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Abstract

The successful elimination of bacteria such as Streptococcus pneumoniae from a host
involves the coordination between different parts of the immune system. Previous
studies have explored the effects of the initial pneumococcal load (bacterial dose) on
different representations of innate immunity, finding that pathogenic outcomes can
vary with the size of the bacterial dose. However, others yield support to the notion
of dose-independent factors contributing to bacterial clearance. In this paper, we
seek to provide a deeper understanding of the immune responses associated to the
pneumococcus. To this end, we formulate a model that realizes an abstraction of
the innate-regulatory immune host response. Stability and bifurcation analyses of
the model reveal the following trichotomy of pneumococcal outcomes determined
by the bifurcation parameters: (i) dose-independent clearance; (ii) dose-independent
persistence; and (iii) dose-limited clearance. Bistability, where the bacteria-free
equilibrium co-stabilizes with the most substantial steady-state bacterial load is
the specific result behind dose-limited clearance. The trichotomy of pneumococcal
outcomes here described integrates all previously observed bacterial fates into a
unified framework.

1. Introduction1

The pneumococcus (Streptococcus pneumoniae) is a bacterial pathogen associ-2

ated with pneumonia, otitis media (ear infections), and life-threatening conditions3

such as sepsis or bacteremia (blood poisoning) and bacterial meningitis (brain in-4

fection) [1]. The pneumococcus is notably a coinfective pathogen with the influenza5

virus, contributing to enhanced morbidity and mortality [2, 3, 4, 5]. According to6

the World Health Organization (WHO), the pneumococcus is the causative agent7

behind 16% of mortalities in children under five years of age, and the deaths of8

920,136 children in 2015. Diseases caused by the pneumococcus are mostly common9

among children and the elderly, as well as individuals with a compromised immune10

system [6, 7, 8]. Current immunization programs may have desirable impacts [9, 10];11

however, they remain challenged by antibiotic-resistant serotypes [8, 9, 11, 12].12

These challenges emphasize the need for more research and development towards13

the control and eradication of S. pneumoniae.14

Briefly speaking, the infection of the pneumococcus begins with entry of pneu-15

mococcal particles through the nasal cavity, followed by adherence to epithelial cells16

(colonization), and concluding with invasive disease [1]. An extensive collection of17
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studies identified a diverse range of bacterial and environmental factors that con-18

tribute to the infection, including enzymes, binding regions, and capsule structures—19

see, e.g., [13] and [14] for a review. However, here we are interested in the kinetics20

of S. pneumoniae and interactions of the pathogen with first responders, comprising21

innate immune responses and regulatory mechanisms. To this end, mathematical22

models provide conceptual frameworks for studying immune responses and changes23

in bacterial load.24

Previous mathematical models investigate the effects of initial bacterial load25

(dosage or inoculum size) on the successful bacterial clearance by the innate re-26

sponses. Model formulations assume the phagocytes to form a single group [15],27

separate phagocytes according to whether they actively engulf pneumococcus [16],28

or differentiate phagocytes into neutrophils and macrophages [17, 18]. However,29

these models did not consider the cascading effect of immune responses. Smith30

et al. [19] formulated three models fitted to bacterial load in mice to investigate the31

coordination of innate immune cells. This coordination is described by the follow-32

ing cascade of innate responses: alveolar macrophages, neutrophils, and monocyte-33

derived macrophages. Each model predicts that the bacteria will be cleared in small34

doses and sustain persistent levels in high doses; we refer to this phenomenon as35

dose-limited clearance. Besides the modeling and experimental work in [19], sepa-36

rate studies identified drug-specific effects [20], genetic variations in either the host or37

the pathogen [21, 22], and biological switches (for Toll-like receptors and bacteremia38

threshold) [23] as factors in the pneumococcal outcome in addition to inoculation39

size. In light of the models reviewed here, we may conceptualize a general form of40

the innate-regulatory response.41

The phenomenon of dose-limited clearance is comparable to the behavior of a42

bistable system. For a broad range of nonlinear dynamical systems, a simple case43

of bistability follows from the coexistence of two asymptotically stable equilibrium44

points. Hence, a typical solution approaches one equilibrium point or the other,45

depending on the initial state [24]. Malka et al. [25] constructed a one-dimensional46

equation describing bacterial kinetics and clearance by constant densities of neu-47

trophils. In a specific region of the parameter space, the model exhibits bistability48

under moderate neutrophil densities. That is, three steady states appear, where the49

bacteria-free value is mutually stable with the maximum. The intermediate value is50

unstable and serves as a clearance threshold comparable to Smith et al. [19]. This51

observation indicates the inadequacy of neutrophils to clear more massive bacterial52

loads. Furthermore, hysteresis accompanies bistability: when neutrophils decrease53

to critically small levels and then return to the original state, the clearance of suf-54

ficiently small bacterial population suddenly changes to an irreversible persistence55

event. Notably, the bistability phenomenon agrees with published data from a series56

of bactericidal experiments [26], suggesting that bistability is a plausible mechanism57

for fulminant infection. In this paper, we formulate a model of three ordinary58

differential equations, which generalizes the innate-regulatory immune response to59

S. pneumoniae. The generalized immune response unifies associated mechanisms60

into abstract components.61

We organize the paper as follows. In Section 2, we introduce our model and62

estimate parameters by fitting the model to murine experimental data in [27]. The63

experiments in this study revealed that some but not all mice reached undetectable64

pneumococcal levels after 16 hours post-infection (hpi). Our analysis in Section 365
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reveals a bistability event comparable to [25]. Moreover, our model predicts three66

possible outcomes: clearance, persistence, and dose-limited clearance in the bista-67

bility case. The first two outcomes are independent of the bacterial dose size. One68

threshold parameter controls the window of bistability, while another dictates the69

predicted outcome. Section 4 concludes this paper with a discussion.70

2. Mathematical model71

We establish a mathematical model to represent the global panorama of the72

bacterial (B) interaction with the host and the corresponding immune response73

which in this case is characterized by the innate (M) and regulatory (N) immune74

responses. The model reads as follows:75

Ḃ = rB

(
1− B

KB

)
− cBBM, (1)

Ṁ = δM(M0 −M) + (ηB − θN)M, (2)
Ṅ = γB + δN(N0 −N), (3)

where the dot denotes the derivative with respect to a time variable t, i.e., ẋ = dx/dt,76

x = B,M,N . Here, the bacteria (B) proliferates logistically at a maximum rate r77

with a tissue carrying capacity of KB, given in colony forming units per milliliter78

(CFU/mL). The clearance of free bacteria occurs at a rate cB per cell and is assumed79

to result from the innate immune response. M is assumed to evolve with a constant80

rate η due to bacterial presence. We consider a constant decline rate of M given81

by θ, which is influenced by the immune regulatory activity. The elimination rate82

of M is given by δM . Furthermore, the regulatory process is favored by bacteria at83

a rate γ and its inhibition rate is given by δN . The initial immune response levels84

are M0 (innate) and N0 (regulatory). We assume a constant replenishment of the85

innate (δMM0) and regulatory (δNN0) responses. Figure 1 is a conceptual diagram86

of the model (1)–(3).87

Experimental data. In the experiment of Duvigneau et al. [27], C57BL/6J88

wildtype mice were intranasally infected with a sub-lethal dose of 1 ×106 CFU of89

the S. pneumoniae strain TIGR4 (T4). After the infection, the bacterial load in90

the bronchoalveolar lavage was measured at different time points, namely at 1.5,91

6, 18, 26 and 31 hpi. Figure 2 depicts the experimental data of bacterial load in92

the lungs of the infected mice. Note that the experiment presents two outcomes,93

bacterial clearance (a) and persistence (b). We explore the interaction of bacteria94

with the host immune response through the combination of data and the proposed95

model (1)–(3) for the two scenarios. For each set of data in Figure 2, we separately96

estimated the majority of parameters. The remaining ones were set as described97

below.98

Parameter estimation According to Smith et al. [19] and Duvigneau et al. [27],99

the bacterial growth rate r = 1.13 h−1 and the carrying capacity KB = 2.3 × 108
100

CFU/mL stand for single S. pneumoniae infection. Also, following the criteria from101

Smith et al. [19], the S. pneumoniae inoculum size (B0) for simulations is set to 1000102

CFU/mL. Several elimination rates of immune actors such as alveolar macrophages,103

cytokines as interleukin-1 and tumor necrosis factor-α, neutrophils, and monocyte-104

derived macrophages are reported in [19] for the specific dynamical models there105

developed. In contrast, our model considers all innate response components as106
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Figure 1: Schematic diagram of the model (1)–(3). The state variables for bacterial load (B), innate
(M) and regulatory (N) response levels are depicted in shaded squares. Solid lines with arrowheads
indicate bacterial activation of innate and regulatory responses, associated with constant rates η
and γ, respectively. Solid lines ending in bars denote the following inhibitory effects: regulatory
levels inhibit innate response growth at a constant rate θ, and the innate response controls bacterial
growth at a constant clearance rate cB . Dashed loops indicate the replenishment of a given state
variable according to its corresponding growth term.

a single global response rather than as separate actors. The same philosophy is107

considered for the regulatory response. Under these considerations, we set the innate108

and regulatory inhibition rates as 0.1, a general-response value. In addition, for the109

global regulatory response, we set M0 = 1 due to the constant supply of innate110

agents, such as alveolar macrophages [19, 27]. A constant regulatory action is also111

considered assuming N0 = 1. We would like to remark that different assumptions112

of initial values and elimination rates would only rescale the fitted parameters, but113

not affect the mechanistic insights from the model selection procedures.114

Table 1: Fitted parameter values for the different bacterial infection outcomes. The sets of four pa-
rameters were independently fitted based on bacterial data from either the persistence or clearance
scenarios.

Parameter Bacteria clearance Bacterial persistence
cB 1.13096 0.97000
γ 0.00376 2.85546×10−4

η 1.3461×10−4 8.07453×10−6

θ 1.3982×10−13 3.50118×10−13

To fit the remaining parameters, i.e., cB, η, θ and γ, we minimized the mean115

squared difference (MSD) between the model output and the experimental bacte-116

rial measurement, both on logarithmic scale. The model equations were solved in117

Python using the numerical integration routines of the SciPy library [28]. The mini-118

mization of the MSD was also performed with SciPy using the Differential Evolution119

algorithm [29]. Separately, we fitted each of the datasets to uncover the parameter120

values that yield either the persistence of the bacterium or its elimination. The121

fitted values are shown in Table 1, while Figure 2 shows the resulting dynamics122

of the model (1)–(3) for each case. Innate and regulatory responses are plotted in123

fold-change, Figure 2(c)–(d). The dynamics of the clearance case shows a marked124
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(a) Bacterial clearance
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(b) Bacterial persistence
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Figure 2: Dynamics of bacterial load and immune response. Top: bacterial data (circles) and
fitted dynamics for (a) the clearance (blue, solid line) and (b) the persistence (orange, dashed line)
scenarios. Note that in both panels the data at 1.5 and 6 hpi is the same. Bottom: (c) Innate
and (d) regulatory immune responses for both bacterial behaviors: clearance (blue, solid line) and
persistence (orange, dashed line).

bacterial elimination after 16 hpi—see Figure 2(a). Note that for the clearance sce-125

nario, both immune responses present a large marginal increase during the first hours126

post infection; this effect is more pronounced in the regulatory response, reaching a127

10-fold increase before 7 hpi—see Figure 2(d). In contrast, the persistent bacteria128

appears to provoke a sluggish action of the immune response, making the regula-129

tory and innate responses peak after 20 hpi, where the regulatory effect is almost130

reaching an 8-fold increase—see panels (c) and (d) of Figure 2.131

3. Model analysis132

We nondimensionalize the model (1)–(3) to simplify computations. Let us intro-
duce the following dimensionless variables

b =
B

KB

, m =
M

M0

, n =
N

N0

, τ = rt,

where τ is a rescaled time variable. This transformation scales the bacterial load
with the carrying capacity, and the immune response levels with their respective

5
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initial values. Define the following dimensionless parameters:

cB =
cBM0

r
, δM =

δM
r
, δN =

δN
r
,

η =
ηKB

r
, θ =

θN0

r
, γ =

γKB

rN0

.

Then the model (1)–(3) has the dynamically equivalent dimensionless form

b′ = b(1− b)− bmcB, (4)

m′ = δM(1−m) +m(ηb− θn), (5)

n′ = δN(1− n) + γb, (6)

where the prime denotes the derivate with respect to the rescaled time τ .133

To determine the local stability of system (4)–(6), we denote a point in state-
space by its coordinates (b,m, n). Then (4)–(6) admits the unique equilibrium point

E∗0 := (0,m∗0, 1), m∗0 :=
δM

δM + θ
=

δM
δM + θN0

,

corresponding to steady state values B = 0, M = m∗0M0 and N = N0. Let

λ := 1− cBm∗0, (7)

and denote the Jacobian matrix of (4)–(6) by J(b,m, n). Then the following result134

is evident from the eigenvalues of J(E∗0), which take values −δN , −(θ + δM) and λ.135

Theorem 1. The dimensionless system (4)–(6) admits the unique equilibrium point136

E∗0 = (0,m∗0, 1) where b = 0. Moreover, E∗0 is asymptotically stable if λ < 0 and is137

a saddle point when λ > 0.138

We consider λ as our bifurcation parameter, and determine equilibrium points
of the form E∗ = (b∗,m∗, n∗) where b∗ > 0. To this end, we introduce the map

µ : (−∞, 1)× (−∞, 1)→ (0,∞), µ(b, λ) =
m∗0 (b− 1)

λ− 1
,

and let

f(b) :=
γb

δN
+ 1,

g(b, λ) :=
m∗0

δM(1−m∗0)

[
ηb− δM +

δM
µ(b, λ)

]
,

h(b, λ) := f(b)− g(b, λ),

for b < 1 and λ < 1. We are interested in the roots of h( · , λ) in the open interval139

(0, 1) which are later determined to be the values of b∗. To this end, we first establish140

the following monotone and concave properties, where Dk
j denotes the kth partial141

derivative with respect to the jth variable and Dj = D1
j .142
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Lemma 1. The following properties hold:

D1 f > 0 = D2 f, Dk
1 f = 0 = Dk

2 f, (8)
D1 µ < 0 < D2 µ, Dk

1 µ = 0, (9)
D1 g > 0 > D2 g, D2

1 g > 0 = Dk
2 g. (10)

where k ≥ 2. Thus, f is a strictly increasing linear function, and g(b, λ) is strictly143

increasing and concave upwards in b while being strictly decreasing in λ. Moreover,144

D2
1 h < 0 < D2 h and Dk

2 h = 0 for k ≥ 2, i.e., h is concave downwards in b and is145

a strictly increasing linear function in λ.146

Proof. The properties in (8) follow directly the definition of f , from which f is
strictly increasing and linear. To establish (9), we have

D1 µ(b, λ) =
m∗0
λ− 1

< 0, D2 µ(b, λ) =
m∗0(1− b)
(λ− 1)2

> 0.

Consequently, D1 µ(b, λ) is independent of b, and Dk
1 µ = 0 for k ≥ 2. Thus, we

compute D1 g and D2
1 g as follows:

D1 g(b, λ) =
m∗0

δM(1−m∗0)

{
η − δM D1 µ(b, λ)

[µ(b, λ)]2

}
> 0,

D2
1 g(b, λ) =

2δMm
∗
0[D1 µ(b, λ)]2

δM(1−m∗0)[µ(b, λ)]3
> 0.

Finally, we have D2 h = −D2 g due to D2 f = 0, and we obtain

D2 g(b, λ) =
−m∗0δM D2 µ(b, λ)

δM(1−m∗0)[µ(b, λ)]2
< 0.

Since (D2 µ)/µ2 expands to a function independent of λ, we have Dk
2 g = 0 for k ≥ 2.147

Therefore, the properties in (10) are true; in particular, g is strictly increasing and148

concave upwards in b, while being strictly decreasing in λ. The results for h = f − g149

follow from (8) and (10).150

The results of h in Lemma 1 yields the following properties. First, the root of
D1 h( · , λ) is uniquely given by a certain b̂ ∈ (−∞, 1) from which

hmax(λ) := max
b<1

h(b, λ) = h(̂b, λ),

that is, b̂ is the unique maximizer of h( · , λ). Furthermore, we have

D1 h(b1, λ) > 0 D1 h(b2, λ) < 0, (11)

for arbitrary values b1 < b̂ and b2 > b̂. The function hmax is linear with positive
slope because Dk

2 h = 0 for k ≥ 2. Hence, we define the unique root of hmax as

λ̂ :=
−hmax(0)

D1 hmax(0)
=
−h(̂b, 0)

D1 h(̂b, 0)
(12)

7

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 17, 2018. ; https://doi.org/10.1101/370007doi: bioRxiv preprint 

https://doi.org/10.1101/370007
http://creativecommons.org/licenses/by-nc/4.0/


from Maclaurin expansion. That is, hmax(λ̂) = h(̂b, λ̂) = 0.151

Now, let

ξ := lim
b→−∞

h(b, λ)

b
=
γθ − ηδN
θδN

, ζ := lim
b→−∞

[h(b, λ)− ξb] = 1 +
δM

θ
. (13)

Then the curve y = h(b, λ) is asymptotic to the line y = ξb + ζ as b → −∞.
Moreover, the coefficients ξ and ζ of the asymptote line allow us to write

D1 h(b, λ) = ξ − (1− λ)ζ

(1− b)2
; (14)

from this, we derive

b̂ = 1−

√
ζ(1− λ)

ξ
. (15)

In the following lemma, we determine some limiting behavior on the function h and152

its first derivative.153

Lemma 2. For 0 < b < 1, we have h(b, λ) < bD1 h(0, 0). Moreover,

lim
b→−∞

D1 h(b, λ) = ξ, lim
b→1−

D1 h(b, λ) = lim
b→1−

h(b, λ) = −∞.

Proof. Recall that h strictly increases in λ (Lemma 1), and note that the curve
y = h(b, 0) is tangent to the line y = h(0, 0) + bD1 h(0, 0) = bD1 h(0, 0) at b = 0.
Hence by the concavity of h( · , λ), we have

h(b, λ) ≤ h(b, 0) < bD1 h(0, 0) (16)

for b > 0. Passing the limit to (16) as b → 1−, we have limb→1− h(b, λ) = −∞. We154

complete the proof by passing limits to (14) where b→ −∞ and b→ 1−.155

We establish that the values of b∗ are roots of h( · , λ) in the interval (0, 1) on156

which f > 0. From now on, we denote the smallest and largest positive roots by b∗1157

and b∗2 > b∗1, respectively.158

Lemma 3. The function h( · , λ) has at most two distinct roots, namely b∗1 and b∗2.
If b∗2 exists, then D1 h(b∗2, λ) ≤ 0. If b∗1 also exists, then 0 < b∗1 < b̂ < b∗2, from which

D1 h(b∗2, λ) < 0 < D1 h(b∗1, λ) (17)

and λ < 0. Moreover, the following equations are equivalent:

D1 h(b∗2, λ) = 0, b∗2 = b̂, λ = λ̂ < 0. (18)

Proof. Rolle’s theorem asserts that a real-valued differentiable function with two159

distinct roots attains a local maximum or minimum at a point between the roots.160

Thus, a continuously differentiable function with at least three roots has no fixed161

concavity. Since h( · , λ) is concave downwards by Lemma 1, no more than two roots162

exist for h( · , λ), which are b∗1 and b∗2.163
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Recalling from Lemma 2 that h(b, λ) → −∞ as b → 1−, suppose that b∗2 exists164

so that h( · , λ) has no root in the interval (b∗2, 1). Assuming D1 h(b∗2, λ) > 0 implies165

that h(b, λ) is initially positive then approaches −∞, as b increases from b = b∗2 to166

b = 1. However, a contradiction arises with h(̃b, λ) = 0 for some b̃ ∈ (b∗2, 1). Thus,167

D1 h(b∗2, λ) ≤ 0. If b∗1 additionally exists, then 0 < b∗1 < b̂ < b∗2 by Rolle’s theorem168

and the uniqueness of b̂ as the root of D1 h( · , λ). We obtain (17) by taking bk = b∗k169

for each k in (11). Furthermore, h(0, λ) < h(b∗1, λ) = 0. Since h(0, λ) has the same170

sign with λ, we have λ < 0.171

Assuming that b∗2 exists, D1 h(b∗2, λ) = 0 if and only if b∗2 = b̂ because b̂ is the
unique root of D1 h( · , λ). In such case, h( · , λ) strictly increases over the interval
(−∞, b∗2), hence h(0, λ) < h(b∗2, λ) = 0 and λ < 0. Now, b∗2 = b̂ implies

hmax(λ) = h(̂b, λ) = h(b∗2, λ) = 0.

Conversely, hmax(λ) = 0 implies that either b̂ = b∗1 or b̂ = b∗2. We must have b̂ = b∗2172

because the existence of b∗1 necessitates b∗1 < b̂ as shown above. Finally, hmax(λ) = 0173

if and only if λ = λ̂, by the uniqueness of λ̂ as the root of hmax. Therefore, the174

equations in (18) are equivalent.175

We now establish the existence of roots for the function h( · , λ) in (0, 1). In
particular, we show that the existence of both b∗1 and b∗2 depends on the value of
D1 h(0, 0), which from (14) is given by

D1 h(0, 0) =
γ

δN
−
(
δM + η

θ
+ 1

)
.

We may alternatively write

D1 h(0, 0) =
γ − γ∗

δN
, γ∗ :=

(
η + δM

θ
+ 1

)
δN , (19)

to frame our results with γ, which is associated with the proliferation response176

of interferon growth due to bacterial stimuli. The following result establishes the177

existence of roots for the function h( · , λ). This result is illustrated in Figure 3.178

Theorem 2. If λ > 0, then b∗2 is the unique root of h( · , λ) in (0, 1). If λ ≤ 0, then179

h( · , λ) admits roots in (0, 1) only if D1 h(0, 0) > 0. In this case, b∗2 is the unique180

root whenever λ = 0. Moreover, the following trichotomy holds:181

(i) Both b∗2 and b∗1 exist for λ̂ < λ < 0;182

(ii) Only b∗2 = b̂ exists for λ = λ̂; and183

(iii) Neither b∗1 nor b∗2 exists when λ < λ̂.184

Proof. Recall that h(0, λ) is equal in sign to λ. If λ > 0, then b∗2 is a root of h( · , λ)185

in (0, 1) by the intermediate value theorem, because h(b, λ)→ −∞ as b→ 1− from186

Lemma 2. Appealing to Lemma 3 where λ > 0, we arrive at the uniqueness of b∗2 as187

the root in (0, 1).188

Now, assume that λ ≤ 0. If D1 h(0, 0) ≤ 0, then it follows from Lemma 2 that

h(b, λ) < bD1 h(0, 0) ≤ 0
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for b > 0. Thus, it is necessary that D1 h(0, 0) > 0 for h( · , λ) to have a root in the
interval (0, 1). In this case, we infer from similar arguments as Lemma 3 that b∗2 is
the unique root whenever λ = 0. Observe that D1 h(0, λ) → −∞ as λ → −∞, so
that we may choose an integer n > |λ| such that D1 h(0,−n) < 0. The maximizer of
h( · ,−n) is negative by virtue of (11) where λ = −n and b2 = 0, as does the global
maximum due to

h(b,−n) < h(b, 0) < 0.

for b < 0. By contrast, h(b, 0) has a positive maximizer and a positive global189

maximum. Considering the continuity of the maximizer and global maximum of190

h( · , λ) as functions of λ, it follows that −n < λ̂ < 0. Now, recall that h( · , λ̂)191

is maximized at h(̂b, λ̂) = 0. The desired trichotomy holds by comparing h(b, λ)192

with h(b, λ̂) and h(b, 0), and appealing to the linear increasing property of h in λ193

(Lemma 1); this can be associated with the shaded region bounded by h(b, λ̂) and194

h(b, 0), located in the right panel of Figure 3.195

0

0

0

0

Figure 3: The function h( · , λ) depicted at different values of λ. In the left panel, γ̄ < γ̄∗ for which
a unique positive root exists if and only if λ > 0. The right panel considers the case where γ̄ > γ̄∗.
The shaded region identifies the family of curves generated by h where λ̂ < λ < 0, for which two
distinct roots exist. The region is bounded by the bifurcation values λ = 0 and λ = λ̂. No root
exists when λ < λ̂ (bottom curve) and exactly one positive root exists for λ > 0 (top curve).

Corollary. Given our bifurcation parameter λ, the only positive equilibrium points
for the dimensionless model (4)–(6) are of the form

E∗k := (b∗k, µ(b∗k, λ), f(b∗k)), k = 1, 2,

where b∗1 and b∗2 > b∗1 are the smallest and the largest positive roots of h( · , λ),196

respectively. If λ > 0, then only E∗2 exists. If λ ≤ 0 then positive equilibrium points197

exist only if D1 h(0, 0) > 0 and b̂ > 0. In this case, the following trichotomy holds:198

both E∗1 and E∗2 exist if λ̂ < λ ≤ 0; only E∗2 exists where b∗2 = b̂ if λ = λ̂; and no199

positive equilibrium point exists when λ < λ̂.200

Proof. Consider a positive equilibrium point E∗ = (b∗,m∗, n∗). Then the following
equations hold:

0 =
m∗ (λ− 1)

m∗0
− (b∗ − 1) , (20)

0 = m∗
[
n∗ δM

(
1− 1

m∗0

)
+ η b∗

]
− δM (m∗ − 1) , (21)

0 = γ b∗ − δN (n∗ − 1) . (22)
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We rewrite equations (20) and (22) into m∗ = µ(b∗, λ) and n∗ = f(b∗), respectively.201

Thus, solving (21) in n∗ after evaluating m∗ yields n∗ = g(b∗, λ). Consequently,202

h(b∗, λ) = f(b∗) − g(b∗, λ) = 0 and b∗ is either b∗1 or b∗2 by Lemma 3. Thus, E∗ is203

either E∗1 and E∗2 . For each k, the equilibrium point E∗k exists if and only if b∗k exists.204

Therefore, the existence E∗1 and E∗2 follows from Theorem 2.205

Now, let

b̂0 :=
1

2

(
1− ζ

ξ

)
, ∆ := 4

[
(̂b0)

2 +
ζλ

ξ

]
. (23)

Then we derive the following equation:

h(b, λ)

D2 h(b, λ)
=
ξ

ζ

[
(̂b0)

2 − (b− b̂0)2
]

+ λ, (24)

where D2 h > 0 (Lemma 1). Hence, the roots b∗1 and b∗2 of h( · , λ) are given by

b∗1 = b̂0 −
√

∆

2
, b∗2 = b̂0 +

√
∆

2
.. (25)

Observe that b̂0 > 0 if and only if D1 h(0, 0) > 0 according to (14). From the
definitions of ∆ and equation (15), the following equations are equivalent:

∆ = 0, (1− b̂0)2 =
ζ(1− λ)

ξ
, b̂ = b̂0. (26)

If one (hence all) of the equations in (26) is true, then b̂ = b̂0 = b∗2 by (25) and
equivalently λ = λ̂ by Lemma 3. We may write λ̂ in terms of the dimensionless
parameters by solving for ∆ = 0:

λ̂ = 1 +

(
δM δN − δN η + δN θ + γ θ

)2
4δN

(
δM + θ

) (
δN η − γ θ

) . (27)

Theorem 3. Suppose that E∗k exists for a given k, and that all eigenvalues of J(E∗k)206

have nonzero real part. Then E∗k is a saddle point for k = 1 and asymptotically207

stable for k = 2.208

Proof. Consider the Jacobian matrix J(E∗k). To obtain a practical expression of209

J(E∗k), we simplify the first and second diagonal entries by application of equa-210

tions (20) and (21), respectively; by ith diagonal entry, we mean the (i, i)-entry. For211

the off-diagonal entries, we perform the following algebraic manipulations:212

(i) In the top row, write m∗0 in terms of D1 µ(b∗k, λ).213

(ii) In the middle row, evaluate m∗ = µ(b∗k, λ) and write η in terms of D1 g(b∗k, λ).214

(iii) In the bottom row, write γ = δN D1 f(b∗k).215

Additionally, we apply the equation δM(m∗0 − 1)/m∗0 = −θ wherever simplification
is desired. Thus, we arrive at the following expression:

J(E∗k) =


−b∗k

b∗k
D1 µ(b∗k, λ)

0

J21
−δM
µ(b∗k, λ)

−θ µ(b∗k, λ)

δN D1 f(b∗k) 0 −δN

 ,

11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 17, 2018. ; https://doi.org/10.1101/370007doi: bioRxiv preprint 

https://doi.org/10.1101/370007
http://creativecommons.org/licenses/by-nc/4.0/


where

J21 =
δM D1 µ(b∗k, λ)

µ(b∗k, λ)
+ θ µ(b∗k, λ)D1 g(b∗k, λ).

Denoting the trace and determinant by tr and det, respectively, J(E∗k) must sat-
isfy three Routh-Hurwitz conditions for E∗k to be asymptotically stable. The first
condition holds for both E∗1 and E∗2 , that is:

− tr J(E∗k) = b∗k +
δM

µ(b∗k, λ)
+ δN > 0, k = 1, 2,

given that µ > 0. The second condition requires

det J(E∗k) =
−b∗k θ δN µ(b∗k, λ)D1 h(b∗k, λ)

D1 µ(b∗k, λ)

to be negative. Since D1 µ < 0, the determinant det J(E∗k) shares the same sign216

with D1 h(b∗k, λ). Thus, by Lemma 3, the second condition fails for E∗1 because217

D1 h(b∗1, λ) > 0. Since we assumed that all eigenvalues have nonzero real part, E∗k218

must be a saddle point for k = 1. Meanwhile, Theorem 2 implies that for E∗2 to219

exist, it is necessary that either λ > 0 or E∗2 coexists with E∗1 . In either case,220

D1 h(b∗2, λ) < 0 and the second Routh-Hurwitz condition holds for k = 2.221

We are left to verify the following last Routh-Hurwitz condition for E∗2 , i.e.,
assuming that k = 2:

σ := − tr J(E∗2) (σ1 + σ2) + det J(E∗2) > 0,

where

σ1 :=
δN
(
δM + b∗2 µ(b∗2, λ)

)
µ(b∗2, λ)

> 0 σ2 :=
−b∗2 θ µ(b∗2, λ)D1 g(b∗2, λ)

D1 µ(b∗2, λ)
.

Assuming that E∗2 exists, observe that σ2 has the same sign with D1 g(b∗k, λ). Since
D1 h(b∗2, λ) < 0 and f has a positive first derivative (Lemma 1), we have

D1 g(b∗2, λ) > D1 f(b∗2) > 0.

and σ2 > 0. Moreover, we have

σ > (b∗2 + δN)σ2 + det J(E∗2)

=
σ2
[
δN D1 f(b∗2) + b∗2D1 g(b∗2, λ)

]
D1 g(b∗2, λ)

and σ > 0. Therefore, E∗2 satisfies all three Routh-Hurwitz conditions and is conse-222

quently asymptotically stable.223

The existence of roots, as well as their stability—corollary of Theorem 2, and224

Theorem 3, respectively—are summarized in Figure 4, showing an illustration of the225

different stability regions in the (γ, λ)-plane, and numerical bifurcation plots for b226

as a function of λ.227
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0

0

0

0

0

Figure 4: Top: Regions of stability determined by λ and γ, each highlighting the corresponding
stable equilibrium points; E∗

0 has b = 0, while E∗
2 takes the largest steady-state value b∗2 for b. The

specific value γ∗ of γ is given in equation (19), while λ̂ is explicitly given in (27).
Bottom: Bifurcation diagrams of the system (4)—(6) without (left) and with (right) bistability—
respectively, γ < γ∗ and γ > γ∗. To generate the diagrams, all parameters were fixed except for
cB , which was obtained for a given λ from (7). Blue, solid lines: stable equilibria; orange, dashed
lines: unstable equilibria. The gray diamond appearing in the right panel highlights the bifurcation
point (λ̂, b̂).

13

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 17, 2018. ; https://doi.org/10.1101/370007doi: bioRxiv preprint 

https://doi.org/10.1101/370007
http://creativecommons.org/licenses/by-nc/4.0/


4. Discussion228

Our study is centered on the problem of identifying biological factors that con-229

tribute to the elimination of the pneumococcus (Streptococcus pneumoniae). Ex-230

periments by Smith et al. [19] suggested that inoculum size (dosage) determines231

the outcome of bacterial clearance or persistence. In this case, groups of mice were232

infected with the pneumococcus at different dose sizes. Each group corresponded233

to a single bacterial outcome indicated by the titer readings, depending on whether234

the dose size is above or below a threshold. In contrast, experiments from Duvi-235

gneau et al. [27] showed that inoculum size is not the only factor contributing to236

bacterial clearance. Here, all mouse subjects were given doses of identical size. To-237

wards the end of the experiment, the bacterial load was undetectable in some mice238

and sustained in the rest (Figure 2). The murine experiments of Smith et al. [19]239

and Duvigneau et al. [27] provide distinct perspectives on the trade-off between240

dosage and bacterial fate, restricted by the microbial instances compatible with the241

experimental design.242

By modeling bacterial kinetics with generalized innate-regulatory immune re-243

sponses, our mathematical analysis reveals a qualitative trichotomy of this trade-off244

that acknowledges the experiments of both Smith et al. [19] and Duvigneau et al. [27].245

Indeed, our model, given by system (1)–(3) and the equivalent dimensionless form246

(4)–(6), may be considered an abstraction of previous formulations [17, 18, 16, 15, 19]247

where overall immune responses are considered instead of specific phagocyte popu-248

lations and chemical mediators. The trichotomy is given by the following cases: (i)249

dose-independent clearance, where the immune response clears the pneumococcus250

independent of dose size; (ii) dose-independent persistence, where the pneumococ-251

cus outgrows immunity regardless of initial dose; and (iii) dose-limited clearance,252

where the immune system successfully eliminates the pneumococcus only in small253

quantities. Cases (i) and (ii) are corroborated by Duvigneau et al. [27], whereas case254

(iii) is supported by Smith et al. [19].255

We remark that successful clearance of the pneumococcus may also be attributed256

to empirical characteristics of the infection other than the inoculum size. Mochan257

et al. [21] formulated a model validated with murine datasets including [19] to de-258

scribe pulmonary and extrapulmonary pneumococcal kinetics with total phagocyte259

levels and damage to epithelial cells (cellular debris) and a homogeneous population260

of activated phagocytes. The corresponding simulations indicate that phagocyte261

clearance efficiency varies between mouse strains. A follow-up study [22] using the262

same model shows that mutations in the pneumococcal strain can influence transient263

reduction in pneumococcus. In addition, Schirm et al. [20] adapted the monocyte-264

derived macrophage murine model in [19] and incorporated inhalation and antibi-265

otic effects to pneumococcal growth and elimination. The models of Mochan et266

al. [21, 22] and Schirm et al. [20] are directed towards investigating the effects of267

treatment and strain variations on pneumococcal clearance. However, their mod-268

eling approaches focus on validation with experimental data instead of bifurcation.269

While our mathematical model only considers bacterial kinetics with generalized270

innate and regulatory levels via three equations, the results of our comprehensive271

stability analysis could provide valuable and testable hypotheses regarding pathogen272

clearance.273
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The following quantities were determined to drive the dynamics of our model:

λ = 1− cBm∗0, D1 h(0, 0) =
γ − γ∗

δN
,

where

γ∗ =

(
η + δM

θ
+ 1

)
δN .

See equations (7) and (19). The stability of the bacteria-free steady state E∗0 ac-274

cording to λ (Theorem 1) portrays the effectiveness of the innate immune response275

to clear small pneumococcal quantities. Now, λ is a linearly decreasing function of276

cB, which is proportional to the clearance rate cB with the initial innate response277

level M0 = M(0) and all other parameters fixed. Since E∗0 is stable when λ < 0278

or cB > 1/m∗0 (Theorem 1), a rapid innate clearance (large cB) could promote bac-279

terial eradication at small quantities with the goal of making E∗0 stable. Effective280

clearance may also hold in mild conditions (moderate values of cB and M0) for a281

large innate level m∗0. By the same token, cB exhibits inverse proportionality with282

the maximum logistic proliferation rate r of the bacteria. Thus, the outgrowth of283

the pneumococcus may benefit from rapid proliferation (large r).284

The overall dynamics of our model follows from our main results for positive285

equilibria. The corollary of Theorem 2 determines which of E∗1 and E∗2 exist, and286

Theorem 3 establishes that E∗1 is unstable and E∗2 is asymptotically stable. Since287

D1 h(0, 0) has the same sign with γ − γ∗, we may frame our discussion in terms288

of the dimensionless parameter γ. As illustrated in Figure 4, γ determines which289

of the three bacterial outcomes (clearance, persistence, dose-limited clearance) are290

possible while λ decides which outcome the model predicts.291

If the model assumes that γ ≤ γ∗, then bistability does not occur and the292

model only predicts dose-independent clearance and persistence. That is, the stable293

equilibrium point is uniquely given by E∗0 for λ < 0 and E∗2 for λ > 0. Hence, we294

expect the innate immune system to eliminate the bacteria for λ < 0, and for the295

bacteria to persist for λ > 0, regardless of the initial bacterial concentration. As γ296

increases so that γ > γ∗, the negative values for λ corresponding to dose-independent297

clearance are restricted to the interval (−∞, λ̂) where λ̂ < 0. Moreover, bistability298

holds for all values of λ in the interval (λ̂, 0), where the unstable equilibrium point299

E∗1 coexists with the stable equilibria E∗0 and E∗2 . The size of the interval (λ̂, 0)300

changes with γ according equation (27). We emphasize that the monostability at301

E∗2 when λ > 0 is independent of γ.302

When scaled with 1/δN (with fixed δN), we find that γ is directly proportional to303

the tissue carrying capacityKB and the ratio γ/(δNN0) of innate response promotion304

to constant replenishment rate. Hence, the model predicts that abundant tissue305

resources (hypothetically large KB), and rapid activation of regulatory responses306

(γ > δNN0) contribute to the range of parameter values for bistability and dose-307

limited clearance. In light of the monostability of E∗2 above, we predict that the308

corresponding dose-independent persistence may neither depend on tissue carrying309

capacity nor the activation of regulatory responses.310

In the bistability case, the bacterial load b∗1 at E∗1 can serve as a threshold for311

bacterial clearance. Based on our bifurcation diagrams (Figure 4), one could naively312

deduce that the immune system clears the bacteria for b(0) = B(0)/KB < b∗1, and the313
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bacteria succeeds in colonizing the host when b(0) > b∗1 (cf. [25]). However, we must314

emphasize that our model is a three-dimensional system where stable manifolds of a315

saddle node may be one-dimensional curves or two-dimensional surfaces. A deeper316

analysis requires investigating the stable and unstable manifolds of E∗1 , which delimit317

the basins of attraction for E∗0 and E∗2 .318

At this point, we discuss generalizations and future directions of our work. The
aforementioned local stability as dependent on λ may be qualitatively identified with
compatible systems exhibiting nonlinear interaction terms. This can be achieved
with the function

G : [0,∞)× (0,∞)→ [0, 1), G(x, a) =
x

x+ a
.

For a fixed a, the function G( · , a) typically introduces saturation effects on a319

growth/decay rate: the value of G(x, a) approaches its upper bound (G ≈ 1) with320

larger values of x. In different biological contexts, G is associated with the Monod321

growth term for microorganisms, the Michaelis-Menten equation for enzyme kinetics,322

and the Holling Type-II functional response for predator-prey dynamics.323

To demonstrate the robustness of our results to nonlinear interaction terms, we
show in Figure 5 that a modification of the model (1)–(3) incorporating nonlin-
ear interaction terms yields comparable qualitative dynamics. Moreover, the same
trichotomy of bacterial outcomes applies here. The modified system is given by

Ḃ = rB

(
1− B

KB

)
− cBBG(M,KM), (28)

Ṁ = δM(M0 −M) + [ηB − θ G(N,KN)]M, (29)

Ṅ = γG(B, ρ)− δNN. (30)

This model imposes the following effects: (i) saturated bacterial clearance with high324

levels of innate immune response; (ii) bounded regulation of innate response; and325

(iii) limited increase in regulatory levels for larger bacterial loads.326

Proceeding as before, we generate a bifurcation diagram for (28)–(30) based on
the eigenvalue

λ = 1− cBm0

1 +m0

(31)

characterizing the stability of the unique bacteria-free equilibrium. Here, we have
used the dimensionless quantities m0 = M0/KM and cB = cB/r, and the time has
again been rescaled as τ = t/r. The bistability region is now determined by

γ∗ =

(
cBδM

θ
+ 1

)
ρδNη

θ
, (32)

with γ, δM , θ, δN and η as defined before, and ρ = ρ/KB. As in the original model327

(1)–(3), the parameter γ determines whether bistability exists, and λ determines328

which outcome is predicted. However, the formulation of λ in (31) is independent329

of parameters pertaining to innate response as opposed to the original formulation330

in (7). This observation suggests that, to an extent, bacterial clearance may depend331

on other factors aside from innate response when nonlinear cellular responses are in332

action.333
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0

0

0

0

Figure 5: Bifurcation diagrams generated by the system (28)–(30), where b = B/KB and λ, given
by (31), is the eigenvalue that determines the stability of the unique equilibrium point satisfying
b = 0. These diagrams are generated via the same procedure as the ones from Fig. 4, and are
shown for γ < γ∗, corresponding to the case without bistability (left), and γ > γ∗, corresponding
to the bistable case (right); here, γ∗ is given by (32). Blue, solid lines: stable equilibria; orange,
dashed lines: unstable equilibria.
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