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Abstract
The  human  brain  achieves  visual  object  recognition  through  multiple  stages  of
nonlinear transformations operating at a millisecond scale. To predict and explain
these rapid transformations, computational neuroscientists employ machine learning
modeling techniques. However, state-of-the-art models require massive amounts of
data to properly train, and to the present day there is a lack of vast brain datasets
which extensively sample the temporal dynamics of visual object recognition. Here
we collected a large and rich dataset of high temporal resolution EEG responses to
images of objects on a natural background. This dataset includes 10 participants,
each with 82,160 trials spanning 16,740 image conditions. Through computational
modeling we established the quality of this dataset in five ways. First, we trained
linearizing encoding models  that  successfully  synthesized the  EEG responses to
arbitrary  images.  Second,  we  correctly  identified  the  recorded  EEG  data  image
conditions in a zero-shot fashion, using EEG synthesized responses to hundreds of
thousands of candidate image conditions. Third, we show that both the high number
of conditions as well  as the trial  repetitions of the EEG dataset contribute to the
trained  models’  prediction  accuracy.  Fourth,  we  built  encoding  models  whose
predictions well generalize to novel participants. Fifth, we demonstrate full end-to-
end training of randomly initialized DNNs that output M/EEG responses for arbitrary
input  images.  We  release  this  dataset  as  a  tool  to  foster  research  in  visual
neuroscience and computer vision.
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Introduction
Visual  object  recognition  is  a  complex  cognitive  function  that  is  computationally
solved in  multiple  nonlinear  stages by the  human brain  (Marr,  1980;  Goodale  &
Milner, 1992; Van Essen et al., 1992; Riesenhuber & Poggio, 1999; Ullman, 2000;
Grill-Spector et al., 2001; Malach et al., 2002; Carandini et al., 2005). Through these
stages  information  is  transformed  from representations  of  simple  visual  features
such  as  oriented  edges  to  representations  of  object  categories  (Tanaka,  1996;
Logothetis  &  Sheinberg,  1996).  To  understand  the  principles  of  these
transformations,  computational  neuroscientists  build  and  employ  mathematical
models that predict the brain responses to arbitrary visual stimuli and explain their
underlying  neural  mechanisms  (Wu  et  al.,  2006;  Guest  &  Martin,  2021).  The
performance  of  these  models  benefits  from  training  with  large  datasets:  as  an
example, deep neural networks (DNNs) (Fukushima et al., 1982), the current state-
of-the-art computational models of the visual brain (Yamins & DiCarlo, 2016; Cichy &
Kaiser, 2019; Kietzmann et al., 2019a; Richards et al., 2019; Saxe et al., 2021), are
trained on hundreds of thousands of different data points (Russakovsky et al., 2015).
Yet, due to the difficulty of brain data acquisition, neuroscientific datasets usually
comprise no more than a few thousand trials per participant and a limited number of
conditions (Kay et al., 2008; Cichy et al., 2014; Horikawa & Kamitani, 2017).

To address the data hunger of current modeling goals, recently pioneering
efforts have been taken to record large datasets of functional magnetic resonance
imaging  (fMRI)  responses  to  images  (Chang  et  al.,  2019;  Allen  et  al.,  2021).
However, while providing excellent spatial resolution, fMRI data lacks the temporal
resolution to resolve neural dynamics at the level at which they occur. Since neurons
communicate at millisecond scales, high temporal resolution neural data is a crucial
component  for  building  models  of  the  visual  brain  (Thorpe  et  al., 1996;  van  de
Nieuwenhuijzen et al., 2013;  Cichy et al., 2014; Harel et al., 2016; Seeliger et al.,
2017; Bankson et al.,  2018; Dijkstra et al.,  2018). Thus, in the present study we
collected a  large millisecond resolution  electroencephalography (EEG) dataset  of
human  brain  responses  to  images  of  objects  on  a  natural  background.  We
extensively  sampled  10  participants,  each  being  presented  with  16,740  image
conditions repeated over 82,160 trials from the THINGS database (Hebart  et  al.,
2019)  by  using  a  time-efficient  rapid  serial  visual  presentation  (RSVP)  paradigm
(Intraub, 1981; Keysers et al., 2001; Grootswagers et al., 2019).

We then leveraged the unprecedented size and richness of our dataset to
train and evaluate DNN-based linearizing and end-to-end encoding models (Wu et
al., 2006; Kay et al., 2008; Naselaris et al., 2011; van Gerven, 2017; Seeliger et al.,
2017; Kriegeskorte & Douglas, 2019; Seeliger et al., 2021; Khosla et al., 2021; Allen
et  al.,  2021)  that  synthesize  EEG  responses  to  arbitrary  images.  The  results
showcase the quality of the dataset and its potential for computational modeling in
five ways. First,  the synthesized EEG data is strongly resemblant to its biological
counterpart,  with robust predictions even at single participants’  level. Second, we
built  zero-shot  identification  algorithms  (Kay  et  al.,  2008;  Seeliger  et  al.,  2017;
Horikawa & Kamitani, 2017) that achieved high performance accuracies even when
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identifying among very large candidate image conditions set sizes: 81.3% for a set
size of 200 candidate image conditions, 21.15% for a set size of 150,000 candidate
image conditions,  and  extrapolated accuracy >  10% for  a  set  size  of  3,650,000
candidate image conditions, where chance ≤ 0.5%. Third, we show that both the high
number of conditions as well as the trial repetitions of the dataset contribute to the
trained  models’  prediction  accuracy.  Fourth,  we  demonstrate  that  the  encoding
models’  predictions generalize to novel participants.  Fifth,  for the first time to our
knowledge we demonstrate full end-to-end training (Seeliger et al., 2021; Khosla et
al.,  2021;  Allen  et  al.,  2021)  of  randomly  initialized  DNNs  that  output  M/EEG
responses for arbitrary input images.

We  release  the  dataset  as  a  tool  to  foster  research  in  computational
neuroscience  and  to  bridge  the  gap  between  biological  and  artificial  vision.  We
believe this will be of great use to further understanding of visual object recognition
through the development of high-temporal resolution computational models of the
visual  brain,  and  to  optimize  artificial  intelligence  models  through  biological
intelligence data (Sinz et al., 2019; Hassabis et al., 2017; Ullman, 2019; Toneva &
Wehbe, 2019;  Yang et  al.,  2022).  Also all  code used to  generate the presented
results accompanies the data release.
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Results
A large  and  rich  EEG dataset  of  visual  responses  to  objects  on a  natural
background
We used a RSVP paradigm (Intraub, 1981; Keysers et al., 2001; Grootswagers et
al., 2019) to collect a large EEG dataset of visual responses to images of objects on
a natural background (Figure 1A). This dataset contains data for 10 participants who
viewed 16,540 training image conditions (Figure 1B) and 200 test image conditions
(Figure 1C) coming from the THINGS database (Hebart et al., 2019). To allow for
unbiased modeling the training and test images did not have any overlapping object
concepts. We presented each training image condition 4 times and each test image
condition 80 times, for a total of 82,160 image trials per participant over the course of
four sessions. Thanks to the time-efficiency of the RSVP paradigm we collected up
to 15 times more data than other typical recent M/EEG datasets used for modeling
(Cichy et al.,  2014; Seeliger et al.,  2017).  This allowed us to extensively sample
single  participants  while  drastically  reducing  the  experimental  time.  During
preprocessing we epoched the EEG recordings from -200ms to 800ms with respect
to image onset, downsampled the resulting image epoch trials to 100 time points,
and retained only the 17 occipital and parietal channels. As the basis of all further
data  assessment  we  aggregated  the  EEG  recordings  into  a  biological  training
(BioTrain)  data  matrix  of  shape  (16,540  training  image  conditions  × 4  condition
repetitions  ×  17  EEG  channels  × 100  EEG  time  points)  and  a  biological  test
(BioTest) data matrix of shape (200 test image conditions × 80 condition repetitions
× 17 EEG channels × 100 EEG time points), for each participant. Providing this EEG
data  in  its  raw  as  well  as  preprocessed  form  is  the  major  contribution  of  this
resource.

Figure 1. Experimental paradigm and stimuli images. (A) We presented participants with
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images  of  objects  on  a  natural  background  using  a  RSVP paradigm.  The  paradigm
consisted of rapid serial sequences of 20 images. Every sequence started with 750ms of
blank screen, then each image was presented centrally for 100ms and a stimulus onset
asynchrony (SOA) of 200ms, and it  ended with another 750ms of blank screen. After
every rapid sequence there were up to 2s during which we instructed participants to first
blink  and  then  report,  with  a  keypress,  whether  the  target  image  appeared  in  the
sequence. We asked participants to gaze at a central bull’s eye fixation target present
throughout the entire experiment. (B) The training image partition contains 1,654 object
concepts of 10 images each, for a total of 16,540 image conditions. (C) The test image
partition  contains  200  object  concepts  of  1  image  each,  for  a  total  of  200  image
conditions.

Building linearizing encoding models of EEG visual responses
We then assessed the suitability of this dataset for the development of computational
models of the visual brain. We employed the training and test data, respectively, to
build and evaluate linearizing encoding models which predict individual participant’s
EEG  visual  responses  to  arbitrary  images  (Wu  et  al.,  2006;  Kay  et  al.,  2008;
Naselaris et al., 2011; van Gerven, 2017; Kriegeskorte & Douglas, 2019). We based
our  encoding  algorithm  on  deep  neural  networks  (DNNs),  connectionist  models
which in the last decade have excelled in predicting human and non-human primate
visual  brain  responses  (Cadieu  et  al.,  2014;  Yamins  et  al.,  2014;  Güçlü  &  van
Gerven, 2015; Storrs et al., 2021). The building of encoding models involved two
steps. In the first step we non-linearly transformed the image pixel values using four
DNNs pre-trained on ILSVRC-2012 (Russakovsky et al., 2015) commonly used for
modeling brain responses: AlexNet (Krizhevsky, 2014), ResNet-50 (He et al, 2016),
CORnet-S (Kubilius et al., 2019) and MoCo (Chen et al., 2020). Separately for each
DNN we fed the training and test images, extracted the corresponding feature maps
across all layers, appended the layers’ data together and downsampled it to 1,000
principal  components  using  principal  component  analysis  (PCA),  resulting  in  the
training  DNN feature  maps  matrix  of  shape  (16,540  training  image  conditions  ×
1,000 features) and the test DNN feature maps matrix of shape (200 test image
conditions × 1000 features). In the second step we fitted the weights Wt,c of several
linear regressions that independently predicted each EEG feature’s response (i.e.,
the EEG activity at  each combination of time points  (t)  and channels (c))  to  the
training images by linearly combining the training feature maps of each DNN (Figure
2A). We then multiplied the learned Wt,c with the test DNN feature maps, obtaining
the synthetic test (SynTest) EEG data matrix of shape (200 test image conditions ×
17 EEG channels × 100 EEG time points) (Figure 2B). Following this procedure we
obtained different instances of SynTest data for each participant and DNN.
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Figure  2. Linearizing  encoding  algorithm.  For  ease  of  visualization,  here  and  in  the
following  figures  we  omit  the  EEG  condition  repetitions  dimension.  (A)  Through  the
training image conditions we obtained the training DNN feature maps and the BioTrain
EEG data, and used them to build linearizing encoding models of EEG visual responses.
For each combination of EEG features (time points (t) and channels (c)) we estimated the
weights  Wt,c of a linear regression using the corresponding single-feature BioTrain data
as criterion and the training images DNN feature maps as predictors. (B) To obtain the
SynTest EEG data we extracted the DNN feature maps of the test images, and multiplied
them with the estimated Wt,c.

The BioTest EEG data is well predicted by linearizing encoding models
To evaluate  the  linearizing  encoding models’  predictive  power  we quantified  the
similarity  between  the  SynTest  data  and  the  BioTest  data  through  a  Pearson’s
correlation (Figure 3A). We correlated each SynTest data EEG feature (i.e., each
combination of EEG time points (t) and channels (c)) with the corresponding BioTest
data  feature  (across  the  200  test  image  conditions),  resulting  in  a  correlation
coefficient  matrix of  shape (17 EEG channels  × 100 EEG time points).  We then
averaged  this  matrix  across  the  channels  dimension,  obtaining  a  correlation
coefficient result vector with 100 components, one for each EEG time point.
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Figure  3. Evaluating  the  linearizing  encoding  models’  prediction  accuracy  through  a
correlation analysis. (A) We correlated each combination of SynTest EEG data features
(time points (t) and channels (c)) with the corresponding combination of BioTest EEG
data features, across the 200 test image conditions, and then averaged the correlation
coefficients across channels. (B) Correlation results averaged across participants. The
SynTest data is significantly correlated to the BioTest data from 60ms after stimulus onset
until  the  end  of  the  EEG epoch  (P <  0.05,  one-sample  one-sided  t-test,  Bonferroni-
corrected), with a peak at 110ms. (C) Individual participants’ results. Error margins reflect
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95% confidence intervals. Rows of asterisks indicate significant time points (P  < 0.05,
one-sample  one-sided  t-tests,  Bonferroni-corrected).  In  gray  is  the  area  between the
noise ceiling lower and upper bounds, the black dashed vertical lines indicate onset of
image presentation, and the black dashed horizontal lines indicate the chance level of no
experimental effect.

As  a  complementary  way  to  evaluate  the  linearizing  encoding  models’
predictive  power  we  quantified  the  similarity  between  the  SynTest  data  and  the
BioTest data through decoding (Figure 4A). Decoding is a commonly used method
in computational  neuroscience which exploits similar information present between
the trials of each experimental condition to classify neural data (Haynes & Rees,
2006;  Mur  et  al.,  2009).  If  the  SynTest  data  and the  BioTest  data  have similar
information, a decoding algorithm trained on the BioTest data would generalize its
performance also to the SynTest data. We tested this through pairwise decoding: we
trained  linear  support  vector  machines  (SVMs)  to  perform  binary  classification
between each pair of the 200 BioTest data image conditions, and then tested them
on the corresponding pairs of SynTest data image conditions. We performed this
analysis  independently  for  each  time  point  (t),  resulting  in  a  decoding  accuracy
matrix of shape (19,900 image condition pairs  × 100 EEG time points).  We then
averaged  this  matrix  across  the  image  condition  pairs  dimension,  obtaining  a
decoding accuracy result vector with 100 components, one for each EEG time point.

We observe that  the  correlation  results  averaged across  participants  start
being significant at 60ms after stimulus onset, and remain significantly above chance
until the end of the EEG epoch at 800ms (P < 0.05, one-sample one-sided t-test,
Bonferroni-corrected). Significant correlation peaks occur for all DNNs at 110ms after
stimulus onset, with AlexNet, ResNet-50, CORnet-S and MoCo having correlation
coefficients of, respectively, 0.67, 0.66, 0.67 and 0.66 (P < 0.05, one-sample one-
sided  t-test,  Bonferroni-corrected),  where  the  chance  level  is  0  (Figure  3B).
Similarly,  the  pairwise  decoding  results  averaged  across  participants  start  being
significant at 60ms after stimulus onset, with significant effects present until the end
of  the EEG epoch at 800ms (P <  0.05,  one-sample one-sided t-test,  Bonferroni-
corrected).  Significant  decoding  peaks  occur  for  all  DNNs  at  100-110ms  after
stimulus  onset,  with  AlexNet,  ResNet-50,  CORnet-S and MoCo having  decoding
accuracies of, respectively, 90.37%, 88.57%, 91.06% and 87.45% (P < 0.05, one-
sample  one-sided  t-test,  Bonferroni-corrected),  where  the  chance  level  is  50%
(Figure 4B). All participants yielded qualitatively similar results (Figure 3C, Figure
4C). Taken together, these results show that the linearizing encoding models are
successful  in  predicting  EEG data  which  robustly  and  significantly  resembles  its
biological counterpart. Further, they show that each participant’s neural responses
can be consistently predicted in isolation, thus highlighting the quality of the visual
information contained in our EEG dataset and its potential for the development of
new high-temporal resolution models and theories of the visual brain.
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Figure  4. Evaluating  the  linearizing  encoding  models’  prediction  accuracy  through  a
pairwise decoding analysis.  (A)  At  each time point  (t)  we trained an SVM to classify
between two BioTest EEG data image conditions (using the channels vectors) and tested
it  on  the  two  corresponding  SynTest  EEG data  image  conditions.  We  repeated  this
procedure across all image condition pairs, and then averaged the decoding accuracies
across  pairs.  (B)  Pairwise  decoding  results  averaged  across  participants.  The  linear
classifiers trained on the BioTest data significantly decode the SynTest data from 60ms
after stimulus onset until the end of the EEG epoch (P < 0.05, one-sample one-sided t-
test, Bonferroni-corrected), with peaks at 100-110ms. (C) Individual participants’ results.
Error margins, asterisks, gray area and black dashed lines as in Figure 3.
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The  BioTest  data  is  significantly  identified  in  a  zero-shot  fashion  using
synthesized data of up to 150,200 candidate images
The previous analyses showed that our linearizing encoding models synthesize EEG
data that significantly resembles its biological counterpart. Here we explored whether
we can leverage this high prediction accuracy to build algorithms that identify the
image conditions of the BioTest data in a zero-shot fashion, namely, that identify
arbitrary image conditions without prior training. If possible, this would contribute to
the  goal  of  building  models  capable  of  identifying  potentially  infinite  neural  data
conditions on which they were never trained (Kay et al., 2008; Seeliger et al., 2017;
Horikawa & Kamitani, 2017) (Figure 5A). For the identification we used the SynTest
and the  synthetic Imagenet (SynImagenet) data, where the latter consisted of the
synthesized EEG responses to the 150,000 validation and test images coming from
the ILSVRC-2012 image set (Russakovsky et al., 2015), organized in a data matrix
of shape (150,000 image conditions  ×  17 EEG channels  × 100 EEG time points).
Importantly, those images did not overlap with either the image set for which EEG
data was recorded. The further analysis involved two steps: feature selection and
identification. 

In the feature selection step we retained the 300 EEG channels and time
points best predicted by the encoding models, as narrowing down the EEG data to
these features improved the identification accuracy. In detail,  we synthesized the
EEG  responses  to  the  16,540  training  images,  obtaining  the  synthetic  train
(SynTrain)  data  matrix  of  shape  (16,540  training  image  conditions  × 17  EEG
channels  × 100 EEG time points). We then correlated each BioTrain data feature
(i.e.,  each  combination  of  EEG  channels  and  EEG  time  points)  with  the
corresponding SynTrain data feature (across the 16,540 training image conditions),
and only retained the 300 SynTest, BioTest and SynImagenet data EEG features
corresponding to the 300 highest correlation scores. This resulted in feature vectors
of 300 components for each image condition. 

In the identification step we correlated the feature vectors of each BioTest
data image condition with the feature vectors of all the candidate image conditions,
where  the  candidate  image conditions  corresponded  to  the  SynTest  data  image
conditions  plus  a  varying  amount  of  SynImagenet  data  image  conditions.  We
increased the set sizes of the SynImagenet candidate image conditions from 0 to
150,000 with steps of 1,000 images (for a total of 151 set sizes), and performed the
identification at every set size. At each set size a BioTest data image condition is
considered correctly identified if the correlation coefficient between its feature vector
and the feature vector of the corresponding SynTest data image condition is higher
than the correlation coefficients between its feature vector and the feature vectors of
all other candidate image conditions. We calculated identification accuracies through
the  ratio  of  successfully  decoded  image  conditions  over  all  200  BioTest  image
conditions, obtaining a zero-shot identification result vector with  151 components,
one for  each candidate image set  size.  The results  of  the correct  SynTest  data
image condition falling within the three or ten most correlated image conditions can
be seen in Supplementary Figures 3-4 and Supplementary Tables 1-2.
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Figure 5. Zero-shot identification of the BioTest data using the SynTest data and the
synthesized  EEG  visual  responses  to  the  150,000  ILSVRC-2012  validation  and  test
image conditions (SynImagenet). (A) We correlated the best features of each BioTest
data condition  with  different  image set  sizes of  candidate  synthetic  image conditions
(SynTest  +  SynImagenet  data).  At  each  image set  size,  a  BioTest  data  condition  is
correctly identified if it is mostly correlated to its corresponding SynTest data condition,
among all other synthetic data conditions. (B) Zero-shot identification results averaged
across participants. With a SynImagenet set size of 0 the synthesized data of AlexNet,
ResNet-50, CORnet-S, MoCo significantly identify the BioTest data with accuracies of,
respectively, 75.05%, 75.85%, 81.3%, 70.9%. (P < 0.05, one-sample one-sided t-test,
Bonferroni-corrected). With a SynImagenet set size of 150,000 the synthesized data of
AlexNet,  ResNet-50,  CORnet-S,  MoCo  significantly  identify  the  BioTest  data  with
accuracies of, respectively, 15.5%, 15.55%, 21.15%, 11.55%. (C) Individual participants’
results. Rows of asterisks indicate significant image set sizes (P < 0.05, one-sample one-
sided t-tests, Bonferroni-corrected). Error margins and black dashed lines as in Figure 3.
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The  zero-shot  identification  results  averaged  across  participants  are
significant  for  all  SynImagenet  set  sizes  (P <  0.05,  one-sample one-sided t-test,
Bonferroni-corrected). With a SynImagenet set size of 0 (corresponding to using only
the 200 SynTest data image conditions as candidate image conditions) the BioTest
data image conditions are identified by AlexNet, ResNet-50, CORnet-S and MoCo
with accuracies of, respectively, 75.05%, 75.85%, 81.3%, 70.9%, where the chance
level is equal to 1 / 200 test image conditions = 0.5%. As the SynImagenet set size
increases the identification accuracies monotonically decrease. With a SynImagenet
set size of 150,000 (corresponding to using the 200 SynTest data plus the 150,000
SynImagenet data image conditions as candidate image conditions) the BioTest data
image conditions are identified by AlexNet, ResNet-50, CORnet-S and MoCo with
accuracies  of,  respectively,  15.5%,  15.55%,  21.15%,  11.55%, where  the  chance
level  is  equal  to  1  /  (200 test  image conditions  +  150,000  ILSVRC-2012 image
conditions)  <  10-5%  (Figure  5B).  To  extrapolate  the  identification  accuracies  to
potentially larger candidate image set sizes we fit a power-law function to the results.
We averaged the extrapolations across participants, and found that the identification
accuracy would remain above 10% with a candidate image set size of 914,000 for
AlexNet, 588,000 for ResNet-50, 3,650,000 for CORnet-S and 348,000 for MoCo,
and  above  0.5% (the  original  chance  level)  with  a  candidate  image  set  size  of
2.18E+11  for  AlexNet,  3.43E+09 for  ResNet-50,  1.62E+13  for  CORnet-S  and
1.11E+10 for MoCo (Table 1).  All  participants yielded qualitatively  similar results
(Figures 5C; Table 1). These results demonstrate that our dataset allows building
algorithms  that  reliably  identify  arbitrary  neural  data  conditions,  in  a  zero-shot
fashion, among millions of possible alternatives.

Table 1. Extrapolation of the zero-shot identification accuracy as a function of candidate
image set sizes. The values in the table indicate the candidate image set sizes required
for the identification accuracy to drop below 10% and 0.5%.

The  amount  of  training  image  conditions  and  condition  repetitions  both
contribute to modeling quality
To  understand  which  aspects  of  our  EEG  dataset  contribute  to  its  successful
modeling we examined the linearizing encoding models’  prediction accuracy as a
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function of the amount of trials with which they are trained. The amount of training
trials is determined by two factors: the number of image conditions and the number
of EEG repetitions per each image condition. Both factors may improve the modeling
of neural responses in different ways, as high numbers of image conditions lead to a
richer training set which more comprehensively samples the representational space
underlying vision, and high numbers of condition repetitions increase the signal to
noise ratio (SNR) of the training set.

To  disentangle  the  effect  of  both  factors  we  trained  linearizing  encoding
models using different quartiles of training image conditions (4,135, 8,270, 12,405,
16,540) and condition repetitions (1, 2, 3, 4), and tested their predictions through the
correlation analysis. We performed an ANOVA on the correlation results averaged
over participants, EEG features (all channels; time points between 60-500ms) and
DNN models, and observed a significant effect of both number of image conditions
and condition repetitions, along with a significant interaction of the two factors (P <
0.05,  two-way  repeated  measures  ANOVA)  (Figure  6A).  All  participants  yielded
qualitatively  similar  results  (Supplementary  Figure  5).  This  suggests  that  the
amount of image conditions and condition repetitions both improve the modeling of
neural data.

Figure 6. Linearizing encoding models’ prediction accuracy as a function of training data.
(A) Training linearizing encoding models using different quartiles of image conditions and
condition  repetitions  result  in  a  significant  effect  of  both  factors  (P <  0.05,  two-way
repeated measures ANOVA). (B) Training linearizing encoding models using all image
conditions leads to higher prediction accuracies than training them using all  condition
repetitions  (P <  0.05,  repeated  measures  two-sided  t-test,  Bonferroni-corrected).  The
gray  dashed line  represents  the  noise  ceiling  lower  bound.  The  asterisks  indicate  a
significant difference between all image conditions and all condition repetitions (P < 0.05,
repeated  measures  two-sided  t-test,  Bonferroni-corrected).  Error  margins  and  gray
dashed lines as in Figure 3.

We then asked which of the two factors contributes more to the linearizing
encoding  models’  prediction  accuracy.  For  this  we  compared  model  prediction
accuracy for cases where the number of repetitions or conditions differed, but the
total number of trials was the same. As we had four trial repetitions, we divided the
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total amount of training trials into quartiles (25%, 50%, 75% and 100% of the total
training  trials).  At  each quartile  we trained linearizing  encoding models  using  all
image conditions and the quartile’s percentage of condition repetitions, and tested
their predictions through the correlation analysis. For example, at the first quartile we
trained linearizing encoding models using all  image conditions and one condition
repetition, corresponding to 25% of the total training data. To compare, we repeated
the  same  procedure  while  using  all  condition  repetitions  and  the  quartile’s
percentage  of  image  conditions.  The  correlation  results  averaged  across
participants, EEG features (all channels; time points between 60-500ms) and DNNs
show that using all image conditions (and quartiles of condition repetitions) leads to
higher  prediction  accuracies  than using  all  condition  repetitions  (and quartiles  of
image  conditions)  (P <  0.05,  repeated  measures  two-sided  t-test,  Bonferroni-
corrected)  (Figure  6B).  All  participants  yielded  qualitatively  similar  results
(Supplementary Figure 6).  This indicates that although both factors improve the
modeling of neural data, the amount of image conditions does so here to a larger
extent.

The linearizing encoding models’ predictions generalize across participants
Next we explored whether our linearizing encoding models’ predictions generalize to
new  participants.  We  asked:  Can  we  accurately  synthesize  a  participant’s  EEG
responses  without  using  any  of  their  data  for  the  encoding  models’  training?  If
possible, our dataset could serve as a useful benchmark for the development and
assessment of methods that combine EEG data across participants (Haxby et al.,
2020; Richard et al., 2020; Kwon et al., 2019; Zhang et al., 2021). To verify this we
trained linearizing encoding models on the averaged SynTrain EEG data of all minus
one participants (Figure 7A), and tested their predictions against the BioTest data of
the  left  out  participant  through  the  correlation  and  pairwise  decoding  analyses
(Figure 7B). We repeated this procedure for all participants.
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Figure  7. Evaluating  the  prediction  accuracy  of  linearizing  encoding  models  which
generalize to novel participants, through correlation and pairwise decoding analyses. (A)
We trained linearizing encoding models on the averaged SynTrain EEG data of all minus
one participants.  (B)  We tested the encoding models’  predictions against  the BioTest
data of the left out participant through the correlation and pairwise decoding analyses. (C)
Correlation  results  averaged  across  participants.  The  SynTest  data  is  significantly
correlated to the BioTest data from 60ms after stimulus onset until the end of the EEG
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epoch  (P <  0.05,  one-sample  one-sided  t-test,  Bonferroni-corrected),  with  a  peak  at
130ms. (D) Pairwise decoding results averaged across participants. The linear classifiers
trained  on  the  BioTest  data  significantly  decode  the  SynTest  data  from  60ms  after
stimulus onset until the end of the EEG epoch (P < 0.05, one-sample one-sided t-test,
Bonferroni-corrected),  with a peak at  130ms.  Error  margins,  asterisks,  gray area and
black dashed lines as in Figure 3.

When averaging the Pearson correlation coefficients across participants we
observe that the correlation between the SynTest data and the BioTest data starts
being  significant  at  60ms  after  stimulus  onset,  and  remains  significantly  above
chance until the end of the EEG epoch at 800ms (P < 0.05, one-sample one-sided t-
test, Bonferroni-corrected). Significant correlation peaks occur for all DNNs at 130ms
after  stimulus  onset,  with  AlexNet,  ResNet-50,  CORnet-S  and  MoCo  having
correlation coefficients of, respectively, 0.45, 0.46, 0.46, 0.44 (P < 0.05, one-sample
one-sided t-test,  Bonferroni-corrected),  where the  chance level  is  0  (Figure  7C).
Likewise,  the  decoding  accuracies  averaged  across  participants  start  being
significant at 60ms after stimulus onset, with significant effects present until the end
of  the EEG epoch at 800ms (P <  0.05,  one-sample one-sided t-test,  Bonferroni-
corrected). Significant decoding peaks occur for all DNNs at 130ms after stimulus
onset, with AlexNet, ResNet-50, CORnet-S and MoCo having decoding accuracies
of, respectively, 67.44%, 66.62%, 67.63%, 66.01% (P < 0.05, one-sample one-sided
t-test,  Bonferroni-corrected),  where the chance level  is 50% (Figure 7D).  In both
analyses  all  participants  yielded  qualitatively  similar  results  (Supplementary
Figures  7-8).  This  shows that  our  EEG dataset  is  a  suitable  testing  ground for
methods which generalize and combine EEG data across participants.

The  BioTest  EEG  data  is  successfully  predicted  by  end-to-end  encoding
models based on the AlexNet architecture
So far we predicted the synthetic data through the linearizing encoding framework,
which relied on DNNs pre-trained on an image classification task.  An alternative
encoding approach, named end-to-end encoding (Seeliger et al., 2021; Khosla et al.,
2021; Allen et al., 2021), is based on DNNs trained from scratch to predict the neural
responses to arbitrary images. This direct infusion of brain data during the model’s
learning could lead to DNNs having internal representations that more closely match
the properties of the visual brain (Sinz et al., 2019; Allen et al., 2021). However, with
a few exceptions (Seeliger et al., 2021; Khosla et al., 2021; Allen et al., 2021), the
development of end-to-end encoding models has been so far prohibitive due to the
large amount of data needed to train a DNN in combination with the small size of
existing brain datasets. Thus, in this final analysis we exploited the largeness and
richness of our EEG dataset to train randomly initialized AlexNet architectures to
synthesize the EEG responses to images, independently for each participant. We
started by replacing AlexNet’s 1000-neurons output layer with a 17-neurons layer,
where each neuron corresponded to one of the 17 EEG channels. Then, for each
EEG time point (t)  we trained one such model  to predict  the multi-channel  EEG
responses  to  visual  stimuli  using  the  16,540  training  images  as  inputs  and  the
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corresponding BioTrain data as output targets (Figure 8A). Finally, we deployed the
trained  networks  to  synthesize  the  EEG responses  to  the  200  test  images  and
evaluated  their  prediction  accuracy  through  the  same  correlation  and  pairwise
decoding analyses described above (Figure 8B).

Figure  8. Evaluating  the  end-to-end  encoding  models’  prediction  accuracy  through
correlation and pairwise decoding analyses. (A) At each EEG time point (t) we trained
one encoding model end-to-end to predict the SynTrain data channel responses using
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the corresponding training images as input. (B) We used the trained encoding models to
predict the SynTest data using the test images as input, and evaluated their prediction
accuracies by comparing the SynTest and BioTest data through correlation and pairwise
decoding analyses. (C)  Correlation results averaged across participants.  The SynTest
data is significantly correlated to the BioTest data from 60ms after stimulus onset until
670ms (P <  0.05,  one-sample  one-sided  t-test,  Bonferroni-corrected),  with  a  peak  at
120ms. (D) Pairwise decoding results averaged across participants. The linear classifiers
trained  on  the  BioTest  data  significantly  decode  the  SynTest  data  from  70ms  after
stimulus onset until 760ms (P < 0.05, one-sample one-sided t-test, Bonferroni-corrected),
with peaks at 110ms. Error margins, asterisks, gray area and black dashed lines as in
Figure 3.

We observe that  the  correlation  results  averaged across  participants  start
being significant at 60ms after stimulus onset, with a correlation coefficient peak at
120ms of 0.55, and have significant effects until 670ms (P < 0.05, one-sample one-
sided  t-test,  Bonferroni-corrected)  (Figure  8C).  Similarly,  the  pairwise  decoding
results averaged across participants start being significant at 70ms after stimulus
onset,  with a decoding accuracy peak at 110ms of 87.59%, and have significant
effects  until  760ms (P <  0.05,  one-sample one-sided t-test,  Bonferroni-corrected)
(Figure  8D).  All  participants  yielded  qualitatively  similar  results  (Supplementary
Figures 9-10). This proves that our EEG dataset allows for the successful training of
DNNs in an end-to-end fashion, paving the way for a stronger symbiosis between
brain data and deep learning models benefitting both neuroscientists interested in
building better models of the brain (Seeliger et al., 2021; Khosla et al., 2021; Allen et
al., 2021) and computer scientists interested in creating better performing and more
brain-like  artificial  intelligence algorithms through inductive  biases from biological
intelligence  (Sinz  et  al.,  2019;  Hassabis  et  al.,  2017;  Ullman,  2019;  Toneva  &
Wehbe, 2019; Yang et al., 2022).
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Discussion
Summary
We used a RSVP paradigm (Intraub, 1981; Keysers et al., 2001; Grootswagers et
al., 2019) to collect a large and rich EEG dataset of neural responses to images of
real-world objects on a natural  background, which we release as a tool to foster
research  in  vision  neuroscience  and  computer  vision.  Through  computational
modeling we established the quality of this dataset in five ways. First, we trained
linearizing encoding models (Wu et al., 2006; Kay et al., 2008; Naselaris et al., 2011;
van Gerven, 2017; Kriegeskorte & Douglas, 2019) that successfully synthesized the
EEG responses to arbitrary images. Second, we correctly identified the recorded
EEG data image conditions in a zero-shot fashion (Kay et al., 2008; Seeliger et al.,
2017; Horikawa & Kamitani, 2017), using EEG synthesized responses to hundreds
of  thousands  of  candidate  image  conditions.  Third,  we  show that  both  the  high
number of conditions as well as the trial repetitions of the EEG dataset contribute to
the trained model’s prediction accuracy. Fourth,  we built  encoding models whose
predictions well generalize to novel participants. Fifth, we demonstrate full end-to-
end training (Seeliger et al., 2021; Khosla et al., 2021; Allen et al., 2021) of randomly
initialized DNNs that output M/EEG responses for arbitrary input images.

Size matters
In the last years cognitive neuroscientists have drastically increased the scope of
their recordings from datasets with dozens of stimuli to datasets comprising several
thousands of stimuli per participant (Chang et al., 2019; Naselaris et al., 2021; Allen
et  al.,  2021).  Compared  to  their  predecessors,  these  large  datasets  more
comprehensively  sample  the  visual  space  and  interact  better  with  modern  data-
hungry  machine  learning  algorithms.  In  this  spirit  we  extensively  sampled  10
participants with 82,160 trials spanning 16,740 image conditions, and showed how
this unprecedented size contributes to high modeling performances. We released the
data in both its raw and preprocessed format ready for modeling to allow researchers
of  different  analytical  perspectives  to  use  the  dataset  in  their  preferred  way
immediately.  We  believe  the  largeness  of  this  dataset  holds  great  promise  for
neuroscientists  interested  in  further  improving  theories  and  models  of  the  visual
brain, as well as computer scientists interested in improving machine vision models
through biological vision constraints (Haxby et al., 2020; Richard et al., 2020; Kwon
et al., 2019; Zhang et al., 2021).

Linearizing encoding modeling
We showcased the potential of the dataset for modeling visual responses by building
linearizing encoding algorithms (Wu et al., 2006; Kay et al., 2008; Naselaris et al.,
2011; van Gerven, 2017; Kriegeskorte & Douglas, 2019) that predicted EEG visual
responses  to  arbitrary  images.  Through  correlation  and  decoding  analyses  we
showed that the encoding models synthesized data which significantly resembles its
biological counterpart robustly and consistently across all participants. These results
highlight  the  signal  quality  of  the visual  information  present  in  the  EEG dataset,
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making it a promising candidate for the development of new high-temporal resolution
models and theories of the neural dynamics of vision capable of predicting, decoding
and even explaining visual object recognition.

Zero-shot identification
Decoding  models  in  neuroscience  typically  classify  between  only  a  few  data
conditions,  while  relying  on data  exemplars  from these same conditions  to  train
(Haynes & Rees, 2006;  Mur et  al.,  2009).  As a result,  their  performance fails to
generalize to the unlimited space of different brain states. Here we exploited the
prediction  accuracy  of  the  synthesized  EEG  responses  to  build  zero-shot
identification algorithms that identify potentially infinite neural data image conditions,
without the need of prior training (Kay et al., 2008; Seeliger et al., 2017; Horikawa &
Kamitani,  2017).  Through  this  framework  we  identified  the  BioTest  EEG  image
conditions  between  hundreds  of  thousands  of  candidate  image  conditions.  Even
when the identification algorithm failed to assign the correct image condition to the
biological  EEG responses,  we show that  it  nevertheless selected a  considerable
amount (up to 45%) of the correct image conditions as the first three or ten choices
(Supplementary Figures 3-4).  These results suggest  that our dataset is a good
starting ground for  the future creation of  zero-shot  identification algorithms to  be
deployed not  only  in  research,  but  also  in  cutting-edge brain  computer  interface
(BCI) technology (Abiri et al., 2019; Petit et al., 2021).

Both number of image conditions and condition repetitions determine dataset
quality
Building  linearizing  encoding  algorithms  with  different  amounts  of  training  data
revealed that the encoding models’ prediction accuracies are significantly affected by
both the amount of EEG image conditions (to a higher extent)  and repetitions of
measurements (to a lower extent). Given that the noise ceiling lower bound estimate
is not reached, these findings suggest that the prediction accuracy of the linearizing
encoding models would have benefited from either more training data trials, or from
a training dataset with the same amount of trials but having more image conditions
and  less  repetitions  of  measurements.  Based  on  these  observations,  for  future
dataset collections we recommend prioritizing the amount of stimuli conditions over
the amount of repetitions of measurements.

Inter-participant predictions
Typically, computational models in neuroscience are trained and evaluated on the
data  of  single  participants  (Kay  et  al.,  2008;  Yamins  et  al.,  2014;  Güçlü  &  van
Gerven,  2015;  Seeliger  et  al.,  2017;  Horikawa  &  Kamitani,  2017).  While  this
approach is well motivated by the neural idiosyncrasies of every individual (Charest
et al., 2014), it fails to produce models that leverage the shared information across
multiple  brains.  Here  we  show that  our  encoding  models  well  predict  out-of-set
participants,  indicating  that  our  dataset  is  a  suitable  testing  ground  for  methods
which generalize and combine neural data across participants, as well as for BCI
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technology  that  can  be  readily  used  on  novel  participants  without  the  need  of
calibration (Haxby et al., 2020; Richard et al., 2020; Kwon et al., 2019; Zhang et al.,
2021).

End-to-end encoding
So far limitations in neural dataset sizes led computational neuroscientists to model
brain data mostly using pre-trained DNNs (Cadieu et al., 2014; Yamins et al., 2014;
Güçlü & van Gerven, 2015; Naselaris et al., 2015; Seeliger et al., 2017). Here, we
leveraged the largeness and richness of our dataset to demonstrate, for the first time
to  our  knowledge with  EEG data,  the  feasibility  of  training a randomly initialized
AlexNet architecture to predict the neural responses to arbitrary images in an end-to-
end fashion (Seeliger et al., 2021; Khosla et al., 2021; Allen et al., 2021). The end-to-
end approach opens the doors to training complex computational algorithms directly
with brain data, potentially leading to models which more closely mimic the internal
representation of the visual system (Sinz et al., 2019; Allen et al., 2021). This will in
turn make it  possible for computer scientists to use the neural representations of
biological  systems  as  inductive  biases  to  improve  artificial  systems  under  the
assumption that  increasing the brain-likeness of computer models could increase
their performance in tasks at which humans excel (Sinz et al., 2019; Hassabis et al.,
2017; Ullman, 2019; Toneva & Wehbe, 2019; Yang et al., 2022).

Dataset limitations
A major limitation of our dataset is the backward and forward noise introduced by the
very  short  (200ms)  stimulus  onset  asynchronies  (SOAs)  of  the  RSVP paradigm
(Intraub, 1981; Keysers et al., 2001; Grootswagers et al., 2019). The forward noise
at a given EEG image trial comes from the ongoing neural activity of the previous
trial, whereas the backward noise coming from the following trial starts from around
260ms after image onset, which corresponds to the SOA length plus the amount of
time required for the visual information to travel from the retina to the visual cortex.
Despite these noise sources, we showed that the visual responses are successfully
predicted during the entire EEG epoch. We believe that averaging the EEG image
conditions across several repetitions of measurements reduced the noise, and that
the backward noise was further mitigated given that the neural processing required
to detect  and recognize object  categories can be achieved in  the first  150ms of
vision (Thorpe et al., 1996; Rousselet et al., 2002). A second limitation concerns the
ecological  validity  of  the  dataset.  The  stimuli  images  used  consisted  of  objects
presented  at  foveal  vision  with  natural  backgrounds  that  have  little  clutter.
Furthermore, participants were asked to constantly gaze at a central fixation target.
This does not truthfully represent human vision, in which objects are perceived and
recognized also when at the periphery of the visual field, within cluttered scenes, and
while making eye movements. However, our results pave the way towards studies
aiming to provide large amounts of EEG responses recorded during more natural
viewing conditions.
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Contribution to the THINGS initiative
The visual  brain  is  an  ensemble  of  billions  of  neurons communicating  with  high
spatial and temporal precision. However, neither current neural recording modalities,
nor  single  lab  efforts  can  capture  this  complexity.  This  motivates  the  need  to
integrate  data  across  different  imaging  modalities  and  labs.  To  address  this
challenge, the so-called THINGS initiative promotes using the THINGS database to
collect and share behavioral and neuroscientific datasets for the same set of images
-  also  used  here  -  among  vision  researchers  (https://things-initiative.org/).  We
contribute to the initiative by providing rich high temporal resolution EEG data, that
complements other datasets in both a within- and between-modality fashion. As an
example  of  the  within-modality  fashion,  Grootswagers  and  collaborators  recently
published an EEG dataset of visual responses to images coming from the THINGS
database  (Grootswager  et  al.,  2022).  While  their  dataset  comprises  more
participants  and  image  conditions,  our  dataset  provides  more  repetitions  of
measurements, longer image presentation latencies, and an extensive assessment
of  the  dataset’s  potential  based  on  the  resulting  high  signal-to-noise  ratio.
Researchers  can  choose  between  one  or  the  other  based  on  the  nature,
requirements  and  constraints  of  their  own  experiments.  As  an  example  of  the
between-modality fashion,  our  data can be used to  make bridges from the EEG
temporal  domain  to,  for  example,  the  fMRI  spatial  domain  through  modeling
frameworks such as representational similarity analysis (Kriegeskorte et al., 2008;
Cichy et al., 2014; Cichy et al., 2016; Khaligh-Razavi et al., 2017), thus promoting a
more integrated understanding of the neural basis of visual object recognition.

Comparing the modeling results of the four DNNs evaluated
The size and quality of our dataset make it a good candidate for the comparison of
predictive and explanatory models of the visual brain (Schrimpf et al., 2020; Cichy et
al., 2019). Here, we built encoding models using four DNNs: despite the prediction
accuracies of these DNNs being overall qualitatively similar (Storrs et al., 2021), the
results of our analyses suggest that the EEG data is best predicted by the linearizing
encoding  models  based  on  the  recurrent  CORnet-S architecture  (Kubilius  et  al.,
2019).  This  supports  a growing amount  of  literature which asserts  that  recurrent
computations  are  critical  for  object  recognition  along  the  ventral  stream,  and
therefore  any  model  of  visual  object  processing  must  also  take  recurrency  into
account (Kriegeskorte, 2015; Spoerer et al., 2017; Mohsenzadeh et al., 2018; Kar et
al.,  2019; Kietzmann et al.,  2019b; Kubilius et al.,  2019; Rajaei et al.,  2019; van
Bergen & Kriegeskorte, 2020). However, this interpretation should be taken with a
grain of salt as we compared DNNs differing not only in the hypotheses of visual
processing they embedded (e.g., recurrent vs. pure feedforward visual processing),
but also in potential confounding factors such as architecture and complexity.

The modeling accuracy is not homogeneous across time
As expected, the prediction accuracies of our encoding algorithms did not reach the
noise ceiling level (Supplementary Figures 1-2), indicating that our dataset is well
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suited for  further  model  improvements.  Interestingly,  we found that  the modeling
accuracy is not homogeneous across time: the differences between the prediction
accuracy and the noise ceiling are smaller in the first 100ms after image onset, and
peak at 200-220ms, suggesting that the four DNNs used are more similar to the
brain at earlier stages of visual  processing. This calls for  future improvements in
model building (e.g., by including high-level visual semantics or improving biological
realism of the models) to more closely match the internal representations of the brain
at all time points.

Conclusion
We view our EEG dataset as a valuable tool for computational neuroscientists and
computer scientists. We believe that its largeness, richness and quality will facilitate
steps towards a deeper understanding of the neural mechanisms underlying visual
processing and towards more human-like artificial intelligence models.
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Materials and methods
Participants
Ten healthy adults (mean age 28.5 years, SD=4; 8 female, 2 male) participated, all
having  normal  or  corrected-to-normal  vision.  They  all  provided  informed  written
consent and received monetary reimbursement. Procedures were approved by the
ethical  committee  of  the  Department  of  Education  and  Psychology  at  Freie
Universität Berlin and were in accordance with the Declaration of Helsinki.

Stimuli
All  images came from THINGS (Hebart  et  al.,  2019),  a  database of  12 or  more
images of objects on a natural background for each of 1,854 object concepts, where
each concept (e.g., antelope, strawberry, t-shirt) belongs to one of 27 higher-level
categories (e.g., animal, food, clothing). The building of encoding models involves
two  stages:  model  training  and  model  evaluation.  Since  each  of  these  stages
requires an independent data partition, we pseudo-randomly divided the 1,854 object
concepts  into  non-overlapping  1,654  training  and  200  test  concepts  under  the
constraint that the same proportion of the 27 higher-level categories had to be kept
in both partitions. We then selected ten images for each training partition concept
and one image for each test partition concept, resulting in a training image partition
of 16,540 image conditions (1,654 training object concepts × 10 images per concept
=  16,540  training  image  conditions)  and  a  test  image  partition  of  200  image
conditions  (200  test  object  concepts  × 1  image  per  concept  =  200  test  image
conditions). We used the training and test data partitions for the encoding model
training and testing, respectively. The experiment had an orthogonal target detection
task (see “experimental paradigm” section below), and as task-relevant target stimuli
we used 10 different images of the “Toy Story” character Buzz Lightyear. All images
were  of  square  size.  We reshaped them to  500  × 500 pixels  for  the  EEG data
collection paradigm. For the modeling with DNNs we reshaped the images to 224 ×
224 pixels, and normalized them.

Experimental Paradigm
The experiment consisted in a RSVP paradigm (Intraub, 1981; Keysers et al., 2001;
Grootswagers  et  al.,  2019)  with  an  orthogonal  target  detection  task  to  ensure
participants paid attention to the visual stimuli.  All  10 participants completed four
equivalent experimental sessions, resulting in 10 datasets of 16,540 training images
conditions repeated 4 times and 200 test image conditions repeated 80 times, for a
total of (16,540 training image conditions × 4 training image repetitions) + (200 test
image conditions × 80 test image repetitions) = 82,160 image trials per dataset.

One session comprised 19 runs, all lasting around 5m. In each of the first 4
runs we showed participants the 200 test image conditions through 51 rapid serial
sequences of 20 images, for a total of 4 test runs  × 51 sequences per run  × 20
images per  sequence = 4,080 image trials.  In  each of  the following 15 runs we
showed 8,270 training image conditions (half of all the training image conditions, as
different halves were shown on different sessions) through 56 rapid serial sequences
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of 20 images, for a total of 15 training runs × 56 sequences per run × 20 images per
sequence = 16,800 image trials.

Every rapid serial sequence started with 750ms of blank screen, then each of
the 20 images was presented centrally with a visual angle of 7 degrees for 100ms
and a SOA of 200ms, and it ended with another 750ms of blank screen. After every
rapid sequence there were up to 2s during which we instructed participants to first
blink (or make any other movement) and then report, with a keypress, whether the
target  image  of  Buzz  Lightyear  appeared  in  the  sequence.  The  images  were
presented  in  a  pseudo-randomized  order,  and  a  target  image  appeared  in  6
sequences per  run.  A central  bull’s  eye fixation  target  (Thaler  et  al.,  2013)  was
present on the screen throughout the entire experiment, and we asked participants
to constantly gaze at it. We controlled stimulus presentation using the Psychtoolbox
(Brainard, 1997), and recorded EEG data during the experimental sessions.

EEG recording and preprocessing
We recorded the EEG data using a 64-channel EASYCAP with electrodes arranged
in  accordance  with  the  standard  10-10  system  (Nuwer  et  al.,  2998),  and  a
Brainvision  actiCHamp  amplifier.  We  recorded  the  data  at  a  sampling  rate  of
1000Hz,  while  performing  online  filtering  (between  0.1Hz  and  100Hz)  and
referencing (to  the  Fz electrode).  We performed offline preprocessing  in  Python,
using the MNE package (Gramfort et al., 2013). We epoched the continuous EEG
data into trials ranging from 200ms before stimulus onset to 800ms after stimulus
onset, and applied baseline correction by subtracting the mean of the pre-stimulus
interval for each trial and channel separately. We then down-sampled the epoched
data to 100Hz, and we selected 17 channels overlying occipital and parietal cortex
for further analysis (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2,
P4, P6, P8). All  trials containing target stimuli were not analyzed further, and we
randomly selected and retained 4 measurement repetitions for each training image
condition and 80 measurement repetitions for each test image condition. Next, we
applied multivariate noise normalization (Guggenmos et al., 2018) independently to
the data of each recording session. For each participant, the preprocessing resulted
in the EEG biological training (BioTrain) data matrix of shape (16,540 training image
conditions × 4 condition repetitions × 17 EEG channels × 100 EEG time points) and
biological  test  (BioTest)  data  matrix  of  shape  (200  test  image  conditions  × 80
condition repetitions  × 17 EEG channels  × 100 EEG time points).  We used the
BioTrain  and  BioTest  EEG  data  for  the  encoding  models  training  and  testing,
respectively.

DNN models used
We built linearizing encoding models (Wu et al., 2006; Kay et al., 2008; Naselaris et
al.,  2011;  van  Gerven,  2017;  Kriegeskorte  &  Douglas,  2019)  of  EEG  visual
responses  using  four  different  DNNs:  AlexNet  (Krizhevsky,  2014),  a  supervised
feedforward neural network of 5 convolutional layers followed by 3 fully-connected
layers  that  won  the  Imagenet  large-scale  visual  recognition  challenge  in  2012;
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ResNet-50 (He et al, 2016), a supervised feedforward 50 layer neural network with
shortcut connections between layers at different depths; CORnet-S (Kubilius et al.,
2019), a supervised deep recurrent neural network of four convolutional layers and
one  fully-connected  layer;  MoCo  (Chen  et  al.,  2020),  a  feedforward  ResNet-50
architecture trained in a self-supervised fashion. All of them had been pre-trained on
object categorization on the ILSVRC-2012 training image partition (Russakovsky et
al., 2015).

Linearizing encoding models of EEG visual responses
The first step in building linearizing encoding models is to use DNNs to non-linearly
transform the image input space onto a feature space. A DNNs feature space is
given by its feature maps, layerwise representations (non-linear transformations) of
the input images. To get the training and test feature maps we fed the training and
test  images  separately  to  each  DNN  and  appended  the  vectorized  image
representations of its layers onto each other. We extracted AlexNet’s feature maps
from layers maxpool1, maxpool2, ReLU3, ReLU4, maxpool5, ReLU6 , ReLU7, and
fc8; ResNet-50’s and MoCo’s feature maps from the last layer of each of their four
blocks, and from the decoder layer; CORnet-S’ feature maps from the last layers of
areas V1,  V2 (at  both time points),  V4 (at  all  four  time points),  IT (at  both time
points),  and from the decoder layer. We then standardized the appended feature
maps of the training and test data to zero mean and unit variance for each feature
across the sample (images) dimension, using the mean and standard deviation of
the training feature maps. Finally, we used the Scikit-learn (Pedregosa et al., 2011)
implementation of non-linear principal component analysis (computed on the training
feature maps using a polynomial kernel of degree 4) to reduce the feature maps of
both the training and test images to 1,000 components. For each DNN model, this
resulted  in  the  training  feature  maps  matrix  of  shape  (16,540  training  image
conditions × 1,000 features) and test feature maps matrix of shape (200 test image
conditions × 1,000 features).

The second step in building linearizing encoding models is to linearly map the
DNNs’  feature space onto the EEG neural  space,  effectively  predicting the EEG
responses  to  images.  We performed this  linear  mapping independently  for  each
participant, DNN model and EEG feature (i.e., for each of the 17 EEG channels (c) ×
100 EEG time points (t) = 1,700 EEG features). We fitted the weights Wt,c of a linear
regression  using  the  DNNs’  training  feature  maps  as  the  predictors  and  the
corresponding BioTrain data (averaged across the image conditions repetitions) as
the  criterion:  during  training  the  regression  weights  learned  the  existing  linear
relationship  between  the  DNN  feature  maps  of  a  given  image  and  the  EEG
responses  of  that  same  image.  No  regularization  techniques  were  used.  We
multiplied Wt,c with the DNNs’ test feature maps. For each participant and DNN, this
resulted in the  synthetic test  (SynTest) EEG data matrix of shape (200 test image
conditions × 17 EEG channels × 100 EEG time points).
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Correlation
We used a Pearson correlation to assess how similar the SynTest EEG data of each
participant  and  DNN is  to  the  corresponding  BioTest  data,  thus  quantifying  the
encoding models’ predicted power. We started the analysis by averaging the BioTest
data  across  40  image  conditions  repetitions  (see  “noise  ceiling”  section  below),
resulting in a BioTest data matrix equivalent in shape to the SynTest data matrix
(200 test image conditions  × 17 EEG channels  × 100 EEG time points). Next, we
implemented a nested loop over the EEG channels and time points. At each loop
iteration we indexed the 200-dimensional BioTest data vector containing the 200 test
image  conditions  of  the  EEG  channel  (c)  and  time  point  (t)  in  question,  and
correlated  it  with  the  corresponding  200-dimensional  SynTest  data  vector.  This
procedure  yielded  a  Pearson  correlation  coefficient  matrix  of  shape  (17  EEG
channels  × 100 EEG time points).  Finally,  we averaged the  Pearson correlation
coefficient matrix over the EEG channels, obtaining a correlation results vector of
length (100 EEG time points) for each participant and DNN.

Pairwise decoding
The rationale of this analysis was to see if a classifier trained on the BioTest data is
capable  of  generalizing  its  performance  to  the  SynTest  data.  This  is  a
complementary way (to the correlation analysis) to assess the similarity between the
SynTest data and the BioTest data, hence the encoding models’ predictive power.
We started the analysis by averaging 40 BioTest data image conditions repetitions
(see “noise ceiling” section below) into 10 pseudo-trials of 4 repeats each, yielding a
matrix of shape (200 test image conditions × 10 image condition pseudo-trials × 17
EEG channels × 100 EEG time points). Next, we used the pseudo-trials for training
linear SVMs to perform binary classification between each pair of the 200 BioTest
data image conditions (for a total of 19,900 image condition pairs) using their EEG
channels vectors (of 17 components). We then tested the trained classifiers on the
corresponding pairs of SynTest data image conditions. We performed the pairwise
decoding analysis independently for each EEG time point (t),  which resulted in a
matrix of decoding accuracy scores of shape (19,900 image condition pairs  × 100
EEG time points). We then averaged the decoding accuracy scores matrix across
the image condition pairs, obtaining a pairwise decoding results vector of length (100
EEG time points) for each participant and DNN.

Zero-shot identification
In this analysis we exploited the linearizing encoding models’  predictive power to
identify the BioTest data image conditions in a zero-shot fashion, that its, to identify
arbitrary image conditions without prior training (Kay et al.,  2008; Seeliger et al.,
2017; Horikawa & Kamitani, 2017). We identified each BioTest data image condition
using the SynTest data and an additional synthesized EEG dataset of up to 150,000
candidate  image  conditions.  These  150,000  image  conditions  came  from  the
ILSVRC-2012  (Russakovsky  et  al.,  2015)  validation  (50,000)  plus  test  (100,000)
sets. We synthesized them into their corresponding EEG responses following the
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same procedure described above, resulting in the synthetic Imagenet (SynImagenet)
data matrix of shape (150,000 image conditions × 17 EEG channels × 100 EEG time
points). The zero-shot  identification analysis involved two steps: feature selection
and identification.

In the feature selection step we used the training data to pick only the most
relevant EEG features (out of all 17 EEG channels × 100 EEG time points = 1,700
EEG features). We synthesized the EEG responses to the 16,540 training images,
obtaining the synthetic train (SynTrain) data matrix of shape (16,540 training image
conditions  × 17 EEG channels  × 100 EEG time points). Next, we correlated each
SynTrain data feature (across the 16,540 training image conditions, with a Pearson
correlation),  with  the  corresponding  BioTrain  data  feature  (averaged  across  the
image conditions repetitions). We then selected only the 300 BioTest data, SynTest
data  and  SynImagenet  data  EEG  features  corresponding  to  the  300  highest
correlation scores, thus obtaining a BioTest data matrix of shape (200 test image
conditions × 80 condition repetitions × 300 EEG features), a SynTest data matrix of
shape (200 test image conditions  × 300 EEG features), and a SynImagenet data
matrix of shape (150,000 image conditions × 300 EEG features).

In the identification step we started by averaging the BioTest data across all
the 80 image conditions repetitions: this yielded feature vectors of 300 components
for  each  of  the  200  image  conditions.  Next,  we  correlated  (through  a  Pearson
correlation) the feature vectors of each BioTest data image condition with the feature
vectors of  all  the candidate image conditions: the SynTest data image conditions
plus a varying amount of SynImagenet data image conditions. We increased the set
sizes of the SynImagenet candidate image conditions from 0 to 150,000 with steps of
1,000 images (for a total of 151 set sizes), where 0 corresponded to using only the
SynTest data candidate image conditions, and performed the zero-shot identification
at every set size. At each SynImagenet set size a BioTest data image condition is
considered correctly identified if the correlation coefficient between its channel vector
and the channel vector of the corresponding SynTest data image condition is higher
than the correlation coefficients between its channel vector and the channel vectors
of all other candidate SynTest data and SynImagenet data image conditions. Thus,
we calculated the zero-shot identification accuracies through the ratio of correctly
classified images over all 200 BioTest images, obtaining a zero-shot identification
results  vector  of  length  (151  candidate  image  set  sizes).  We  iterated  the
identification step 100 times, while always randomly selecting different SynImagenet
data image conditions at each set size, and then averaged the results across the 100
iterations.

To extrapolate the drop in identification accuracy with larger candidate image
set sizes we fit the power-law function to the results of each participant. The power
law function is defined as:

f (x)=a xb

where x is the image set size, a and b are constants learned during function fitting,
and f (x) is the predicted zero-shot identification accuracy. We fit the function using
the 100 SynImagenet set sizes ranging from 50,200 to 150,200 images (along with
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their  corresponding identification accuracies),  and then used it  to  extrapolate the
image set size required for the identification accuracy to drop below 10% and 0.5%.

End-to-end encoding models of EEG visual responses
We based our  end-to-end encoding models (Seeliger et  al.,  2021;  Khosla et  al.,
2021; Allen et al., 2021) on the AlexNet architecture which, once trained, predicted
the EEG responses to the test images. To match AlexNet’s output with the channel
responses of our EEG data, we replaced AlexNet’s 1000-neurons output layer with a
17-neurons layer,  where each neuron represented one of  the 17 EEG channels.
Next, we randomly initialized independent AlexNet instances for each participant and
EEG time point (t). We used Pytorch (Paszke et al., 2019) to train the AlexNets on a
regression  task:  given  the  input  training  images  and  the  corresponding  target
BioTrain  EEG  data  channel  activity  (averaged  across  the  image  condition
repetitions), the models had to optimize their weights so to minimize the summed
squared  error  between  their  predictions  and  the  BioTrain  data.  We  trained  the
models using batch sizes of 256 images and an Adam optimizer with a learning rate
of 0.0001, a weight decay term of 0.001, and the default value for the remaining
parameters.  We  implemented  a  cross-validation  loop  over  the  200  test  image
conditions to identify the optimal amount of training epochs for the synthesis of each
image’s EEG responses. At every loop iteration we selected the image condition of
interest, synthesized the EEG responses to the remaining 199 test images for each
of 30 training epochs, and correlated the synthetic data with the corresponding 199
biological test EEG data conditions, resulting in one correlation score per epoch. We
then synthesized the EEG responses to the image condition of interest using the
model  weights  of  the  epoch  leading  to  the  highest  correlation  score.  For  each
participant,  this  resulted  in  the  SynTest  data  matrix  of  shape  (200  test  image
conditions × 17 EEG channels × 100 EEG time points).

Noise ceiling calculation
We calculated the noise ceilings of the correlation and pairwise decoding analyses to
estimate the theoretical maximum results given the level of noise in the BioTest data.
If  the  results  of  the  SynTest  data  reach  this  theoretical  maximum the  encoding
models  are  successful  in  explaining  all  the  BioTest  data  variance which  can be
explained.  If  not,  further  model  improvements  could  lead  to  more  accurate
predictions of neural data.

For the noise ceiling estimation we randomly divided the BioTest data into two
non-overlapping partitions of 40 image condition repetitions each,  where the first
partition corresponded to the 40 repeats of BioTest data image conditions used in
the correlation and pairwise decoding analyses described above. We then performed
the two analyses while substituting the SynTest data with the second BioTest data
partition (averaged across image condition repetitions). This resulted in the noise
ceiling  lower  bound  estimates.  To  calculate  the  upper  bound  estimates  we
substituted the SynTest data with the average of the BioTest data over all 80 image
condition repetitions and reiterated the two analyses. We assume that the true noise
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ceiling is somewhere in between the lower and the upper bound estimates. To avoid
the results being biased by one specific configuration of the BioTest data repeats we
iterated the  correlation  and  pairwise  decoding  analyses  100 times,  while  always
selecting different repeats for the two BioTest data partitions, and then averaged the
results across the 100 iterations.

Statistical testing
To assess the statistical significance of the correlation, pairwise decoding and zero-
shot identification analyses we tested all results against chance using one-sample
one-sided t-tests.  Here,  the rationale was to reject  the null  hypothesis H0 of the
analyses results being at chance level with a confidence of 95% or higher (i.e., with a
P-value of P < 0.05), thus supporting the experimental hypothesis H1 of the results
being significantly higher than chance. The chance level differed across analyses: 0
in the correlation; 50% in the pairwise decoding; (1 / (200 test image conditions + N
ILSVRC-2012 image conditions)) in the zero-shot identification (where N varied from
0 to 150,000). When analyzing the linearizing encoding models’ prediction accuracy
using  different  amounts  of  training  data  we used a  two-way repeated measures
ANOVA to reject the null hypothesis H0 of no significant effects of number of image
conditions and/or condition repetitions on the prediction accuracy, and a repeated
measures  two-sided  t-test  to  reject  the  null  hypothesis  H0  of  no  significant
differences  between  the  effects  of  training  image  conditions  and  condition
repetitions.

We controlled familywise error  rate by applying a conservative Bonferroni-
correction to the resulting P-values to correct for the number of EEG time points (N =
100) in the correlation and pairwise decoding analyses, for the amount of training
data quartiles (N = 4) in the analysis of the linearizing encoding models’ prediction
accuracy as a function of training image conditions and condition repetitions, and for
the number of candidate images set sizes (N = 151) in the zero-shot identification
analysis.

To  calculate  the  confidence intervals  of  each statistic,  we  created  10,000
bootstrapped samples by sampling the participant-specific results with replacement.
This  yielded  empirical  distributions  of  the  results,  from  which  we  took  the  95%
confidence intervals.
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