capability compared with the higher frequency THz regime. The

challenges in this frequency range are the limited pixel numbers in the integration of the

detection arrays and the low resolution because of the large wavelength. The demon-

strated Fourier imaging technique in this thesis can be utilized to solve these problems

since the detection plane is the focal plane where the beam size is the smallest in the

system and the resolution can be improved through virtual imaging object distance. In

this chapter, the Fourier imaging working at 300 GHz based on heterodyne detection will

be presented and analyzed.

3.1 Experimental setup of 300-GHz Fourier

imaging system

3.1.1 Principle of heterodyne detection

The key idea towards the implementation to Fourier imaging is to record the data in

Fourier space coherently. Currently developed coherent imaging with continuous THz

waves (CW THz) is mostly based on homodyne detection (i.e. interference, such as

holography and phase-shift imaging), frequency-modulated continuous wave (FMCW)

methods and heterodyne detection. Considering the advantages with regard to signal to

noise ratio, sensitivity and the compactness of the system, the heterodyne detection is

adopted here. The following is a brief introduction of the heterodyne detection technique.

Heterodyning is a signal processing technique invented by Canadian inventor-engineer
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Reginald Fessenden that creates new frequencies by combining or mixing two frequencies

[72, 73]. Heterodyning is used to shift one frequency range into another, and is also

involved in the processes of modulation and demodulation [74, 75]. The two frequencies

are combined in a nonlinear signal-processing device such as a vacuum tube, transistor,

or diode, usually called a mixer [74]. In the most common application, two signals at

frequencies f1(ω1) and f2(ω2) are mixed, creating two main new signals, one at the sum

f1 + f2 of the two frequencies, and the other at the difference f1 − f2 [73] (higher order

sum and differential frequencies will be discussed in later chapters). These frequencies

are called heterodynes. Typically only one of the new frequencies is desired, and the other

signal is filtered out from the mixer’s output. Heterodyne frequencies are related to the

phenomenon of "beats" in acoustics.[74, 76]

The intensity of the output signal generated by nonlinear mixing of input signal E1 =

Ein cos(ω1t+φ1) and the reference signal (also called local oscillator) E2 = Elo cos(ω2t+

φ2) can be expressed as

I = [E1 + E2]2

∝ Ein
2 + Elo

2

+ EinElo cos[(ω1 + ω2)t+ (φ1 + φ2)]

+ EinElo cos[(ω1 − ω2)t+ (φ1 − φ2)]. (3.1)

Similar to the optical range, at THz frequencies the lower frequency component which

can be handled electrically is usually filtered for demodulation.

3.1.2 300-GHz Fourier imaging setup based on heterodyne

detection

We investigate THz Fourier imaging experimentally at 300 GHz. A single-pixel TeraFET

detector operated in heterodyne mode [77–81] is raster-scanned across the focal plane

of an imaging lens and records amplitude and phase of the radiation arriving from the

scene under investigation. The complex-valued focal-plane field map then allows the
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3.1 Experimental setup of 300-GHz Fourier imaging system

reconstruction of the object with an inverse Fourier transform method.This method is

different from single-pixel imaging where a power detector is located at a fixed position

and time-varied intensity or phase patterns are projected onto it [82–84].

The measurement set-up is displayed in Fig. 3.1. For object illumination, an electrical

multiplier-chain source (S1, vendor: Virginia Diodes Inc., base frequency of 16.66GHz

generated by a HP synthesizer, frequency multiplication factor: 18×, output power:

1mW) whose continuous-wave radiation leaves the horn antenna with a 20◦ divergence

angle is selected. The radiation is collimated with a 3-inch-diameter aspherical teflon

lens (L1, from Thorlabs Inc., f=15 cm). The resultant beam diameter is about 5.5 cm.

Another 3-inch teflon lens (L2, same parameters as L1) focuses the transmitted radiation

onto a TeraFET detector [85, 86] consisting of a Si CMOS field-effect transistor with a

monolithically integrated dipole antenna. The numerical aperture (NA) of the system is

also equal to the lens’s NA with the value of 0.254. The radiation is coupled into the

TeraFET through its weakly doped substrate which is attached with a silicon substrate

lens [87, 88] (diameter: 4mm). A second multiplier-chain source (S2, vendor: RPG-

Radiometer Physics GmbH, base frequency of 16.66GHz + 1 kHz generated by a second

HP synthesizer, frequency multiplication factor: 18×, output power: 432µW) serves as

local oscillator, its radiation is focused with a third teflon lens (L3, f=10 cm) from the

front side onto the active region of the TeraFET. The difference-frequency signal from

the TeraFET is then integrated in a lock-in amplifier (Perkin Elmer, integration time:

50ms, providing a dynamic range of 60 dB) whose reference signal at 1 kHz is obtained

by mixing the drive signals from the two synthesizers in an MARKI electrical mixer. The

lock-in amplifier works at the 18th harmonic of the reference signal.

The detector together with lens L3 and the radiation source S2 is mounted on a trans-

lation stage which allows to perform raster-scan imaging of the amplitude and phase of

the radiation field across the focal plane (xy-plane) of lens L2. The step width is 1mm

in both the x- and y-direction. The scans cover an area of 80×80mm2, the total data

recording time is 30min (single scan).

A major challenge with these measurements has been the long coherence length of the

radiation resulting from the narrow bandwidth of the radiation of 1MHz which leads to
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Figure 3.1: Schematic of the Fourier imaging system at 300 GHz.

highly problematic interference effects in the form of standing waves. This ruin the phase

distribution in the Fourier spectrum resulting in inaccurate recovery results as the phase

spectrum plays the crucial role in the calculations of the Fourier transformation. We have

found that the standing-wave effects are reduced to tolerable levels, if a homemade metal

film attenuator (14 nm of chromium on a 4-µm-thick polypropylene membrane), reducing

the beam intensity by reflection, is placed into the path of the collimated illuminating

beam in front of the objects to be imaged. Therefore, we have used this attenuator in all

experiments, mounting it at an angle of about 25◦ relative to the optical axis to avoid the

back reflection in the beam path. Per each pass, the radiation is attenuated to 40% of

the incoming intensity. Also for the sake of minimizing standing waves, all planar imaging

targets have been positioned with a slight tilt into the beam (at an angle of 5-10◦ towards

the optical axis). This tilting of the objects has been taken into account in the Fourier

reconstruction algorithm.

The distribution of the electric field coming from the scene and arriving in the focal

plane of the lens L2 is described by Eq. 2.27. The integral contained therein can be
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3.1 Experimental setup of 300-GHz Fourier imaging system

interpreted as the Fourier transform of the complex transmission function T (X, Y ) in

an object plane at a distance d in front of L2. In order to reconstruct the transmission

function from the complex-valued focal-plane field map, a MATLAB routine that utilizes

the inverse 2D FFT to calculate the light field at any given distance d in front of the

focusing lens (taking a deliberate tilt of the object into account, see above) has been

implemented. The routine returns the relative amplitude and the phase of the scattered

target wavefront. In order to smoothen the reconstructed image, the field-map area is

expanded by a factor of two by padding zeros [89] around the raw data. An example of

a reconstruction is given in Fig. 3.2. It shows a metal grid consisting of 2.5-mm-wide

aluminum stripes with a spatial period of 7.5 mm, the recorded amplitude and phase

maps, and the reconstructed amplitude and phase at the object plane. The grid is well

resolved although the stripe width is close to the resolution limit of 1.875 mm calculated

by Eq. 2.32.

3.1.3 Image reconstruction

The distribution of the electric field coming from the scene and arriving in the focal plane

of lens L2 is described by Eq.2.25. The integral contained therein can be interpreted as

the Fourier transform of the complex transmission function T (ξ, η) in an object plane at

a distance d in front of L2.

The reconstruction routine includes a data preprocessing with the purpose of decoding

the object distance d by dividing the quadratic phase factor. At the end, the routine

returns the relative amplitude and the phase of the scattered target wave front. In order

to decrease the pixel size in the reconstruction image and show more detailed information,

the field-map area is expanded by a factor of two by padding zeros [89] around the raw

data.
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3.2 Imaging results of 300-GHz Fourier imaging

system

Based on the experimental setup described in Section 3.1.2, both the 2D imaging results

and 3D imaging results are recorded. The practical lateral and axial resolution of the

imaging system thus can be extracted from the imaging results.

3.2.1 Imaging results of different sample

To demonstrate the 2D imaging capability, a thin metal grid and a PCB board taped

with the USAF chart are utilized as the samples. In a first experiment, a planar object

hidden between sheets of plastic foam, which is opaque in the visible but transparent at

terahertz frequencies, is demonstrated to be detected with good spatial resolution using

Fourier imaging. For this measurement, a metal grid consisting of 2.5-mm-wide aluminum

stripes with a spatial period of 7.5mm, is embedded between two 2-cm-thick layers of

polyurethane foam and placed into the collimated illumination beam 10 cm in front of the

lens L2. Fig. 3.2 shows the photo of the metal grid, recorded amplitude and phase maps,

and the reconstructed amplitude and phase at the object plane. The recorded data and

the reconstructed results show a good agreement with the 300-GHz simulation of the 2D

grid target in Fig. 2.25 and 2.26 of Section 2.3.1. The grid is well resolved although the

stripe width is close to the resolution limit (demonstrated in Chapter 5).

In the second experiment, a USAF 1951 resolution test chart, imprinted in the metal of

a printed circuit board, is selected and again embedded between two 2-cm-thick layers of

polyurethane foam and placed into the collimated illumination beam 10 cm in front of the

lens L2. Fig. 3.3 shows three segments of the chart of which images are taken and the

three reconstructed intensity images. They are corrected for the Gaussian intensity profile

of the beam measured previously. Given the width of the metal structures (the minus

sign of number 3 as well as the stripes in front of number 1 have a width of 2 mm, while

that of numbers 1, 4, 5, and 6 is less than 1 mm), one determines the resolution to be

on the order of 2 mm. Here, only the reconstructed images are presented. The recorded

46
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Figure 3.2: (a) Photograph of the aluminum grid. b) The measured intensity and c)
phase in the Fourier plane (raw data, not corrected for the intensity profile
of the illumination). Lower row: Reconstructed intensity in dB units (d)
and phase (e) in the object plane. The intensity data are corrected for
the Gaussian intensity profile of the illumination beam. The color bar of
the phase images gives the phase in units of rad.

Fourier spectrum can be found in Appendix A.1. The results show a good consistency

with the simulation results in Fig. 2.16 (since the experimental USAF chart target is a

special customized, Fig. 3.3) has an additional number -3 compared with the simulation

in Fig. 2.16).

With Eq. 2.30 and 2.32, one finds that the system (with D = 7.6 cm, f = 15 cm

and λ = 1mm), for a typical object distance d = 10 cm, will generate a value of 2|ycut|

with 11.4 cm. The lens-passed Fourier components hence span a rather large area in the

focal plane. The quadratic scan area in the focal plane is 8.0×8.0 cm2. Approximating

it by a circular area with a diameter of 2|ymax| = 8.0 cm, one finds |ymax| < |ycut|. The

resolution is hence to be estimated with Eq. 2.32 which gives a value of Y< = 1.875mm,
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Figure 3.3: (a) Photograph of imaged segment of a USAF chart. The three dashed
circles mark the regions for which the three intensity image reconstruc-
tions are displayed. (b), (c), and (d) Reconstructed intensity images for
different regions in a). Here and in all other intensity images exhibited in
this paper, the colorbar is in units of dB.

i.e., the smallest measurable distance between neighboring points in the object plane,

expected for our experimental parameters. The 2-mm resolution estimated above from

the experimental data is indeed close to the theoretical resolution value of 1.875 mm.

3.2.2 Imaging results for different image distances

With Eq. 2.27, one will find the object distance d is encoded in the phase factor g(x, y)

of the recorded data. The reconstruction relies on numerical refocusing. This section

will investigate numerical refocusing during image reconstruction and the effect of the

variation of the assumed object distance onto the lateral spatial resolution. The object-

under-test is the Siemens star shown in Fig. 3.4a. The area within the dashed circle is

the imaged region (whose size is determined by the optical system). The center of the
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Siemens star has been shifted a little bit off the optical axis in order to cover a region of

the star with a strong variation of the pattern size. Fig. 3.4b displays an intensity image

taken in the conventional way of a 4f -setup (object and image distance equal to 2f

) based on the same collimated illuminating beam and using the same focusing lens L2

of the Fourier imaging system. The image has been corrected for the Gaussian intensity

profile of the collimated illumination (measured without the object in the beam path).

The circular structures (blotchy white rings) in the figure come from the diffraction at

the edge of the collimation lens. Fig. 3.5 shows a series of reconstructed images obtained

with the Fourier method. With Eq. (D1) given in Ref. [47], one calculates that the

expected depth resolution of our experiment is 0.7 cm (assuming the values 2|ymax| =

80 mm, f = 15 cm, and λ = 1 mm, see Ref. [47] Appendix D for details). Based on this

expected resolution, the Siemens star has been placed at different distances d from the

lens L2 ranging from 9 cm to 12 cm in 1-cm steps. For each of the Fourier maps, we then

assume these four values of d also for the reconstruction. This yields the matrix plot of

Fig. 3.5 where the variation of the object position occurs along the columns and that of

the recovery distance along the rows. Object and recovery distances coincide along the

diagonal of the matrix plot. Similar to physical defocusing, an unblurred image is obtained

only in this case, and the image quality degrades, if the recovery distance deviates from

the object distance.

Figure 3.4: (a) Photograph of the Siemens star (copper on plastic substrate). (b)
Intensity image recorded in the conventional way in a 4f -arrangement.
The colored circle segments indicate the paths of the line scans of Fig.
3.6.
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Figure 3.5: Reconstructed intensity images of the Siemens star for different object
distances (varied along the columns) and recovery distance (varied along
the rows). The colored arcs inserted into the image at the bottom right
indicate the positions of the line scans of Fig. 3.6.

Fig. 3.6 compares the lateral spatial resolution achieved by conventional 4f -imaging

with that of the object reconstruction by Fourier imaging. The comparison is performed

with the help of circular line scans in the respective intensity images of Fig. 3.4b and

the bottom right of Fig. 3.5. The circles have radii of 6.4 mm, 12.7 mm, 25.5 mm, and

31.8 mm, corresponding to a local width of the triangular metal patches of the Siemens

star of 1 mm, 2 mm, 4 mm, and 5 mm (each patch covers a central angle of 9o). The

position of each arc is marked by a dashed or solid red, green, blue, or black line in Fig.

3.4b and the bottom right of Fig. 3.5, dashed lines for the conventional image and solid

lines for the Fourier reconstruction. Considering first the conventional image, one finds

that the line scans along the two arcs with the smallest radii show hardly any modulation,

while a modulation is visible for the other two line scans. The bright-dark pattern of
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the metal-dielectric sequence is not fully resolved in any line scan. From these findings,

one estimates that the spatial resolution is about 4 mm. Using the knife-edge method,

one also finds a resolution of about 4 mm, which is in agreement with the 3.95-mm

resolution calculated for the 4f -geometry (see Appendix B in Ref. [47]) with a 3-in.

focusing lens aperture and a 15-cm focal length at 300 GHz. In contrast, the line scans

of the reconstructed Fourier image exhibit a more pronounced modulation, even revealing

sharp dark-bright modulation for the two arcs with the smallest radii. These observations

suggest a resolution on the order of 2 mm, which is in good agreement with the calculated

resolution of 1.875 mm.

Figure 3.6: Scans along the circular lines shown in the intensity images of Fig. 3.4(b)
and the bottom right of Fig. 3.5. (a) Line scans taken in the conventional
image, and (b) those taken in the reconstructed Fourier image. The legend
lists the local width of the metal segments of the Siemens star ranging
from 1mm to 5mm, the centers of the circles are located in the centers
of the Siemens star images.

For the chosen parameters, the Fourier imaging system achieves a resolution more

than twice better than the 4f -imaging system built with the same imaging source and

imaging lens and using the same data recording area (in one case in the image plane and

in the other in the focal plane). The better resolution of the Fourier image is entirely a

consequence of the fact that the object has been placed closer to the lens. In fact, we have

chosen d < f , which for conventional imaging implies the generation of a virtual image

where direct image recording with a sensor matrix is not possible anymore. Conventional

imaging reaches maximal resolution for d = f . With Fourier imaging, using the same

lens, an improved resolution beyond this limit is possible.
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3.2.3 Imaging results of obstacle objects

In a last experiment, the capability of Fourier imaging to allow detection of objects in the

line-of-sight of other ones by numerical focusing is demonstrated. This is achieved since

the edge of the objects can provide enough scattered radiation to reach the detector. A

steel screw is placed at d = 18cm in front of the lens L2 and a steel washer at d = 16cm.

The objects are held in place in the beam path by polyurethane foam, which they have

been pressed into. The washer blocks the line-of-sight of the screw toward the lens in the

direction parallel to the optical axis of the imaging system. This arrangement is indicated

in Fig. 3.7a. The intensity and phase images of the washer and the screw recovered from

a single frame recorded in the focal plane of lens L2 are shown in Figs. 3.7b–e. Since the

washer and the screw are opaque to terahertz waves, traditional imaging would hardly

allow us to identify the screw behind the washer. However, the complex-valued field map

of the focal plane contains enough scattered and phase-encoded distance information that

it is possible to extract the information about the screw’s contour upon numerical focusing

into the plane where it is located. The ability to distinguish the two objects vanishes as

the objects are moved closer together, and less scattered light passing around the washer

or through its hole is collected by the lens L2 and reaches the detector.

3.3 Discussion and comparation

This chapter further discussed the advantages and challenges brought about by the co-

herent field detection in the focal plane of a lens. The capability of Fourier imaging to

enable a better spatial resolution than conventional imaging with a given lens is stressed

because it is possible to place the object closer to the lens, at a position between the

lens and focal point where conventional imaging generates virtual images. This does not

affect the image reconstruction capability of Fourier imaging, which then benefits at closer

distance to the lens from the reduced lens-aperture-induced obstruction of the k-space

components of the radiation coming from the object.

The strength of Fourier imaging to recover 3D space information by sequential object-

plane reconstruction via the variation of the distance d in the back-transformation process
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3.3 Discussion and comparation

Figure 3.7: Washer-and-screw scene sketched in (a) where the objects are held in place
by a hard foam material into which they have been pressed. The washer
obscures the line-of-sight of the screw. Middle panels: Intensity (b) and
phase images (c) for a reconstruction distance equal to the position of the
washer; lower two panels: reconstructed intensity (d) and phase (e), but
for the distance equal to that of the screw.

is emphasized. While this capability is intrinsic to all coherent imaging techniques, Fourier

imaging owing to the focusing effect of the lens has the advantage that the beam area to

be covered is smallest. Thus, it lends itself to the use of heterodyne focal plane arrays.

This can be especially beneficial for the terahertz frequency regime given the practical

restrictions for detector arrays arising from the large wavelength of the radiation. The

heterodyne operation can be achieved in a subharmonic manner [90], thus alleviating

the costs for a second high-frequency radiation source. A specific benefit arising from

the capability of numerical focusing is that two opaque targets, although they are in

each other’s beam path, can be distinguished from each other using the field map of

a single focal-plane frame. The requirement is to have enough light intensity available
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3 Fourier imaging at 300 GHz

at the detector from each object. This object distinction as well as most other aspects

of Fourier imaging depends critically on the avoidance of detrimental standing waves,

which arise if the coherence length of the radiation is too large. These standing waves

usually cannot be taken into account properly in the back-transformation process, even

after careful calibration of the illumination beam prior to the imaging process, because

the objects to be studied are not known well enough to account for the change in the

field distribution caused by them.

54



4 Fourier imaging based on

sub-harmonic heterodyne

detection at 600 GHz

In the far-field imaging system, the minimum recognizable distance (i.e. the resolution)

is proportional to the imaging radiation wavelength according to the diffraction criterion.

Therefore, to improve the imaging resolution, the most simple and effective way is to

use short-wavelength radiation. However, at THz frequencies, the device/transceiver’s

price increases with the rising frequency whilst the output power decreases extremely

fast. Considering the cost-effectiveness, the sub-harmonic detection schematic using 600-

GHz waves as radiation and 300-GHz waves as LO signal will be demonstrated in this

chapter. In order to enhance the sensitivity, the innovative structure that mounting a

two-stage wax/PTFE lens on the front of the detector is first proposed. Benefiting from

the enhanced detector sensitivity, the dynamic range and the imaging resolution of the

imaging system is improved.

4.1 Fourier imaging based on sub-harmonic

heterodyne detection

4.1.1 Sub-harmonic heterodyne detection

Fundamental heterodyne detection (FHD) loses its appeal at high sub-THz frequencies,

because power availability becomes more and more limited with rising frequency [90].
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

Sub-harmonic mixing is a substitute choice in this case, since the LO frequency can be

a fraction (plus a frequency offset) of the signal frequency rather than nearly same with

each other in FHD. The lower LO frequency allows it to be all-electronic component with

readily high power, strong coherence and comparable low price.

Both fundamental and sub-harmonic heterodyne detection (SHHD) relies on the non-

linear mixing of the detected signal (indicated by RF here) and the LO signal based on

the detector. A new intermediate frequency (IF, differential frequency of the RF and the

LO signals) signal which carrys on the target response information could be extracted

and analysed. The accurate model of the nonlinear characters of the TeraFET detector is

based on the antenna design, the antenna-transistor resistance matching and the structure

of the transistor, which has different models when using different processing technology

and is difficult to estimate. Here the analysis will be purely explored by the polynomial

expansion of the current-voltage response which is a general approach. The equation can

be written as

I(V ) = b0 + b1V + b2V
2 + b3V

3 + b4V
4 + · · · , (4.1)

where bi (i = 1, 2, 3, · · · ) is the coefficient of different order items. Defining the detected

signal as Vi1 = VRF cos(ωRF t + φRF ) and the LO signal as Vi2 = VLO cos(ωLOt + φLO)

and substituting V = Vi1 + Vi2 into Eq. 4.1, one will get

Ires = kmn

∞∑
m=−∞

∞∑
n=−∞

cos(|mωRF + nωLO|+mφRF + nφLO), (4.2)

kmn is the coefficient of each frequency. Omitting the 4th and higher order components

in Eq. 4.1, kmn can be expressed as

k00 = b0 + b2
2

(V 2
RF + V 2

LO),

k10 = b1VRF + 3b3
4
V 3
RF + 9b3

4
VRFV

2
LO,

k01 = b1VLO + 3b3
4
V 3
LO + 9b3

4
V 2
RFVLO,

k11 = b2VRFVLO,

k20 = b2
2
V 2
RF ,

k02 = b2
2
V 2
LO,
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k21 = 3b3
4
V 2
RFVLO.

k12 = 3b3
4
VRFV

2
LO.

k30 = k30 = 3b3
4
V 3
RF ,

k03 = k30 = 3b3
4
V 3
LO,

One can find that apart from the initial frequencies of fRF (fRF = ωRF/2π) and fLO(fLO =

ωLO/2π), new signal components with frequencies of |mfRF+nfLO|, (m,n = · · · 1, 2, 3 · · · )

appear in the response current. Heterodyne detection filters the differential term with

m = 1, thus the down-mixing IF frequency fIF = |fRF − nfLO|, (n = 1, 2, 3 · · · ) shifts

THz waves detection to lower frequency band where the high-performance microwave de-

vices such as LNAs (low noise amplifier), filter and other components are easy to access.

When n = 1, the mixing is FHD. If n ≥ 2, the mixing is n-th sub-harmonic heteodyne

detection. The coefficient of n-th sub-harmonic IF signal is

kn =
VRFV

∗n
LO

2nn!
· ∂

n+1Ires
∂V n+1

, (4.3)

For the 2rd SHHD, the IF signal will be

IIF ≈
3b3

4
VRFV

2
LO cos((ωRF − 2ωLO)t+ φRF ). (4.4)

This calculation is derived from Eq. 4.1 omitting the 4th and higher order components

which has a trivial contribution. Using the lock-in amplifier with the reference of fIF−sub =

|fRF − 2fLO| to analyse the IF signal, both the intensity and the phase of the detected

signal will be resolved.

Considering from the detector factors, the output current is related to the coefficient

b3 in Eq. 4.1, which is usually smaller than the FHD coefficient b2. Taking VLO into

consideration, one can find the response of 2rd SHHD is proportional to V 2
LO and FHD is

proportional to VLO. Based on this knowledge, the intrinsic lower small-signal conversion

efficiency of 2rd SHHD compared with heterodyne mixing at the fundamental driven by

the detector can be compensated by applying a strong LO radiation. However, in practice,

both the power of the radiation and the responsivity of the TeraFET detector at sub THz

frequencies are not adequate to supply enough VLO. The integration of the two-stage
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

wax/PTFE lens on TeraFET detector can solve this problem by improving the coupling

efficiency of the LO radiation.

4.1.2 Characteristics of sub-harmonic detection at THz range

To have a basic knowledge of the detector, first, the calibration of the detector work in the

direct detection mode (intensity detection) will be presented. The conventional incoherent

direct detection scheme is shown in Fig. 4.1a [91]. If an input signal VRF cos(ωRF t+φRF )

is applied, the produced DC output will be a2V
2
RF/2, where a2 is determined by the

nonlinear device. To alleviate the impact of the device flicker noise, the output signal

is chopped. As a result, the output signal (fundamental tone of the square wave after

chopping) is

Vchopp(t) =
1

π
a2V

2
RF cos(ωchoppt), (4.5)

in which ωchopp is the chopping angular frequency. This signal is load to a lock in for

filtering and readout.

(a)

(b)

Figure 4.1: Response of (a) direct detection and (b) sub-harmonic detection.

Eq. 4.5 shows us that the output is proportional to the received power. Thus, the
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4.1 Fourier imaging based on sub-harmonic heterodyne detection

corresponding NEP (noise-equivalent power) can be calculated as

NEP =

√
4kBTR

Vres/P
, (4.6)

where kB = 1.3806× 10−23J/K is the Boltzmann constant, T is the temperature, R is

the effective resistance of the detector and Vres is the voltage response of the detector

under the illuminating power P .

A broadband CMOS FET based bow-tie antenna is captured as a detector for the

heterodyne mixing in the experiment. For each gate voltage, the corresponding DC

resistance can be derived from the output current versus input voltage (I-V) curve of

a detector. In Fig. 4.2(a), the I-V curve of a bowtie antenna integrated CMOS FET

detector is presented. The corresponding DC resistance is depicted in Fig. 4.2(b) with

black circle line. The direct response of the detector at both 300 GHZ (VDI 18× multiplier

chain with 600-µW output power) and 600 GHz (RPG 36× multiplier chain with 56-µW

power) versus the gate voltage are depicted in Fig. 4.3(a), and the NEP can be calculated

as Fig. 4.3(b). Here, the detectors are integrated with a 12-mm diameter Si lens to get

a better coupling of the illuminating radiation, the size and the thickness of the Si lens

is optimized according to the focusing spot size and usually selected for the radiation

coupling.

(a) (b)

Figure 4.2: (a) I-V response of the detector with the drain biases of ± 0.01 V, and
(b) DC resistance of the detector versus the gate voltage supply.

In the measurement setup, a PTFE focusing lens with 3-inch diameter and 15-cm focal
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

(a) (b) (c)

Figure 4.3: Detector response with 12-mm diameter Si lens at 300 GHz (600-µW
output power) and 600 GHz (56-µW output power). (a) Output voltage
versus different gate voltage supply, (b) NEP over the gate voltage and
(c) relative signal to noise ratio (SNR) including the measured (indicated
with M.) and calculated (indicated with C.) values.

length is utilized to focus the radiation onto the Si lens in free space at both 300 GHz

and 600 GHz. The best NEP with 600 µW output power of 300 GHz radiation is 117.49

pW/Hz−2 and it is reduced to 58.75 pW/Hz−2 at 600 GHz with a 56 µW source output

power. This is comparable to the description in Ref.[92]. The measured (marked with

letter C.) and the calculated (marked with letter M.) signal to noise ratio (SNR) based on

NEP is shown in Fig. 4.3. The general tends of the measured data and the calculated data

are consistent. The jitter of the measured data can be attributed to the intrinsic lock-in

noise and the THz radiation distributed in the surrounding environment. Furthermore,

the data shows that the peaks of the SNR is at the gate voltage of 0.48 V for both 300

GHz and 600 GHz radiation. Which also means the best dynamic range point is located

at this gate voltage supply.

To work in the sub-harmonic regime and be implemented into Fourier imaging appli-

cation, the detector cannot receive the radiations under the 12-mm diameter Si lens.

Smaller aperture size Si lens need to be used for detected radiation to enable a proper

pixel size. On the other side, where LO is coupled, the bonding wires of the chip hinders

the lens integration. However without substrate lens, LO coupling efficiency will be pretty

low which will affect the detection performance. To solve the problem, the detected

radiation can be coupled through a 4-mm diameter Si substrate lens glued on the back

side of the detector, meantime, the sub-frequency LO can be coupled from the front side
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4.1 Fourier imaging based on sub-harmonic heterodyne detection

(a) (b) (c)

Figure 4.4: Detector response at 300 GHz (600-µW output power) with 8-mm diam-
eter wax/PTFE lens and at 600 GHz (56-µW output power) with 4-mm
diameter Si lens. (a) Output voltage over different gate voltage supply, (b)
NEP over the gate voltage and (c) relative signal to noise ratio (SNR) in-
cluding the measured (indicated with M.) and calculated (indicated with
C.) values.

of the detector through a wax/PTFE lens. The wax/PTFE lens allows itself to contain

the bonding wires inside and integrated on the detection chip directly, at the same time,

improve the LO coupling efficiency to the acceptable level.

The direct detection of the 600-GHz and 300-GHz radiation are explored with the two-

lens-integrated detector to demonstrate the detection performance with the lenses. The

DC resistance of the detector with the wax/PTFE lens is shown in Fig.4.2 (b) with the

blue circle line. In this figure, the unchanged resistor by adding the paraffin wax layer

can be observed, which proves the feasibility of wax-PTFE lens. The response of the

detector under 300-GHz (with a 8-mm diameter wax/PTFE lens) and 600-GHz (with a

4-mm diameter Si lens) illumination, the calculated NEP based on the response and DC

transistor resistor and the related SNR curve are shown in Fig. 4.4. All the data are

captured by linearly scanning the gate voltage of the transistor. The response of 300-GH

radiation declines a lot however of 600-GHz radiation a little bit. This is because, the

refractive index of the wax/PTFE (1.52 for paraffin wax, the measurement result will

be shown in Chapter 4.1.4 and 1.42 for PTFE [93]) is about 2.5 times smaller than the

refractive index of the Si (approximately 3.5), the focusing efficiency of the wax/PTFE lens

at 300 GHz therefore is not so good as that with the same size Si lens. While at 600-GHz,

the shorter wavelength allows smaller focusing spot size than 300 GHz radiation. Thus

the squeezing size of the Si substrate lens does not affect too much. The corresponding
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

NEP at 300 GHz and 600 GHz are 481.95 pW/Hz−2 and 119.94 pW/Hz−2. At 300

GHz, it is 4 times of the initial detector, and at 600 GHz, it is 2 times. Though the

detector is not integrated in optimum status for single direct detection, it is the best

choice for sub-harmonic detection and can meet the requirements of Fourier imaging at

600 GHz.The related SNR curve shows that the best SNR gate voltage keep the same as

0.48 V.

Based on Eq. 4.5, one can see that in the SHHD case, the followings hold

1. The output changes with the fluctuation of VRF instead of V 2
RF , which means when

the RF signal is weak and decreasing, the output of a heterodyne detector drops

much slower compared with that of a direct detection one.

2. The output signal is also proportional to V 2
LO. Normally, as the LO power is con-

siderably higher than the RF signal, the output signal will also be stronger.

3. Phase information of the RF signal (φRF ) is preserved at the output. As a result,

electrical scanning based on digital beam steering is achievable, which has the

potential to replace the traditional mechanical scanning to significantly reduce the

imaging time.

Combined Eq.4.4 and Eq. 4.5, one can find the NEP of 2nd sub-harmonic detection can

de deduced as

NEPheter =
4kBTR

V 2
res/P

. (4.7)

To evaluate the measurement, the I-V and the response data are necessary. The sub-

harmonic response by tuning the gate voltage based on one lens case (indicated by no

lens in figure) and the double lens model (indicated by with wax/PTFE lens) are displayed

in Fig. 4.5 (a). From the data, one will find the sensitivity is enhanced by approximately

10 dB by using the wax/PTFE lens. The corresponding NEP and SNR are shown in Fig.

4.5 (b) and (c), from where the NEP and SNR enhancements driven by the wax-PTFE

lens are both 20 dB.

The minimum NEP is found to be 17.33 pW/Hz and 0.3 pW/Hz for the cases without

and with wax/PTFE lens. Comparing with the direct detection which keeps the same
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4.1 Fourier imaging based on sub-harmonic heterodyne detection

(a) (b) (c)

Figure 4.5: Sub-harmonic response of the detector with a 4-mm diameter Si lens and
without/with a 8-mm diameter wax/PTFE lens. (a) Responsivity, (b)
NEP and (c) relative signal to noise ratio (SNR) versus gate voltage supply
including the measured (indicated with M.) and calculated (indicated with
C.) values.

illuminating power and detection hardware, the NEP is 27.8 times and 1606.5 times

better for two cases. The peak value of SNR appears at the gate voltage of 0.38 V,

which is different from the best SNR voltage in the direct detection. During the whole

experiment of Fourier imaging based on SHHD, the gate voltage is set as 0.38 V to

guarantee the detector works in the optimal status.

4.1.3 Integration of sub-harmonic detection in THz Fourier

imaging

As aforementioned, Fourier imaging records the data in the focal plane of the imaging

system. In this plane, most of the energy is concentrated in the central area to convey

the low space frequency information of the imaged target. Going away from the center,

locates the high space frequency component. The further from the center, the higher

spatial frequency settles, meanwhile, its energy is weaker. Thus to achieve the desired

imaging quality, i.e. record the data in a certain distance from the center in Fourier plane,

high sensitivity and low noise level of the detection is required. Since the sensitivity, NEP

and SNR of SHHD rely on the intensity of the LO radiation, the coupling efficiency of the

LO radiation is crucial to meet the requirement of Fourier imaging. This section therefore

focuses mainly on the discussion of the LO coupling efficiency.

The usual radiation coupling method mostly adopted at sub THz frequencies has two
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

steps. The first step is to focus the radiation by using a optical lens such as Teflon lens

in free space, the second step is a boosting focus procedure based on the fist step by

utilizing a hemispherical or hyperhemispherical Si substrate lens. For the first step, the

size of the focus spot can be estimated by the Gaussian distribution theory the same as

that used in the optical range since the source radiation in our system has a Gaussian-like

distribution in free space. The mathematical calculation of the focus spot size thus is

Ds =
4M2λf

πD
, (4.8)

where λ is the wavelength, f is the focal length of the lens, D is the beam diameter

projected onto the lens (at the 1/e2 of the peak value), M2 is the beam mode parameter

and for ideal TEM00 laser beam M2 = 1. This formula shows that the selection of the

focusing lens depends on the divergence angle of the incident beam or the aperture of the

collimated incident beam. In the experiment, a 3-inch-aperture Teflon lens with 15-cm

focal length is utilized to focus the 300-GHz waves radiated by the multiplier chain with

the horn antenna (diverging angle is 20o). The focus spot size has a 7.4-mm diameter.

Using a focusing lens which has 2-inch diameter and 10-cm focal length to focus the 600-

GHz radiation emitted by the multiplier chain with the 27o diverging angle horn antenna,

the focus spot size is 5 mm in diameter. For the second step of the focusing, the selection

of the size of the Si substrate lens depends on the size of the first-step focusing spot on

one hand. On the other hand, taking the effect that at a large angle of incidence the

refracted light concentration efficiency will be reduced into consideration, the diameter

of the substrate lens should be larger than that of the first-step focused spot. For LO

coupling in single pixel detector case, it is easy to meet this conditions. However, for

the detected radiation in imaging applications, the size of the substrate lens is also the

pixel size. Thus the pixel size limitation has to be considered. For Fourier imaging, a

large pixel size in Fourier plane will squeeze the imaging area or the field of view. In

this case a proper small size of substrate lens needs to be selected even though it will

take the expense of sacrificing energy coupling efficiency. Taking all the above discussed

conditions into consideration, the 4-mm Si lenses from Tydex is selected as the substrate
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lens for imaging radiation coupling at both 300 GHz and 600 GHz, the 12-mm diameter

Si lenses from Tydex can is used for detector calibration.

For Fourier imaging at sub-THz frequency, if one wants to keep the coupling of LO

radiation in the back-side direction through the Si substrate lens, the most efficient way

is the configuration sketched in Fig. 4.6a. In this setup, a Si wafer is in demand for

combining the imaging radiation and the LO radiation. While for both radiations, the

power will be attenuated by at least 3 dB for the reason that the beam combiner is

50% transmitting and 50% reflecting for the radiation power. In addition, the bulk

volume of the Si waver will block the use of a shorter focal-length lens. This will prevent

the enhancement of the resolution or reduce the scanning area (demonstrated in the

imaging area and imaging resolution part in Section 2.3.2). The heterodyne working mode

demonstrated at 300 GHz uses the 18× VDI multiplier chain as the imaging radiation

and the the 18× RPG multiplier chain as the LO radiation. A substitution is that shown

in Fig. Fig. 3.1, the LO radiation is focused by the Teflon lens and coupled through

the front side of the detector in free space. The advantage of this configuration is the

compact system, high imaging energy utilization and high resolution possibility. However,

migrating to 600 GHz, the LO coupling efficiency is not strong enough in direct free

space coupling. One reason is that the radiation power at 600 GHz is lower, therefore,

the demand for LO coupling is more strict. Another reason is the intrinsic low conversion

efficiency of the LO radiation.

If one still wants to apply the two sides couling detector in Fourier imaging using SHHD,

the LO coupling efficiency needs to be promoted. However, it is impossible to do that

with the conventional method by integrating a Si lens because of the existence of the

bonding wires which is utilized to connect the readout circuit and the detector chip on

the front side. To solve the problem, the idea of utilizing a 4-mm diameter Si substrate

lens to the back side of the detector and integrating a tow-stage wax/PTFE lens on the

front side of the detector is proposed. This design can balance the imaging pixel size,

resolution, the coupling efficiency of the radiations to the detector and the dynamic range

of the imaging. The system is shown Fig. 4.6b. It in outlook looks the same as Fig.

3.1, but the detector is integrated differently. The Si substrate lens is used to collect the
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(a) (b)

Figure 4.6: Schematic of Fourier imaging system based on sub-harmonic detection.
(a) The LO radiation coupled onto the detector through the Si substrate
lens integrated on the back side of the detector, (b) the LO radiation is
coupled onto the detector from the front side of the detector.

imaging radiation while the wax/PTFE lens is aiming at coupling the LO radiation into

the detector. In this way, the coupling efficiency of the LO power is improved by 10 dB

(will be demonstrated in Section 4.1.6), in other words, the sensitivity will be raised by

20 dB for the sub-harmonic detector in this case, which will make it possible for Fourier

imaging at 600 GHz with 300-GHz radiation as LO waves.

4.1.4 Characteristics of paraffin wax at THz band

White colored paraffin wax is a soft solid derived from petroleum, coal or shale oil. The

molecular formula is CnH2n+2, where n = 20 ∼ 40. It is solid at room temperature

and begins to melt above approximately 37 oC (99 oF )[2]. Common applications include

lubrication, electrical insulation, and candles, here, it will be used for the substrate lens

of the TeraFET at sub-THz frequency since it is easy to be melted and has a soft solid

state. Thus, the validation of the characteristics of paraffin wax at THz range is crucial.

The characteristics of the parrafin wax at THz frequencies are achieved by using the THz

time-domain spectroscopy (TDS) system. The TDS system has a frequency bandwidth

of 2.5 THz. The samples are prepared by melting and drawing the paraffin wax into film

with a metal ring frame. They are prepared in three different thickness, 0.82 mm, 1.37

mm and 2.44 mm. The photo of the samples is shown in Fig. 2.5.

When the TDS system works without any samples, the reference time domain pulse is
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Figure 4.7: Photo of the wax material.

captured. It is shown as the black line in Fig. 4.8. When the samples are inserted into

the system exactly in front of the THz emitter, the detected transmitted data are the

blue, red and rose red lines in Fig. 4.8 corresponding to the sample thickness of 0.82 mm,

1.37 mm and 2.44 mm, respectively. From the data, one can see that the delay time is

proportional to the thickness and defined by the refractive index n. Reference pulse and

the pulses with samples have two peaks. These two peaks are generated by the reflections

of the front and back surfaces of the GaAs wafer (380 um thick) which is used for THz

waves generation. The first peak in the time domain pulse contains all the information of

the paraffin-wax sample. Thus only the main peak will be kept for the derivation of the

refractive index and the permittivity. If one includes the second peak in the calculations,

oscillations will appear in frequency spectrum.

Once the data is prepared, the reference Er and the test data Es in the time domain

are Fourier transformed to the frequency domain. The phase information φs and φr in

the frequency domain are used to calculate the sample refractive index n by applying

n(f) = n0 +
c|φs(f)− φr(f)|

2πfd
, (4.9)

where, c is the light velocity, d is the thickness of the sample, n0 is the refractive index
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Figure 4.8: Transmission THz pulse with and without paraffin wax material.

in the air, f is the frequency. Based on Eq. 4.9, the permittivity can be calculated by

ε(f) = n2(f)− k2, (4.10)

where k is the extinction coefficient, for the polymer material, k is much smaller than n,

thus in practical calculation, ε(f) is approximated as the square of n(f).

The Fourier transformed spectrum of the reference pulse and the measured pulses of

the samples are plotted in Fig. 4.9. Fig. 4.9a presents the intensity of the frequency

spectrum and Fig. 4.9b depicts the phase of the frequency spectrum from 0.4-0.5 THz.

(a) (b)

Figure 4.9: The Fourier transform spectrum of the reference pulse and the test pulses
of the samples. (a) The intensity of the frequency spectrum, (b)the phase
of the frequency spectrum.
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From the complex frequency spectrum of the test data and the reference data, the

transmission and the phase delay at each frequency can be calculated. They are displayed

as Fig. 4.10a and 4.10b, respectively. The transmission has a value higher than 80%

over the whole range, and for the 0.82-mm sample the transmission is higher than 90%,

showing a relatively weak reflection and absorption loss at 0.3-1.5 THz.

(a) (b)

Figure 4.10: The transmission rate and the phase delay of paraffin wax at each fre-
quency. (a) The transmission rate of paraffin wax, (b)the phase delay of
paraffin wax.

Taking the phase delay and the thicknesses of the samples into Eq. 4.9, the refractive

index of the paraffin wax can be calculated. Results are shown in Fig. 4.11. The refractive

index decreases a little bit as the frequency gets higher, having the value of 1.52 at 300

GHz and an average value of 1.515 at the whole range.

To calculate the permittivity of the paraffin wax at the sub THz band, the extinct

coefficient k is in demand. The relationship between k and the transmission, refractive

index and the thickness of the sample can be expressed as

k = ln[
4n(f)

T (f)(n(f) + n0)2
]
c

2πfd
. (4.11)

The derived extinct coefficient k over the frequency range for different samples is

displayed in Fig. 4.12a. Based on this, one can get the absorption coefficient α by
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Figure 4.11: Refractive index of the paraffin wax at THz range.

applying

α =
2πfk

c
. (4.12)

The measured absorption coefficient is displayed in Fig. 4.12b. The test results here

show a value of 0.5 − 1/cm−1 (The value for the thickest sample is captured since the

thickness of the thin sample is close to the wavelength thus reflection and interference

will affect the measurement).

(a) (b)

Figure 4.12: Absorption and extinct coefficient of paraffin wax with frequency. (a)
Absorption coefficient of paraffin wax, (b)extinct coefficient of paraffin
wax.

Taking k and the refractive index n back to Eq. 4.10, one can find the permittivity

for the paraffin wax can be expressed as Fig. 4.13. From the measurement results, one
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4.1 Fourier imaging based on sub-harmonic heterodyne detection

will find that the paraffin wax has a quite stable permittivity value over 0.3-1.5 THz of

approximately 2.4.

Figure 4.13: Permittivity of the paraffin wax at THz range.

The relatively flat dispersion characteristics over a frequency range of 0.3 to 1.5 THz

have been observed for all the parameters of the paraffin wax material. The transmission

data shows that the absorption is low enough for paraffin wax to work in the range from

300 GHz to 1.5 THz, and the elements built by the material will have a broadband

response though in this work the system is merely operating at a certain frequency. The

transition period of melting and solidification paraffin wax allows it to be used as a

protective material for bonding wires. In addition, the similar refractive index to that of

PTFE material [93] supplies the opportunity to use it for the compound lens combined

with a custom-designed PTFE lens.

4.1.5 Processing of wax/PTFE lens on TeraFET detectors

The composite wax/PTFE lens is fabricated by first dripping molten wax onto the detector

to embed the bonding wires and form a protection layer, then on top of this layer after its

hardening, a custom-designed hemispherical PTFE lens is pasted exploiting the adhesive

character of the re-warmed and softened wax. Fig. 4.14 is the schematic of the integration

of the detector and the photos of the detector with the wax/PTFE and Si lens.

The size and the shape of the PTFE lens should be custom designed to focus the

radiation effectively. According to Snell’s law, during the propagation, when the elec-
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

(a) (b)

Figure 4.14: Schematic of the wax/PTFE lens and the Si lens integration on the
detector. (a) Schematic of the integration of the wax/PTFE lens and
the Si lens on the detector, (b)photo of wax/PTFE lens.

tromagnetic waves interacts with a curved dielectric material surface, the beam will be

refracted. Therefore, the divergent or parallel incident beams can be gathered to a single

point by designing a reasonable lens structure to achieve energy focusing.

In the situation of LO injection, the THz radiation will be focused first by a Teflon lens

before it arrives at the detector. However, the focus spot size is much larger than the

active detection area of the detector, which will lead to energy wast. Thus here a focusing

lens that can be integrated on the detector chip is in demand to focus the first step spot to

a tighter one (comparable to the level of the active detection area). Usually a single lens

for a tight focus design under a focusing beam situation needs to be a hemispherical lens

or super hemispherical lens. For better focusing quality consideration, first, an aspherical

surface is used for the lens design and named as booster lens. Assuming the lens is set

in the Cartesian coordinate system (h, r) as Fig. 4.15 shown. If there is no booster lens,

the radiation will be focused to the point S0, if the booster lens is inserted, the radiation

will first hit the point (h, r), after refraction will be focused to the point S1. The total

optical path will be changed from the original value R to the sum distance in the air l1

and the path in the booster lens nl2. For all the radiation focused to a single point, the

optical path keeps a constant value of s = l1 + nl2. In this case, the optical path in the

air l1 is

l1 = R−
√

(R− h)2 + r2. (4.13)
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4.1 Fourier imaging based on sub-harmonic heterodyne detection

The math distance in the lens l2 is

l2 =
√
r2 + (d− h)2, (4.14)

where d is the center thickness of the booster lens.

Figure 4.15: Schematic of the light refraction in wax/PTFE lens.

Substituting the total optical path with l1 and l2, the equation will be

R−
√

(R− h)2 + r2 + n
√
r2 + (d− h)2 = nd, (4.15)

from which, one can get the relationship between h and r (i.e. the surface shape of

the booster lens) if the focus spot size is known and the thickness of the booster lens

is given. For the actual situation, the original optical length R is much larger than the

thickness and the maximum radius of the booster lens. By this assumption, Eq. 4.15 can

be simplified to √
r2 + (d− h)2 = d. (4.16)

It is a hemispherical lens expression with the radius of d. For 300-GHz radiation, the

focus point in the free space by using a Teflon lens is 7.5 mm, thus the 8-mm radius is

selected for the booster to be integrated in the system.
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

4.1.6 Characteristics of wax/PTFE lens on TeraFET detectors

To identify the characteristic of the paraffin lens, the coupling efficiency of the LO radiation

without and with wax/PTFE lens (shown in Fig. 4.16) will be calculated.

(a) (b)

Figure 4.16: Schematic of the LO injection non- and through paraffin wax onto the
detector. (a) LO injection without the wax/PTFE lens, (b)LO injection
with wax/PTFE lens.

Overall pattern-coupling efficiency of detection depends on the integral of the field

distribution on the effective area of the antenna and the matching efficiency of the antenna

and the transistor. The matching efficiency of the antenna and the transistor is fixed for

specific chip design, therefore the analyzation will only focus on the focused field energy

distribution related to the optical system and effective detection area derivation depended

on the detector geometry.

In practice, a single pixel detector is usually illuminated by a focused THz beam that

assumed to have a Gaussian power density distribution. Placing the detector within the

focus spot in the focal plane where the field energy density is maximum has the best

optical coupling efficiency. The pre-focusing optical system usually consists of a convex

Teflon lens. The focus spot and the energy distribution can be calculated by Fast Fourier

Transform (FFT) of the field distribution in the pupil of the beam focused system ac-

cording to the physical optics theory. This is also defined as PSF (point spread function)

in optical design. In this work, a substrate wax-PTFE lens is used for coupling efficiency

enhancement. To compare the focusing systems and find the optimum system configu-

rations with and without wax-PTFE lens, the commercial software Zemax is utilized. In

Zemax simulation, material effects and the aberrations of the lenses are included. System

can also be optimized by using merit functions. Therefore, the result can be regarded
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4.1 Fourier imaging based on sub-harmonic heterodyne detection

as a pertinent evaluation. Fig. 4.17 shows the simulation systems and results. The

pre-focusing Teflon lens is a hyperboloid-surface lens with 5-cm focal-length. The two-

satege wax-PTFE lens consists of a 8-mm diameter PTFE hemispherical lens and 2.1-mm

thickness wax layer (optimized for the best focus on the antenna plane under illuminating

wavelength of 1mm). The detail parameters of the systems are in Appendix A. Fig. 4.17

(a) is the 3D presentation of the PSFs. The insets are the layout of the system. The left

and right panels are the PSFs without and with the wax-PTFE lens after optimization.

Fig. 4.17 (b) presents the cross section of the PSFs normalized by the total power. The

normalized curves show that a much higher energy density can be achieved by using a

wax-PTFE lens.

PTFE-wax lens

Polychromatic FFT PSF

Tefl..ZMX
Conf. 1 of 4

Tefl_PT.ZMX
Conf. 1 of 4

A SIMPLE COOKE TRIPLET.
1.0000 to 1.0000 mm at 0.0000 (deg).
Side is 30278.48 μm.
Surface: Image
Ref. Coor.: 0.0000E+000, 0.0000E+000

Polychromatic FFT PSF
A SIMPLE COOKE TRIPLET.
1.0000 to 1.0000 mm at 0.0000 (deg).
Side is 28048.26 μm.
Surface: Image
Ref. Coor.: 0.0000E+000, 0.0000E+000

(a) (b)

Figure 4.17: Simulation of the LO coupling systems with/without the wax-PTFE
lens. (a) The polychromatic FFT PSF figures of the optical coupling
without and with wax-PTFE lens and (b) the cross PSF data after energy
normalization for the systems with and without wax-PTFE lens.

If the detector is embedded on the contact surface of two half infinite dielectric ma-

terials, the radiation power ratio on both sides can be roughly defined as n3
1/n

3
2 (n1 and

n2 are the refraction indexes of the dielectrics) [94]. Thus the directivity in the direc-

tion to dielectric 1 is n3
1/(n

3
2 + n3

1) · Dr (Dr is the total antenna directivity). Based on

Ar = (Drλ
2)/4π = (n1 + n2) · Aantenna/2 [95], where Ar is effective antenna area and

Aantenna is the physical antenna area, the equivalent effective antenna area in dielectric

1 will be

A1 =
n3

1(n1 + n2)

2(n3
2 + n3

1)
· Aantenna (4.17)

The focus of research is coupling the LO through the front-side of the detector while

the Si substrate and the hemispherical Si lens is used on the other side to approximate
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

semi-infinity dielectric. Therefore in Eq.4.17, n2 should be substitute by nSi, n1 by nair

or nwax for the two coupling systems. Applying nSi ≈ 3.5, nair = 1, nwax = 1.52 (see

Appendix A for detail) and Dantenna = 220 µm (Dantenna is the diameter of the physical

antenna area), one will find the equivalent effective diameters of the antenna area in air

and wax-PTFE lens directions are 11.3 µm 41.8 µm, respectively. These are relatively

small values compared with the physical size of the antenna. Using these sizes as the

integral boundary of the power density distributions in Fig. 4.17 (b) (the dark and light

gray areas), the coupling efficiency / received power promotion by the wax-PTFE can

be derived as 14 dB. Taken the absorption of the PTFE and paraffin wax material with

10% (derived based on material thickness and absorption coefficient, see Appendix A for

detail) at 300 GHz in consideration, the value is still 13.5 dB.

After finding the optimum system, we can put the systems in HFSS to do the simulation

which include the reflections of the materials and the effect of the Si on the other side

of the detector. The simulated results are shown in Fig. 4.18. Fig. 4.18 (a) shows the

(a) (b)

Figure 4.18: Simulation of the LO coupling systems with and without the wax-PTFE
lens in HFSS. (a) The 3D directivity plot without and with wax-PTFE
lens and (b) The E-plane data for the systems with and without wax-
PTFE lens.

3D directivity of the two setups, one can find from the figure, the coupling efficiency in

the Si lens side is much higher than that on the other side. Even though, the wax-PTFE

lens show a obviously enhancement. Fig. 4.18 (b) displaces the 1D data in E-plane, from

which one can find the coupling efficiency in LO direction is improved by 15.6 dB. The

reason of this is higher than Zemax calculation is that the multi-reflections in the Si lens
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4.2 Dynamic range enhancement of wax/PTFE lens integration

generates the standing waves. However, due to the refractive index mismatch between

the PTFE material and the paraffin wax material and the undefined aberrations of the

lenses, the measured coupling efficiency enhancement is just 10 dB (shown in Fig. 4.5

(a)).

4.2 Dynamic range enhancement of wax/PTFE

lens integration

Integrating the detection unit shown in Fig. 4.14 to the system as that in Fig. 4.6b,

the Fourier spectrum of the Siemens star depicted in the bottom plots in Fig. 4.19 can

be achieved. The left plot is the intensity distribution and the right plot is the phase

distribution. The top plots in Fig. 4.19 are the Fourier space spectrum recorded by

using the detector without wax/PTFE lens (left panel is the intensity distribution and the

right panel is the phase distribution). Comparing the two sets of data, one will find, the

dynamic range of the Fourier spectrum is improved from 25 dB to 45 dB by adding the

wax/PTFE lens, which is consistent with the data in Fig. 4.5 (c).

The reconstructed images based on the inverse Fourier transform are shown in Fig. 4.20

The top panels show the retrieved images by using the detector without the wax/PTFE

lens, the bottom panels present the results when the wax/PTFE lens is utilized on the

detector. In both sets of figures, the left side is the intensity distribution and the right

side is the phase distribution. Based on the imaging results, one can find, not only the

dynamic range of the reconstructed images are improved by 20 dB approximately, but

also the SNR and the contrast of the images are improved notely.

4.3 Resolution enhancement of wax/PTFE lens

integration

Thanks for the injection efficiency enhancement of the LO radiation by the integration of

the wax/PTFE lens on the TeraFET detector, the dynamic range of the imaging radiation
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

Figure 4.19: Fourier spectrum of the Siemens star under sub-harmonic detection at
600 GHz with and without wax/PTFE lens integrated on the detector,
the top and bottom rows are the data recorded without and with the
wax/PTFE lens, respectively.

detection is improved markedly in Fourier domain as Fig. 4.19 shown. This in turn allows

the detectable area expansion and noise reduction. As the discussion in Section 2.3.2,

the larger the detection area in Fourier plane is recorded, the better resolution will be

reached by the reconstructed image. Extracting the data along the arcs with different

radius (the arcs have radius of 3.2 mm, 4.8 mm, 6.4 mm, and 9.6 mm, corresponding to

a local width of the triangular metal patches of the Siemens star of 0.5 mm, 0.75 mm, 1

mm, and 1.5 mm, each patch covers a central angle of 9o) on the reconstructed images

( the left figures in Fig. 4.21), we can get the 1D intensity distribution shown as the

right figures in Fig. 4.21. The top plots in Fig. 4.21 display the image and the 1D data

by using the TeraFET detector without wax/PTFE lens, the bottom plots in Fig. 4.21

depict the image and the 1D data with the wax/PTFE lens. The resolution (minimum

resolvable distance) is changed from 1.5 mm to 0.75 mm at 600 GHz by utilizing the

wax/PTFE lens shown by the comparison of the 1D data. In another word the resolution

is improved by two times. After the promotion, the resolution is close to the diffraction

resolution limitation of the wave length at 600 GHz (0.5 mm).
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Figure 4.20: The reconstructed imaging results of the data in Fig. 4.19, the top
and bottom rows correspond to without and with wax/PTFE lens cases,
respectively.

4.4 Fourier imaging results at 600 GHz

To further qualify the imaging properties of the Fourier imaging system at 600 GHz, a

USAF resolution test pattern on a printed-circuit board is adopted as the imaged target.

Fig. 4.22 displays the imaged parts of the pattern (left side) and the reconstructed images

(right side). A dynamic range of 35 dB is reached with 56 µW power of the 600-GHz

imaging radiation. This value is better than the 60 dB obtained at 300 GH with a power

of 1 mW [47]. The difference in dynamic range is to a large degree explained by the much

lower small-signal conversion efficiency of sub-harmonic mixing compared with heterodyne

mixing [3]. In addition, The lateral spatial resolution is found to be better than 0.9 mm,

which is two times smaller than the results obtained at 300 GHz, as expected if the

dynamic range is not the limiting factor.
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4 Fourier imaging based on sub-harmonic heterodyne detection at 600 GHz

Figure 4.21: Scans along the circular lines shown in the intensity images of the re-
constructed intensity results on the left side. The top and bottom rows
are without and with wax/PTFE lens results. The legend lists the local
width of the metal segments of the Siemens star ranging from 0.5mm
to 1.5mm, the centers of the circles are located in the centers of the
Siemens star images.

Figure 4.22: Imaging results of USAF resolution chart at 600 GHz based on subhar-
monic detection. left is the imaged parts of the pattern, right is the
reconstructed intensity results.
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5 Resolution Comparison of

Fourier imaging system and

microscopy system

Image resolution refers to the ability of a measurement or display system to resolve the

details of a sample. It is one of the most important parameters for evaluating the imaging

quality. In this chapter, the imaging resolution in 3 dimensions will be exploit to analysis

how the Fourier imaging system works. First, the principle lateral resolution of Fourier

imaging will be presented, followed by the practical imaging results which can validate

the dissection. Based on the lateral imaging resolution, the depth resolution related to

the phase will also be investigated and verified by the imaging results. The comparison

of the imaging results of conventional microscopy and Fourier imaging system with the

same system configuration is compared to show a resolution enhancement by the Fourier

imaging system.

5.1 Lateral resolution of Fourier imaging setup

A Fourier imaging system is an indirect imaging system as the recorded data is the com-

plex field distribution in the focal plane of the imaging system. The image is numerically

reconstructed by the inverse Fourier transform of the recorded data. Based on the physical

Fourier transform and digital inverse Fourier transform mechanism, the pixel size/repeat-

ing rate in the Fourier plane will be transferred to the key factor of the field of view, while

the resolution is defined by the maximum data recording area in Fourier plane. Apart
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5 Resolution Comparison of Fourier imaging system and microscopy system

from the data recording area, the factors that can affect the resolution will be analyzed

here and the experimental data will be presented.

5.1.1 Lateral resolution of Fourier imaging setup in principle

As described in Chapter 2, the field distribution in the Fourier plane can be expressed as

E(x, y) = g(x, y)t(fξ, fη), (5.1)

where g(x, y) = E0

jdλ
ejk(d0+f)ej

k
2f

(1− d0
f

)(x2+y2), t(fξ, fη) =
∫∫

T (ξ, η)e−j2π(fξξ+fηη)dξdη,

fξ = x/(λf), fη = y/(λf). To reconstruct the target scene, the parabolic phase part

needs to be removed numerically before the inverse Fourier transform. While, most of the

time, d0 used in the reconstructed procedure can not be exactly equal to the real value in

the physical imaging system, suppose d = d0 + ∆d is applied, the residual phase will be

∆g(x, y) = ejk∆de
−j k∆d

2f2 (x2+y2)
. (5.2)

Applying it to the field distribution E in Fourier plane in Eq. 5.1 yields

∆E(x, y,∆d) = ∆g(x, y)t(fξ, fη). (5.3)

Take this in consideration, the reconstructed field distribution Eo in object plane will be

Eo(ξ, η,∆d) = F−1[∆g(x, y)]⊗ T (ξ, η), (5.4)

Assuming r =
√
x2 + y2, ρ =

√
ξ2 + η2, one will have

Eo(ρ,∆d) = F−1[∆g(r)]⊗ T (ρ). (5.5)

It is the model of the field distribution modified by the point spread function (PSF) of
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5.1 Lateral resolution of Fourier imaging setup

the imaging system. The PSF can be expressed as

H(ρ,∆d) = F−1[∆g(r)] = 2πejk∆d

∫ Rmax

0

e
j k∆d

2f2 r
2

J0(2πρr)rdr, (5.6)

where Rmax is the maximum radius range of the recording/Fourier plane as defined in

Sec. 2.3.3. Since the constant coefficient will not affect the intensity distribution, ejk∆d

will be omitted for the later calculation in this chapter.

To calculate the lateral resolution, defocusing is not considered, i.e. ∆d = 0, the PSF

therefore will be

H(ρ, 0) = F−1[∆g(r)] = 2π

∫ Rmax

0

J0(2πρr)rdr. (5.7)

Applying < = 2πρr, the integrated PSF will be

H(ρ, 0) = F−1[∆g(r)] = 2π

∫ 2πρRmax

0

J0(<)<
(2πρ)2

d<, (5.8)

According to
∫
xJ0(x)dx = xJ1(x), Eq. 5.8 can be rewritten as

H(ρ) = 2π
2J1(<)<
(2πρ)2

|2πρRmax0 = πR2
max

J1(πDmaxρ)

πDmaxρ
, (5.9)

where Dmax is the whole range of the recording plane, i.e. Dmax = 2Rmax. Transferring

back to Cartesian coordinate system, the PSF can be derived as

H0(x, y) = πR2
max

2J1(
πDmax

√
x2+y2

λd
)

πDmax
√
x2+y2

λd

. (5.10)

If the minimum distance between the two points that can be distinguished is δ =

γλd/Dmax (γ is a unitless parameter to keep a form consistent with the Rayleigh cri-

terion and only one dimension is taken in calculation), supposing I0 = πR2
max one will

have the intensity distribution

I(x) = I0|
2J1(πDmax

λd
(x

′ − γ
2

λd
Dmax

))
πDmax
λd

(x′ − γ
2

λd
Dmax

)
+

2J1(πDmax
λd

(x
′
+ γ

2
λd

Dmax
))

πDmax
λd

(x′ + γ
2

λd
Dmax

)
|2. (5.11)
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This equation is derived based on the coherent radiation illuminating situation and suppose

that the phase difference between the two points to be discriminated is 0 (the worst

resolution situation). The two points are defined to be placed on both sides of the

coordinate origin with equal distance. One can extract the intensity distribution in the

middle point by

I(x) = 4I0|
2J1(πγ

2
)

πγ
2

|2. (5.12)

Normalizing the middle point intensity by the intensity of one point need to be recognized

(6I0) and plotting the intensity coefficient on the coordinate origin position, one can find

from Fig. 5.1, when γ = 1.64, the energy I(0) is a fraction of 0.735, corresponding to

the Rayleigh criterion. Thus the resolution in this case is

dmin = 1.64
λd

Dmax

. (5.13)

This is a little worse than the incoherent radiation illuminating situation (principle reso-

Figure 5.1: The intensity distribution of the point spread function (PSF).

lution is 1.22λd/Dmax [96]). However, if the phase difference between the two point is

not 0 but 4φ, the resolution will be changed. The intensity distribution will be

I(x) = I0|
2J1(πDmax

λd
(x

′ − γ
2

λd
Dmax

))
πDmax
λd

(x′ − γ
2

λd
Dmax

)
+ ej4φ

2J1(πDmax
λd

(x
′
+ γ

2
λd

Dmax
))

πDmax
λd

(x′ + γ
2

λd
Dmax

)
|2. (5.14)
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Again, setting the middle position between two points as the coordinate origin, the normal-

ized intensity distribution (normalized by the intensity of one point need to be recognized)

change with γ and 4φ will be

Inm =
(2 + 2 cos4φ)|2J1(πγ

2
)

πγ
2
|2

|2 + ej4φ 2J1(πγ)
πγ
|2

. (5.15)

The relationship between the intensity distribution and resolution coefficient γ and the

phase difference 4φ can be displayed as Fig. 5.2. One can find for 4φ = 90o the

resolution is equal to that by using incoherent radiation illuminating, when 90o < φ <

180o, the resolution is better than the incoherent case. In principle, there is a limitation

aroused by the detector sensitivity. In any practical system, the phase difference between

Figure 5.2: The resolution coefficient γ changes with the phase difference.

imaging points are defined by the object and effected by multiple factors, thus it is quite

complicated to give the expression. Here, the 0 phase difference is taken for all the

following calculations in this chapter.

It is worth mention that if the recording area is large enough (Rmax ≥
f

d

D

4
), Rmax

should be substituted by Rcut (see Sec. 2.3.3), the resolution therefore will be expressed

by

δ = 1.64
λd2

fD
, (5.16)
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where D is the aperture size of the focusing lens as defined in Sec. 2.3.3.

5.1.2 Lateral resolution of experimental results

To validate the lateral resolution of the imaging system, the experimental results of the

USAF chart with Group -1 and 0 (see the panels highlighted by the blue, black and

red dashed circles in Fig. 5.3) at 600 GHz are presented. The photo of the sample

and the reconstructed images are shown in Fig. 5.3. The system is configured with

parameters of 6-cm object distance and 6-cm focal length. From the result, one sees

Figure 5.3: The imaging results of the USAF chart with Group -1 and 0 at 600 GHz.
The plot in the upper left corner is the photo of the USAF chart, the
other three plots are the imaging results corresponding to the sections
marked by the dashed circles.

that the system can resolve the stripes of Group 0 No.1. Cutting the stripes in both

vertical and lateral directions of Group 0 No.1, the 1D data can be extracted as depicted

in Fig. 5.4 (the left and the right plots are cutting the stripes arranged in the vertical

and lateral directions, respectively). Approximately 10 dB contrast of the 500 µm-width
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5.1 Lateral resolution of Fourier imaging setup

Figure 5.4: The one dimensional data be extracted from intensity stripes of Group 0
No.1. The left and right figures are the data cutting the stripes in vertical
and lateral directions, respectively.

stripe displays a resolution of 500 µm is reached by the system working with a 6-cm

object distance, a 6-cm focal length and 6 × 6-cm2 scanning area. This is better than

the 0 phase difference theoretical value derived by Eq. 5.13.

By using the same cutting way to extract the one dimension data of the phase imaging

results, one can get the data presented by Fig. 5.5, which is another evidence of the

resolution reaching 500 µm.

Figure 5.5: The one dimensional data be extracted from phase stripes of Group 0
No.1. The left and right figures are the data cutting the stripes in vertical
and lateral directions, respectively.

To verify the resolution variation with the object distance, the imaged USAF chart is

located at different positions from 6 cm to 9 cm with an interval of 1 cm. The generated

Fourier spectrum for each case is displayed in Fig. 5.6. From the spectrum distribution,

one will find out that, the larger object distance will squeeze the effective spectrum

distribution area, which will lead to a resolution degrade. The top and bottom plots are

intensity and phase Fourier spectra, respectively. From left to right the object distance

changes from 6 cm to 9 cm. The reconstructed images based on the data are shown in

Fig. 5.7. The top and bottom plots are intensity and phase images, respectively. From

left to right the object distance changed from 6 cm to 9 cm. Cutting the stripes of Group
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5 Resolution Comparison of Fourier imaging system and microscopy system

Figure 5.6: The generated Fourier spectrum of the imaged USAF chart located at
from 6 cm to 9 cm with an interval of 1 cm. The top and bottom rows are
intensity and phase spectrum, respectively. From left to right the object
distance changed from 6 cm to 9 cm.

Figure 5.7: The reconstructed images of the USAF chart located from 6 cm to 9
cm with an interval of 1 cm. The top and bottom rows are intensity
and phase spectrum, respectively. From left to right the object distance
changed from 6 cm to 9 cm.

-1 No. 1 and 2 in both vertical and lateral directions generates the one dimensional data

in Fig. 5.8. The plots in the top two rows and the bottom two rows are the data extracted

from the intensity and the phase, respectively. The plots in the first and the third rows

88



5.1 Lateral resolution of Fourier imaging setup

Figure 5.8: One dimension data cutting the stripes in vertical and lateral directions
in Fig. 5.7. The two top rows and the two bottom rows are the data
extracted from the intensity and the phase, respectively. The first and
the third rows are the data of Group -1 No.1, the second and the last
rows are the data of Group -1 No.2. The left and the right columns are
the data cutting the stripes arranged in the vertical and lateral direction,
respectively.

are the data of Group -1 No.1, the ones in the second and the last rows are the data

of Group -1 No.2. The plots in the left and the right columns are the data cutting the

stripes arranged in the vertical and lateral direction, respectively. The one dimensional

89



5 Resolution Comparison of Fourier imaging system and microscopy system

phase data are the unwrapped data.

Both the intensity and the phase data show that the smaller the object distance, the

better contrast and resolution of the images will be, which is consistent with the derivation

result of Eq. 5.13. Furthermore, the contrast of the phase reconstructed data is better

than the intensity data reconstructed from the same spectrum. This is because of that

phase is more sensitive than the intensity in Fourier spectrum.

5.2 Depth resolution of Fourier imaging setup

5.2.1 Depth resolution of Fourier imaging setup in principle

The depth resolution will be demonstrated based on the lateral resolution. The lateral

resolution is adopted to calibrate the recognizable phase difference in the Fourier plane.

Suppose one point shifts from the coordinate origin of the object plane to the γλd/Dmax

position (the minimum resolvable distance) on the lateral axis. The corresponding phase

change is an additional tilt plane. The mathematical expression is

Padd(δ) = ej2πfξδ = ej2π
x
λf
δ. (5.17)

The phase change on the edge of the Fourier plane can be therefore expressed as

Pδ = 2π
Rmax

λf
δ = γπ

d

f
. (5.18)

This is derived based on that γ meets the Rayleigh criterion, and presents that when the

phase change at the edge of the detected area induced by the movement of the object

or between two targets is larger than γπd/f , it is resolvable. For the other case that

the resolution is defined by the lens aperture D, the result keeps the same. Using it to

substitute the depth resolution case, and assuming the phase change 4ψ = (πR2
max ·

4d)/(λf 2) (according to Eq. 5.1) induced by the object movement of distance 4d in

depth axis is larger than the minimum recognizable phase difference of Pδ, the minimum
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5.2 Depth resolution of Fourier imaging setup

distinguishable object distance change in depth direction can be given by

δd = γ
λdf

R2
max

. (5.19)

When phase difference between two points is 0, the minimum resolvable depth distance is

1.64λdf/R2
max. If the recording area in the Fourier plane is large enough, the resolution

will be

δd = 4γ
λd3

fD2
. (5.20)

For 0 phase difference case, the resolution is 6.56λd3/(fD2). Based on the lateral res-

olution formulas Eq. 5.13 and 5.16, the depth resolution formulas Eq. 5.19 and 5.20,

one will find the relationship between both resolutions can be written as δd = 4f
Dmax

δ or

δd = 4d
D
δ when the scanning area is not- or large enough, respectively. If we define f

Dmax

as the image space NAi and d
D

as the object space NAo of the imaging system and take

the smaller one as the NA (Numerical aperture, NA=min(NAi, NAo)) of the system, one

can conclude that the depth resolution is 4NA times of the lateral resolution.

5.2.2 Validation of depth resolution

The reconstructed intensity distribution of the bright point on axial direction will be

presented here theoretically and experimentally. Normalizing the Fourier space by R′
=

r/Rmax in Eq.5.6 and set ρ = 0, the axial PSF can be written as

H(∆d) = H(0,∆d) = 2πR2
max

∫ 1

0

ejkWR
′2
R

′
dR

′
, (5.21)

where W = R2∆d
2f2 , substituting x = R

′2, dx = 2R
′
dR

′ , Eq. 5.21 will be

H(∆d) = πR2
max

∫ 1

0

ejkWxdx, (5.22)
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5 Resolution Comparison of Fourier imaging system and microscopy system

According to
∫
ebxdx = ebx/b Eq. 5.22 will be

H(∆d) = πR2
maxe

jkWx|10 = πR2
max

ejkW − 1

jkW
= πR2

max[sin(kW )− j(cos(kW )− 1)].

(5.23)

Then the axial intensity distribution will be

I(∆d) = H(∆d)H∗(∆d) = πR2
max[

sin(kW
2

)
kW

2

]2 = πR2
maxsinc

2(
πW

λ
). (5.24)

Substituting ∆d with the minimum resolvable distance δd in Eq. 5.19. The corresponding

W will be γλd/(2f). For 0 phase difference case, W = 0.77λd/f . Displaying two points’

reconstructed intensity distribution on axial for this situation will be like Fig. 5.9. The

parameter of the system is set as f = 6 cm, λ = 0.5 mm, the first point object locates

at distance d = 5 cm, the second point object is ∆dmin = 2.78 mm away from the first

point, the scanning area size in Fourier plane is 6 cm× 6 cm. From the figure, one sees

the two peaks are resolvable under this definition.

Figure 5.9: Reconstruction intensity distribution of the point objects along the axial
direction of the imaging system.

5.2.3 Depth resolution of experimental results

The USAF chart imaging results at 600 GHz are again adopted to validate the depth

resolution. In this section, the sharpness of the reconstructed image is used to identify

the focused and unfocused status, and then to demonstrate the depth resolution. The

reconstructed images of the 6-cm object distance Fourier spectrum under different calcu-

lated object distance are shown in Fig. 5.10, the plots in the top and bottom rows are the
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5.2 Depth resolution of Fourier imaging setup

intensity and phase reconstructed images, respectively, the plots in columns from left to

right correspond to the reconstructed distance of 4 cm to 8 cm with 1 cm interval. For

the sharpness calculation, the data reconstructed distance sweeps from 2 cm to 10 cm

with a step of 1 mm. The sharpness of each image is derived based on the shape from

focus method [97]. Fig. 5.11 depicts the sharpness change with the calculated object

distance for the 6-cm object distance data. The sharpness is roughly distributed as a

Sinc2 function, which proves Eq. 5.24. The arched baseline can be attributed to the

aperture effect of the focusing lens in system or the cutting width of the scanning range

in the Fourier plane.

Figure 5.10: The reconstructed images of the 6 cm object distance data.

Figure 5.11: The sharpness distribution along the axial direction.
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5 Resolution Comparison of Fourier imaging system and microscopy system

Including two objects (metal stripes glued on the PVC board) in the beam path of the

system described as Fig. 5.12, the Fourier spectrum in Fig. 5.13 can be obtained. One

object is composed of five 1-mm metal stripes with 1-mm interval and placed 5.4 cm in

front of the focusing lens. The other is consist of three 1.5-mm metal stripes with 1.5-mm

interval and set 6.9 cm in front of the focusing lens. The 1-mm stripes are arranged in

vertical direction, the 1.5-mm stripes are arranged in lateral direction. The left and right

figures in Fig. 5.13 are the intensity and phase spectrum, respectively.

Figure 5.12: The photos of two objects to be imaged. Left is the 1-mm-stripe-width
object, right is the 1.5-mm-stripe-width object.

Figure 5.13: Fourier spectrum of the 1-mm and 1.5 mm metal stripes in the beam
path at the same time. Left is the intensity spectrum, right is the phase
spectrum.

Reconstructing the image with object distances from 2 cm to 10 cm and extracting the

sharpness of each reconstructed image, one will find the sharpness of the reconstructed

image changes with the calculated object distance explained by Fig. 5.14. Five peaks

can be found in the figure. Taking the two main peaks’ positions as the restore distance,
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5.3 Resolution of conventional microscopic imaging system

the images in Fig. 5.15 can be regenerated. The plots in the top and bottom rows are

the reconstructed images of the 1-mm stripes and 1.5-mm stripes, respectively; the plots

in the left column are the intensity images, the plots in the right column are the phase

images. One can see, when the reconstruction is numerically focused on to the 5.4 cm

object plane, the 1-mm metal stripes can be well resolved while the 1.5-mm metal stripes

are blurred as a dark area; when focused onto the 6.9 cm object, the 1.5-mm metal stripes

can be resolved (though not as good as the 1-mm stripes, this is because of the position,

the 1-mm stripes are closer to the focusing lens.) but the 1-mm metal stripes image is

out of focus.

Figure 5.14: The sharpness distribution along the axial direction.

The two-objects imaging results show that 1.5 cm depth distance can be resolved. This

is not as good as the estimation in theory because the illuminating radiation power is in

the level of tens of µW , the system aperture size is limited and the aberrations of the

imaging system are not corrected. An easy way to solve the problem is using a numerical

algorithm to compensate [98]. This will be investigated in future.

5.3 Resolution of conventional microscopic imaging

system

The role of the microscope is to magnify the microscopic world, so as to distinguish the

details of microscopic objects. The invention and application of the microscope greatly
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Figure 5.15: The sharpness distribution along the axial direction.

improved people’s visual function and provided a powerful tool for people to study and

understand the micro world. This section will analyze the resolution of the terahertz

microscopic imaging system. The human eye is not sensitive to the terahertz waves, so

the micro imaging system working in the terahertz band needs the detection originally

working in the terahertz band to record the image and restore it for visualization. Due to

the wavelength limitation, the resolution of the microscopic imaging system in THz band

is not as good as that in the optical band. But due to the penetration and fingerprint

property of the THz waves, microscopic imaging systems working at this range have wide

application prospects in areas of biology, medicine, industry, etc . Fig. 5.16 displays

a conventional microscopy imaging system. If one define that the minimum resolvable

distance in the object space is ε and the corresponding angle in image space is θ0, the

image height therefore is ε′ = l
′
θ0. Associating this together with the optical invariant

(the second formula in Eq. 5.25) in both object and image spaces, and the paraxial
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5.3 Resolution of conventional microscopic imaging system

approximation of sine function of the field of view in image space, one will get Eq. 5.25,
ε
′
= l

′
θ0,

εn sinu = ε
′
n

′
sinu

′
,

sinu
′ ≈ u

′
= D/2

l′
,

(5.25)

where D is the full aperture size, u is the field of view in object space, l′ is the image dis-

tance, n and n′ are the refractive index in the object space and image space, respectively,

as shown in the left part of Fig. 5.16

Figure 5.16: Microscopy imaging system.

Different from the microscopy in optical range, the illumination with continuous THz

waves is coherent, thus the minimum resolvable angle θ0 is defined by Eq. 5.13 as

θ0 = γ
λ

D
(5.26)

Bringing Eq. 5.26 back to Eq. 5.25, the minimum resolvable distance in object space is

ε =
γ

2

λ

n sin(u)
=
γ

2

λ

NA
, (5.27)

where NA = n sin(u) the numerical aperture in the object space as the right part in Fig.

5.16. For the worst case, it is 0.77λ/NA. If the illumination is incoherent, the resolution

is 0.61λ/NA.

97



5 Resolution Comparison of Fourier imaging system and microscopy system

5.4 Comparison of the resolution of Fourier

imaging system and conventional microscopic

imaging system

5.4.1 Theoretical comparison

To compare the Fourier imaging and conventional microscopy imaging systems at THz

frequencies, the expression of the resolution of both systems in Secctions 5.2 and 5.3

needs to be rewritten in the same quantify rules from the most usual way as

δ =
γλ
√
D2 + 4d2

2nD
, (5.28)

where D is the effective aperture of the imaging system and d is the object distance

which is equal to the distance between the object and the aperture of the imaging system.

Substituting nD/
√
D2 + 4d2 by NA, Eq. 5.28 is the same as Eq. 5.27. Furthermore,

using the paraxial approximation when d � D, and substitute n by 1, Eq. 5.28 will be

transferred to δ = γλd/D, which is the same as Eq. 5.13. From Eq. 5.28 it can be

found that if one wants to improve the imaging resolution, one way is to increase the

refractive index in the object space as the existed oil immersion microscopy. Another

way is decreasing the object distance d. However, for microscopic imaging, d cannot

be infinitely reduced. Since the refractive index can be changed for both systems, the

following analysis will only focus on the discussion of reducing d and considering n with

the value of 1 for all the discussion.

In THz band, where human eyes are not sensitive to the radiations, the image must

be recorded by sensors working in this range. Therefore, for microscopic imaging the real

image is necessary. According to the principle of optical imaging, to make an object into a

real image, the object distance must be greater than the total focal length of the system.

In other words, d ≥ f , where f is the total focal length of the imaging system. Thus,
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the best resolution of the microscopic imaging system is

δMic =
γλ

√
D2 + 4f 2

2D
. (5.29)

While for Fourier imaging system, the image is reconstructed by back propagating the

complex field recorded in the Fourier plane to the original object place, no matter where

the object (even paraxial approximation is invalid). Thus the best resolution of Fourier

imaging system (when the object distance approaches 0) with the same aperture, enough

detection area for highest space frequency and total focal length is

δFourier = 0.5γλ. (5.30)

Comparing Eq. 5.29 and 5.30, one will find

δFourier < δMic, (5.31)

which means the resolution can be reached by Fourier imaging system is better than that

using the microscopic imaging system with the image target placed in the virtual image

area (d < f). In practice, if the object is too close to the imaging system, a phase fix

factor needs to be included in the image reconstruction step since the field distribution in

the Fourier plane is derived based on the paraxial approximation.

5.4.2 Experimental results comparison

By using the same focusing lens in the imaging system, the Fourier data and the micro-

scopic plane-to-plane data of the Siemens star are recorded with 600-GHz illumination

and 300-GHz LO. For both cases, the object distances are the same as 10 cm. To validate

the resolution in a larger range, the Siemens star is set in the center and off the center

of the beam path respectively for both imaging methods. Fig. 5.17 and 5.18 are Fourier

imaging and microscopic imaging results, respectively. In both figures, the left and right

columns are intensity and phase images, the top and bottom rows are the Siemens star in
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5 Resolution Comparison of Fourier imaging system and microscopy system

the center and off the center images, respectively. Comparing the images, one will find

Figure 5.17: Reconstructed images of Siemens star at 600 GHz by using Fourier imag-
ing method.

Figure 5.18: Images recorded by microscopy imaging system.

the dynamic range of Fourier imaging is comparable with that of microscopic imaging.

100



5.5 Conclusion

The sharpness of Fourier imaging is better than microscopic imaging since the background

reduction in reconstruction in Fourier imaging includes the aberration reduction. The field

of view (effective imaging area) of Fourier imaging is larger than the microscopic imaging

(here the imaging result of the conventional plane-to-plane system needs to be shrank by

1.5 times to be compared with the Fourier images. The reason is that for plane-to-plane

imaging with 6 cm focal length, the object distance of 10 cm generates an image dis-

tance of 15 cm; the image is hence to be enlarged 1.5 times.) Furthermore, the Fourier

imaging method can shorten the object distance to values smaller than 6 cm, while the

plane-to-plane imaging with pure power detection can not, thus the Fourier imaging is

expected to improve the resolution better than microscopic imaging systems.

5.5 Conclusion

The lateral and depth resolution of the Fourier imaging system is demonstrated theo-

retically and experimentally. The lateral resolution is determined by the imaging object

distance, the aperture of the focusing lens, the focal length of the focusing lens and the

data recording range in the Fourier plane. Among all the parameters, the aperture of the

focusing lens and the data recording range in the Fourier plane are in parallel, which is

the crucial factor depending on the recording area is large enough or not. The larger the

aperture/recording area and the shorter the object distance of the system are applied,

the better lateral resolution will be reached. Of course the wavelength of the illuminating

radiation is more important. Similar to the lateral resolution, the depth resolution also

depends on the imaging object distance, the aperture of the focusing lens, the focal length

of the focusing lens, and the data recording range in the Fourier plane. It is 4NA times

of the lateral resolution.

The resolution of the microscopy imaging system is illustrated, and compared with

Fourier imaging system under the same hardware conditions. The comparison shows that

the Fourier imaging system is superior to microscopic imaging in sharpness, resolution,

and field of view and it is comparable with microscopic imaging in its dynamic range.
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6 Conclusion and Outlook

There have been many approaches in the realisation of THz imaging for various applica-

tions using different sources, detectors and techniques with advantages and disadvantages

for each method [64, 99–106]. This work presents the Fourier imaging method at THz

range. The THz Fourier imaging is realized by using fundamental and subharmonic het-

erodyne detection to record the Fourier spectrum and reconstruct the image by numerical

calculations.

6.1 Conclusion

In summary, this work demonstrates the concept, simulation, accomplishment and the

resolution of THz Fourier imaging. The simulations which are based on the wave prop-

agation integral, are performed to study an electric field illuminating of an input object

and its propagation to the focus plane. Numerical studies also help to predict properties,

features and potential outcomes of an experimental measurements. Simulations figured

out the idea of the paring between the objects and the characteristic intensity and phase

patterns. Numerical calculations also help to predict the impact of noisy intensity and

phase on the back-calculation. Different objects result in different Fourier spectra with

the highlighted spacial frequencies of the object features.

Two electrical multiplier chain THz sources are used in a heterodyne configuration to

enable phase-sensitive detection of a TeraFET detector for the first time. Simple input

objects like a metal grid, a USAF chart and a Siemens-star test chart are recognizable

and the predicted depth sensitivity is demonstrated. Corresponding measurements with

a grid, a Siemens-star and a USAF chart objects were performed achieving the predicted
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lateral resolution and depth sensitivity for numerical focusing. The retrieved input of the

object is in a high correlation with the numeric prediction (see section 2.3.1), making it

easy to distinguish between the objects. Multiple objects in the beam path prove to be

challenging for the presented set-up in the current resaerch. Nevertheless, heterodyne

detection enables one to capture a 3D scene by numerical focusing on different depths by

taking one set of data.

The Fourier imaging system is proved at 300 GHz and 600 GHz. Fundamental hetero-

dyne detection is adopted at 300 GHz, while at 600 GHz, the fundamental heterodyne

detection losses its appeal attributed to the higher cost and lower power. To solve the

problem, the sub-harmonic detection is employed to achieve Fourier imaging at 600 GHz.

The efforts to enhance the coupling efficiency of the LO is realized by integrating the

wax/PTFE substrate lens, which improved the coupling efficiency of LO by approximately

10 dB and dynamic range by 20 dB. This makes the sub-harmonic detection feasible for

the Fourier imaging setup.

The resolution of the Fourier imaging system is slightly better than that of the mi-

croscopy imaging system with the same optical elements and system arrangement. Under

this condition, the Fourier imaging system performed by the sub-harmonic heterodyne

detection nearly reached the resolution limitation with the value equal to the wavelength

of 500µm.

6.2 Outlook

The lateral resolution is currently restricted by the scanning range/aperture of the system.

To increase the resolution of the retrieved input, future experiments have to increase the

range in k space. This can either be achieved by increasing the travel of the translation

stages based on higher sensitivity of the detector or by lowering the focus length. As

mentioned before, coherent reflections change the phase in the Fourier plane and therefore

have a high impact on the quality of the reconstruction, especially with two substrate

lenses on both sides of the detector. Isolating elements with low insertion loss have

to be used carefully in order to shorten the coherent length but not destroy the phase
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behaviour of the Fourier spectrum. This will contribute to the reduction of standing

waves in succeeding experiments. To make use of the measurement’s resolution in the

Fourier plane, the field of view has to be broadened in the Fourier setup and filter the THz

beam so that the object is illuminated with a homogeneous intensity distribution instead

of a Gaussian one. Using the current setup, there is no estimation on how precise the

phase curvature was measured and therefore how depth-sensitive the measurements are.

In conclusion, this study realized the potential of THz sources for applications in imaging

and spectroscopy.
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A Complementary Figures

The appendices include some additional materials that not suitable in the continuous text

but still interesting enough for the reader’s consideration.

A.1 Fourier spectrum

Section 3.2.1 addresses the reconstructed images of the Fourier imaging at 300 GHz. Here

the original recorded Fourier spectrum of the imaging results will be displayed. Fig. A.1

depicts the Fourier spectrum of the samples in Fig. 3.7. The input of the reconstruction

process is complex data.

Figure A.1: The Fourier spectrum of the washer and screw in Fig. 3.7. The left
and right figures are intensity and phase spectrum, respectively. The
corresponding units of the color bars are dB and rad.

Fig. A.2 shows the complex Fourier spectrum of Fig.3.3, rows from top to bottom

correspond to the reconstructed images in Fig. (b) to (d).

Fig. A.3 are the complex Fourier spectrum of Siemens star at different object distances

in Fig. 3.5.
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A Complementary Figures

Figure A.2: The complex Fourier spectrum of assorted USAF board parts in Fig.3.3,
rows from top to bottom correspond to sub figure (b) to (d), left and
right columns are intensity and phase, respectively. The corresponding
units of the color bars are dB and rad.

Section 4.4 and 5.1.2 illustrate the Fourier imaging results at 600 GHz. In the following

text, the Fourier spectrum recorded by sub-harmonic detection based on 600 GHz radiation

will be presented. Fig. A.4 demonstrates the Fourier spectrum of the images in Fig.4.22.

Fig. A.5 illustrates the Fourier spectrum of the results in Fig.5.17. Fig. A.6 describes the

Fourier spectrum of the reconstructed targets in Fig.5.3. The correspondences between

the figures are described in the captions.
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A.1 Fourier spectrum

Figure A.3: The complex Fourier spectrum of Siemens star at different object dis-
tances in Fig. 3.5. The rows from top to bottom display the spectrum
of object distances from 9 cm to 12 cm with 1 cm interval, the left and
right columns are intensity and phase spectrum, respectively. The corre-
sponding units of the color bars are dB and rad.
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Figure A.4: The Fourier spectrum of Fig. 4.22. Top and bottom rows present the
Fourier spectrum of the part with number -2 and -1, respectively, the left
and right columns are intensity and phase spectrum, respectively. The
corresponding units of the color bars are dB and rad.

Figure A.5: The Fourier spectrum of Fig. 5.17. The top and bottom rows show
the Fourier spectrum of the in and off the center, respectively, the left
and right columns are intensity and phase spectrum, respectively. The
corresponding units of the color bars are dB and rad.
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A.1 Fourier spectrum

Figure A.6: The Fourier spectrum of Fig. 5.3. The rows from top to bottom present
the Fourier spectrum of the upper right corner, bottom left conner and
bottom right conner sub figures in Fig. 5.3, respectively, the left and
right columns are intensity and phase spectrum, respectively. The corre-
sponding units of the color bars are dB and rad.
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A.2 Power of 300 GHz and 600 GHz radiation

As an interesting test to demonstrate the dynamic range, the power of the illuminating

radiation of 300 GHz and 600 GHz is measured by Topathkeating. Fig.A.7 is the output

power of the RPG multiplier chain at 234-360 GHz, from which one can find the power

at 300 GHz is approximate 1 m W. Fig.A.8 is the output power of the RPG multiplier

chain at 500-720 GHz, where the power of 56 µW will be found.

Figure A.7: The output power of the RPG multiplier chain at 234-360 GHz.

Figure A.8: The output power of the RPG multiplier chain at 500-720 GHz.
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B Imaging resolution simulation

B.1 Lateral resolution simulation

To provide a comparison standard for the lateral resolution imaging results, the simulation

of a USAF chart with Group -1, No. 1,2 and 3 parts (see the panel highlighted by the

purple dashed circle in Fig. 2.14) at 600 GHz will be presented. The imaged target is

located at the object distance of 6 cm to 10 cm with an interval of 1 cm for focal length

of 6 cm to 10 cm with the same interval. The generated Fourier spectra for each case

are displayed in Fig. B.1. The spectra for the focal length from 6 cm to 10 cm are

displayed in the descending order. The figures in the first column are the intensity spectra

for different focal lengths. The focus spot size is directly proportional to the focal length.

Since the object distance shift has nearly no influence on the intensity distribution of the

Fourier spectrum, only one intensity spectrum is presented for each focal length. The

figures in the second to the last column are the phase spectra for the object distances

from 6 cm to 10 cm. It can be summarized from the results of phase distribution that

the larger object distance will squeeze the effective phase distribution area smaller, which

will leads to a resolution degeneration.

Fig. B.2 is the reconstructed intensity images from the Fourier-spectrum matrix in

Fig. B.1. The images show that the closer the object is from the focusing lens, the

better contrast and resolution of the images will be obtained, which is consistent with

the derivation of Eq. 5.13. Furthermore, the focal length will not affect the contrast

and the resolution since the Fourier data recording area is large enough to include all

the diffraction patterns. Fig. B.3 illustrates the reconstructed phase images from the

Fourier-spectrum matrix in Fig. B.1. The changing trend of contrast and resolution of
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B Imaging resolution simulation

Figure B.1: Fourier spectrum simulations under different focal lengths and object
distances at 600 GHz. From top to bottom rows are the Fourier spectrum
generated with the focal length from 6 cm to 10 cm having 1 cm has
interval. The first column is the intensity Fourier spectrum. From the
second to the last column are the phase Fourier spectrum under the object
distances from 6 cm to 10 cm with 1 cm interval.
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B.1 Lateral resolution simulation

Figure B.2: The reconstructed intensity images based on the Fourier spectrum matrix
in Fig. B.1. The spectrum for the focal length from 6 cm to 10 cm is
displayed in the descending order.
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B Imaging resolution simulation

Figure B.3: The reconstructed phase images based on the Fourier spectrum matrix in
Fig. B.1, from top to bottom rows and left to right columns correspond
to 6 cm to 10 cm focal length and 6 cm to 10 cm object distances,
respectively.
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B.1 Lateral resolution simulation

the phase images with the object distance is the same as the intensity images. What’s

more the phase is more sensitive and shows a better contrast and resolution than the

intensity images. The background in the whole image area of the phase images is not

unity but shows a tilted plane. This is because the illuminating Gaussian beam is not

exactly located in the central position, which in turn transfers to a phase factor behaving

as a tilted plane after the inverse Fourier transform.

To compare the contrast and resolution of the images more intuitively, the one dimen-

sional data of the stripes in each elements of Group -1 on the USAF chart are extracted

by going through the stripes. Fig. B.4 displays the extracted data cutting through the

stripes in vertical directions of Number 1 to 3 elements in Fig. B.3. Rows from top to

bottom correspond to 6 cm to 10 cm focal length, left to right column correspond to

elements Number 1 to 3 (Number 1, 2 and 3 has the stripe width of 1 mm, 0.89mm,

and 0.79 mm). Fig. B.5 shows the extracted data of the stripes in lateral directions of

elements Number 1 to 3 in Fig. B.3. From top to bottom, rows correspond to 6-cm to

10-cm focal length, left to right column correspond to elements Number 1 to 3, blue, red,

yellow, purple and green color present 6-cm to 10-cm object distance for each focal length

system. All of the sub-figures show that a shorter object distance will generate a better

resolution. The Figs B.7, B.6, B.5 and B.4 tell us that the resolution and contrast in the

lateral direction (expressed by the data cutting the vertical arranged stripes) is better than

that in the vertical direction (expressed by the data cutting the lateral arranged stripes).

This can be attribute to the polarization of the illuminating radiation. The resolution

in the lateral direction can reach 0.79 mm for all of the object distances. While in the

vertical direction, the resolution of the 10-cm object distance can just reach 0.89 mm.

Fig. B.6 and Fig. B.7 exhibit the one dimensional data extracted from the phase

images. They are achieved by expanding the data on the line going through the the

stripes of the elements Number 1 to 3 in Fig. B.3 in vertical and lateral directions,

respectively. The resolution varies with the same tend as the intensity data that shorter

object distance generates better resolution. While with the same object distance, the

contrast of each group is better than the intensity images, the phase data show a better

resolution than 0.79 mm both in the vertical and lateral direction, which is better than
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B Imaging resolution simulation

Figure B.4: One dimension data cutting through the stripes in vertical directions of
Number 1 to 3 elements in Fig. B.2. Rows in declining order corre-
spond to 6 cm to 10 cm focal length with 1-cm step, left to right column
correspond to group number 1 to 3.
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B.1 Lateral resolution simulation

Figure B.5: One dimension data cutting through the stripes in lateral directions of
Number 1 to 3 elements in Fig. B.2. Rows from top to bottom correspond
to 6 cm to 10 cm focal length with 1-cm interval, left to right column
correspond to group number 1 to 3.

125



B Imaging resolution simulation

Figure B.6: One dimension data cutting through the stripes in vertical directions of
Number 1 to 3 elements in Fig. B.3. The spectrum for the focal length
from 6 cm to 10 cm is displayed in the descending order.
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B.1 Lateral resolution simulation

Figure B.7: One dimension data cutting through the stripes in lateral directions of
Number 1 to 3 elements in Fig. B.3. The spectrum for the focal length
from 6 cm to 10 cm is displayed in the descending order.
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that in intensity images.

B.2 Depth resolution simulation

The USAF chart is also adopted as the imaging target to validate the depth resolution

simulation. Here the sharpness of imaging results of specific object distance with different

focal lengths under focus and defocus reconstruction distances is used to define the

focusing effect and further present the depth resolution capability. The reconstructed

images are clarified in Fig. B.8. The sharpness calculation is derived based on the shape

from the focus method. For the 6-cm object distance, the sharpness of imaging results

using the focal length from 6 cm to 10 cm with 1-cm interval under the reconstructed

distance from 2 cm to 10 cm are shown as Fig. B.9. With the FWHM (Full Width -

Half Maximum) of the main peak, the depth resolution can be roughly deduced as the

definition for lateral resolution.

Figure B.8: The reconstructed images of USAF chart by using object distance from
2 cm to 10 cm with an interval of 2 cm, the top and bottom rows are
intensity and phase, respectively.
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B.2 Depth resolution simulation

Figure B.9: The sharpness change of the reconstructed images along with the object
distance variation. The sub-figures from left to right and up to down
correspond to the focal length from 6 cm to 10 cm successively.
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