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Abstract 

Viewpoint effects on object recognition interact with object-scene consistency effects. While 

recognition of objects seen from “accidental” viewpoints (e.g., a cup from below) is typically 

impeded compared to processing of objects seen from canonical viewpoints (e.g., the string-

side of a guitar), this effect is reduced by meaningful scene context information. In the present 

study we investigated if these findings established by using photographic images, generalise to 

3D models of objects. Using 3D models further allowed us to probe a broad range of viewpoints 

and empirically establish accidental and canonical viewpoints. In Experiment 1, we presented 

3D models of objects from six different viewpoints (0°, 60°, 120°, 180° 240°, 300°) in colour 

(1a) and grayscaled (1b) in a sequential matching task. Viewpoint had a significant effect on 

accuracy and response times. Based on the performance in Experiments 1a and 1b, we 

determined canonical (0°-rotation) and non-canonical (120°-rotation) viewpoints for the 

stimuli. In Experiment 2, participants again performed a sequential matching task, however 

now the objects were paired with scene backgrounds which could be either consistent (e.g., a 

cup in the kitchen) or inconsistent (e.g., a guitar in the bathroom) to the object. Viewpoint 

interacted significantly with scene consistency in that object recognition was less affected by 

viewpoint when consistent scene information was provided, compared to inconsistent 

information. Our results show that viewpoint-dependence and scene context effects generalize 

to depth rotated 3D objects. This supports the important role object-scene processing plays for 

object constancy.  
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Introduction 1 

Object recognition happens fast, automatic, and in most cases seems effortless to us. Since our 2 

environment is highly dynamic, especially when interacting with it, one and the same object 3 

will produce a range of different images on the retina. In fact, it is very unlikely that an object 4 

would produce the same retinal image twice due to changes in viewpoint, lighting, reflections, 5 

or viewing distance. Still, our visual system is able to flexibly transform this variable visual 6 

input in a way that object identity can successfully be read out from the resulting abstract 7 

representations in higher areas of visual cortex (see DiCarlo & Cox, 2007). 8 

Whether object recognition is viewpoint-dependent (recognition performance is 9 

sensitive to changes in viewpoints as indicated by accuracy and response-time (RT) data) or 10 

viewpoint-invariant (recognition performance is largely unaffected by changes in viewpoint) 11 

has been a debated topic (Biederman & Gerhardstein, 1993; Bülthoff & Edelman, 1992; 12 

Burgund & Marsolek, 2000; Charles Leek & Johnston, 2006; Edelman, 1995; Graf, 2006; 13 

Hayward, 2003; Hayward & Tarr, 1997; Jolicoeur, 1990; Leek et al., 2007; Lowe, 1987; Marr 14 

et al., 1978; Ratan Murty & Arun, 2015; Stankiewicz, 2002; Tarr & Bülthoff, 1995; Tarr & 15 

Pinker, 1989; Wilson & Farah, 2003). Since the early debates, there has been overwhelming 16 

consensus that object recognition is neither solely viewpoint-dependent nor solely viewpoint-17 

invariant and that evidence for both can be observed depending on experimental task and 18 

stimuli (Foster & Gilson, 2002; Hamm & McMullen, 1998; Jolicoeur, 1990; Leek et al., 2007; 19 

Ratan Murty & Arun, 2015; Sastyin et al., 2015; Stankiewicz, 2002; Vanrie et al., 2002).  20 

Past research has made great advances towards understanding the mechanisms that 21 

underly invariant object recognition, when objects are presented in isolation (i.e., DiCarlo & 22 

Cox, 2007). More recently, however, researchers have started to investigate the viewpoint 23 

problem in the context of object-scene processing. Object recognition rarely occurs in isolation 24 

where the only available information are the objects’ features. In our everyday lives, we 25 
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encounter objects within certain contexts, which provides us with a pool of complex visual and 26 

multimodal information that is integrated during object recognition. Past research has shown 27 

that context facilitates object recognition (Biederman et al., 1982; Oliva & Torralba, 2007; for 28 

a recent review see Lauer et al., 2021). Evidence from behavioral as well as neurophysiological 29 

studies (e.g., Brandman & Peelen, 2017) suggest an interactive processing of objects and 30 

scenes. For instance, objects placed in semantically consistent contexts are recognized faster 31 

and more accurately, often referred to as the scene-consistency effect (Davenport & Potter, 32 

2004; Palmer, 1975). Accordingly, models of object recognition have been updated to 33 

incorporate the integration of contextual information (Bar, 2004). Further, frameworks 34 

incorporating object-scene and object-object relations (e.g., the so-called scene-grammar) 35 

describe a set of internalized rules based on regularities found in real-world scenes that 36 

facilitate scene and object perception and guide our attention during different visual cognitive 37 

tasks (Draschkow & Võ, 2017; Josephs et al., 2016; Võ, 2021; Võ et al., 2019; Võ & 38 

Henderson, 2009; Võ & Wolfe, 2013a, 2013b).  39 

Sastyin and clleagues (2015) conducted a series of experiments investigating the 40 

interaction between viewpoint and scene-consistency on object and scene recognition. They 41 

used photographic images of objects shown from canonical and accidental viewpoints and 42 

paired them with consistent or inconsistent scenes. They found a significant interaction 43 

between viewpoint and consistency where the viewpoint effect was weaker when consistent 44 

scene information was provided. From this they concluded that object recognition relied more 45 

on context information if the object was presented from an accidental viewpoint. 46 

Here, in order to increase the external validity of these findings (Draschkow, 2022), 47 

we aimed to generalize the insights from 2D photographic images to 3D models of objects 48 

(Biederman & Gerhardstein, 1993; Gauthier et al., 2002; Logothetis et al., 1994; Poggio & 49 

Edelman, 1990; Zisserman et al., 1995). Recent work using 3D immersive environments has 50 
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highlighted the importance of studying vision under more naturalistic constraints in order to 51 

investigate cognitive processes in the context of natural behavior (Draschkow et al., 2021; 52 

Helbing et al., 2020, 2022; Kristjánsson & Draschkow, 2021). An additional benefit of using 53 

3D models is that we could probe a broad range of viewpoints and empirically establish 54 

accidental and canonical viewpoints, allowing for a broader representation of the viewpoints 55 

we encounter in our natural environment.  56 

In the present study, we conducted three behavioral experiments. In our first two 57 

experiments, (Experiment 1a and 1b) we presented 3D models of real-world objects from six 58 

different angles (0°, 60°, 180°, 120°, 240°, 300°) rotated around the pitch axis in a word-picture 59 

verification task. Because rotating the objects around the pitch axis results in highly atypical 60 

viewpoints, we expected to find viewpoint-dependent recognition indicated by lower accuracy 61 

and slower RTs. In Experiment 1b, we wanted to replicate Experiment 1a with grayscale 62 

versions of the images, expecting similar effects of viewpoint as for Experiment 1a (Hayward 63 

& Williams, 2000). Experiments 1a and 1b also served to identify viewpoints which produced 64 

highest (canonical) and lowest (non-canonical) recognition performance which we then used 65 

in Experiment 2. 66 

In Experiment 2, we paired 3D objects presented in canonical (0° rotation) and non-67 

canonical (120° rotation) viewpoints with semantically consistent and inconsistent scenes. Our 68 

aim was to test if viewpoint-dependence and object-scene processing effects (Sastyin et al., 69 

2015) generalize to depth rotated 3D models of objects.  70 

General Method 71 

Participants 72 

 Participants were recruited at Goethe-University Frankfurt am Main. The sample 73 

consisted of 12 participants who completed Experiment 1a (6 women, M = 23.92, range = 19–74 

29), 12 different participants who completed Experiment 1b (8 women, M = 19, range = 18–75 
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22), and another set of 32 participants who completed Experiment 2 (25 women, M = 24.28, 76 

range = 18–51). The sample size of Experiment 2 was a priori chosen to be higher compared 77 

to previous studies which found reliable effects across multiple experiments with 20 78 

participants (e.g., Sastyin et al., 2015). In Experiment 1a, all except for six participants were 79 

psychology students that were compensated with course credits, while the remaining 80 

participants volunteered for the experiment without any compensation. All had normal or 81 

corrected-to-normal vision, were native German speakers, and were unfamiliar with the 82 

stimulus materials. Written informed consent was obtained before participation, data collection 83 

and analysis were carried out according to guidelines approved by the Human Research Ethics 84 

Committee of the Goethe University Frankfurt. 85 

Stimulus Material 86 

 For Experiment 1a and Experiment 1b, we collected 100 3D models of objects from a 87 

broad range of categories such as furniture, foods, vehicles, plants, and electrical devices. 88 

Eighty-two of the 3D models were purchased from CG Axis Complete packages I, II, III, and 89 

V, 18 additional models were obtained free of charge from sources like TurboSquid and 90 

free3D. Each model was rotated around its pitch axis by 0°, 60°, 120°, 180°, 240°, and 300° 91 

degrees and sized to fit a 60cm x 60cm x 60cm box using the free 3D animation software 92 

Blender. A snapshot from each angle was systematically recorded in front of a gray background 93 

using the virtual reality software Vizward5 to create our final stimulus set of 600 images. 94 

Additionally, we created grey-scaled versions of these images for Experiment 1b using the 95 

GrayscaleEffect function in Vizard5  96 

(https://docs.worldviz.com/vizard/latest/postprocess_color.htm).  97 

For Experiment 2, we used the same 3D models as in Experiment 1 adding an additional 98 

56 models collected from the CGAxis packages, resulting in a total of 156 models. Instead of 99 

creating snapshots of all six angles, we chose the two viewpoints that had previously produced 100 
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the highest (canonical viewpoint, 0°) and lowest (non-canonical viewpoint, 120°) recognition 101 

performance averaged over Experiment 1a and Experiment 1b. We gray-scaled the images 102 

using the method described above.  103 

Additionally, we collected 312 photographic images of scenes, one consistent and one 104 

inconsistent scene for each object. We defined a consistent scene as one in which we would 105 

expect the object to appear naturally. In both cases, the target object was not present in the 106 

scene. Most of the photographs were obtained from the SCEGRAM database (Öhlschläger & 107 

Võ, 2017) as well as from Google images. 108 

Procedure  109 

To investigate the speed and accuracy of object recognition, while keeping the 110 

procedure comparable with previous studies, a word-picture verification task was employed 111 

for all experiments (Figure 1). Participants were instructed on screen as well as through 112 

standardized verbal instructions to decide as quickly and accurately as possible whether the 113 

object on screen matched the basic level category label presented to them at the beginning of 114 

the trial using a corresponding “match” or “mismatch” key. Participants were not made aware 115 

of the different viewpoint conditions beforehand. Each experiment consisted of three practice 116 

trials during which the instructor stayed in the room with the participant. More detailed 117 

procedure and trial sequences will be described in the individual Procedure sections of each 118 

experiment. Experiments 1a and 1b lasted approximately 30 minutes, Experiment 2 lasted 119 

approx. 12 minutes. 120 
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Figure 1. Trial procedures for the matching task in Experiment 1a and 1b (A) and Experiment 2 (B). The object was presented 121 
in colour in Experiment 1a and greyscaled in Experiment 1b. Note that the depicted labels are in English for visualization 122 
purpose. Feedback was only provided in case of incorrect responses. 123 

 124 

Design 125 

 Experiments 1a and 1b consisted of six blocks with 100 trials each. In each block, the 126 

object was presented from a different angle (0°, 60°, 120°, 180°, 240°, 300°) chosen randomly 127 

and counterbalanced between participants. The order of objects within each block was 128 

randomized. Each object appeared three times in the match condition (object image matched 129 

basic level category label) and three times in the mismatch condition (object image did not 130 

match basic level category label), randomized between blocks.  131 

In the mismatch condition, the basic level category label stemmed from a different 132 

superordinate category than the object image (e.g., the label “chair” as part of the superordinate 133 

category “furniture” was paired with an image of a “car” as part of the superordinate category 134 

“vehicle”).  135 

Because there was no effect of viewpoint in the mismatch condition in Experiment 1a 136 

and 1b, most trials in Experiment 2 were match trials (N = 120) with 23% mismatch trials (N 137 

= 36) that were later excluded from analysis. In Experiment 2, each object was presented to 138 
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each participant once, and we counterbalanced consistency (consistent vs. inconsistent) and 139 

viewpoint (canonical vs. non-canonical) between participants. 140 

Data Analysis 141 

In Experiments 1a and 1b, we were interested in the effects of viewpoint (how far the 142 

object was rotated away from its canonical 0° angle) and match (whether the object matched 143 

the basic level category label as part of the experimental design) on reaction times (time 144 

between the onset of the object image and keypress response) and accuracy. In Experiment 2, 145 

we were interested in the interaction between viewpoint (canonical versus non-canonical 146 

viewpoint), and scene consistency (consistent scene versus inconsistent scene) on reaction 147 

times and accuracy. 148 

Raw data was pre-processed and analysed using R (R Core Team, 2021). Objects that 149 

produced accuracy ratings that deviated more than 2.5 SD from the mean (computed for each 150 

condition separately) were excluded from analysis. Based on this, we excluded four objects in 151 

Experiment 1a, one in Experiment 1b, and two in Experiment 2. We based our reaction time 152 

analysis on correctly matched trials only (percent trials removed: Experiment 1a = 4.45%, 153 

Experiment 1b = 10.16%, Experiment 2 = 8.55%). 154 

 In our data analysis, we employed (generalized) linear mixed-effects models 155 

((G)LMMs) using the lme4 package (Bates et al., 2015). We chose this approach because of 156 

its potential advantages over analysis of variance (ANOVA) as it allows us to simultaneously 157 

estimate by-participant and by-stimulus variance (Baayen et al., 2008; Bates et al., 2014; Kliegl 158 

et al., 2011). The random effects structure of each model was determined using a drop-one 159 

procedure starting with the full model including by-participant and by-stimulus varying 160 

intercepts and slopes for the main effects in our design. We then subsequently removed random 161 

slopes that did not contribute significantly to the goodness of fit as determined by likelihood 162 

ratio tests. This allowed us to avoid overparameterization and produce converging models that 163 
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are supported by the data. Details about the individual analysis and models are described in the 164 

Data Analyses sections of each experiment. For each GLMM we report β regression 165 

coefficients together with the z statistic and apply a two-tailed 5% error criterion for 166 

significance testing. P-values for the binary accuracy variable are based on asymptotic Wald 167 

tests. Additionally, reaction times were transformed following the Box-Cox procedure (Box & 168 

Cox, 1964) to correct for deviation from normality as to better meet LMM assumptions (see 169 

individual Data Analysis sections for further details). For the LMMs regression coefficients 170 

are reported with the t-statistic and p-values were calculated with the lmerTest package 171 

(Kuznetsova et al., 2017). We defined sum contrasts for match (match vs. mismatch), and 172 

consistency (consistent vs. inconsistent) where slope coefficients represent differences between 173 

factor levels and the intercept is equal to the grand mean. 174 

We used the ggplot2 package (Wickham, 2016) for graphics and emmeans (Lenth, 175 

2022) for post-hoc comparisons. Data and code are openly available at 176 

https://github.com/aylinsgl/2022-Viewpoint_and_Context. 177 

Apparatus  178 

All experimental sessions were carried out in the same six experimental cabins of the 179 

department of psychology at Goethe-University Frankfurt am Main, containing the same 180 

experimental set up (computers running OS Windows 10). Stimulus presentation, response-181 

times (RT) and accuracy were systematically controlled and recorded by OpenSesame (Mathôt 182 

et al., 2012), presented on a 19-in monitor (resolution = 1680 × 1050, refresh rate = 60 Hz, 183 

viewing distance = approx. 65 cm, subtending approx. 11.13 °× 9.28° of visual angle for the 184 

object images and approx. 19° × 15.84° of visual angle for the background images). 185 

Experiment 1a & 1b 186 

In Experiments 1a and 1b, we investigated the effect of viewpoint on object recognition 187 

RT and accuracy using 3D models of objects rotated around the pitch axis (0°, 60°, 120°, 180°, 188 
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240°, 300°). The only difference between the experiments was that 3D models were presented 189 

either in color (Experiment 1a) or a grayscale version of the model was used (Experiment 1b). 190 

Participants had to indicate whether the object matched the previously presented basic level 191 

category label.  192 

Procedure 193 

Participants were presented with a fixation point in the middle of the screen followed 194 

by a basic level object category label (in German, font: Droid Sans Mono; font size: 26; color: 195 

black). This was followed by the target object presented in the middle of the screen, which 196 

could either match or mismatch the label, until the participant gave a response (Figure 1A). 197 

Participants were given feedback on screen if their answer was incorrect. The next trial 198 

automatically started with a new fixation point. 199 

Data Analysis 200 

After data preprocessing, we employed a binomial GLMM to examine the effects of 201 

viewpoint and match on accuracy. As fixed effects we included viewpoint (0°, 60°, 120°, 180°, 202 

240°, 300°) as a first and second-degree polynomial ,the match vs mismatch comparison, and 203 

the interactions between these terms. The second-degree polynomial viewpoint term was added 204 

as we expected viewpoint to affect recognition in a non-linear manner (symmetry around 180°). 205 

Our final model included random intercepts for participants and stimuli, as well as a by-stimuli 206 

random slope for the match vs. mismatch effect for Experiment 1a, and random intercepts for 207 

participants and stimuli, as well as a by-stimuli and by-participant random slope for the match 208 

effect for Experiment 1b. 209 

Based on the power coefficient output of the Box-Cox procedure (λ = 0.22), RTs were 210 

log-transformed. We employed the same fixed effects structure for the RT-LMMs as for the 211 

accuracy-GLMMs. As random effects, we entered random intercepts for participants and 212 
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stimuli, as well as by-participant and by-stimuli random slopes for the effect of match for 213 

Experiment 1a and 1b. 214 

Results 215 

Accuracy. The average accuracy in Experiment 1a was quite high (M = 0.95, SD = 216 

0.21) and slightly lower in Experiment 1b (M = 0.9, SD = 0.3). In line with our hypothesis, the 217 

GLMM yielded a significant main effect for the second-degree polynomial viewpoint term in 218 

both experiments (Experiment 1a: β = 16.67, SD = 5.61, z = 2.97, p = 0.003; Experiment 1b: β 219 

= 18.82, SE = 3.79, z = 4.97, p < 0.001), meaning that the effect of viewpoint on accuracy can 220 

be well described by a quadratic function (Figure 2A and 2C). There was also a significant 221 

interaction between the second-degree polynomial of viewpoint and the match condition in 222 

both experiments, Experiment 1a: β = 23.62, SE = 5.69, z = 4.15, p < 0.001; Experiment 1b: β 223 

= 15.23, SE = 3.82, z = 3.98, p < 0.001. Comparing the viewpoint trend for the match and 224 

mismatch conditions, we found that the second-degree viewpoint trend was significant in the 225 

match condition (Experiment 1a: β = 0.19, SE = 0.03, CI95% = [0.13, 0.25]; Experiment 1b: β 226 

= 0.16, SE = 0.02, CI95% = [0.12, 0.21), but not in the mismatch condition, Experiment 1a: β 227 

= -0.03, SE = 0.04, CI95% = [-0.12, 0.05]; Experiment 1b: β = -0.02, SE = 0.03, CI95% = [-228 

0.04, 0.07]. 229 

Response-times (RT). Participants were slightly faster on average in Experiment 1b 230 

(M = 685 ms, SD = 358 ms) than Experiment 1a (M = 738 ms, SD = 299 ms). In line with our 231 

hypothesis, the LMM revealed a significant main effect for the second-degree polynomial 232 

viewpoint term in both experiments, Experiment 1a: β = -2.2, SE = 0.29, t = -7.48, p < 0.001; 233 

Experiment 1b: β = -1.42, SE = 0.29, t = -4.99, p < 0.001 (Figure 2B and 2D). In both 234 

experiments there was no interaction between viewpoint and match, Experiment 1a: β = -0.12, 235 

SE = 0.29, t = -0.4, p = 0.69; Experiment 1b: β = -0.38, SE = 0.29, t = -1.34, p = 0.18. 236 
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Figure 2. Partial effect plots of the interactions of viewpoint (0°, 60°, 120°, 180° 240°, 300°) and match (match vs. mismatch) 237 
on accuracy for Experiment 1a (coloured; A), and Experiment 1b (greyscaled; C), and the effect of viewpoint on RT for 238 
Experiment. 239 

 240 

Discussion 241 

In Experiment 1a, we found viewpoint-dependent object recognition for objects rotated around 242 

the pitch axis. This effect can best be described by a quadratic curve that approximates 243 

symmetry around 120° rotation. We also found that in our sequential matching task, only the 244 

match condition produced viewpoint-dependent behavior, while mismatch trials seemed 245 

unaffected by viewpoint. Finding a mismatch might rely more on the analysis of global, 246 

viewpoint-invariant features, whereas matching might be more dependent on the analysis of 247 

local, viewpoint-dependent features (e.g., Jolicoeur, 1990a) (e.g., deciding a shape is not a car 248 

might require less viewpoint-dependent information than identifying the shape as a chair). In 249 

Experiment 1b, we were able to replicate our results from Experiment 1a. Grayscaling the 250 

images seemed to have made the overall task slightly more difficult while still producing 251 

similarly viewpoint-dependent behavior. The canonical (0°) and non-canonical (120°) 252 
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viewpoints we used in Experiment 2 represented viewpoints that produced the best and worst 253 

recognition performance derived from average accuracy ratings obtained from Experiment 1a 254 

and 1b. 255 

Experiment 2 256 

In Experiment 2, we paired canonical (0°) and non-canonical (120°) viewpoints with 257 

consistent and inconsistent scene contexts. We were specifically interested in the interaction 258 

between viewpoint and consistency with the expectation that meaningful scene context 259 

information would reduce the effect of viewpoint on object recognition. 260 

Procedure 261 

In Experiment 2, we used the same word-picture verification task as in Experiments 1a 262 

and 1b (Figure 1B). Scene context was provided by first previewing the consistent or 263 

inconsistent scene for 300ms and then overlaying the target object on top of the scene 264 

background until a response was given. 265 

Data Analysis 266 

For both the accuracy-GLMM and response time (RT) LMM we entered interaction 267 

terms between viewpoint and consistency as fixed effects. The GLMM included random 268 

intercepts for participants and stimuli, as well as a by-stimuli random slope for the effect of 269 

viewpoint. Response time data was log transformed.  270 

For the RT-LMM we had random intercepts for participants and stimuli, and a by-271 

participant random slope for the effect of viewpoint and by-stimuli random slopes for the 272 

effects of viewpoint and consistency. 273 

Results 274 

 Accuracy. Accuracy was significantly higher for canonical viewpoints than for non-275 

canonical viewpoints as revealed by the GLMM (β = 0.68, SE = 0.14, z = 4.82, p < 0.001) but 276 

there was no significant main effect for consistency, β = 0.06, SE = 0.07, z = 0.75, p = 0.45. 277 
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Critically, there was a significant interaction between viewpoint and consistency, β = -0.21, SE 278 

= 0.07, z = -2.84, p = 0.004 (Figure 3A). Post-hoc interaction contrasts revealed that the 279 

viewpoint-dependence effect was significantly stronger in the inconsistent scene condition 280 

compared to the consistent scene condition, β = -0.84, SE = 0.3, z = -2.84, p = 0.005. This is in 281 

line with our hypothesis that providing meaningful scene context can reduce the effects of 282 

viewpoint on object recognition. Additionally, the scene-consistency effect was only 283 

significant in the non-canonical condition (β = 0.53, SE = 0.15, z = 3.45, p < 0.001), but not in 284 

the canonical condition, β = -0.31, SE = 0.25, z = -1.22, p = 0.22. 285 

Response-Times (RT). The LMM yielded a significant main effect for viewpoint (β = 286 

-0.07, SE = 0.01, t = -7.26, p < 0.001), where RTs were faster for canonical (M = 558ms, SD = 287 

255ms) than for non-canonical viewpoints (M = 645 ms, SD = 333 ms) (Figure 3B). There was 288 

no significant interaction between viewpoint and consistency, β = 0.004, SE = 0.005, t = 0.83, 289 

p = 0.41. 290 

Figure 3. Experiment 2 accuracy difference scores per participant (canonical vs. non-canonical) for consistent and 291 
inconsistent scene backgrounds (A). Adjusted response times (B) were obtained with the remef package (Hohenstein & 292 
Kliegl, 2021). *p < .05. ***p < .001.  293 

 294 

 295 

Discussion 296 

In general, object recognition accuracy was viewpoint dependent, however, there was 297 

a significant interaction between viewpoint and consistency. In line with our hypothesis, the 298 
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viewpoint effect was significantly weaker for consistent scenes and the scene consistency effect 299 

was only observed for non-canonical viewpoints (Figure 3A). Non-canonical viewpoints were 300 

recognized significantly slower than canonical viewpoints. However, this was unaffected by 301 

scene consistency. 302 

General Discussion 303 

In the present study, we investigated how scene context information modulates 304 

viewpoint-dependent object recognition using 3D models of everyday objects. While providing 305 

meaningful context did not eradicate the viewpoint effect fully, it significantly reduced 306 

recognition accuracy costs. In line with previous findings (Sastyin et al., 2015) this supports a 307 

model of object recognition that incorporates context (e.g., Bar, 2004) while dynamically 308 

adapting to the amount of available information based not only on visual features of the object 309 

(Burgund & Marsolek, 2000; Hayward & Tarr, 1997; Jolicoeur, 1990), but also context. It 310 

further motivates models of object constancy - the visual system’s ability to produce 311 

representations that are robust to changes in e.g., viewpoint or lighting (e.g., DiCarlo & Cox, 312 

2007) – that efficiently integrate contextual information and can lead to both viewpoint-313 

dependent and invariant behavior based on available information and the task at hand.  314 

A key component of the present study was to generalize previous findings on object-315 

scene processing effects and viewpoint-dependence to depth rotated 3D objects. We want to 316 

highlight the importance of generalizing findings from traditional 2D settings to more 317 

naturalistic settings and stimuli. Kristjánsson and Draschkow., (2021) have shown very 318 

illustratively for a variety of phenomena that given more naturalistic constraints, a system is 319 

able to circumvent e.g., capacity limits by drawing on the rich visual experience of natural 320 

environments. While we did not use fully immersive environments, using 3D models offers a 321 

more realistic encounter of everyday objects and therefore a more precise measure of 322 

viewpoint-dependence in real-world object recognition. It should be noted, however, that there 323 
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is a trade-off between naturalistic looking stimuli (i.e., photographs) and stimuli that more 324 

precisely capture naturalistic properties (i.e., 3D structure of objects from different viewpoints) 325 

in a highly controlled manner while not looking as naturalistic. Here, we opted for providing 326 

more naturalistic 3D properties of the displayed objects. 327 

From the present study it is unclear what kind of information contained in the scenes 328 

was responsible for reducing the viewpoint costs. Rapidly accessed global information such as 329 

the gist of the scene (Oliva & Torralba, 2007) could be the main factor. At the same time, more 330 

local information such as the detection and recognition of certain objects in the scene preview 331 

could provide information about related possible target objects based on internalized scene-332 

object and object-object regularities (Võ et al., 2019). Revealing the time course of when what 333 

kind of contextual information is integrated to buffer viewpoint effects would provide new 334 

insights into how the visual system so effortlessly achieves invariant object recognition. 335 

Varying what information is presented during the task (i.e., providing meaningful 336 

context vs. showing objects in isolation) is one way to probe the visual system’s ability to 337 

overcome processing limitations in viewpoint-dependent object recognition. Alternatively, one 338 

could keep the visual input constant but vary the level at which participants have to perform 339 

the matching task (Hamm & McMullen, 1998). If there are object representations that contain 340 

more or less viewpoint-dependent or invariant information how does this interact with the 341 

integration of contextual information in the form of scene context? 342 

Finally, we would like to address that on average performance was high in the matching 343 

task throughout all our experiments. These ceiling effects are probably due to the type of task 344 

we chose - different from the tasks usually employed to study scene consistency effects 345 

(Davenport & Potter, 2004; Sastyin et al., 2015). Despite these differences in difficulty, we 346 

were able to demonstrate a significant reduction in viewpoint costs by providing meaningful 347 

scene context.  348 
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Past research has made strong advances towards understanding the computations that 349 

underly invariant object recognition (DiCarlo & Cox, 2007). Understanding these mechanisms 350 

in isolation is key to understanding object recognition in general. We argue that understanding 351 

how the visual system is able to make use of richly structured naturalistic environments to 352 

circumvent computational bottlenecks will ultimately lead to better, more robust models of 353 

object recognition and inspire approaches in fields such as computer vision (e.g., Bomatter et 354 

al., 2021). 355 

To conclude, in the present study we built upon previous findings on object-scene 356 

processing and viewpoint dependence by generalizing these effects to depth rotated 3D objects. 357 

We highlight the importance of testing capacity limits of object recognition in more naturalistic 358 

frameworks in order to build more robust and flexible models and move towards a better 359 

understanding of vision under naturalistic constraints. 360 

 361 
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