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Abstract18

Age-related memory decline is associated with changes in neural functioning but little is known19

about how aging affects the quality of information representation in the brain. Whereas a20

long-standing hypothesis of the aging literature links cognitive impairments to less distinct21

neural representations in old age, memory studies have shown that high similarity between22

activity patterns benefits memory performance for the respective stimuli. Here, we addressed23

this apparent conflict by investigating between-item representational similarity in 50 younger24

(19–27 years old) and 63 older (63–75 years old) human adults (male and female) who studied25

scene-word associations using a mnemonic imagery strategy while electroencephalography was26

recorded. We compared the similarity of spatiotemporal frequency patterns elicited during27

encoding of items with different subsequent memory fate. Compared to younger adults, older28

adults’ memory representations were more similar to each other but items that elicited the29

most similar activity patterns early in the encoding trial were those that were best remembered30

by older adults. In contrast, young adults’ memory performance benefited from decreased31

similarity between earlier and later periods in the encoding trials, which might reflect their32

better success in forming unique memorable mental images of the joint picture–word pair.33

Our results advance the understanding of the representational properties that give rise to34

memory quality as well as how these properties change in the course of aging.35
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Significance statement36

Declining memory abilities are one of the most evident limitations for humans when growing37

older. Despite recent advances of our understanding of how the brain represents and sto-38

res information in distributed activation patterns, little is known about how the quality of39

information representation changes during aging and thus affects memory performance. We40

investigated how the similarity between neural representations relates to subsequent memory41

quality in younger and older adults. We present novel evidence that the interaction of pattern42

similarity and memory performance differs between age groups: Older adults benefited from43

increased similarity during early encoding whereas young adults benefited from decreased si-44

milarity between early and later encoding. These results provide insights into the nature of45

memory and age-related memory deficits.46
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Introduction47

A long-standing hypothesis in the cognitive neuroscience of aging holds that neural represen-48

tations become less specific with advancing age, with detrimental effects on cognitive perfor-49

mance. Reduced neural distinctiveness in older compared to young adults (Li et al., 2001)50

has been observed as increased similarity and/or reduced discriminability between neural51

activity patterns during different memory tasks (Carp et al., 2010; St-Laurent et al., 2011),52

between different stimulus categories (Carp et al., 2011; Park et al., 2004; Park et al., 2010;53

Park et al., 2012; Payer et al., 2006; Koen et al., 2019), and between different individual sti-54

muli (Goh et al., 2010; St-Laurent et al., 2014). However, these studies did not directly link55

this age-related reduction in neural specificity to differences in memory performance. A recent56

functional magnetic resonance imaging (fMRI) study by Koen et al. (2019) assessed neural57

distinctiveness during a memory encoding task and showed a general (age-invariant) associa-58

tion between neural category differentiation and recognition memory performance. However,59

they did not identify differences in distinctiveness between items that were later remembered60

or not remembered. A suitable approach to unravel the specific association between pattern61

distinctiveness and memory performance would be to examine whether items that are repre-62

sented less distinctly are also those that are less likely to be remembered. One fMRI study by63

Zheng et al. (2017) provided first evidence in this direction, showing that decreased memory64

performance in old age is associated with poorer item-specific representations in the visual65

cortex, even after controlling for differences in activation levels and variance.66

Surprisingly, the hypothesis of the cognitive aging literature suggesting that reduced neural67

specificity underlies cognitive decline is in stark contrast to the prevalent evidence in gene-68

ral memory research that increased similarity is actually advantageous for performance: In69

young adult samples, various studies have shown that the representational similarity between70

different items is positively related to memory performance for these items (Davis et al., 2014;71

Lu et al., 2015; Wagner et al., 2016), which is in line with cognitive and computational models72

(Clark and Gronlund, 1996; Gillund and Shiffrin, 1984). Between-item pattern similarity may73

support memory by capturing regularities across experiences (LaRocque et al., 2013) and by74

giving rise to a sense of familiarity (Davis et al., 2014).75
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To date, most studies have used fMRI to estimate neural representations, prioritizing76

spatial resolution over temporal dynamics of representational patterns. In contrast, time-77

sensitive magneto-/electroencephalography (M/EEG) measurements are able to identify the78

precise time windows and processing stages at which representational similarity supports79

memory performance. Lu et al. (2015) showed that between approximately 420 ms and 58080

ms after stimulus onset, global spatiotemporal EEG pattern similarity was higher for later81

remembered than for forgotten symbols.82

Recent scalp (Kerrén et al., 2018; Michelmann et al., 2016) and intracranial EEG studies83

(Staresina et al., 2016; Zhang et al., 2015) further demonstrated the particular potential of84

frequency-transformed activity patterns in identifying memory-relevant reactivation of item-85

specific signatures. For example, Michelmann et al. (2018) showed that desynchronized low-86

frequency brain oscillations carried stimulus-specific temporal activity patterns during an87

associative memory task. However, there are no previous reports on the relation of the88

similarity between these frequency-transformed activation patterns to later memory success89

for the studied items.90

To our knowledge, the apparent conflict between the observed beneficial effect of global91

similarity in memory studies with young adults, and the potentially detrimental effect of92

decreasing distinctiveness in the aging literature has not been explicitly addressed. Here,93

we aim to resolve the question whether distinctiveness or similarity between different neural94

representations is beneficial for memory performance by a systematic investigation of the rela-95

tion between representational similarity and memory performance in young and older adults.96

For this, we examined the similarity of EEG frequency patterns elicited during encoding of97

scene-word pairs in relation to age and subsequent recall performance.98
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Materials and Methods99

Experimental design100

The research presented here comprises data from two associated studies that investigated age-101

related differences in associative memory encoding, consolidation, and retrieval (Fandakova et102

al., 2018; Muehlroth et al., in press; Sander et al., 2019). Despite subsequent procedural diffe-103

rences, an identical picture–word association task paradigm during which EEG was recorded104

was at the core of both studies. In this task, participants were asked to memorize scene–word105

pairs by applying a previously trained mnemonic imagery strategy. Specifically, they were106

instructed to imagine the scene and word content together in a unique and memorable mental107

image. Stimuli consisted of color photographs of indoor and outdoor scenes randomly pai-108

red with concrete German nouns (4–8 letters). During the initial study phase, scenes and109

words were presented next to each other on a black background for 4 s. After studying a110

pair, participants indicated on a four-point scale how well they were able to integrate the111

presented scene and word. Young and older adults studied 440 and 280 pairs, respectively.112

During the subsequent cued recall phase, scenes served as cues for participants to verbally113

recall the associated word. Recall time was not constrained. After each trial, the correct114

scene–word pair was presented again for 3 s and subjects were instructed to restudy the pair,115

independent of previous retrieval success. This recall and restudy phase was repeated one116

more time for the older adults. Finally, both young and older participants underwent a final117

cued recall round in which no feedback was presented. The number of to-be-studied pairs as118

well as recall repetitions differed between age groups in order to achieve comparable recall119

success of approximately half of the studied items. After each phase, we asked participants120

to indicate on a four-point scale how often they used the instructed imagery strategy or other121

specific memory strategies to memorize a pair. For a detailed description of the study design122

and stimulus selection, see Fandakova et al. (2018).123
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Figure 1: Memory task paradigm (cf. Fandakova et al., 2018). A. In the study phase, participants

were asked to associate 440 (young adults; YA) or 280 (older adults; OA) scene–word pairs using an

imagery strategy. Representational similarity analysis (RSA) was conducted on EEG data during this

phase. B. During the cued recall and feedback phase, the scene was presented as a cue to verbally

recall the associated word. Subsequently, the original pair was presented again for restudy. The cued

recall and feedback phase was performed once for younger and twice for older adults. C. During final

recall, no feedback was provided. Scene–word pairs were sorted into three memory quality categories

based on recall performance in phases B and C (see Figure 2).
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Subjects135

The original sample of study 1 (Fandakova et al., 2018) consisted of 30 healthy young adults136

and 44 healthy older adults. Due to technical failures, one young adult and three older adults137

did not complete the study. Study 2 (Muehlroth et al., in press) involved 34 healthy young138

adults and 41 healthy older adults participated, with 4 younger and 4 older participants139

not completing the experiment for technical reasons. Due to missing or noisy EEG data,140

we additionally excluded 9 younger and 15 older adults, resulting in a total of 50 younger141

adults and 63 older adults across both studies, who are included in the analyses presented142

here (young adults: M (SD)age = 24.3(2.5) years, 19–27 years, 27 female, 23 male; old adults:143

M (SD)age = 70.4(2.6) years, 63–75 years, 33 female, 30 male).144

All participants were right-handed native German speakers, reported normal or corrected-145

to-normal vision, no history of psychiatric or neurological disease, and no use of psychiatric146

medication. We screened older adults with the Mini-Mental State Examination (MMSE;147

Folstein et al., 1975) and none had a value below the threshold of 26 points. Both studies148

were approved by the ethics committee of the Deutsche Gesellschaft für Psychologie and149

took place at the Max Planck Institute for Human Development in Berlin, Germany. All150

participants gave written consent to take part in the experiment.151

Behavioral analysis152

During the cued recall phases, participants had to verbally recall the word associated with153

the presented image. We report the proportion of correctly recalled words. False responses154

occurred rarely and were treated as no responses. Following the rationale of a subsequent155

memory analysis (Paller and Wagner, 2002), we sorted all trials according to whether the156

associated word was successfully recalled during the experiment or not. Items that were not157

remembered after repeated encoding were assumed to have only created a weak memory trace,158

not sufficient for successful recall (although maybe strong enough for successful recognition,159

see Fandakova et al., 2018). Importantly, given the repeated recall phases, we were able to160

further differentiate successfully recalled items and distinguish those that were immediately161

learned from those that were only acquired later in the experiment. We refer to those items as162
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high memory quality and medium memory quality items, respectively (see Figure 2). Older163

adults underwent one additional recall and restudy cycle due to close-to-floor performance164

in the first cycle. To keep the scoring of stimulus pairs as evincing high, medium, or low165

memory quality comparable across age groups, items that were recalled successfully in the166

last recall cycle were divided into those that were also already recalled in the previous cycle167

(high quality) and those that were only remembered in the final recall (medium quality)168

in contrast to never-recalled items (low quality). The few items that were remembered in169

an earlier but not later recall, were excluded from further analyses (see Results and Figure170

4). For both age groups, all EEG analyses were conducted on the EEG activity patterns171

elicited during the first learning phase such that all pairs were novel to the participants and172

no retrieval-related processes could influence the evoked activity patterns.173

EEG recording and preprocessing184

EEG was recorded continuously with BrainVision amplifiers (BrainVision Products GmbH,185

Gilching, Germany) from 61 Ag/Ag-Cl electrodes embedded in an elastic cap. Three addi-186

tional electrodes were placed at the outer canthi (horizontal electrooculography (EOG)) and187

below the left eye (vertical EOG) to monitor eye movements. During recording, all electrodes188

were referenced to the right mastoid electrode, and the left mastoid electrode was recorded as189

an additional channel. The EEG was recorded with a pass-band of 0.1 to 250 Hz and digitized190

with a sampling rate of 1000 Hz. During preparation, electrode impedances were kept below191

5 kΩ.192

EEG data preprocessing was performed with the Fieldtrip software package (develo-193

ped at the F. C. Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands;194

http://fieldtrip.fcdonders.nl; RRID: SCR 004849) and custom MATLAB code (The MathWorks195

Inc., Natick, MA, USA; RRID: SCR 001622). Data were downsampled to 250 Hz and an inde-196

pendent component analysis was used to correct for eye blink, (eye) movement, and heartbeat197

artifacts (Jung et al., 2000). Artifact components were automatically detected, visually chec-198

ked, and removed from the data. For analyses, the EEG was demeaned, re-referenced to199

mathematically linked mastoids, and band-pass filtered (0.2–100 Hz; fourth order Butter-200

worth). Following the FASTER procedure (Nolan et al., 2010), automatic artifact correction201
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Figure 2: Scoring of stimulus pairs into high, medium, or low memory quality categories based on

learning history. For both younger and older adults, items that were correctly recalled in the last

recall cycle (C) as well as the previous (B) were scored as high memory quality items. Pairs that

were solely recalled in the final recall were scored as medium memory quality items. And items that

were never correctly recalled were scored as low memory quality items. Not depicted: Items that

were recalled in the earlier but not later recall were excluded. Older adults performed one more cued

recall and restudy cycle (between A and B) that was not included in item scoring due to close-to-floor

performance. Note that wrong and no responses were treated equally.
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was performed for the remaining artifacts. Excluded channels were interpolated with spheri-202

cal splines (Perrin et al., 1989). Finally, data epochs of 4 seconds were extracted from -1 s to203

3 s with respect to the onset of the scene–word presentation during the study phase (Figure204

1A).205

EEG analysis206

Time-frequency representations (TFRs) of the data were derived using a multitaper approach.207

For the low frequencies (2–20 Hz), we used Hanning tapers with a fixed width of 500 ms,208

resulting in frequency steps of 2 Hz. For higher frequencies (25–100 Hz), we used DPSS209

(discrete prolate spheroidal sequences) tapers with a width of 400 ms in steps of 5 Hz with210

seven Slepian tapers resulting in +/-10 Hz smoothing. In this way, we obtained a TFR for211

each trial and electrode. Trial lengths were reduced to -0.752 s to 3 s relative to stimulus212

onset.213

To counter the effect of intrinsically high correlations between frequency patterns due to214

the 1/frequency power spectrum (Schönauer et al., 2017), we removed the mean background215

noise spectrum from the log-transformed TFRs following previously established procedures216

(i.e., as suggested by the “Better oscillation detection” (BOSC) method; Caplan et al., 2001;217

Kosciessa et al., 2018; Whitten et al., 2011). Because of structured noise, correlations between218

different activity patterns are very high and almost never at or below zero, meaning that the219

true null-distribution is higher than zero. For detailed discussions of these issues (in fMRI),220

see Allefeld et al. (2016); Cai et al. (2016).221

Multivariate EEG analysis222

EEG data were analyzed using representational similarity analysis (RSA; Kriegeskorte et al.,223

2008). RSA assesses the resemblance of patterns of neural activity, with similar patterns224

assumed to represent mutual information. In this study, we investigated between-item repre-225

sentational similarity during the first encoding phase in relation to memory quality. ”Item”226

always refers to a scene–word pair. Figure 3 illustrates the procedure for analyzing the simila-227

rity between stimulus-specific spatiotemporal frequency representations. RSA was conducted228

for each participant and EEG channel independently. Stimuli were grouped according to high,229

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528620doi: bioRxiv preprint 

https://doi.org/10.1101/528620
http://creativecommons.org/licenses/by-nc-nd/4.0/


medium, and low memory quality (see Figure 2). In order to examine whether between-item230

representational similarities differed as a function of memory quality, we correlated the noise-231

corrected and log-transformed frequency patterns of every item with the frequency patterns232

of all other items of the same memory quality. That is, for each participant we ran three simi-233

larity analyses, namely for high, medium, and low memory quality items. In order to use the234

same number of items for each RSA of a given participant, we reduced them to the number of235

items available in the condition with the least items. For example, if there were 50 items with236

high, 180 items with medium, and 210 items with low memory quality for a given participant,237

the number of items used in the RSAs of medium and low quality items was reduced to 50 as238

well. Note that the category containing the fewest items was in most cases the group of high239

memory quality items (except for 6 younger and 6 older participants). We randomly sampled240

the respective number of items from all available trials of the respective memory quality. As241

the actual measure of similarity, we employed pairwise Pearson correlations between the cor-242

responding frequency patterns. In each of these correlations, every pair of frequency vectors243

(with 26 frequency bins) of all time points from the two respective trials were correlated with244

each other (470 time points, from 752 ms before stimulus onset to 3000 ms after stimulus245

onset). The resulting time-time similarity matrices were Fisher ( z)-transformed. In order to246

prevent bias towards the randomly picked items, the item sampling was repeated 20 times.247

Finally, the matrices were averaged to obtain one between-item similarity matrix for each248

scene–word pair, which indicates the similarity of this pair to all other pairs of the same me-249

mory quality. The similarity matrices of all items within one memory quality were then again250

averaged to obtain the mean similarity matrices between all high, medium, and low memory251

quality items, respectively. This procedure was performed separately for each of the 60 scalp252

electrodes.253

The resulting similarity matrices contain the time dimension on both the x- and the y-272

axis, revealing the frequency pattern resemblance not only at identical within-trial time points273

(diagonal) but also between all combinations of time points (in analogy to the temporal274

generalization method; Cichy et al., 2014; King and Dehaene, 2014). This enables us to275

identify whether certain parts of the memory representations were similar to each other at276

different times during encoding of the respective scene–word pairs.277
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Figure 3: Spectral representational similarity analysis methodology. A. The frequency vector from

every time point (i.e., column) of the noise-corrected and log-transformed time-frequency pattern (from

one electrode) corresponding to stimulus 1 (bottom) is Pearson-correlated with the vectors from every

time point of stimulus 2 (left; tilted). For illustration, one example vector of stimulus 1 (ts1) and one

example vector of stimulus 2 (ts2) are highlighted. Correlating these two vectors gives one correlation

coefficient, i.e., one coordinate (highlighted with black box) on a matrix with time on both axes.

Computing all pairwise time vector correlations results in a time-time similarity matrix representing the

similarity of those two frequency patterns at all time point combinations. This procedure is repeated

for all items of a certain memory quality (i.e., similarity of stimulus 1 with all others, stimulus 2 with

all others, etc.). B. Averaging across all similarity matrices yields the mean similarity matrix showing

the pattern similarity among all items of the same memory quality. Only one triangle and the diagonal

of the matrix are relevant because the similarity of every two frequency patterns is computed twice,

resulting in an identical correlation coefficient on both sides of the diagonal. Similarity is quantified as

the Fisher z -transformed Pearson correlation coefficient (z ’). Not depicted: This procedure is repeated

for all 60 electrodes, the three memory quality categories, and all subjects.
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Because the similarity of any two items is computed twice and thus the identical correlation278

coefficients appear twice, namely on both sides of the diagonal, the similarity matrix was279

reduced to only one of the triangles plus the diagonal.280

Representational similarity analyses were computed parallelized on a high-performance281

computing cluster. All computations and statistics were conducted with Matlab (The MathWorks,282

Inc., RRID: SCR 001622) versions R2014b or R2016b. The Matlab-based Fieldtrip Toolbox283

(Maris and Oostenveld, 2007; Oostenveld et al., 2011) (Maris Oostenveld, 2007; Oostenveld et284

al., 2011; RRID: SCR 004849) was used for performing time-frequency transformations and285

cluster-based permutation analyses.286

Statistical analysis287

Memory performance and strategy use288

We computed two-sided independent samples t-tests in order to test for age differences in289

the proportion of items within each memory quality category (high, medium, low, forgot-290

ten/excluded) and the proportion of items remembered in the final recall task. To compare291

younger and older adults’ strategy use in the first encoding phase, we used the Wilcoxon rank292

sum test to examine differences in their median responses of how often they used the imagery293

strategy.294

Differences in representational similarity295

Within both groups, we tested for differences in the representational similarity matrices296

between different memory quality categories by conducting non-parametric, cluster-based,297

random permutation tests (Fieldtrip Toolbox; Maris and Oostenveld, 2007; Oostenveld et al.,298

2011; RRID: SCR 004849). Univariate two-sided, dependent samples regression coefficient t-299

statistics were calculated for the time-time similarity matrices at all channels. Clusters were300

formed by grouping neighboring channel × time × time samples with a p-value below 0.05301

(spatially and temporally). The respective test statistic was then determined as the sum of302

all t-values within a cluster. The Monte Carlo method was used to compute the reference303

distribution for the summed cluster-level t-values. Samples were repeatedly (100 ×) assigned304
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into three groups and the differences between these random groups were contrasted to the305

differences between the three actual conditions (high, medium, and low memory quality). For306

every repetition the t-statistic was computed and the t-values summed for each cluster. The307

t-values were z -transformed for further analysis.308

In addition to the linear regression of all three memory qualities mentioned above, we also309

compared each pair of memory quality categories using a two-sided, dependent samples t-test310

in the permutation analysis.311

We regarded clusters whose test statistic exceeded the 97.5th percentile for its respective312

reference probability distribution as significant. If such clusters were obtained, we furthermore313

assessed the time-time intervals and the topographic distributions of the channels showing314

when and where, respectively, the differences were reliable. The clusters that were identified315

for each age group were further examined for age and memory quality effects (see below). In316

addition, we tested for main age group differences in a separate permutation analysis using317

independent samples t-tests.318

Age and memory quality effects in the identified clusters319

To explore potential age differences more closely, we further investigated the relationship320

between pattern similarity and memory quality by conducting independent samples regression321

coefficient t-statistics for each participant. We then extracted and averaged the individual ( z)-322

transformed regression coefficients within the time-time-electrode clusters that were identified323

in younger and older adults (see above). For both clusters and age groups we performed one-324

sample t-tests to test whether the correlation coefficients come from a distribution with a325

mean different from zero. Furthermore, we tested for differences between the age groups in326

both clusters using independent samples t-tests.327

Results328

Memory performance and strategy use329

During the cued recall phases, participants had to respond verbally with the word they pre-330

viously learned to associate with the presented image. We sorted the trials according to331
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whether recall was successful, and when, into high, medium, and low memory quality items332

(see Methods). The proportion of high memory quality items did not differ between younger333

adults and older adults (M (younger adults) = 0.17, SD(younger adults) = 0.11, M (older334

adults) = 0.18, SD(older adults) = 0.15; t(111) = -0.4, p = 0.69, two-sample t-test; see Fi-335

gure 4). In contrast, the proportion of items with medium memory quality was significantly336

larger for younger than older participants (M (younger adults) = 0.39, SD(younger adults) =337

0.11, M (older adults) = 0.23, SD(older adults) = 0.09; t(111) = 8.48, p = 10-13), while older338

adults had a significantly higher proportion of low memory items (M (younger adults) = 0.43,339

SD(younger adults) = 0.19, M (older adults) = 0.56, SD(older adults) = 0.23; t(111) = -3.31,340

p = 0.0012). Note that in older adults we observed a higher proportion of items that were341

remembered in an early but not later recall phase, i.e., that were forgotten in the course of342

the experiment (M (younger adults) = 0.007, SD(younger adults) = 0.005, M (older adults)343

= 0.025, SD(older adults) = 0.02; t(111) = -7.04, p = 1.6 × 10-10). Those item pairs were344

excluded from further analyses.345

Our experimental procedure was successful in inducing variability in memory performance355

such that both groups could remember approximately half of the studied items: Young adults356

successfully recalled on average 56.64 % (SD = 10.7) and older adults successfully recalled on357

average 41.6 % (SD = 12.06) of the items (440 and 280, respectively). However, our procedure358

did not completely eliminate age differences since young adults still performed significantly359

better than older participants in the final recall task (t(111) = 3.82, p = 0.0002, two-sample360

t-test).361

After the first study phase, we asked participants to indicate on a four-point scale how362

often they had used specific memory strategies for the task (1: almost always, 4: almost never).363

With regard to the imagery strategy, young adults indicated that they used it significantly364

more often than older adults (younger adults: median = 1.5, min = 1, max = 3; older adults:365

median = 2, min = 1, max = 4; z = -5.09, p = 0.0000004, Wilcoxon rank sum test).366

Representational similarity367

Calculation of between-item representational similarity was based on the initial encoding phase368

(Figure 1A). To identify whether high pattern resemblance or high pattern distinctiveness369
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Figure 4: Proportion of item pairs with high, medium, and low memory quality as well as proportion

of excluded items for 50 young adults (YA; blue) and 63 older adults (OA; red). Group distributions

as un-mirrored violin plots (probability density functions), boxplots with means and 95% confidence

intervals, whiskers with 2nd and 98th percentiles, and individual data points (horizontally jittered)

(modified from Allen et al., 2018). Note that the y-axis for excluded items differs from that of the

other categories. YA studied 440 pairs and OA studied 280 pairs.
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during learning was beneficial for later memory success, we sorted all items according to370

subsequent memory performance and correlated the evoked spatiotemporal frequency pattern371

of each item with every other item in the same memory quality category. The resulting mean372

similarity matrices over all channels and scene–word pairs are shown in Figure 5A. These373

matrices display the similarity of the frequency representations at all possible within-trial374

time point combinations (-0.752 s to 3 s relative to stimulus onset at 0). In contrast, the375

diagonals of the similarity matrices (also plotted separately in Figure 5B) only show the376

similarity between items at identical time points and facilitate a visual comparison of the377

time courses of representational similarities for the different memory quality categories and378

age groups. Although this omits much of the similarity information, elevated similarities do379

occur largely along the diagonal. Note that the diagonals are only plotted for illustration380

purposes and all statistical tests were performed on the complete matrices as presented in381

Figure 5A.382

Older adults exhibit generally higher representational similarity than young adults383

Shortly before stimulus onset, similarity increased in both age groups and reached a peak384

around the time of onset (Figure 5A,B). Elevated similarity occurred mainly between iden-385

tical trial time points (diagonal) with slightly more persistent activity (elevated off-diagonal386

similarity) in older adults compared to young adults. Irrespective of later memory success,387

between-item pattern similarity was generally higher in older adults than in young adults388

(averaged across the whole time-time matrix and all 60 channels: M (younger adults) = 0.21,389

SD(younger adults) = 0.065, M (older adults) = 0.25, SD(older adults) = 0.068; 500 cluster390

permutations, p = 0.002).391
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Figure 5: Between-item pattern similarities and statistics. Similarity is quantified as Fisher z -transformed

Pearson correlation coefficient (z ’). On time axes, zero denotes stimulus onset. C and D show results

from cluster-based permutation analyses for each age group, E shows results from individual regression

analyses (see Methods). A. Mean time-time similarity matrices across all 60 channels and items within

each memory quality category (high, medium, low) for all 50 young adults (YA; top) and 63 older adults

(OA; bottom). Note that the scales differ between age groups. B. Diagonals from the time-time similarity

matrices (see A). C. Time-time clusters (masked z -scores) in which the three memory quality categories

differ significantly within each age group (averaged across reliable electrodes, see D). D. Topographic

representations of the electrode clusters that revealed reliable differences between memory quality cate-

gories within each age group (averaged across reliable time windows, see C). E. Z -transformed regression

coefficients extracted from time-time-electrode clusters identified in YA (left) and OA (right) (see C

and D). Group distributions (probability density functions), boxplots with means and 95% confidence

intervals, whiskers with 2nd and 98th percentiles, and individual data points (horizontally jittered) for

YA (blue) and OA (red) (modified from Allen et al., 2018). ( P)-values are given for group differences

within each cluster (independent samples t-tests). Note the difference between z’ (Fisher z-transformed

correlation coefficients) and z (z-transformed regression coefficients).
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Representational similarity differentially affects memory performance of younger and older411

adults412

Within both age groups, we tested for differences in the levels of representational similarity413

between scene–word pairs of different memory quality by conducting linear regressions. We414

controlled for multiple comparisons by using non-parametric cluster-based permutation tests.415

In both age groups we identified a cluster with a Monte Carlo p-value below 0.025, which416

indicates a reliable linear relationship between representational similarity and memory quality417

(young adults: p=0.0099; older adults: p=0.0099; see Figure 5C). Importantly, the direction418

of this relationship differed between groups: while the relation between similarity and memory419

quality was positive in older adults (low < medium < high), it was negative in young adults420

(low > medium > high) (Figure 5E).421

The cluster obtained in older adults included most of the diagonal from 50 ms to 830 ms422

after stimulus onset and extended off-diagonally to 470 ms before and 1240 ms after stimulus423

onset (Figure 5C). Elevated similarity along the diagonal indicates similarity between neural424

representational patterns at identical trial time points, whereas off-diagonal time windows425

suggest similar activation patterns at different trial time points. The larger the distance of a426

coordinate from the diagonal, the more distant are the compared time points in the respective427

frequency patterns. Differences between memory quality categories were reliable in most (49428

out of 60) occipital, parietal, temporal, and central electrodes in older adults (Figure 5D).429

In contrast to the cluster found in older adults, an off-diagonal cluster was identified430

for young adults, in which low memory quality items displayed significantly more similarity431

than medium and high memory quality items (Figure 5C). Compared to older adults, where432

differences between memory qualities were found to be most pronounced between early and433

neighboring trial time points, i.e., close to the diagonal, the off-diagonal cluster identified in434

young adults indicated that differences occurred at later and more distant trial time points.435

Specifically, differences were found between earlier (450 ms to 1400 ms after stimulus onset)436

and later time points (2640 ms to 2800 ms after onset) and at 34 mainly parietal-occipital437

and central electrodes (Figure 5D). Despite the relatively poor spatial resolution in EEG, the438

large electrode clusters in both young and older adults indicate that memory representations439
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are broadly distributed over the brain rather than specific to a particular region.440

Additional analyses of pairwise comparison of the three memory quality categories instead441

of linear regression resulted in the same significant cluster only for high versus low quality442

items in older adults, and no significant differences among memory quality categories in young443

adults.444

Age and memory quality effects in the identified clusters445

The cluster-based analyses reported above suggested differential memory-related represen-446

tational similarity in younger and older adults. To explore potential age differences more447

closely, we additionally tested for a linear relationship between representational similarity448

and memory quality in each participant by conducting individual linear regressions. We then449

extracted and averaged the individual z -transformed regression coefficients within each time-450

time-electrode cluster (see Figure 5E). In the young-adult cluster only the mean regression451

coefficients of the young adults differed from zero (young adults: t(49) = -3.42, p = 0.0013;452

older adults: t(62) = 1.79, p = 0.08; one-sample t-tests) and vice versa in the older-adult453

cluster (young adults: t(49) = 0.75, p = 0.46; older adults: t(62) = 5.27, p = 0.000002). In454

both clusters the regression coefficients differed significantly between younger and older adults455

(young-adult cluster: M (young adults) = -0.27, SD(young adults) = 0.57, M (older adults)456

= 0.086, SD(older adults) = 0.38, t(111) = -4.03, p = 0.0001; older-adults cluster: M (young457

adults) = 0.058, SD(young adults) = 0.55, M (older adults) = 0.29, SD(older adults) = 0.43,458

t(111) = -2.5, p = 0.014; independent samples t-tests) implying that age differences do exist459

in the relation between representational similarity and memory quality in these clusters.460
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Discussion461

The present study aimed to reconcile an evident tension between theories relating neural pat-462

tern similarity and memory in the fields of cognitive neuroscience and cognitive aging research.463

We addressed the central question whether high pattern resemblance or high pattern distincti-464

veness benefits memory performance. To this end, we computed the similarity between the465

EEG frequency patterns elicited during encoding of different scene–word pairs at each elec-466

trode and related this measure of between-pair similarity to subsequent recall performance of467

younger and older adults.468

For older adults, between-item representational similarity was generally higher compa-469

red to young adults, supporting the “dedifferentiation” hypothesis of declining neural dis-470

tinctiveness with age (Baltes and Lindenberger, 1997; Carp et al., 2011; Li et al., 2004;471

Park et al., 2004; Park et al., 2012; Payer et al., 2006; St-Laurent et al., 2014). Previous stu-472

dies suggested that the loss of neural specificity in old age may underlie age-related cognitive473

impairments. This was, for example, supported by the finding that the level of neural dis-474

tinctiveness and fluid intelligence were correlated (Park et al., 2010). However, most previous475

studies were not able to directly link neural item specificity with study participants’ perfor-476

mance since memory for the items themselves was not assessed. By measuring between-item477

representational similarity during the encoding phase of an associative memory task and sor-478

ting the trials according to subsequent memory performance, we were able to directly relate479

measures of neural distinctiveness during encoding to later recall success.480

Specifically, based on learning history, we sorted the studied scene-word pairs into high,481

medium, and low memory quality items and, on the within-subject level, measured the linear482

relationship between the level of representational similarity and memory quality. Impor-483

tantly, the direction of this relationship as well as the time window in which representational484

similarity mattered for subsequent memory performance differed between younger and older485

participants: For older adults, high similarity early during encoding (470 ms before stimulus486

onset to 1240 ms after stimulus onset) benefited memory performance. For young adults,487

low similarity between earlier (450 ms to 1400 ms after stimulus onset) and later time points488

during encoding (2640 ms to 2800 ms after onset) benefited memory performance.489
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That is, although older adults remembered significantly fewer items and revealed overall490

higher between-item similarity than younger adults, on the within-subject level, item represen-491

tations with high similarity to other items were actually those that older adults remembered492

best. Hence, while the age group differences replicated previous reports of increased neural493

similarity in older compared to younger adults, the within-person direction of the similarity-494

memory association among older adults corroborates cognitive models of memory (Clark and495

Gronlund, 1996; Gillund and Shiffrin, 1984; Hintzman, 1988) as well as previous memory496

studies with younger adults. These studies showed that higher similarity between different497

item representations (often called ‘global similarity’) is beneficial for subsequent recognition498

memory (LaRocque et al., 2013; Lu et al., 2015; Ye et al., 2016), memory confidence and499

categorization (Davis et al., 2014), fear memory (Visser et al., 2013), and associative memory500

formation (Wagner et al., 2016).501

FMRI experiments located this beneficial effect of representational similarity in medial502

temporal lobe regions, whereas in the hippocampus, pattern distinctiveness supported me-503

mory (LaRocque et al., 2013). Indeed, impaired pattern separation computations in the504

hippocampus were reported for older adults (Shing et al., 2011; Wilson et al., 2006; Yassa505

et al., 2011) . While high pattern distinctiveness may be beneficial for memory performance506

to prevent false memories, high pattern similarity may support mnemonic decisions by cap-507

turing regularities across experiences (LaRocque et al., 2013) and by giving rise to a feeling508

of familiarity (Davis et al., 2014). Higher pattern similarity may also reflect more consistent509

processing that facilitates associative memory formation (Wagner et al., 2016). Strikingly, a510

tendency for more generalized memories (Koutstaal and Schacter, 1997; Koutstaal et al., 2001;511

Tun et al., 1998) and a stronger reliance on familiarity (Light et al., 2000; Prull et al., 2006;512

Yonelinas, 2002) is indeed often reported for older adults. Our findings suggest that these513

behavioral patterns result from an overall increased neural similarity.514

Surprisingly, although for older adults items that were successfully learned also showed515

higher pattern similarity, we did not identify this beneficial effect of pattern similarity in516

young adults. Given that most of the studies that reported this effect in young adult samples517

tested recognition memory (Davis et al., 2014; LaRocque et al., 2013; Lu et al., 2015; Ye et518

al., 2016), the benefit may be less pronounced in (cued) recall tasks (but compare (Wagner519
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et al., 2016) who used a picture–location association task). Whereas a sense of familiarity as520

a consequence of high pattern similarity (Davis et al., 2014; Gillund and Shiffrin, 1984) can521

be sufficient for successful recognition, recall typically requires retrieval of specific details of522

the studied items (Craik and Tulving, 1975). Therefore, the beneficial effects of high pattern523

similarity may be identified more easily in pure recognition memory tasks and/or participant524

groups who base their mnemonic decisions more strongly on familiarity signals, such as older525

adults.526

The observed age group differences are in line with previous suggestions that external sti-527

muli exert a stronger drive on neural processing in older than in younger adults (Lindenberger528

and Mayr, 2014; Sander et al., 2012; Werkle-Bergner et al., 2012). In line with the “load-shift”529

model of executive functioning in aging (Velanova et al., 2007), the high, externally trigge-530

red similarity of scene–word pairs may have helped older adults to memorize pairs based on531

familiarity. At the same time it may have impaired their ability to form differentiated mne-532

monic representations early on. The resulting burden on late selection processes might have533

impaired older adults’ ability to engage elaboration mechanisms supporting the formation of534

distinctive memories. By contrast, the advantage of reduced similarity in younger adults may535

hint at their ability to engage elaborative mechanisms supporting future recall of detailed536

mnemonic information, as observed in the off-diagonal effect. In sum, we suggest that older537

adults’ advantage of high between-pair representational similarity early in the trial may stem538

from a reliance on familiarity-based remembering, while younger adults exploited more recall-539

based strategies, capitalizing on a higher capacity to form discrete representations later in540

the trial. We would like to speculate that the benefit of distinct neural activation patterns is541

especially prominent in the deployed task, in which participants were explicitly instructed to542

form very distinct mental images of the corresponding scene–word pair. Although older adults543

were extensively trained in using the imagery technique of forming salient mental images that544

integrate the associated picture and word, the post-encoding strategy questionnaire showed545

that they utilized this strategy less frequently than young adults. This may explain their546

lower recall performance despite having studied fewer pairs and having more opportunity to547

rehearse them. This conjecture is supported by previous research showing that older adults548

continue to use other mnemonic strategies even though they have learned about the benefits549
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of imagery (Hertzog et al., 2012).550

So far, the prevailing available evidence on the relationship between representational simi-551

larity and memory performance has been based on fMRI studies and therefore lacks insights552

into the temporal dynamics of pattern similarity during the formation of memory represen-553

tations. Here, we demonstrate the advantage of dissociating different parts within the trial554

time course that reveal distinctions in the way representational similarity relates to memory555

performance of younger and older adults.556

An open question is how between-item similarity links to item-specific representational557

stability (across item repetitions or between encoding and retrieval). Recent research suggests558

that representational stability benefits memory performance (Lu et al., 2015; Xue, 2018; Xue559

et al., 2010) and declines in old age (St-Laurent et al., 2014; Zheng et al., 2017). Understanding560

the mutual influences of between-item similarity and representational stability may be crucial561

to complete our comprehension of how memories are represented in the brain across the562

lifespan.563

In summary, we provide critical new evidence that the often observed between-subject564

effect of generally higher similarity between neural representations in older adults does not565

predict their future memory success besides the fact that they perform worse than young566

adults who exhibit generally lower pattern similarity. Instead, on the within-subject level,567

older adults best remembered the items with the highest peak in pattern similarity early du-568

ring encoding. Moreover, we show that young adults benefited from eliciting distinct memory569

representations later during the encoding trial, which presumably reflects the implementation570

of the imagery strategy for scene–word binding. The work presented here extends our know-571

ledge about between-item pattern similarity as a memory-relevant representational property.572

In particular it shows how its relation to cognitive performance may change in the course of573

aging.574
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