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Abstract

Motivation: Hodgkin lymphoma is a tumor of the
lymphatic system and represents one of the most fre-
quent lymphoma in the Western world. It is charac-
terized by Hodgkin cells and Reed-Sternberg cells,
which exhibit a broad morphological spectrum. The
cells are visualized by immunohistochemical staining
of tissue sections. In pathology, tissue images are
mainly manually evaluated, relying on the expertise
and experience of pathologists. Computational quan-
tification methods become more and more essential to
evaluate tissue images. In particular, the distribution
of cancer cells is of great interest.
Results: Here, we systematically quantified and in-
vestigated cancer cell properties and their spatial
neighborhood relations by applying statistical analy-

∗shared first authorship
†shared last authorship

ses to whole slide images of Hodgkin lymphoma and
lymphadenitis, which describes a non-cancerous in-
flammation of the lymph node. We differentiated
cells by their morphology and studied the spatial
neighborhood relation of more than 400, 000 immuno-
histochemically stained cells. We found that, accor-
ding to their morphological features, the cells exhibi-
ted significant preferences for and aversions to cells
of specific profiles as nearest neighbor. We quantified
differences between Hodgkin lymphoma and lympha-
denitis concerning the neighborhood relations of cells
and the sizes of cells. The approach can easily be
applied to other cancer types.
Contact:
ina.koch@bioinformatik.uni-frankfurt.de
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1 Introduction

Hodgkin lymphoma (HL) is a tumor of the lymp-
hatic system, which originates from B-lineage cells
at various stages of development [18]. The annual
incidence of about three cases per 100, 000 persons
makes HL to one of the most frequent lymphomas of
the Western civilization [16, 17]. The World Health
Organization categorizes HL into different subtypes
[12], mainly the classical HL (cHL) and the nodu-
lar lymphocyte-predominant HL. The cHL is furt-
her mainly divided into the nodular sclerosis cHL
(NScHL) and the mixed cellularity cHL (MCcHL).
About 95% of all HL are diagnosed as cHL, which is
characterized by the occurrence of morphologically
huge pleomorphic tumor cells called Hodgkin and
Reed-Sternberg (HRS) cells. Whereas Hodgkin cells
are mononucleated, Reed-Sternberg cells are multi-
nucleated (Figure S1, supplementary material). HRS
cells exhibit a broad morphological spectrum. In con-
trast to other cancer types, for cHL, only 1 to 2% of
the tissue of the lymph node consists of tumor cells.

For diagnosis, tissue sections are cut, and the HRS
cells are visualized using immunohistochemical stai-
ning with CD30. During the manual, visual in-
spection, pathologists pay attention to specific pat-
terns of tumor cells in the lymph node tissue. Ba-
sed on their knowledge and experience, pathologists
are able to diagnose the cancer type and to prognose
the disease progression. A systematic computational
analysis is not yet regularly used in these processes,
but would additionally provide valuable, quantified
information [20].

Digital pathology is an approaching field and be-
comes more and more important since whole slide
scanning devices allow to digitize whole tissue secti-
ons. Various imaging approaches have been applied
to analyze and classify malignant tissues, see, e.g.,
[13, 7]. These approaches are mainly based on color,
texture, and object descriptors. Morphology descrip-
tors have been applied to describe and differentiate
cell types [22] and to categorize cell nuclei [14]. Ma-
lignant cells have been reported to develop abnormal,
irregularly shaped nuclei [5, 27]. Morphologic featu-
res have been used to separate and label benign and
malignant tissues [15].

The analysis of morphologic cell features is impor-
tant to understand the tumor development and sup-
ports computer-aided diagnosis of malignant disea-
ses. Novkovic et al. have applied a graph theory-
based approach to determine topological properties
and robustness of the network of fibroblastic reticular
cells in lymph nodes in mice. They have demonstra-
ted the high topological robustness of the network
and the critical role of network integrity for the acti-
vation of adaptive immune responses [21]. Huang et
al. have developed a platform for multi-scale analysis,
using, among others, graphics processing unit (GPU)
technologies to accelerate processing of whole slide
images (WSI). They have implemented their methods
within a computer-aided breast biopsy analysis based
on histopathological images [11].

It is so far not possible to perform life imaging
of human lymph nodes affected by HL, and a corre-
sponding mouse model of HL does not exist. The aim
of the present study was to draw conclusions about
HRS cell dissemination by analyzing the distribution
of HRS cells in the tissue as a function of their size
and shape. Do HRS cells come in close spatial con-
tact to communicate and cooperate with each other?
For example, one hypothesis was that HRS cells of
elongated shape are moving, whereas frayed cells are
more communicating with cells of other types. To
the best of our knowledge, these questions have not
been addressed so far.

There were two aspects to motivate the work. The
first aspect concerns the exploration of migration of
HRS cells to understand the progression of cHL. In
particular, we wanted to systematically characterize
and quantify the distribution of CD30-positive cells
in the lymph node. Since histological sections repre-
sent snapshots of the tumor development, we explo-
red features like the number, distance, and neighbor-
hood relationship of tumor cells by applying statis-
tical methods. The second aspect concerns the com-
putational methods for the analysis of WSI including
topological properties.

In this study, we considered 35 WSI of tissue secti-
ons of the cHL subtypes NScHL and MCcHL, as well
as images of an inflammation of the lymph node cal-
led lymphadenitis (LA) with and without follicular
hyperplasia. Based on morphological features of the
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Figure 1: The eight profile classes (PC) and their
morphological descriptions.

cells, such as eccentricity, solidity, and area, we defi-
ned profiles classes (PC) of CD30–positive cells. We
classified the cells into eight PC by specification of
thresholds to distinguish between morphological ca-
tegories, small and large, round and elongated, and
frayed and not frayed, respectively. We determined
the fraction of cells of a given PC, analyzed the dis-
tribution of cell profile diameters, and compared the
results for the different diagnoses.

To address the question whether cells of a given
morphological PC prefer or avoid the neighborhood
of a specific PC, we studied the nearest neighbor-
hood relationship of cell profiles. The aim was to
detect statistically significant correlations. We de-
termined the distribution of distances to the nearest
neighbor to check whether preferred neighborhood re-
lations were based on attractions between cells or on
the different motility of the cells in the tissue.

2 Methods

Images

We analyzed 35 two-dimensional histological WSI of
human lymph nodes provided by the Dr. Sencken-
berg Institute of Pathology, Frankfurt am Main. The
images cover the three medical diagnoses: NScHL (12
images), MCcHL (12 images), and LA (11 images).
They are CD30-immunohistochemically stained to vi-
sualize the HRS cells and activated B and T lympho-
cytes [10]. We considered more than 400, 000 CD30-
positive cells in images with resolution of 0.25 µm per
pixel.

Cell detection and classification

We identified cell profiles of CD30–positive cells by
applying an in-house software pipeline [26, 25]. The
pipeline neglected small objects of size 109 µm2 or
less. The size threshold corresponds to the size of a
round cell with a diameter of 11.8 µm. Applying the
shape descriptors, eccentricity, solidity, and area pro-
vided by CellProfiler [3], we assigned each cell profile
to one of the eight classes, see Figure 1. The eccen-
tricity measures the deviation of a fitted ellipse from
a circle. Solidity is the fraction of the object pixels
in the convex hull of the cell. Together with patho-
logists, we defined empirically specific thresholds to
distinguish between small and large, round and elon-
gated, and frayed and not frayed cell profiles. Ta-
ble S1 in the supplementary material lists the thres-
holds of the class definitions.

For each cell profile, we computed the maximal Fe-
ret diameter using the CellProfiler module Measure-
ObjectSizeShape. The Feret diameter describes the
distance of two parallel tangents to the cell in a gi-
ven orientation. The maximal Feret diameter refer-
red in the text as diameter, is the largest value of all
possible orientations.

Neighborhood analysis

To detect statistically significant correlations bet-
ween cell profiles, we studied the nearest neighbor
relationships defined by the Euclidean distance bet-
ween the centers of gravity of cell profiles. We allowed
a maximal distance of 175 µm (700 pixels) of a cell
to its nearest neighbor. Cells without any cell within
the maximal distance were called itisolated and were
neglected in the neighborhood analysis. The thres-
hold value of 175 µm corresponds to ten times the
diameter of an average cell and is sufficiently small
to enable intercellular communication based on, e.g.,
chemokines or cytokines. We computed a neighbor-
hood list, which contained for each cell the PC and
the itneighbor profile class (NPC). The number of
rows that has the entry, PC = i, determined the re-
lative frequency, f(i), of a PC i ∈ {0, . . . , 7}. Fi-
gure S2 in the supplementary material depicts an ex-
emplary sub-section of a histological image and the
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Table 1: Significance matrix for the image ID = 1721
of the diagnosis MCcHL. PC stands for profile class
and NPC for neighbor profile class. The blank entries
stand for ns - none significant, sh for significantly
high, and sl for significantly low.

PC 0 1 2 3 4 5 6 7

NPC
0 sh sl sl
1 sh sh sh sh sh
2 sh sh sl
3 sh sh sl sh sh
4 sl sl sl sh sl sl
5 sh sh sl sh sh
6 sl
7 sl sh sh sl sh sh

corresponding neighborhood list. For a given image
(ID = 1721), part (A) of Table S2 in the supplemen-
tary material exemplifies the measured probability
P (PC = i) ≡ f(i) to find a cell of a certain PC.

Statistical significance

The probability to randomly choose a neighbor of a
PC, NPC = j, is proportional to the frequency of
the PC, f(PC = j), in the image. In a random
choice, the PC of the cell itself should have no in-
fluence on the selection of the nearest neighbor. We
expect to measure a value for the conditional probabi-
lity that is within statistical fluctuation indistinguis-
hable from the relative frequency of the NPC, i.e.,
P (NPC = j | PC = i) ≈ P ( PC = j). For exam-
ple, the entry for the conditional probability, P (NPC
= 0 | PC = 0) = 0.354, in Table S2 (B) (supplemen-
tary material) has to be compared with the entry for
the expected probability, P (PC = 0) = 0.316, in Ta-
ble S2 (A) (supplementary material).

We evaluated whether the deviation of the con-
ditional probability from the expected probability
could be a statistically significant justification for a
rejection of the null hypothesis of a random selection
of the nearest neighbor. For a set of n cells of PC = i,
the probability to have a subset of k cells with nea-

rest neighbor of NPC = j is given by the binomial
distribution

P (k,NPC = j, PC = i) = B(k | p, n) =

(
n

k

)
pk(1−p)n−k,

where p = P (PC = j) is the probability to find a
class, j, by chance, i.e., f(j), the relative frequency
of class j. For each image and each combination
of morphological classes (PC = i, NPC = j) with
i, j ∈ {0, 1, . . . , 7}, we computed the lower and upper
endpoint of the prediction interval by

klow = max

{
k ∈ N :

k∑
i=0

pi(1− p)n−i

(
n

i

)
≤ α / 2

}
and

kup = min

{
k ∈ N :

n∑
i=k

pi(1− p)n−i

(
n

i

)
≤ α / 2

}
.

We chose a significance level of α = 1%. A mea-
sured value k, has a p-value smaller than α / 2 only
if k /∈ [klow, kup]. A k outside the prediction interval
has a significance level of α = 1% which is sufficiently
high enough to reject the null hypothesis of a random
selection of the nearest neighbor.

For example, the image with ID = 1721 of di-
agnosis MCcHL contains 3435 cells of PC = 0 from
10, 860 cells in total. We computed the prediction in-
terval [1047, 1125] for the significance level α = 1%.
We measured a number of k = 1217 pairs of PC = 0
and NPC = 0, which is above the upper endpoint
of the 1% prediction interval. Thus, we can reject
the null hypothesis for the significance level α = 1%.
That means, within a significance smaller than 1%,
the small, round cells are enriched in the neighbor-
hood of other small, round cells. The small, round
cells prefer the neighborhood of their own kind. We
call such a preferred neighborhood relation to be sig-
nificantly high (sh).

If the number of measured pairs is smaller than
the prediction interval for the significance level, we
call the neighborhood relation to be significantly low
(sl). A none significant (ns) neighborhood relation
denotes a number of pairs within the prediction in-
terval. We compiled the results for each image in a
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significance matrix, see, e.g., Table 1. We computed
an individual significance matrix for each of the 12
images of diagnosis NScHL, 12 images of diagnosis
MCcHL and 11 images of diagnosis LA. The signi-
ficance matrix in Table 1 exemplifies cell preferen-
ces and aversions for image ID = 1721 of diagnosis
MCcHL. For example, the row for PC = 0 contains
one entry itsh and two entries itsl. The entries indi-
cate that, the class PC = 0 prefers other cells of the
same class, NPC = 0, but rejects cells of NPC = 6
and NPC = 7. The empty entries in the row for
PC = 0 indicated that, no preferences or aversion
were measured for the combination of PC = 0 with
NPC = 1, 2, 3, 4, or 5.

For each of the 64 combinations of morphological
classes, we counted the number of images, in which
the combination was sh and sl, respectively. The
difference of these numbers gave an integer score of
neighborhood relation for each combination of classes
and each diagnosis, see Figure S3 in the supplemen-
tary material. The score of neighborhood relation
gives a high positive value when a combination of
classes is sh in the majority of the images, and re-
versely, a high negative value when a combination of
classes is sl in the majority of the images.

3 Results

Small cells occur much more frequently
than large cells

Figure 2 shows the fraction of PC averaged over the
35 images. PC = 0 is the most frequently occur-
ring class with 38.63%, describing small, round cells,
followed by PC = 4 with 25.47%, standing for also
small, but frayed cells. Only very few cell profiles,
0.75%, were large and elongated (PC = 3). Over-
all, PC = 1, 3, 5, and 7, describing large cells, were
less frequent than the PC = 0, 2, 4, and 6, describing
small cells.

Figure 3 depicts the fractions of large cells in re-
spect to the diagnosis. For NScHL and MCcHL, the
fractions of large profiles were 17.36% and 11.06%, re-
spectively, whereas for LA the fraction of large pro-
files was only 8.10%. The fractions of PC for each

Figure 2: The fractions of the profile classes PC = 0
to PC = 7 averaged over 35 images.

diagnosis are listed in Table S3 in the supplementary
material. The small cell profiles built the majority of
the cells with 82.64% in NScHL, 88.94% in MCcHL,
and 91.90% in LA.

Because cHL is commonly characterized by the
occurrence of large HRS cells, we expected to find
a large number of large profiles at least in images
diagnosed as cHL. Surprisingly, the measured diffe-
rences in the number of large profiles in cHL and LA,
respectively, were not sufficiently significant to dis-
tinguish between cHL and inflammation.

The diameters of cells differ between
cHL and LA

Cells of NScHL and MCcHL, which are most likely
HRS cells, have been reported to vary between 20 µm
and 60 µm [1, 4, 9], whereas cells of LA, which ori-
ginate from activated lymphocytes, have been shown
to vary between 10 µm and 30 µm [8, 6, 23]. Based
on the distribution of the cell diameters of CD30–
positive cells (Figure S4, supplementary material), we
assumed the majority of cells with a diameter in the
range of 12.5 to 15 µm to originate either from acti-
vated lymphocytes for LA or from small HRS cells for
NScHL and MCcHL. Based on the ratio of the distri-
butions at 12.5 to 15 µm, we estimated the proportion
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Figure 3: The fractions of small (PC = 0, 2, 4, 6)
and large (PC = 1, 3, 5, 7) profile classes in respect
to the diagnosis. The error bars show the standard
deviation. The fraction of large profiles in images of
NScHL, MCcHL, and LA are statistically indistin-
guishable.

of large HRS cells to be 89.8% and 87.0% for NScHL
and MCcHL, respectively. Note that, the distribu-
tion of cell diameters for LA characterizes activated
lymphocytes.

To make the results more comparable with the li-
terature values obtained by visual inspection of high
resolution electron microscopy images, we used the
diameter distribution of LA to subtract the back-
ground of smaller cell profiles for NScHL and MC-
cHL. Figure 4 depicts the corresponding corrected
distributions for NScHL and MCcHL. The distribu-
tions for NScHL and MCcHL have both a maximum
for diameters in the range of 22.5 and 25 µm. For
NScHL, the mean cell diameter was 30.6 µm with
a large standard deviation of 10.2 µm, whereas the
mean value for MCcHL was slightly smaller, 28.6 µm
with a standard deviation of 9.3 µm. A large fraction
of 9.2% and 5.6% of cells in NScHL and MCcHL, re-
spectively, had a cell diameter larger than 50 µm.

We computed the cell diameters defined as max-
imal Feret distances. The values of the maximal
Feret distances may differ from the cell diameters
that a pathologist determines by visual inspection.
Our statistical analysis of a high number of CD30–
positive cells offers a view that is complementary to

Figure 4: The distribution of diameters of cells. The
bars show the relative fractions of of HRS cells for
the diagnoses NScHL and MCcHL, respectively. The
relative fractions were corrected for the background
of activated lymphocytes, see text.

a high–quality, visual inspection of individual cells.
There exists no one–to–one correspondence between
the computed cell diameters and those reported in
the literature. Nevertheless, the values for the diame-
ters of HRS cells, see, e.g., Figure 4, and the fraction
of large HRS cells with diameters larger than 50 µm
were in perfect accordance with the values in the li-
terature [1, 4, 9].

Small, round cells prefer to stay among
themselves

Figure 5 depicts the main preferences and aversions of
cells in relation to their PC independent of the diag-
nosis. Each node represents one of the eight PC. We
scored the neighborhood relations, see section Met-
hods. Arrows are drawn between nodes if the abso-
lute value of the score of neighborhood relation ex-
ceeds 50% of the maximal, possible value. Thick
light grey (online version: green) and black (on-
line version: red) arrows represent large positive and
large negative scores, respectively. Pairs connected
by light grey/green arrows favor each other as neig-
hbors. Pairs connected by black/red arrows avoid
each other as neighbors.

In Figure 5, the thick black/red arrow from PC = 6
to PC = 0 indicates a strong aversion expressed by
a negative score of 74% of small, elongated, frayed
profiles to have small, round cells as nearest neig-

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228981doi: bioRxiv preprint 

https://doi.org/10.1101/228981
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Network of neighborhood relations. Each
node represents one of the eight PC. The thickness of
the arrows correlates with the absolute value of the
score. Light grey (online version: green) and black
(online version: red) arrows represent preferences and
aversions, respectively.

hbor. In 26 of the 35 images, small, round profiles
were significantly underrepresented in the neighbor-
hood of small, elongated, frayed PC. The aversion of
these two PC to each other was mutual indicated by
a reversed black/red arrow (from PC = 0 to class
PC = 6) with a negative score of 69%. Note that,
preferential and avoided neighborhood relations have
not to be mutual, see Figure S5 in the supplementary
material.

The light grey/green arrow from PC = 7 to PC = 5
in Figure 5 expresses the preference indicated by a
positive score of 57% of large, elongated, frayed cells
to have large, frayed cells in the neighborhood. Furt-
hermore, light grey/green loop arrows show the pre-
ferences of PC = 0 (small, round), PC = 6 (small,
elongated, frayed), and PC = 5 (large, frayed) toward
themselves. In 89% of the images, small, round cells
(PC = 0) preferred as neighbor other small, round
cells (NPC = 0). The number of the combination
(PC = 0, NPC = 0) was significantly high in 31 ima-
ges, see Figure S3 A) in the supplementary material.
In general, PC that tend to repel other classes (PC0,
PC5, PC6) prefer to stay among themselves.

Neighborhood relations differ for the
three diagnoses

The three networks in Figure 6 illustrate the main
preferences and aversions of cell profiles that are spe-
cific for the three diagnoses NScHL, MCcHL, and LA.
In each of the three diagnoses, the small, round cells
prefer to stay among themselves, exhibiting high po-
sitive scores of 83 to 92%, see Figure S3 in the sup-
plementary material. Small, round cells are always
shunned by other PC, in particular by small, elonga-
ted, frayed cells (PC = 6). Independent of the diag-
noses, no PC seems to like the small, round cells, with
the only exception of small, round cells themselves.
Despite of common characteristics of the networks in
Figure 6, significant differences in the neighborhood
relation are visible for the three diagnoses.
NScHL: In comparison to the other diagnoses, aver-
sions of cells to other PC is less noticeable in NScHL,
see Figure 6 A). Only two black/red arrows indicate
a negative score with more than 50%. Small, round
cells (PC = 0) dislike small, frayed, elongated cells
(PC = 6) and vice versa. A preferred neighborhood
relation exists between large, frayed, elongated cells
(PC = 7) and large, frayed cells (PC = 5).
MCcHL:: As for NScHL, cells of PC = 7 (large, elon-
gated, frayed) favor cells of PC = 5 (large, frayed).
But, this neighbor preference becomes less pronoun-
ced in MCcHL, see Figure 6 B). Simultaneously, the
aversion of cells increases to accept small, round cells,
PC = 0, in their neighborhood.
LA: The network for LA in Figure 6 C) shows a
high number of aversions between PC. Examples are
the strong repulsions of PC = 0 (small, round) from
PC = 5 (large, frayed), PC = 6 (small, elongated,
frayed), and PC = 7 (large, elongated, frayed). Half
of the profile classes (PC = 0, 5, 6, 7) prefer to stay
among their own kind. The preferred neighborhood
relation, PC = 5, NPC = 7, which is noticeable for
NScHL and MCcHL is, however, absent in LA.

Clustering of small, round cells is not
caused by attraction

Table 2 shows the mean distance of a cell to its ne-
arest neighbor. In NScHL, the cells have the smal-

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228981doi: bioRxiv preprint 

https://doi.org/10.1101/228981
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Networks of neighborhood relations A) in
NScHL, B) in MCcHL, and C) in LA. Each node
represents one of the eight PC. The thickness of the
arrows correlates with the absolute value of the score.
Light grey (online version: green) and dark grey (on-
line version: red) arrows represent preferences and
aversions, respectively.

Table 2: Mean distances of PC to the nearest neig-
hbor in images of all diagnoses.

Diagnosis Mean distance [µm]

NScHL 37.9± 6.1
MCcHL 42.7± 11.9
LA 48.3± 18.1

lest mean distance of 37.9 ± 6.1 µm. It increases to
42.7 ± 11.9 µm and 48.3 ± 18.1 µm for MCcHL and
LA, respectively. Within the large standard devia-
tions, the differences in the mean distances are not
statistically significant.

Compared to the theoretically expected distribu-
tion for spatial, randomly located cells, the distribu-
tion of distances to the nearest neighbor was shifted
towards small values and had a much more narrow
shape, see Figures S6, S7, and S8 in the supplemen-
tary material. The observation of a shifted and nar-
rowed distance distribution was valid for each of the
35 images and indicates a significant clustering of the
CD30–positive cells independent of the medical diag-
nosis. This has been verified by a graph-theoretical
analysis of network properties of the corresponding
cell graphs [25].

We asked whether the strong preference of small,
round cells, PC = 0, to cluster together could be an
effect of an attraction between these cells. For the
majority of images, the ratio between the mean dis-
tances of PC = NPC = 0 nearest neighbors and the
mean distances of two nearest neighbors of arbitrary
classes was larger than 1, see Figure S9 in the supple-
mentary material. The PC = NPC = 0 pairs showed
large distances between them. In particular in ima-
ges of low cell density, the mean distance of these
pairs was up to 50% enlarged compared to arbitrary
classes. This finding contradicts the hypothesis of an
attractive force. The preference of these cells to clus-
ter together must have other reasons. The preferred
location of small, round cells in tissue regions that
are not easily accessible by other cell types could be
a possible explanation. The high motility combined
with the small size of PC = 0 cells may lead to an
aggressive ability to colonize healthy tissue regions
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with still sparse populations of CD30–positive cells.
The Pearson correlation coefficient of the mean dis-

tance between PC = NPC = 0 pairs and the log-odd
value of the significance level of a preference for these
pairs were positive. The correlation coefficient over
all images was 0.42. The positive value of the corre-
lation coefficient indicated that, the preference of a
PC = NPC = 0–neighborhood was strongly correla-
ted with a large distance between the cells.

The visual examination of all diagnoses showed a
significantly high number of PC = NPC = 0 pairs
that were located in tissue areas of low cell den-
sity, see, e.g., Figure S10 in the supplementary ma-
terial. A preferential location of small, round cells in
sparsely–populated tissue regions could explain the
large distance between PC = NPC = 0 pairs. In-
terestingly, a positive correlation between large dis-
tances and neighborhood preferences occurred only
for these pairs, whereas for all other combinations,
the correlations were negative. Only in the cases of
PC = NPC = 0 pairs, the preferences of cells of a
PC to stay among themselves were strongly correla-
ted with tendencies to keep the distances large to the
next neighbors.

4 Conclusion

Histological images of CD30–positive cells produced
in high numbers by the daily pathological praxis give
a two-dimensional snapshot of the complex dynami-
cal, three-dimensional tumor environment. The ima-
ges offer a source to yield statistically significant,
quantitative data for the variable, adaptive, and com-
plex lymph node during the progression of HL. Such
data are invaluable to validate biological concepts
that aim to describe the lymph node on a cellular
resolution and to understand diseases of the lympha-
tic system.

The lymph node is a structured organ with ma-
jor compartments like the subcapsular sinus, B cell
follicles, the T cell zone, trabecular and medullary
sinuses, and blood vessels. A broad variety of cells
enter the lymph node, migrate from compartment to
compartment, interact with other cells, and show a
complex movement in a stromal cell network [2]. Pre-

vious characterizations of the diameter of HRS cells
were based on high resolution images captured by
electron microscopy [8, 6]. Individual HRS cells have
been identified manually by their large nuclei. The
quality of electron microscopy images is excellent and
identification of individual HRS cells by visual in-
spection is certainly still superior to any automated
image analysis, but only a low number of cells has
been measured. No corresponding statistical data
have been presented so far. There are no studies
available, which investigate the morphological pro-
perties and neighborhood relations of tumor cells in
the lymph node.

The presented study provides valuable information
about the morphological characteristics and neig-
hborhood relations of cHL and LA. For the first time,
a systematic analysis of a high number of 400, 000
CD30–positive cells in WSI of lymph node tissue
sections of NScHL, MCcHL, and LA was performed.
We provided measured values for the distances bet-
ween neighbored cells, the cell diameters of HRS cells
in complete lymph node sections, and morphological
characteristics for each cell.

The profiles of CD30–positive cells were identified
by the in-house imaging pipeline [26, 25]. Based on
morphological cell features, we defined eight mor-
phological PC to classify the cells and computed the
fractions of each PC.

The distributions of the diameter of CD30–positive
cells in cHL had their maxima in the range of 20 to
22.5 µm. For LA, the distribution had a maximum
in the range of 15 to 17.5 µm, which is much smaller
than the estimated mean diameter of HRS cells in
NScHL of 30.6 ± 10.2 µm. The mean diameter for
MCcHL was slightly smaller, about 28.6± 9.3 µm.

We observed statistically significant preferences
and aversions in the neighborhood relations of the
PC. Round, small cells liked to stay in the neig-
hborhood of themselves and were avoided by the
other classes. The neighborhood relations between
the Hodgkin cells and neighborhood relations bet-
ween the lymphadenitic cells were similar, despite of
some differences. For example, in LA, the cells of
PC = 7 (large, elongated, frayed) were not found pre-
ferably in the neighborhood of PC = 5 (large, frayed).
This lack of neighborhood preference between cells of
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PC = 7 and PC = 5 indicates a different spreading
behavior of these cell types in tissues of cHL and
lymphadenitis.

The distribution of distances between neighbored
cells demonstrated a typical spatial clustering of the
cells in the tissue. The only exception was a compa-
rably large mean distance between small, round cells,
which contradicts the hypotheses of an attraction
that forces small, round cells to stay among them-
selves. Small, round cells were preferably located in
regions of small cell density. Possible explanations for
the overall clustering of cells are the influence of the
complex structure of the lymph node and specific cell
interactions caused, e.g., by chemokines or cytokines.

The development of different cell forms of HRS cells
have been analyzed in cell cultures. Refusal of di-
vided cells have been demonstrated [24]. Since no
animal model of HL exists, the investigation of HL
infiltration in time and space is up to now not pos-
sible. To get more insight in the dynamic cell pro-
cesses, histological sections with positively immune
stained tumor cells could serve as a basis for future
investigations. The proliferation status of tumor cells
may influence diameters and shapes of cells. We can
hypothesize that small cells correspond to early sta-
ges of cell development and large cells to later stages.
The forms of the cells, especially their elongation, lea-
ding to polarization, may reflect cell movement. The
neighborhood analysis gives insights of their distri-
bution at a fixed time point, including morphological
cell features, and allows to draw potential strategies
of tumor cell migration.

The detection of CD30–positive cells in three-
dimensions by applying confocal scanning microscopy
[19] will be an important aspect of experimental
work. Multi-staining will allow to visualize various
important players beside CD30–positive cells, as, e.g.,
T cells and B cells that are known to interact with
malignant cells. Pattern recognition is and will furt-
her be a focus of ongoing research.
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