Elektronenreiche Olefine, 2 Struktur und Elektrontransfer-Reaktivität des cyclisch σ/π -hyperkonjugierten Carbosilans 3,3,6,6-Tetrakis(trimethylsilyl)-1,4-cyclohexadien

Electron Rich Olefins, 2

Structure and Electron Transfer Reactivity of the Cyclically σ/π -Hyperconjugated Carbosilane 3,3,6,6-Tetrakis(trimethylsilyl)-1,4-cyclohexadiene

Hans-Dieter Hausen, Christian Bessenbacher und Wolfgang Kaim*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80

Herrn Professor Hans Bock zum 60. Geburtstag gewidmet

Z. Naturforsch. 43b, 1087-1093 (1988); eingegangen am 11. Mai 1988

Organosilicon Compounds, Molecular Conformation, Electron Transfer, Hyperconjugation, Electronic Structure

Crystal and molecular structure analysis of the title compound **1**, a most electron rich carbosilane, exhibits a shallow boat conformation for the cyclohexadiene ring which is shielded by four bulky Me₃Si groups. Multiple hyperconjugative interaction occurs between the two non-conjugated olefinic π systems and the four rather long (192 pm) carbon-silicon σ bonds which form an angle of about 34° with the assumed π axis. The HOMO destabilization caused by this unique structural arrangement explains the energetically facile formation and subsequent reactivity of the cation radical 1⁺ which was found to undergo oxidative desilylation to the aromatic 1,4-bis(trimethylsilyl)benzene precursor in the single electron transfer reaction with TCNE.

Die Erkenntnis, daß C-Si- (und Si-Si-) σ -Bindungen energetisch nahe bei besetzten π -Orbitalen liegen [1-3], hat zur Synthese einer Reihe von Verbindungen mit möglichst mehrfacher σ/π -hyperkonjugativer Wechselwirkung Anlaß gegeben [4-6]. Da es sich jeweils um besetzte σ - und π -Orbitale handelt, werden Moleküle durch solche Wechselwirkungen elektronenreich [5], was vor allem leichte Ionisierbarkeit [4] bzw. Oxidierbarkeit [7] und demnach eine Stabilisierung carbo- [8, 9] und Radikal-kationischer Spezies [5] durch β -Silyl-Substitution zur Folge hat.

Als elektronenreichstes Carbosilan einer Serie hyperkonjugativ destabilisierter Verbindungen [4, 5] hat sich das 3,3,6,6-Tetrakis(trimethylsilyl)-1,4-cyclohexadien 1 [4, 10] erwiesen, dessen geringes Ionisations- (IE_v = 7,00 eV) [4] und Oxidations-Spitzen-Potential (E^{pa} = 0,77 V gegen ges. Kalomelelektrode [7]) bei polycyclischen aromatischen Kohlenwasserstoffen erst im Falle des Perylens erreicht werden [11, 12]. Als Ursache dieser außerordentlichen Destabilisierung des HOMO von 1 ist eine maximal effektive σ/π -Hyperkonjugation anzusehen; die Ring-

konformation von 1 sollte gewährleisten, daß in cyclisch alternierender Weise jede Olefin-Doppelbindung mit allen 4 σ_{C-Si} -Bindungen und jede σ_{C-Si} -Bindung mit beiden Olefin-*π*-Systemen in Wechselwirkung treten kann. In diesem Zusammenhang ist auch die ungewöhnlich große ²⁹Si-ESR-Kopplungskonstante im Radikalkation 1⁺ bemerkenswert [4]; hier wurde eine Winkelaufweitung <Si-C-Si bei weitgehend planarer Ringkonformation vermutet [4]. Allerdings erweist sich 1⁺ selbst nach Erzeugung durch das selektive Einelektronenoxidations-System AlCl₃/ CH₂Cl₂ [5, 13] nur unterhalb von 240K als beständig [4, 13]; in dieser Arbeit sollen daher quantitative Resultate einer Strukturanalyse von 1 mit dem spektroskopischen und chemischen Verhalten der Verbindung korreliert werden.

$$\begin{array}{ccc} R_3Si & SiR_3 \\ H & H \\ H & H \\ R_3Si & SiR_3 \end{array}$$

Ergebnisse und Diskussion

Verbindung 1 wird durch reduktive Silylierung von 1,4-Bis(trimethylsilyl)benzol (2) [14] hergestellt

^{*} Sonderdruckanforderungen an Prof. Dr. W. Kaim.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/88/0900–1087/\$ 01.00/0

(1 A) [4], wobei die nur geringe Ausbeute bereits auf eine beträchtliche Aktivierungsenergie aufgrund sterischer Hinderung schließen läßt [4]. Immerhin bildet sich trotz dieser ungünstigen Situation das Produkt **1**, welches aufgrund der Spin- und Ladungsverteilung im Anion von **2** [15] entstehen sollte (grenzorbitalkontrollierte "Sila"-Birch-Reduktion [16, 17]).

Die Verbindung ist trotz des Elektronenreichtums unbegrenzt luftstabil, wozu die sterische Abschirmung durch vier raumerfüllende Trimethylsilyl-Gruppen beitragen mag; für die Röntgenstrukturanalyse geeignete Kristalle bilden sich bei langsamer Sublimation (80 °C, 0,1 Torr).

Kristalldaten und Angaben zur Tieftemperaturmessung bei ca. -110 °C sind in Tab. I zusammengefaßt. Die Strukturlösung gelang über direkte Methoden mit Hilfe des Programms SHELXS-86 [40], welches die Lagen sämtlicher Nicht-Wasserstoffatome liefert. Die Positionen der Wasserstoffatome konnten späteren Differenz-Fourier-Synthesen entnommen werden. Die Verfeinerung nach der Methode der kleinsten Fehlerquadrate erfolgte für die Wasserstoffatome nur mit isotropen, für die übrigen Atome später auch mit anisotropen Temperaturparametern (jeweils volle Matrix). Die Ergebnisse der Strukturbestimmung sind in den Tabellen I–IV zusammengestellt^{*}. Zur Veranschaulichung der Molekülstruktur und der Atombenennung dient Abb. 1; Abb. 2 zeigt einen Ausschnitt aus der Kristallstruktur.

Die Moleküle von 1 besitzen im Kristall näherungsweise nicht-kristallographische D_{2h} -Symmetrie; recht gute Ebenen lassen sich sowohl durch die vier Silizium-Atome und die sp³-Kohlenstoffzentren des Rings als auch durch die sechs Ringatome legen (Tab. IV). Obwohl die Tendenz der Me₃Si-Gruppen zur maximalen Abstoßung eine völlig ebene Ringkonformation begünstigen sollte, beobachtet man

^{*} Weitere Einzelheiten zur Kristallstruktur können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 53115 und des Literaturzitats angefordert werden.

Abb. 1. Molekülstruktur von **1.** Zur Darstellung der Schwingungsellipsoide (50% Wahrscheinlichkeit) wurde das Programm ORTEP [42] verwendet.

Tab. I. Kristalldaten und Angaben zur Intensitätsmessung. (In dieser und den folgenden Tabellen bedeuten die Zahlen in Klammern die Standardabweichungen in Einheiten der letzten Dezimale.)

monoklin P2 /c [41]	Kristallabmessungen (cm) $0.09 \times 0.04 \times 0.02$ Maßbaraich (m. sann) $2^{\circ} \leq 29 \leq 50^{\circ}$			
$1 2_1 / c [41]$	Meddeleten (ω -scall) 2 < 20 < 50			
1681,2(6)	Nm	4146		
671,2(2)	No	3076		
2204,8(5)	R_1	0,040		
108,92(2)	\mathbf{R}_2	0,034		
2353,6(12)	-			
368,94	Nm	Zahl der gemessenen unabhängigen Reflexe		
4		5 55		
1.04	N	Zahl der beobachteten Reflexe: Reflexe mit $I < 2\sigma(I)$ wurden als		
2.59	- 0	nicht beobachtet gewertet		
_ , _ , _ ,	R.	$\Sigma \mathbf{F} - \mathbf{F} / \Sigma \mathbf{F} $		
	D	$\sum_{i=1}^{n} i_i ^2 i_i ^2 i_i ^2 i_i ^2 i_i ^2$		
	\mathbf{R}_2	$\left[\Delta W(\mathbf{F}_{0} - \mathbf{F}_{c}) / \Delta W \mathbf{F}_{0} \right]$		
	monoklin P2 ₁ /c [41] 1681,2(6) 671,2(2) 2204,8(5) 108,92(2) 2353,6(12) 368,94 4 1,04 2,59	$\begin{array}{c cccc} monoklin & Krist \\ P2_1/c [41] & Meßl \\ 1681,2(6) & N_m \\ 671,2(2) & N_o \\ 2204,8(5) & R_1 \\ 108,92(2) & R_2 \\ 2353,6(12) \\ 368,94 & N_m \\ 4 \\ 1,04 & N_o \\ 2,59 & R_1 \\ R_2 \end{array}$		

Atom	<i>x</i> / <i>a</i>	y/b	z/c	U
Si 1	16445(5)	15468(12)	83625(3)	316(5)
Si2	35695(5)	3346(11)	89046(3)	325(6)
Si 3	34692(5)	-8074(11)	65015(3)	277(5)
Si4	14966(5)	-1162(11)	60314(3)	348(6)
C1	26035(15)	6218(36)	81511(10)	279(17)
C2	24236(17)	-13601(39)	78213(11)	329(18)
C3	24043(16)	-17364(40)	72234(12)	328(18)
C4	25074(15)	- 1995(36)	67570(10)	269(16)
C5	26845(16)	17897(37)	70869(11)	298(17)
C6	27564(16)	21364(38)	76964(11)	309(18)
C11	8616(28)	26467(85)	76457(18)	584(27)
C12	19365(23)	35920(53)	89694(15)	457(22)
C13	11395(22)	- 5286(60)	86579(18)	492(23)
C21	32923(23)	- 7837(60)	95835(14)	455(22)
C22	43509(26)	-13842(71)	87602(18)	552(25)
C23	41038(24)	27620(63)	91624(19)	546(25)
C31	35222(23)	-35222(49)	63538(16)	416(21)
C32	34692(21)	6581(53)	57830(14)	392(20)
C33	44486(20)	-1065(65)	71419(15)	463(22)
C41	14882(23)	-18972(55)	53801(14)	409(21)
C42	5698(28)	- 8443(12)	62673(24)	738(32)
C43	13369(30)	24479(60)	56997(22)	635(28)

Tab. II. Ortsparameter (×10⁵) und isotrope Temperaturfaktoren der Nichtwasserstoffatome. (Der Parameter U des isotropen Temperaturfaktors $exp(-8\pi^2 U sin^2 \theta / \lambda^2)$ ist in Einheiten von pm² angegeben.)

C1C2 C2C3 C3C4 C4C5 C5C6 C6C1 Si1C1 Si2C1 Si3C4 Si4C4 Si1C11 Si1C12 Si1C13 Si2C21 Si2C21 Si2C22 Si2C23 Si3C31 Si3C32 Si3C33	$149,9(4) \\133,2(4) \\150,6(4) \\150,3(3) \\133,0(4) \\150,7(4) \\192,1(3) \\192,0(2) \\192,1(3) \\192,0(2) \\185,1(4) \\185,6(4) \\185,6(4) \\185,6(4) \\185,8(4) \\185,8(4) \\185,8(3) \\185,8(3) \\186,5(3) \\184,9(3) \\ 184,9(3) \\185,8(4) \\185,8(3) \\184,9(3) \\185,8(3) \\184,9(3) \\185,8(3) \\185,8(3) \\184,9(3) \\185,8(3) \\185,8(3) \\184,9(3) \\185,8(3) \\185,8(3) \\184,9(3) \\185,8(3) \\185,8(3) \\185,8(3) \\184,9(3) \\185,8(3) \\185$	C2C1C6 C1C2C3 C2C3C4 C3C4C5 C4C5C6 C5C6C1 C2C1Si1 C2C1Si2 C6C1Si1 C6C1Si2 Si1C1Si2 C3C4Si3 C3C4Si4 C5C4Si3 C5C4Si3 C5C4Si4 Si3C4Si4 C1Si1C11 C1Si1C12 C1Si1C13	$\begin{array}{c} 109,1(2)\\ 125,8(2)\\ 125,1(2)\\ 109,1(2)\\ 125,7(2)\\ 125,1(2)\\ 110,6(2)\\ 108,2(2)\\ 106,3(2)\\ 111,4(2)\\ 111,3(1)\\ 110,4(2)\\ 108,8(2)\\ 106,1(2)\\ 111,1(2)\\ 111,3(1)\\ 111,0(2)\\ 111,4(1)\\ 111,0(2)\\ \end{array}$	C1Si2 C1Si2 C1Si2 C2ISi C2ISi C2Si C4Si3 C4Si3 C4Si3 C4Si3 C3ISi C3ISi C3ISi C3Si C4Si4 C4Si4 C4Si4 C4Si4 C4Si4 C4Si C4Si	C21 C22 C23 2C22 2C23 2C23 C31 C32 C32 C33 3C32 3C33 3C33	$\begin{array}{c} 111,9(1)\\ 111,2(1)\\ 111,5(1)\\ 105,3(2)\\ 109,2(2)\\ 107,4(2)\\ 110,6(2)\\ 111,7(1)\\ 110,4(1)\\ 110,8(2)\\ 107,6(2)\\ 105,6(2)\\ 114,0(1)\\ 110,8(2)\\ 109,3(2)\\ 104,4(2)\\ 109,1(2)\\ 109,1(3)\\ \end{array}$
Si3C33	184,9(3) 186,5(4)	C1Si1C13	111,0(2) 105,5(2)			
Si4C42	186,1(6)	C11Si1C12	103,5(2) 108,6(2)			
Si4C43	185,5(4)	C12Si1C13	110,1(2)			
			Methylgru	uppen	Ring	
Mittelwerte:	rte: C-H-Bindungslängen (pm) HCH-Bindungswinkel (°) SiCH-Bindungswinkel (°) CCH-Bindungswinkel (°)		92 (87-100) 108 (98-119) 110 (105-116) -		95 - - 117 (116-119)	

Tab. III. Bindungslängen (pm) und -winkel (°).

Ebenen				Winkel Φ Ebenen	zwischen
(A)	C1(-1,4) C2(-1 C4(-1,1) C5(-1	,3) C3(2,6) ,7) C6(3,0)		ΦΑ, Β ΦΑ, C	86,4 86,6
(B) (C)	Si1C1Si2 Si3C4Si4			$\Phi B, C \Phi A, D$	7,1 89,9
(CD)	Si1(9,7) Si2(-9, Si4(-9,7)	5) Si3(9,5)		$\Phi A, E \Phi F, G$	89,9 1,9
(E)	Si1(10,2) Si2(-9 Si4(-9,1) C1(-0	,1) Si3(10,1)),7) C4(-1,4)		ΦF, Η ΦΙ, J	1,3 1,9
(F) (G)	C2(-2,2) C3(2,2) C3C4C5	2) C5(-2,2) C6(2	2,2)		
(H) (I)	C1C2C6 C1(0,7) C2(-1,6	(5) C3(1,6) C4(-0)	0,7)		
(J) Bindung	C4(0,9) C5(-2) s-Torsionswinkel	C6(2) C1(-0,9)			
C1C2C3 C2C3C4 C3C4C5	$\begin{array}{rrr} 3C4 & -4,0(4) \\ 4C5 & 3,3(4) \\ 5C6 & 1,3(4) \end{array}$	C4C5C6C1 C5C6C1C2 C6C1C2C3	-5,2(4) 4,3(4) 0,3(4)		

Tab. IV. Definition ausgewählter Ebenen, Winkel zwischen den Ebenen (die in Klammern angegebenen Zahlenwerte geben die Abweichung (in pm) von einer durch alle diese Atome gelegten besten Ebene an) und Bindungs-Torsionswinkel.

(Das Vorzeichen des Torsionswinkels Atom1Atom2-Atom3Atom4 ist negativ, wenn bei einer Blickrichtung von 2 nach 3 die Bindung 1-2durch Drehung entgegen dem Uhrzeigersinn mit der Bindung 3-4 zur Deckung gebracht wird.)

Abb. 2. Ausschnitt aus der Kristallstruktur von **1.** Auf die Wiedergabe der H-Atome wird hier verzichtet.

für 1 eine wenn auch nur gering ausgeprägte Wannenkonformation. Die Konformation von Ringen des allgemeinen Typs 3 [18] und speziell des 1,4-Cyclohexadiens (4) [19–22], sowie seiner biochemisch (NADH [23, 24], Dihydro-Flavine, -Pteridine und -Pyrazine [25–29]) und pharmakologisch (Ca-Antagonisten [30]) wichtigen N-heterocyclischen Analogen hat bis in jüngste Zeit Anlaß zur Diskussion und zu vielfältigen Untersuchungen gegeben [19–22], da hier ein empfindliches Gleichgewicht aufgrund von gegenläufigen Effekten durch Bindungswinkel (\rightarrow nicht-planare Struktur), Torsionswinkel (\rightarrow planare Konformation) und Wechselwirkungen zwischen Ringsubstituenten besteht ("flaches" Energieminimum) [18, 22, 28, 29].

Während neuere theoretische [22] und experimentelle Untersuchungen [20] für die Stammverbindung 4 ein völlig ebenes Ringsystem nahelegen und für 3-alkylsubstituierte 1,4-Cyclohexadiene Wannenkonformation mit Diederwinkeln α (2) [18] von 160° berechnet werden [31], zeigt 1 trotz der vierfachen symmetrischen Substitution mit den raumerfüllenden Me₃Si-Gruppen eine deutliche Abweichung von der Ringplanarität. Die Wannenkonformation von 1 läßt sich durch den Diederwinkel $\alpha = 178.1^{\circ}$, die Diederwinkel $\beta = 1.3^{\circ}$ und 1.9° (2) sowie durch die Summe der Intraring-Torsionswinkel $\Sigma |\tau| = 18.4^{\circ}$ charakterisieren [18]; als Konsequenz aus dieser doch relativ deutlichen Wannenkonformation sind die beiden Si-Si-Abstände über den Ring hinweg mit 518,6 und 530,2 pm signifikant verschieden. Dieses Ergebnis läßt die Frage offen, ob ungestörtes 4 tatsächlich planar ist, wie neuere Arbeiten nahelegen [20, 22], oder ob nicht auch hier schon eine Abweichung zur Wannenkonformation auftritt [19, 21].

Während die Allyl-Winkel im Ring mit etwa 125° von gleicher Größenordnung wie im Propen (124°) [22] gefunden werden, liegen sämtliche Winkel für die sp³-Ringzentren C' in unmittelbarer Nähe des Tetraederwinkels (106,1-111,3°). Dies ist insofern bemerkenswert, als mit der Bis(trimethylsilyl)-Substitution und der Einbindung von C' in ein teilweise ungesättigtes Ringsystem Vorgaben existieren, die eine deutlichere Abweichung von der Tetraederkonfiguration hervorrufen könnten. Selbst die Winkel Si-C'-Si betragen nur 111,3° und bleiben somit hinter dem für das Radikalkation abgeschätzten [4] höheren Wert von 132° zurück; aufgrund der $\cos^2\theta$ -Abhängigkeit von hyperkonjugativer Wechselwirkung [1, 2, 4, 5] (θ : Winkel σ -Bindung/ π -Achse) erhält man für $\theta = (180^{\circ} - 111, 3^{\circ})/2 = 34, 35^{\circ}$ mit $\cos^2 \theta =$ 0,68 eine nur wenig reduzierte Wechselwirkung. Eine Vergrößerung der Winkel Si-C'-Si könnte bei Konstanthaltung von <Si-C'-C nur unter Verringerung der Intra-Ring-Winkel C-C'-C erfolgen, was jedoch zu ungünstiger Vergrößerung der Allyl-Winkel oder zu stärkerer Nicht-Planarität des Rings führen müßte.

Da die sterische Spannung aufgrund der Ringsituation somit nicht über Winkeldeformationen abgebaut werden kann, müssen davon die Atomabstände betroffen sein. Während die olefinischen und allylischen C-C-Bindungslängen wie auch die Si-C(Methyl)-Distanzen (*ca.* 186 pm) im normalen Bereich liegen [1], zeigen die Si-C'-Abstände eine deutliche Verlängerung auf 192 pm.

Mit dieser Schwächung der Si-C(Ring)-Bindung läßt sich erklären, warum das Radikalkation 1⁺ trotz seiner durch die niedrigen Ionisations- und Oxidationspotentiale [4, 7] veranschaulichten leichten Bildung nur geringe thermische Beständigkeit zeigt [4]. Detaillierte ESR-Untersuchungen [4] haben ergeben, daß ein wesentlicher Teil des ungepaarten Elektrons im Radikalkation 1^{\ddagger} in die $\sigma(C'-Si)$ -Bindungen delokalisiert sein muß; anders sind die geringe Kopplung für die olefinischen Protonen und die ungewöhnlich große Isotopenkopplung für die 29Si-Kerne nicht zu verstehen. Entsprechend führt der mit einer Spin-Delokalisation auch verknüpfte Transfer von positiver Ladung zu den Silyl-Gruppen im Verein mit der geometrisch bedingten Bindungsverlängerung zu einer Labilisierung im Sinne einer leichten Dissoziation von Me₃Si⁺, ein Resultat, welches als Folge einer Elektronenübertragungsreaktion [32] mit Tetracyanethylen (TCNE) tatsächlich beobachtet wird.

Statt der Bildung eines Charge-Transfer-Komplexes, der bei einer Ionisierungsenergie von 7,00 eV des Donators ein Absorptionsmaximum von etwa 800 nm haben sollte [33], konnte nach der Umsetzung von 1 ($E^{pa} = 0.77 \text{ V}$ [7]) mit TCNE ($E_{red} =$ 0,33 V [34]) zunächst als "escape"-Produkt [32] einer inner-sphere-Elektronenübertragung [35] das Radikalanion TCNE⁺ des Akzeptors UV- und ESR-spektroskopisch nachgewiesen werden [4, 34, 36]. Wie in nahezu [34] allen Fällen von SET-Reaktionen hauptgruppenmetallorganischer Donatoren [32] wird das primär ebenfalls entstehende Radikalkation nicht beobachtet [4]; jedoch konnte die Vermutung, daß aufgrund der beschriebenen sterischen und elektronischen Aktivierung R₃Si⁺-Abspaltung und abbauende Silvlierung des TCNE [37] eintritt, durch Etablierung des 1,4-Bis(trimethylsilyl)benzols (2) [14] als diamagnetischem Produkt der Reaktion von 1 mit TCNE bestätigt werden (1B). In Umkehrung zur Bildung von 1 aus 2 durch reduktive Silylierung (1A) führt Elektronenübertragung zum Akzeptor TCNE zu einer oxidativen Desilylierung (1B).

Erstaunlich bleibt, wie unterschiedlich elektronenreiche Organosilicium-Verbindungen mit TCNE reagieren können. Die Bandbreite reicht von ausbleibender Wechselwirkung aufgrund sterischer Abschirmung (3) [38] über Bildung farbiger Charge-Transfer-Komplexe (4) [33, 39] und dem hier be-

$$TCNE + R_{3}Si - \pi \longrightarrow C(SiR_{3})_{3} (3)$$

$$R_{3}Si - \pi = (R_{3}Si)_{2}C - C H H^{C-C(SiR_{3})_{2}} , (SiR_{3})_{3}C (SiR_{3})$$

$$TCNE + R_3Si - \pi \longrightarrow (TCNE - / R_3Si - \pi +) \xrightarrow{rascn} TCNE - + R_3Si + \longrightarrow (5)$$

$$R_{3}Si-\pi = 1 , \qquad R_{3}SiH_{2}C = C CH_{2}SiR_{3}$$

$$R_{3}SiH_{2}C CH_{2}SiR_{3}$$

$$R_{3}SiH_{2}C CH_{2}SiR_{3}$$

 $TCNE + R_{3}Si - \pi \longrightarrow TCNE^{-}(solv) + R_{3}Si - \pi^{+}(solv)$ $R_{3}Si - \pi = R_{3}Si - N N - SiR_{3}$ (6)

Strukturuntersuchungen können demnach in wertvoller Ergänzung zu spektroskopischen und elektrochemischen Resultaten zum Verständnis von Einelektronenübertragung, dieser einfachsten und für metallorganische Verbindungen sehr wichtigen chemischen Reaktion [32, 35] beitragen.

Experimenteller Teil

¹H-NMR: Varian A60. – ESR: Varian E9 im X-Band. – UV/VIS: Shimadzu UV160. – MS: Varian CH7. Verbindung 1 wird nach (1A) [4] in Form farbloser Nadeln erhalten. Umsetzung mit TCNE in äquimolarem Verhältnis in Chloroform liefert vorübergehend das ESR- ($a_N = 0,16$ mT) und UV/VIS-spektroskopisch ($\lambda_{max} = 471, 462, 448, 438, 428, 420$ nm) nachweisbare Radikalanion TCNE^{τ} [4, 36], nach Aufarbeitung durch Entfernen flüchtiger Bestandteile wird das bekannte [14] Ausgangsprodukt **2** (1) isoliert und massen- sowie ¹H-NMR-spektroskopisch identifiziert.

Zur Röntgenstrukturanalyse geeignete Kristalle von 1 wurden durch Sublimation im Hochvakuum gewonnen, unter wasserfreiem Nujol separiert und in Glaskapillaren eingeschmolzen. Alle röntgenographischen Messungen erfolgten bei etwa -110 °C an einem rechnergesteuerten Vierkreisdiffraktometer Syntex P2, mit MoK_a-Strahlung (Graphitmonochromator). Die optimierten Winkelwerte 2 θ , ω und χ von 22 ausgewählten Reflexen ($25^{\circ} < 2\theta < 35^{\circ}$) und deren Verfeinerung lieferten die Gitterkonstanten. Die Messung der Intensitäten erfolgte über einen Bereich von 2° mit ω -scan, die Abtastgeschwindigkeit variierte hierbei in Abhängigkeit von der Intensität zwischen 2° und 30°/min. Die Umrechnung der Intensitäten in relative Strukturfaktoren erfolgte nach Standardmethoden; dabei wurden die Fo-Werte mit Gewichten versehen, für deren Berechnung die Standardabweichungen aufgrund der statistischen Fehler der Messung dienten. Auf eine Korrektur des Absorptionsfehlers konnte verzichtet werden. Soweit nicht anders vermerkt, wurden die kristallographischen Berechnungen mit den Programmsystemen X-Ray [43] auf der Rechenanlage CRAY 2 des Universitätsrechenzentrums sowie XTL [44] auf einem Nova-1200-Rechner durchgeführt. Für die Berechnung der Atomformfaktoren lagen die Werte von Cromer und Mann [45], bei Wasserstoffatomen diejenigen von Stewart et al. [46] zugrunde.

- I. Mitteilung: H.-D. Hausen und W. Kaim, Z. Naturforsch. 43b, 82 (1988).
- [2] C. G. Pitt, J. Organomet. Chem. 61, 49 (1973).
- [3] P. K. Bischof, M. J. S. Dewar, D. W. Goodman und T. B. Jones, J. Organomet. Chem. 82, 89 (1974);
 C. G. Pitt und H. Bock, J. Chem. Soc. Chem. Commun. 1972, 28.
- [4] H. Bock und W. Kaim, J. Am. Chem. Soc. 102, 4429 (1980).
- [5] H. Bock und W. Kaim, Acc. Chem. Res. 15, 9 (1982).
- [6] H. Sakurai, Pure Appl. Chem. 59, 1637 (1987).
- [7] H. Bock und U. Lechner-Knoblauch, J. Organomet. Chem. 294, 295 (1985).
- [8] I. Fleming, in D. H. R. Barton und W. D. Ollis (Herausg.): Comprehensive Organic Chemistry, Bd. 3, S. 539, Pergamon Press, Oxford (1979).

- [9] J. B. Lambert, G. T. Wang, R. B. Finzel und D. H. Teramura, J. Am. Chem. Soc. 109, 7838 (1987).
- [10] T. Brennan und H. Gilman, J. Organomet. Chem. 12, 291 (1968).
- [11] R. Boschi, J. N. Murrell und W. Schmidt, Faraday Discuss. Chem. Soc. 54, 327 (1972).
- [12] E. S. Pysh und N. C. Yang, J. Am. Chem. Soc. 85, 2124 (1963).
- [13] W. Kaim, Dissertation, Universität Frankfurt (1978).
- [14] R. L. Merker und M. J. Scott, J. Am. Chem. Soc. 85, 2243 (1963).
- [15] F. Gerson, J. Heinzer, H. Bock, H. Alt und H. Seidl, Helv. Chim. Acta **51**, 707 (1968).
- [16] D. R. Weyenberg und L. H. Toporcer, J. Am. Chem. Soc. 84, 2843 (1962); J. Org. Chem. 33, 1975 (1968).
- [17] H. Alt, E. R. Franke und H. Bock, Angew. Chem.

81, 538 (1969); Angew. Chem,. Int. Ed. Engl. **8,** 525 (1969).

- [18] W. Kaim, Rev. Chem. Intermed. 8, 247 (1987).
- [19] H. Oberhammer und S. H. Bauer, J. Am. Chem. Soc. 91, 10 (1969).
- [20] H. Hagemann, H. Bill, D. Joly, P. Müller und N. Pautex, Spectrochim. Acta 41A, 751 (1985).
- [21] P. W. Rabideau, Acc. Chem. Res. 11, 141 (1978).
- [22] K. B. Lipkowitz, P. W. Rabideau, D. J. Raber, L. E. Hardee, P. v. R. Schleyer, A. J. Kos und R. A. Kahn, J. Org. Chem. 47, 1002 (1982).
- [23] I. L. Karle, Acta Crystallogr. 14, 497 (1961).
- [24] U. Eisner und J. Kuthan, Chem. Rev. 72, 1 (1972).
- [25] M. L. Ludwig, R. M. Burnett, G. D. Darling, S. R. Jordan, D. S. Kendall und W. W. Smith, in T. P. Singer (Herausg.): Flavins and Flavoproteins, S. 393, Elsevier, Amsterdam (1976).
- [26] R. Norrestam, P. Kierkegaard, B. Stensland und L. Torbjörnsson, J. Chem. Soc. Chem. Commun. 1969, 1250.
- [27] Y. Kobayashi, Y. Iitaka, R. Gottlieb und W. Pfleiderer, Acta Crystallogr. B33, 2911 (1977).
- [28] W. Kaim, J. Mol. Struct. (Theochem) 109, 277 (1984).
 [29] H.-D. Hausen, O. Mundt und W. Kaim, J. Organo-
- met. Chem. **296**, 321 (1985).
- [30] R. Fossheim, K. Svarteng, A. Mostad, C. Romming, E. Shefter und D. J. Triggle, J. Med. Chem. 25, 126 (1982).
- [31] D. J. Raber, L. E. Hardee, P. W. Rabideau und K. B. Lipkowitz, J. Am. Chem. Soc. 104, 2843 (1982).
- [32] W. Kaim, Acc. Chem. Res. 18, 160 (1985).

- [33] H. Bock und W. Kaim, Chem. Ber. 111, 3552 (1978).
- [34] W. Kaim, Angew. Chem. 96, 609 (1984); Angew. Chem., Int. Ed. Engl. 23, 613 (1984).
- [35] L. Eberson, Electron Transfer Reactions in Organic Chemistry, S. 67, Springer, Berlin (1987).
- [36] D. A. Dixon und J. S. Miller, J. Am. Chem. Soc. 109, 3656 (1987).
- [37] A. J. Fatiadi, Synthesis **1987**, 959, und dort zitierte Literatur.
- [38] H. Bock, W. Kaim und H. E. Rohwer, Chem. Ber. 111, 3573 (1978).
- [39] C. Bessenbacher und W. Kaim, unveröffentlicht.
- [40] G. H. Sheldrick, in G. H. Sheldrick, C. Krieger und R. Goddard (eds): "Crystallographic Computing 3", 175–189, Oxford University Press (1985) [ISBN 019 855 2114].
- [41] International Tables for X-Ray Crystallography, The Kynoch Press, Birmingham (1974).
- [42] C. K. Johnson, Ortep Report ORNL-3796, Oak Ridge National Laboratory, Tennessee (1965).
- [43] J. H. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck und H. Flack, The X-Ray System of Crystallographic Programs, The University of Maryland, Maryland (1976).
- [44] XTL/E-XTL-Programmsystem zur Bestimmung von Kristallstrukturen, Syntex Analytical Instruments, Inc., Cupertino, Kalifornien (1976).
- [45] D. T. Cromer und J. B. Mann, Acta Crystallogr. A24, 3 321 (1968).
- [46] R. F. Stewart, E. R. Davidson und W. T. Simpson, J. Chem. Phys. 42, 3175 (1965).