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Abstract 

Word familiarity and predictive context facilitate visual word processing, leading to faster 

recognition times and reduced neuronal responses. Previously, models with and without top-

down connections, including lexical-semantic, pre-lexical (e.g., orthographic/ phonological), 

and visual processing levels were successful in accounting for these facilitation effects. Here 

we systematically assessed context-based facilitation with a repetition priming task and 

explicitly dissociated pre-lexical and lexical processing levels using a pseudoword 

familiarization procedure. Experiment 1 investigated the temporal dynamics of neuronal 

facilitation effects with magnetoencephalography (MEG; N=38 human participants) while 

Experiment 2 assessed behavioral facilitation effects (N=24 human participants). Across all 

stimulus conditions, MEG demonstrated context-based facilitation across multiple time 

windows starting at 100 ms, in occipital brain areas. This finding indicates context based-

facilitation at an early visual processing level. In both experiments, we furthermore found an 

interaction of context and lexical familiarity, such that stimuli with associated meaning 

showed the strongest context-dependent facilitation in brain activation and behavior. Using 

MEG, this facilitation effect could be localized to the left anterior temporal lobe at around 

400 ms, indicating within-level (i.e., exclusively lexical-semantic) facilitation but no top-

down effects on earlier processing stages. Increased pre-lexical familiarity (in pseudowords 

familiarized utilizing training) did not enhance or reduce context effects significantly. We 

conclude that context based-facilitation is achieved within visual and lexical processing 

levels. Finally, by testing alternative hypotheses derived from mechanistic accounts of 

repetition suppression, we suggest that the facilitatory context effects found here are 

implemented using a predictive coding mechanism. 
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Significance Statement 

The goal of reading is to derive meaning from script. This highly automatized process 

benefits from facilitation depending on word familiarity and text context. Facilitation might 

occur exclusively within each level of word processing (i.e., visual, pre-lexical, and/or 

lexical-semantic) but could alternatively also propagate in a top-down manner from higher to 

lower levels. To test the relevance of these two alternative accounts at each processing level, 

we combined a pseudoword learning approach controlling for letter string familiarity with 

repetition priming. We found enhanced context-based facilitation at the lexical-semantic but 

not pre-lexical processing stage, and no evidence of top-down facilitation from lexical-

semantic to earlier word recognition processes. We also identified predictive coding as the 

most likely mechanism underlying within-level context-based facilitation. 
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1  Introduction 

Efficient reading relies on automatized visual word recognition (Rayner, 1998), which in turn 

involves visual-perceptual, pre-lexical orthographic and phonological, and subsequent 

lexical-semantic processing levels (e.g., Carreiras et al., 2014; Coltheart et al., 2001). 

Efficiency in reading depends mainly on our familiarity with the units of language (e.g., Gagl 

et al., 2015; Zoccolotti et al., 2008) and on facilitation that arises from the predictive nature 

of linguistic contexts during natural reading (e.g., Kliegl et al., 2006). Contextual facilitation 

results in reduced brain activation, most prominently of the N400, a component of the event-

related brain potential (ERP) peaking ~400 ms after word onset. The N400 reduction has 

typically been interpreted as reflecting facilitated processing at the lexical-semantic level of 

linguistic representation (see Kutas and Federmeier, 2011; Lau et al., 2008; for reviews). In 

line with this assumption, computational models like the strictly bottom-up sequential model 

of Laszlo and Armstrong (2014) successfully account for context-dependent N400 reduction 

effects by allowing neuronal fatigue within processing levels. Alternatively, however, it has 

also been proposed that contextual information (e.g., at the lexical-semantic level) can 

facilitate earlier stages of word recognition in a recurrent, top-down manner (see, e.g., 

Carreiras et al., 2014, for review). Fig. 1a visualizes these competing accounts of context 

effects on word recognition. Thus, the current model architectures disagree on the 

implementation of context-based facilitation as either within a processing level or top-down 

from higher processing levels. 

 Computationally, Laszlo and Armstrong (2014) implemented context-based facilitation 

by a fatigue mechanism, assuming that recently active neurons are less likely to fire again 

(Grill-Spector et al., 2006). However, findings from semantic priming (e.g., Lau et al., 

2013b) indicate an alternative mechanism, i.e., predictive coding, which assumes the 

suppression of perceptual signals that are consistent with context-based internally generated 

expectations about upcoming input (Friston, 2005). According to this model, one processes 
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only the residual, i.e., unpredicted part of the input, which accounts for increased N400 

activation when contextual expectations are violated. A third alternative would be sharpening 

(Grill-Spector et al., 2006), which assumes a reduction of neuronal firing only when neurons 

code the input suboptimally, thereby increasing the reliability of dissociating between inputs 

(e.g., Blank and Davis, 2016; Richter et al.; 2018). To date, we are not aware of a direct 

comparison of the possible mechanisms of context-based facilitation in visual word 

processing. 

  Separation of processing levels in visual word recognition research remains 

challenging. Experimental priming paradigms ensure a high degree of control over context 

factors, but require the matching of large numbers of psycho-linguistic parameters, which is 

difficult (Sassenhagen and Alday, 2016). Alternative regression-based accounts include these 

parameters as covariates, which can be realized in more natural contexts (i.e., sentence 

reading; e.g., Dambacher et al., 2006) but often demands large datasets (e.g., Dufau et al., 

2015). We here propose that some of these problems can be ameliorated by using learning 

paradigms to increase familiarity and to associate information at different levels of linguistic 

representation with previously unfamiliar items (e.g., pseudowords: pronounceable non-

words) in a controlled fashion (e.g., Taylor et al., 2011).  

  Using this strategy, we here dissociate between facilitation at pre-lexical and lexical 

levels of word processing. First, we matched pre-lexical characteristics (phonological length 

and orthographic familiarity) across words and pseudowords, ensuring comparable levels of 

pre-lexical processing difficulty between conditions (cf. Yarkoni et al., 2008). Second, we 

used a learning paradigm to increase pre-lexical familiarity of a subset of pseudowords (cf. 

Glezer et al., 2015) and measured highly time-resolved brain activation using 

magnetoencephalography (MEG; Experiment 1). In a second, behavioral, experiment, we 

also included pseudowords to which meaning was associated. To manipulate context-based 

facilitation, we used repetition priming (see DeLong et al., 2014, for a discussion of priming 
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as context manipulation). Fig. 1b shows, in detail, the expected electrophysiological and 

behavioral responses reflecting context-based facilitation at visual, pre-lexical, and lexical-

semantic processing levels. For example, we expect an interaction of lexical-semantic 

familiarity (presence vs. absence of lexical-semantic information) and context (prime/without 

context vs. target/with context) reflected by a stronger activation decrease (repetition 

suppression) for words in contrast to meaningless pseudowords (as shown by, e.g., Almeida 

and Poeppel, 2013). If restricted to the N400 time window, this pattern would indicate that 

facilitation is implemented exclusively at the lexical-semantic level, whereas earlier effects 

would suggest top-down facilitation from lexical-semantic to earlier processing stages. 

Source localization of these effects will help to specify these conclusions further. Finally, we 

aim at clarifying the mechanistic implementation of context-based facilitation, by comparing 

predictions from predictive coding, sharpening, and fatigue (see Fig. 1c). 
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Figure 1. Model assumptions and predictions. a) A simplified architecture of visual word 
recognition (adapted from Carreiras et al., 2014) including expectations of 'when' (cf. Barber 
and Kutas, 2007) and 'where' in the brain the respective processes are implemented. Gray 
lines symbolize potential implementations of context-based facilitation either as within-level 
mechanism assumed in strictly bottom-up accounts (e.g., Laszlo and Armstrong, 2014) or, 
additionally, as a recursive top-down influence on hierarchically lower processing levels. b) 
Schematic representation of expected neuronal repetition suppression (left and central 
panels) and behavioral priming effects (right) with likely modulations by pre-lexical and 
lexical-semantic familiarity. We expect a reduction of neuronal activation and response times 
between primes and identical targets. At the lowest, i.e., visual processing level, we expect 
no familiarity modulation since all letter strings were a priori visually similar (left panel). For 
pseudowords (PW) that were familiarized through repeated exposure but without learning a 
new meaning, we expect selectively stronger neural repetition suppression in a ‘pre-lexical 
time window’ around 150 and 300 ms (central left panel). Finding this interaction additionally 
at earlier time points would be evidence for a facilitatory top-down influence of pre-lexical 
familiarity onto earlier visual processing stages. Note that as a manipulation check, we also 
expect that familiar pseudowords should elicit increased activation already at the prime at 
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the expected regions (Gagl et al., 2016; Laszlo et al., 2014). At the level of lexical-semantic 
processing, we expect stronger repetition suppression for words compared to meaningless 
pseudowords (central right panel) at around 400 ms and, in case of top-down modulation, 
also in previous time windows. During prime processing, activation should be highest for 
words reflecting lexical-semantic processing (e.g., Rabovsky et al., 2012). In behavior, we 
expect stronger priming effects for words and familiar pseudowords compared to novel 
pseudowords, which would indicate that both pre-lexical and lexical-semantic familiarity 
increase context-based facilitation. c) Schematic visualization of expectations for fatigue, 
sharpening, and predictive coding mechanisms, shown for the N400 time window (i.e., 
lexical-semantic processing) and the contrast of words vs. novel pseudowords. The left 
panel shows an activation pattern reflecting a fatigue mechanism. This account assumes 
that the more activation is elicited on the prime (i.e., more semantic processing), the more 
neurons are ‘exhausted’, resulting in a stronger reduction for words vs. pseudowords. 
Sharpening (2nd panel from left) expects a reduction of irrelevant (i.e., noisy) 
representations, thereby amplifying the signal. Consequently, neuronal repetition 
suppression should be weaker for words reflecting a focus of processing resources on 
informative word representations and, thus, should reduce activations selectively for 
pseudowords (e.g., Kok et al.; 2012). Predictive coding (two right panels) assumes a 
suppression of expected signals from the input. Thus, one would expect a suppression of 
the predictable signal rather than of the noise (e.g., Blank and Davis; 2016). For words, the 
additional lexical information can be used to predict the future target, resulting in stronger 
repetition suppression compared to pseudowords. The similar patterns for fatigue and 
predictive coding can be differentiated based on the probability with which identical prime-
target pairs occur (see Grotheer and Kovács, 2014), which we implemented in Experiment 2. 
For predictive coding, one would expect stronger repetition suppression with higher 
repetition-probability, whereas the fatigue account makes no differential predictions 
depending on repetition-probability. 
 

 

 

2  Experiment 1: Magnetoencephalography 

In the first experiment, we investigated pre-lexical vs. lexical-semantic contributions to 

context-based facilitation in visual word recognition at a neuronal level, using 

magnetoencephalography (MEG). Pre-lexical properties (orthographic Levenshtein distance/ 

OLD20; Yarkoni et al., 2008) were matched between words and both pseudoword groups 

(i.e., familiarized vs. novel), so that a priori, comparable levels of pre-lexical familiarity 

should lead to similar levels of pre-lexical activation across all three stimulus groups (as 

expected from, e.g., implementation of the MROM model: Grainger and Jacobs, 1996). 

However, the familiarization training increases the pre-lexical familiarity with the trained 

pseudowords. We expected effects of pre-lexical familiarity, i.e., increased activation of 

event-related fields (ERFs) for familiar in contrast to novel pseudowords (Gagl et al., 2016; 
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Laszlo et al., 2014), and lexical familiarity, i.e., increased activation for words in contrast to 

novel pseudowords (cf. Rabovsky et al., 2012), irrespective of context. As an effect on 

context, we expected stronger neuronal repetition suppression for familiarized pseudowords 

compared to novel pseudowords and words on the pre-lexical level (see Fig. 1b central left 

panel) and stronger repetition suppression for words in contrast to the two pseudoword 

groups at the lexical level (see Fig. 1b central right panel). If we find this pattern, expected 

for pre-lexical processing, from 150-300 ms at, e.g., left fusiform regions, one can assume 

within-level context-based facilitation. One could come to a similar conclusion for lexical 

processing when the interaction pattern described above is found within the N400 time 

window at, e.g., left anterior temporal regions. Finding a similar pattern at earlier time 

windows would indicate top-down context-based facilitation. 

 

2.1  Methods  

2.1.1  Participants  

38 healthy native speakers of German (26 females, mean age 23.0±2.8 years, range 18-29 

years) recruited from university campuses participated in familiarization procedures and 

MEG recordings and were included in the final sensor level analyses. All participants were 

right-handed as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971), had 

normal or corrected-to-normal vision, and normal reading abilities as assessed with an adult 

version of the Salzburg Reading Screening (unpublished adult version of Mayringer and 

Wimmer, 2003). 19 further participants were excluded at different stages of the experimental 

procedure, due to the following reasons: Low reading skills (i.e., reading test score below 16
th 

percentile; N = 5), insufficient performance during pseudoword familiarization (i.e., accuracy 

for to-be-familiarized pseudowords < 50 % in the final learning session; N = 2), self-reported 

developmental speech disorder (N = 1), technical artifacts during the MEG measurement (N 

= 4), insufficient number of trials after artifact rejection (i.e., participants with < 15 repetition 
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trials in at least one condition, outliers defined as >1.5 times below the lower quartile range 

of the number of valid trials across all participants and familiarity conditions; N = 2), 

contraindication to MEG measurement (N = 1, participant with retainer which might cause 

artifacts in MEG data), or drop out by choice of participants (N = 4, participants did not 

finalize the experimental procedure). All participants gave written informed consent 

according to procedures approved by the local ethics committees (University Clinic of 

Goethe University Frankfurt, Germany; application N° 107/15 and Department of 

Psychology, Goethe University Frankfurt, Germany; application N° 2015-229) and received 

10 € per hour or course credit as compensation.  

 

2.1.2  Stimuli and presentation procedure 

Words and pseudowords consisted of five letters, with the first letter in uppercase following 

convention for German nouns. Pseudowords were generated by the Wuggy software 

(Keuleers and Brysbaert, 2010), conserving the phonological (i.e., sub-syllabic) structure of 

the input words; all pseudowords were pronounceable. Estimates of word frequency and 

orthographic Levenshtein distance 20 (OLD20; Yarkoni et al., 2008) were based on the 

SUBTLEX-DE database (Brysbaert et al., 2011). A complete list of stimuli including 

estimated variables will be made available at OSF. 

 Sixty German nouns (logarithmic word frequency: mean ± standard error = 2.14 ± 

0.12, range 0.00 to 4.03) and 120 pronounceable pseudowords were presented twice during 

MEG acquisition. In addition, 80 catch trials were presented (see below). Pseudowords were 

divided into two sets of 60 items, such that both pseudoword lists and the set of words were 

matched on orthographic similarity (OLD20; group means: ± one standard deviation: 1.825 ± 

0.013; 1.717 ± 0.026; 1.743 ± 0.027) and number of syllables (1.817 ± 0.050; 1.95 ± 0.028; 

1.933 ± 0.032; see Table 1 for stimulus characteristics). Despite the high similarity of the 

word characteristics between groups, these characteristics were included in all post hoc linear 
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mixed models (LMMs) to account for potential confounds from the parameters (see analysis 

section for details). Participants were familiarized with 60 pseudowords before the actual 

repetition priming task was conducted in the MEG (see details of the familiarization 

procedure below). The second group of pseudowords was never seen by the participants 

before the MEG experiment. In addition, four further lists of 120 pseudowords each were 

generated as fillers for the familiarization procedure (one list per session).   

 Stimuli were presented using Experiment Builder software (SR-Research Ltd., 

Ottawa, Ontario, Canada). Words and pseudowords were presented in black bold Courier 

New font (14 pt.) in front of a white background. In the behavioral sessions, stimuli were 

presented on an LCD monitor with a refresh rate of 60 Hz, while during the MEG session, 

stimuli were projected with a refresh rate of 60 Hz onto a translucent screen. 

 

2.1.3 Pseudoword Familiarization 

Participants visited the lab on the two days prior to the MEG experiment, and during each 

visit completed two familiarization sessions of about 20 min length. The two previous days 

were chosen to take advantage of sleep consolidation effects (James et al., 2017). Each 

familiarization session started with reading aloud the pseudowords from a printed list. 

Reading errors were documented (mean across all sessions: 0.7 %). Subsequently, 

participants performed a computer-based old/new recognition task in which the to-be-

familiarized pseudowords were presented two times per session, randomly intermingled with 

a new set of 120 filler pseudowords for every session (total of 480 filler pseudowords across 

all four sessions). For every pseudoword, participants had to indicate by button press as fast 

and accurately as possible, if it was familiar to them or not. Pseudowords were preceded by 

two black vertical bars displayed above and below the center of the screen where participants 

were asked to fixate (500 ms; Fig. 2a), and presentation was terminated with the button press.  

 Linear mixed model (LMM) analyses with session (centered and z-transformed) as 
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fixed effect and participant and item as random effects on the intercept were performed with 

the lme4 package (Bates et al., 2015) in R, version 3.4.1, 2017-06-30 (R Development Core 

Team, 2008). All effects with t > 2, reflecting that the effect differs from zero by more than 

two standard errors, were considered significant (note that p-values cannot be computed in a 

reasonable way in the LMM approach; see, e.g., Kliegl et al., 2011). Note that for one 

participant, data of Session 3 and 4 could not be saved due to technical issues. Old/new 

response sensitivity indices d’ (Green and Swets, 1966) significantly increased across 

familiarization sessions from 1.15 in Session 1 to 2.96 in Session 4 (see Fig. 3a; estimate = 

0.66, SE = 0.039, t = 17.17; pairwise tests between subsequent sessions: all t’s > 5; see 

Extended Data Fig. 3-1 for details). This demonstrated that participants improved across 

sessions in distinguishing between familiar and novel (i.e., filler) pseudowords. Participants 

reached a high performance in the final session, with accuracies ranging between 70.0 and 

99.2 % for familiar and between 59.2 and 99.2 % for filler pseudowords (Fig. 3b). Based on 

the strong improvement in sensitivity and the high performance in the final session, we 

conclude that pre-lexical familiarization of the trained pseudowords was successful.  
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Figure 2. Experimental procedures. (a) For the pseudoword familiarization procedure of 

Experiment 1, in each learning session, 60 pseudowords were presented until response, 

intermingled by novel filler pseudowords, in an old/new recognition task. 500 ms before 

stimulus onset, two vertical bars indicated the center of the screen where participants 

were asked to fixate. The inter-trial interval was 2,000 ms. (b) During MEG recording, 

participants performed a repetition priming task. Each trial consisted of a sequence of two 

letter strings (prime and target) presented for 800 ms each, separated by an interval of 

800 ms during which a string of five hash marks was presented. Letter strings could be 

words, familiarized pseudowords, or novel pseudowords (120 trials each regarding the 

prime). 75 % of trials were repetition trials, i.e. prime and target were identical (left). The 

remaining 25 % were non-repetition trials in which two different letter strings were 

presented (middle). In this case, prime and target could be from the same condition or 

from two different conditions, with all combinations of conditions appearing equally often. 

Participants were instructed to silently read presented letter strings and respond only to 

rare catch trials (right). Before onset of the prime, two black vertical bars presented for 

800 – 1,000 ms indicated the center of the screen where participants were asked to fixate. 

After presentation of the target, two grey vertical bars were presented for 1,000 ms, 

indicating a blinking period of 1,500 ms starting from onset of the bars. Before the onset of 

the next trial, a blank screen was presented for the remainder of the blinking period. (c) In 

Experiment 2, a paired-association task was used for familiarization of pseudowords with 

and without semantics. Pseudowords were presented for 800 ms, followed by the 

presentation of an object image until button press (maximally 1,500 ms). During the inter-

trial interval of 1,000 ms, two vertical bars indicated the center of the screen where 

participants were asked to fixate. In the semantic condition, there was a reliable 

association between object and pseudoword. In the familiarization only condition, in 

contrast, pseudowords and objects were randomly paired so that each pair occurred only 

once. (d) In the subsequent naming task, each pseudoword from the familiarization 
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conditions with and without semantic associations was presented once. Participants 

named the object they associated with each pseudoword, or responded “next” in case 

they did not associate a meaning with a pseudoword. Before each pseudoword 

presentation, two vertical bars framing the center of the screen were presented until 

button press by the experimenter. (e) The repetition priming task involved in each trial a 

sequence of two letter strings presented for 800 ms each, separated by an interval of 800 

ms during which five hash marks were displayed. The hash mark string was also 

presented for 800 ms before the onset of the first letter string. Letter strings could be 

words, familiarized pseudowords with and familiarized pseudowords without semantics, or 

novel pseudowords (180 trials each regarding the prime). Repetition probability was 

varied across blocks between 25, 50, and 75 %. Participants were instructed to silently 

read presented letter strings and respond to the target whether they had an explicit 

semantic association with it, or not. During the inter-trial interval of 800 – 1,200 ms, two 

vertical bars indicated the center of the screen where participants were asked to fixate.  
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Figure 3. Behavioral results of familiarization procedures. a), b) Old/new recognition task  

(Experiment 1). c), d) Paired-association task (Experiment 2). e, f) Naming task 

(Experiment 2). Left, sensitivity indices d’ across all sessions. Right, accuracy in the final 

session. Colored dots and lines represent individual participants. Statistical results can be 

found in Extended Data Fig. 3-1. 
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2.1.4  Repetition Priming  

The repetition priming task during MEG recording was conducted on day 3 and included 

words, familiarized pseudowords, and novel pseudowords. At the start of each trial, 

participants had to fixate between two vertical black bars presented above and below the 

center of the screen (analogous to the familiarization procedure; cf. Fig. 2b). Stimulus 

presentation was initiated after an eye-fixation to the cued region was detected by an MEG 

compatible eye-tracker (Eyelink CL 1000, SR Research Ltd., Ottawa, ON, Canada), and 

comprised the successive presentation of two letter strings (prime and target) for 800 ms 

each, separated by an interval of 800 ms during which a string of five hash marks was shown. 

Both letter strings had to be read silently; the task served only to maintain attention and 

required a button press to catch trials, i.e., the word Taste (Engl.: button) in either the first, 

second, or both positions. The silent reading task was chosen to avoid contaminating the 

neuronal response to words with motor responses; catch trials were excluded from analysis. 

The explicit fixation control before stimulus presentation assured that eyes were open and 

directed towards the position where the stimulus was presented. Response hands were 

counterbalanced across participants and responses were recorded using a fiber optic response 

pad (LUMItouch; Photon Control Inc., Burnaby, BC, Canada). 100 ms after target offset, 

grey vertical bars were presented for 100 ms, indicating that participants were allowed to 

blink for a period of 1,000 ms. Stimuli were presented at a viewing distance of 51 cm 

yielding horizontal visual angles of about 0.3° per letter.  

The 60 letter strings per condition (words, familiar, and novel pseudowords) were each 

presented in two trials, once during each half of the experiment. As a consequence, we 

presented 120 trials per stimulus condition adding up to 360 trials. 75% (i.e., 270) of these 

trials were repetition trials, allowing the investigation of familiarity effects in a highly 

predictive context. The remaining 25% (i.e., 90) trials were non-repetition trials, in which 

each possible combination of words, familiarized, and novel pseudowords appeared equally 
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often, i.e., 10 times. Also, we presented 80 catch trials resulting in a total of 440 trials. The 

repetition priming task lasted about 40 min, divided into three blocks separated by breaks of 

about 5 min. 

 

2.1.5  MEG data acquisition  

MEG datasets were acquired in accordance with guidelines for MEG recordings (Gross et al., 

2013), using a 275 sensor whole-head system (Omega 2005; VSM MedTech Ltd., Coquitlan, 

BC, Canada). Six sensors (MLF66, MLP31, MRF22, MRF24, MRO21, and MZC02) were 

disabled due to technical issues so that 269 sensors remained for data acquisition. Data were 

recorded at a sampling frequency of 1,200 Hz using a synthetic third-order gradiometer 

configuration. Online filtering was performed with fourth-order Butterworth filters with 300 

Hz low pass and 0.1 Hz high pass. Head positions of the participants relative to the 

gradiometer array were recorded continuously by three localization coils placed at the nasion 

and above both ear canal entrances using ear-plugs. Additionally, two electrodes placed 

centrally on each clavicula recorded an electrocardiogram (ECG), while two pairs of 

electrodes placed distal to the outer canthi of both eyes, and above and below the right eye, 

respectively, recorded an electrooculogram (EOG). The impedance of each electrode was 

below 5 kΩ for EOG electrodes and below 20 kΩ for ECG electrodes, measured with an 

electrode impedance meter (Astro-Med GmbH, Rodgau, Germany).  

 

2. 1.6   Structural magnetic resonance image acquisition  

Structural magnetic resonance (MR) images were acquired for 34 participants with a 1.5 T 

Siemens magnetom Allegra scanner (Siemens Medical Systems, Erlangen, Germany) using a 

standard T1 sequence (3D MPRAGE, 176 slices, 1 x 1 x 1 mm voxel size). To enable co-

registration of MR images with MEG data, vitamin E capsules were placed at the positions of 

two of the MEG head localization coils (i.e., above both ear canal entrances using ear-plugs); 
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the nasion could be identified anatomically in structural MR images. Fiducial coordinates 

were identified in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 

 

2.1.7  MEG sensor level analyses  

MEG data were analyzed with FieldTrip (Version 2011 11-21 for preprocessing and Version 

2013 01-06 for all remaining sensor level analyses; http://fieldtrip.fcdonders.nl; Oostenveld 

et al., 2011) under MATLAB (version 2012b, The MathWorks Inc., Natick, MA), except for 

Fig. 4ab, which was realized with MNE-Python (https://martinos.org/mne/stable/index.html; 

Gramfort et al., 2013; 2014). Parallel computations were performed using GNU parallel 

(Tange, 2011). Catch trials and any other trials during which participants made a button press 

were excluded from analysis. MEG data were segmented into epochs of 2,600 ms length, 

lasting from -160 ms to 2,440 ms with respect to the onset of the prime.  

 Individually for each participant, trials were selected for analysis in which the head 

position fell within a range of 5 mm (across all blocks) relative to the majority of other trials. 

Trials contaminated with sensor jump and muscle artifacts were rejected automatically, using 

the FieldTrip routine for automatic artifact detection. For jump artifact detection, a 9
th

 order 

median filter was applied to the data, while for muscle artifact detection, an 8
th

 order 

Butterworth IIR filter (110-140 Hz) was applied. The filtered data were z-transformed and 

averaged across sensors. Trials were rejected if for any time point the z value exceeded a 

threshold of z = 20 for jump artifacts and z = 6 for muscle artifacts, following standards 

established for the local measurement characteristics. Trials contaminated with eye blink, eye 

movement, or heartbeat artifacts were cleaned using Independent Component Analysis (ICA; 

Makeig et al.,1996). Components whose time courses correlated with EOG and ECG 

electrodes were rejected, using as threshold a correlation coefficient of r > 0.1, which 

sufficiently removed artifacts according to visual inspection. After these procedures, an 

average of 51.2 repetition trials (range 26 to 79) per condition could be retained. Non-
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repetition trials were averaged across conditions for analysis, with on average 52.6 trials per 

participant available (range: 29 to 80). 

 Prior to computation of ERFs, a 20 Hz low pass filter was applied to data epochs to 

increase the signal-to-noise ratio (cf. Lau et al., 2013a). In addition, to ensure that the low 

filter did not mask more transient components, we performed the main analyses after filtering 

at 40 Hz low pass. Original epochs were split into separate epochs for prime and target 

stimulus, ranging from -110 ms to 800 ms with respect to each stimulus onset. Epochs were 

baseline corrected by subtracting the average activation between -110 and -10 ms from each 

time point. For each sensor, we identified the participants for which the recorded magnetic 

field averaged across repetition trials and time lay outside the range of the mean across all 

participants ± 3.29 standard deviations; i.e. detecting extreme outliers outside the 99.9 % 

confidence interval. The signal of these noisy sensors (33 sensors in total; one to nine sensors 

in ten participants), per participant, was approximated by trial-wise interpolation from 

activation in neighboring sensors. ERFs were then calculated for each subject and condition 

(repeated words,  repeated familiar pseudowords, and repeated novel pseudowords, as well as 

non-repetition trials combined across all familiarity conditions), separately for prime and 

target, by averaging the epochs across all trials. ERFs were compared between conditions 

using cluster-based permutation tests (Maris and Oostenveld, 2007) for dependent samples, 

corrected for multiple comparisons across time points (-110 to 800 ms) and sensors at cluster 

level. To compute interaction statistics, we used the permANOVA functions by Helbling 

(2015; https://github.com/sashel/permANOVA/). Clusters were defined as spatially and 

temporally adjacent samples with F-values exceeding an uncorrected α-level of 0.001 (cf. 

Eklund et al., 2016). The cluster-level statistic was calculated using the standard approach, 

i.e., taking the sum of F-values within a cluster (Maris and Oostenveld, 2007). Empirical 

cluster-level statistics were compared to the distribution of cluster-level statistics obtained 

from Monte Carlo simulations with 5,000 permutations, in which condition labels were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/410795doi: bioRxiv preprint 

https://doi.org/10.1101/410795
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  20 

randomly exchanged within each subject. Original cluster-level statistics larger than the 95
th
 

percentile of the distribution of cluster-level statistics obtained in the permutation procedure 

were considered to be significant. Note, we use the terms ‘significant time window/ sensors’ 

for convenience. However, we are aware that the temporal and spatial extents of clusters 

obtained with the permutation procedure are subject to variations based on the signal to noise 

ratio, number of trials, and the selected cluster threshold. As a consequence, we will not 

interpret the exact values precisely and rather focus on the condition differences within the 

obtained clusters. 

 First, as a general check of our experimental manipulation, we assessed context 

effects by computing a 2x2 interaction between the experimental factors repetition 

congruency (repetition vs. non-repetition trials, reflecting whether context-based processing 

was indeed possible; referred to as R) and prime/target effect (reflecting the absence vs. 

presence of a preceding context; referred to as C). As the low number of non-repetition trials 

did not allow separate analyses of these effects for the different conditions, data were pooled 

across familiarity conditions (words, familiar, and novel pseudowords). Within each 

familiarity condition, the number of repetition trials was randomly stratified to match the 

number of non-repetition trials. In the second analysis, we examined in repetition trials how 

familiarity (words/lexical familiarity vs. familiar pseudowords/pre-lexical familiarity only vs. 

novel pseudowords) and context (prime vs. target) interact. This analysis served to examine 

the effects of different familiarity types on the neuronal repetition effect. 

 To determine the nature of significant interaction and main effects, we performed post 

hoc linear mixed model analyses for pairwise differences between relevant conditions. All 

post hoc tests were based on participant- and condition-specific ERF values averaged across 

sensors and time points from the respective significant cluster, and included participant and 

item as random effects on the intercept. Since not all trials entered the analyses due to 

exclusion of artefactual trials, which might have affected the matching across letter string 
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conditions, OLD20 and number of syllables, both z-transformed and centered, were entered 

as additional fixed effects.  

 To rule out the possibility that our baseline correction approach, i.e., using separate 

baselines for ERFs elicited by prime and target stimulus in a trial, has created artificial effects 

due to the presentation of hash marks only before the target, we performed the analyses of 

repetition congruency by prime/target and familiarity by prime/target a second time, using 

the period before the prime as a common baseline for correction of ERFs to both stimuli. Of 

in total 24 significant clusters from the analyses after separate baselining, 17 were also found 

significant in the analysis after common baselining. Therefore, in the results and discussion 

sections, we will focus on those clusters replicated with the common baseline approach. 

Clusters with durations < 30 ms were not interpreted (cf. Dikker and Pylkkänen, 2013, for a 

similar approach), which led to the rejection of three clusters of ~20 ms. A comparison of 

significant clusters from both analyses can be found in Extended Data Fig. 4-1 and 5-1.  

 As a further sanity check of the separate baselines approach, we additionally report a 

peak-to-peak analysis for the repetition by familiarity interactions as well as main effects. For 

this analysis, the positive (in case of right sensors) and negative (in case of left sensors) peaks 

of the ERFs were identified per participant, condition, and sensor (restricted to the time 

window +/-150 ms around the peak latency of grand average ERFs and the interval between 

0 and 500 ms). In case of central sensors close to the midline (sensors MZC01, MZC03, 

MZC04, MZF01, MZF02, MZF03, MZO01, MZO02, MZO03, and MZP01), we separately 

decided whether to select the positive or negative peak, depending on which of the two peaks 

was absolutely higher in the across-participant ERFs. We decided against taking this 

approach in the majority of sensors because the ERFs typically declined during later time 

windows, in many cases reaching a value higher than the actual peak in absolute terms. 

Therefore, selecting the positive peak in the case of right sensors, and the negative peak in 

the case of left sensors, was the best compromise between automatic peak determination and 
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avoidance of misplacing the actual peak value with a value that falls within the time range of 

decline of the ERF. We then subtracted the preceding peak value of respective other polarity 

(between stimulus onset and detected peak) from the already defined peak value. Statistical 

analyses were then performed on the absolute peak difference, using the cluster-based 

permutation procedure as described above, defining clusters solely based on spatial adjacency 

between sensors due to the lack of the temporal dimension. Given its independence from the 

pre-stimulus baseline, hash mark strings presented prior to the target cannot influence this 

analysis. However, a limitation of this analysis is that it cannot detect significant differences 

occurring at time ranges prior to and after the peak. Therefore, the results of this analysis did 

not influence whether a specific cluster was interpreted or not. 

 

2.1.8  MEG source localization  

Source localization was performed for those 34 participants of whom we could obtain 

anatomical MR images, using FieldTrip, Version 2016 10-24. We created individual source 

grids for each participant by transforming the anatomical MR images to a standard (i.e., 

MNI space; Collins et al., 1994) T1 template from the SPM8 toolbox 

(http://www.fil.ion.ucl.ac.uk/spm).  A regular 3D dipole grid (10 mm resolution) based on 

the T1 template was then warped with the inverse of the resulting transformation matrix. 

This procedure resulted in individual dipole grids for each participant, in which each grid 

point was located at the same brain area across participants. For each grid point and 

participant, lead fields were computed with a single shell forward model of the inner 

surface of the skull (Nolte, 2003). Prior to source localization, ERFs were down-sampled to 

300 Hz to minimize computing costs. Source locations were computed for significant 

contrasts of interest from the ERF statistics as proposed by Gross et al. (2013). The 

procedure followed Manahova et al. (2018; the original code is available at 

https://data.donders.ru.nl/collections/di/dccn/DSC_3018012.15_439?0; see also Dijkstra et 
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al., 2018; Mostert et al., 2018). Source localization was performed on ERFs by estimating 

two-dimensional dipole moments at each grid and time point using linearly constrained 

minimum variance (LCMV) spatial filters (van Veen et al., 1997). For the main 

prime/target effect, source localization was performed on the ERF difference between 

prime and target stimulus, averaged across all knowledge conditions in repetition trials. For 

main effects of familiarity, source localization was performed on the respective conditions 

separately and subtracted afterward (e.g., familiar - novel pseudowords averaged across 

prime and target). Interactions between repetition congruency and prime/target effect were 

resolved by performing source localization on the difference ERFs between stratified 

repetition and non-repetition trials, separately for prime and target, and then subtracting 

source activations of the prime from those of the target. Analogous, for interactions 

between prime/target and familiarity effects source localization was performed on the 

difference ERFs between prime and target, separately for each letter string condition, and 

then subtracted. The data covariance was estimated over the time interval of the respective 

significant contrast and regularized using shrinkage (Blankertz et al., 2011) with a 

regularization parameter of 0.01. 

Two-dimensional dipole moments were reduced to a scalar value by taking the 

norm of the vector. This value reflects the contribution of a particular source location to 

sensor level activation not only in magnitude but also in dipole orientation. The latter is 

crucial for also detecting differences caused by different neuronal populations within the 

same source location. The norm of the vector is a positive value and subject to a positive 

bias due to noise. To counter this bias, we employed a permutation procedure (1,000 

permutations). For analyses on separate conditions, the sign of half of the trials was 

randomly flipped. For analyses on condition differences, condition labels were randomly 

exchanged across trials. The square of the dipole’s norm averaged across all permutations 

was taken as noise estimate. This noise estimate was subtracted from the square of the true 
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data, and the data were divided by the noise estimate. Negative values were set to zero, and 

the square root was taken. Finally, the signal of each source location was normalized by its 

variance in order to counter the depth bias. For visualization, source locations thresholded 

at 50 % of the maximum source activation were plotted on cortical surfaces using the 

nilearn package (Huntenburg et al., 2017) in Python. Brain regions were identified from 

the MNI coordinates of source maxima using the Harvard-Oxford cortical structural atlas 

(e.g., Desikan et al., 2006). 

 

2.1.9 Analysis code and data accessibility 

The raw data, stimulus lists, and analysis code of both experiments described in the paper 

will be made freely available at OSF when published. 

 

2.2 Results 

During the MEG measurement, participants correctly identified 94 % of catch trials, 

indicating that they were attending to the presented letter strings.  

  Repetition suppression phenomenon. As manipulation check of context effects, we 

investigated the interaction between prime/target and repetition congruency (repetition vs. non-

repetition trials) effects, combined over all familiarity conditions. Repetition trials (Fig. 4a) but 

not non-repetition trials (Fig. 4b) showed repetition suppression, i.e, reduced activity at the 

target stimulus (around 2,000 ms into the trial or 400 ms post onset of the target word). This 

interaction was significant at bilateral frontal sensors in the N400 time window (280 to 550 ms 

post-stimulus onset). Source localization revealed most prominently the left superior temporal 

gyrus (peak activation, extending into anterior temporal cortex albeit with weaker activation), 

as well as left occipital pole, left inferior occipital cortex, and the junction of left middle 

temporal, angular, and supramarginal gyri; Table 2; Fig. 4cd). The interaction reflected a 

significant decrease from prime to target in repetition trials (post hoc LMM: estimate = 2.22e
-
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14
, SE = 0.19e

-14
, t = 11.61; Fig. 4e left) and a significant but descriptively weaker increase in 

non-repetition trials (post hoc LMM: estimate = -0.58e
-14

, SE = 0.20e
-14

, t = 2.94; Fig. 4e right; 

see also Table 3). This replication of established repetition suppression effects (e.g., Deacon et 

al., 2004; Summerfield et al., 2011) is an important prerequisite for our main analyses 

investigating the effect of different familiarity conditions on repetition suppression. Sources of 

the effect were also compatible with previous localizations of the N400 within superior 

temporal gyrus (e.g., Helenius, 1998; Vartiainen et al., 2009); and anterior temporal cortex 

(e.g., Lau et al., 2013a; 2016; Lau and Nguyen, 2015). 
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Figure 4. Repetition suppression: Interaction between trials without (prime) vs. with (target) 

context (C) and repeated vs. non-repeated context (i.e., repetition congruency; R). A 

detailed overview of all clusters obtained with common or separate baselines can be found 

in Extended Data Fig. 4-1. ERF time courses of a) repetition and b) non-repetition trials for 

all sensors and familiarity conditions. Colored lines represent individual sensors and within-

plot topographical map color-codes scalp position of each sensor. Topographies represent 

activation at 400 ms and 2,000 ms, which allows a comparison of activation after 400 ms of 

the onset of prime and target, respectively. c) Topographical map represents F-values of 

significant sensors averaged across the significant time window. Non-significant sensors 

are set to zero. Surface plot represents source locations of the effect in signal-to-noise 

ratio (SNR) thresholded at 50 %. d) ERF time course averaged across significant sensors 

(of left hemisphere only, shown in topography in c). The significant time window is marked 

by a yellow shaded black box. Red lines correspond to prime and blue lines to target; solid 

lines correspond to repetition and dashed lines to non-repetition trials (averaged across all 

familiarity conditions). e) Boxplots represent activation averaged across sensors and time 

points within the left hemisphere cluster, for repetition trials (left) and non-repetition trials 

(right). Colored dots and lines represent individual participants. Asterisks indicate 

significant results (t > 2) from post hoc LMMs.  

 

 

 Prime/Target effects. We here refer to context effects reflected in repetition 

suppression from prime to target in repetition trials only. Such effects were found in multiple 

time-windows, spanning time ranges from 100 to 690 ms after stimulus onset (Fig. 5a-d). All 

effects were localized to bilateral occipital cortices (see example of the earliest cluster C1 in 

Fig. 5a and source coordinates in Table 2). See also Fig. 5d for the sensor topographies of 

clusters C2-6. The majority of these clusters were not modulated by familiarity; only the 

frontal cluster C3 was qualified by a significant interaction with familiarity, indicated by the 

overlap in time and space with the interaction cluster (see below).  

Familiarity effects. To reiterate, due to our stimulus selection procedure, words should 

have comparable levels of pre-lexical (orthographic/ phonological) familiarity but higher 

lexical familiarity (i.e., lexical-semantic information associated with words) than novel 

pseudowords. In contrast, as a result of the familiarization training, familiarized pseudowords 

should have higher levels of familiarity than novel pseudowords specifically at the level of 

pre-lexical processing. Thus, we had assumed that effects of pre-lexical familiarity should be 
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reflected in ERF differences between familiar pseudowords and both novel pseudowords and 

words, while effects of lexical familiarity should be reflected in ERF differences between 

words and both novel and familiar pseudowords (cf. Fig. 1b for visualization of these 

hypotheses). Differences between the familiarity conditions, averaged across prime and target 

(i.e., representing main effects of familiarity), occurred at two topographic clusters: At left 

posterior sensors, localized to the left angular/ supramarginal gyrus (Fig. 5e, Extended Data 

5-2a, Table 2), familiar pseudowords elicited a more negative ERF amplitude between 290 

and 380 ms than both words and novel pseudowords (Fig. 5fg; Table 4, Extended Data Table 

4-1). From the more negative ERF response specific to familiar pseudowords, we can 

conclude that our familiarization procedure was successful in modulating the 

neurophysiological processing of these pseudowords. The second cluster, again, occurred at 

frontal sensors and was qualified by a significant interaction with context (see below). The 

main effect in this cluster is therefore only visualized in Extended Data Fig. 5-3 (see also 

Table 4 and Extended Data Table 4-1) and not discussed further.  

Pre-lexical and lexical familiarity effects on the repetition suppression phenomenon. 

We had expected that context effects reflected in repetition suppression for target relative to 

the identical prime be differentially influenced by pre-lexical vs. lexical familiarity (cf. Fig. 

1b for visualization of these hypotheses). To assess the influence of familiarity on context 

effects, we examined the familiarity (words vs. familiar vs. novel pseudowords) by prime vs. 

target interaction in repetition trials (as only these included a valid predictive context for the 

target). We found a significant interaction between 300 and 480 ms at bilateral frontal 

sensors (Fig. 5hi; see also Table 5 for a post hoc statistic controlling for OLD20 and number 

of syllables). Post hoc LMMs revealed that lexical but not pre-lexical familiarity reliably 

modulated the repetition effect: While during prime presentation the negative-going ERF 

amplitude was largest for words (words vs. novel pseudowords: estimate = 2.15e
-14

, SE = 

0.47e
-14

, t = 4.54; words vs. familiar pseudowords: estimate = 3.07e
-14

, SE = 0.42e
-14

, t = 
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7.39; no difference between familiar and novel pseudowords: estimate = -0.70e
-14

, SE = 

0.40e
-14

, t = 1.75), it was smallest for words during target presentation (words vs. novel 

pseudowords: estimate = -1.20e
-14

, SE = 0.37e
-14

, t = 3.23; words vs. familiar pseudowords: 

estimate = -0.65e
-14

, SE = 0.37e
-14

, t = 1.76; familiar vs. novel pseudowords: estimate = -

0.66e
-14

, SE = 0.33e
-14

, t = 1.98; see also Fig. 5j and Extended Data Table 5-1). Repetition 

suppression, thus, was stronger for words than for pseudowords. This effect was localized to 

the left anterior temporal cortex (Fig. 5h, Extended Data Fig. 5-2b, Table 2).  
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Figure 5. Main effects of context (prime vs. target; a-d), pre-lexical familiarity (e-g), and the 

influence of letter string familiarity on context effects (h-i; repetition trials only). A detailed 

overview of all clusters obtained with common baseline, separate baselines, and peak-to-

peak analysis can be found in Extended Data Fig. 5-1. a) Topographical map represents F-

values of sensors showing a main effect of context (prime vs. target) averaged across the 

significant time window. Non-significant sensors are set to zero. The surface plot 

represents the source location of the effect in signal-to-noise ratio (SNR) thresholded at 50 

%. b) ERF time course averaged across the left occipital sensors (C1 which is marked by a 
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black box; and C6 with similar sensor topography). The significant time windows are 

shaded in yellow. Solid red lines correspond to prime and dark blue dashed lines to target. 

c) Boxplots (from C1) represent activation averaged across sensors, time points, and 

familiarity conditions. Colored dots and lines represent individual participants. Asterisks 

indicate significant results (t > 2) from post hoc LMMs; n.s. = not significant. d) Additional 

topographical maps showing the main effects of context, which had similar effect patterns 

and source locations as C1. Significant time windows are indicated. e) Topographical map 

and source location (familiar > novel pseudowords, see Extended Data Fig. 5-2a for 

familiar pseudowords > words, f) ERF time course and g) boxplot showing a main effect of 

pre-lexical familiarity (i.e., differences between familiar pseudowords and words/ novel 

pseudowords averaged across prime and target). See Extended Data Fig. 5-3 for a main 

effect of lexical familiarity. h) Topographical map and source location (prime vs. target by 

words vs. novel pseudowords; see Extended Data Fig. 5-2b for prime vs. target by words 

vs. familiar pseudowords), i) ERF time course (left hemisphere only, shown in topography 

in h) and j) boxplots showing an interaction between context and lexical familiarity. Blue 

lines correspond to words, green lines to familiar and grey lines to novel pseudowords; 

solid lines correspond to prime and dashed lines to identical target. Note the different 

scales across contrasts. For results obtained with a low pass filter of 40 Hz instead of 20 

Hz presented here, see Extended Data Fig. 5-4. Respective cluster topographies of the 

peak-to-peak analysis are shown in Fig. 5-5.  

 

 Control analyses. To assess potential influences from low-pass filtering, we 

performed an additional control analyses with a 40 Hz low-pass filter. Results did not differ 

qualitatively from the results described above obtained with a 20 Hz low-pass filter 

(Extended Data Fig. 5-4). 

We also evaluated the robustness of effects against different choices of baselines by 

interpreting only those clusters that were significant when prime and target activation were 

both corrected with the baseline before the prime instead of separate baselines. In addition, 

we performed a peak-to-peak analysis (cf. Methods section for further details). Significant 

results from the peak-to-peak analysis strongly support the interaction between prime/target 

and familiarity effects at left frontal sensors, the main effects of familiarity at left posterior 

and left frontal sensors, as well as main effects of prime vs. target at bilateral frontal sensors, 

resembling the effects of clusters CxF, F1, F2, and C3 in Fig. 5 and Extended Data Fig. 5-4 

(see Extended Data Fig. 5-1 and 5-5, including also further clusters from the peak-to-peak 

analysis). Due to the high similarity between standard baseline corrected ERF analysis and 
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peak-to-peak analysis, we conclude that the presented results can be reproduced with a 

different analysis strategy and therefore are not artificially introduced by the specific choice 

of baseline correction.  

 

2.3  Discussion Experiment 1. 

The main finding from Experiment 1 (MEG study) was that only lexical familiarity interacted 

with context (here implemented as contrast prime vs. identical target) to facilitate visual word 

recognition at the N400 window only. Please note that in the following, for the sake of 

brevity, we will subsume the processing of words and pseudowords under the term visual 

word recognition, as we assume similar pre-lexical processing for words and novel 

pseudowords reflecting the orthographic familiarity (OLD20) match. The finding of stronger 

repetition suppression for words was consistent with previous studies (Almeida and Poeppel, 

2013; Fiebach et al., 2005; but see Deacon et al., 2004; Laszlo and Federmeier, 2007; Laszlo 

et al., 2012) and identified sources of the effect were compatible with previous localizations 

of the N400 within the anterior temporal cortex (e.g., Lau et al., 2013a; 2016; Lau and 

Nguyen, 2015). In contrast, we could not identify a pre-lexical modulation (i.e., an increased 

reduction of activation for familiarized pseudowords) at any time window. However, we 

observed a more negative-going amplitude for familiarized PW in contrast to novel PW and 

words, which is indicative of a pre-lexical familiarity influence irrespective of context. This 

indicates that our explicit manipulation of pre-lexical familiarity was successful. Also, we 

found that the pre-lexical familiarity effect was present at the end of the expected time 

window (e.g., Barber and Kutas, 2007) and localized to the left angular/ supramarginal gyrus, 

indicating phonological processing; Carreiras et al, 2014; Taylor et al., 2013). We also found 

strong context effects without modulation of pre-lexical and lexical familiarity. Earliest the 

effect was present around 100 ms in the occipital cortex. The first presentation elicited a 

much stronger N100 response compared to the second presentation in repetition trials. In 
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sum, we found an interaction of lexical familiarity and context in the N400 time window but 

only a main effect of pre-lexical processing.  

 The interaction of lexical familiarity and context at the N400 indicated within-level 

context-based facilitation at the lexical level. We related this interaction to lexical level 

processing since words, i.e., meaningful stimuli, differentiated from pseudowords, i.e., 

meaningless stimuli. This is in line with previous work (i.e., priming or sentence paradigms: 

Halgren et al., 2002; Helenius et al., 1998; Lau et al., 2009; 2013a; Rugg, 1985; Simos et al., 

1997; Vartiainen et al., 2009) associating this time window and brain locations with lexical-

semantic processing. Within-level facilitation was indicated by the finding that the interaction 

was selective for the N400 time window without indications of interactions at previous time 

windows. Finally, regarding the mechanistic implementation, the interaction pattern was in 

line with the expectation of fatigue and predictive coding (see Fig. 1c). This is as sharpening 

proposes a suppression of the noise in the neuronal signal. Therefore, the difference between 

words and pseudowords should be easier to detect at the target (i.e., stronger difference; Kok, 

et al., 2012), which was not the case. 

 Nevertheless, due to the nature of the task in Experiment 1, we could not investigate 

whether familiarity- and context-based brain activation differences translate to behavior. 

Also, we cannot rule out one further potentially confounding influence, i.e., that words and 

pseudowords differ not only in the availability of lexical-semantic knowledge but also 

qualitatively with respect to their word status. I.e., even though the familiarity of some 

pseudowords was temporarily enhanced by the training procedure, the expertise with actual 

words may be qualitatively different. Moreover, the new experiment included a repetition 

probability manipulation (i.e., the likelihood of prime and target being the same letter string) 

that would allow differentiating between fatigue and predictive coding, since only the latter 

would predict a systematic influence of repetition probability across trials. Finally, in 

Experiment 1, we were surprised that no evidence for an influence of pre-lexical familiarity 
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on context-based facilitation was found. To replicate the MEG pattern in behavior and 

systematically examine the role of word status and implement a repetition probability 

manipulation, we ran a second, behavioral, repetition priming experiment.   

 

 

3  Experiment 2 

In Experiment 2, we implemented the explicit investigation of word status by adding a third 

group of pseudowords. With a paired association task, we associated semantic content to 

these non-words. Similar as in Experiment 1, we also included familiar pseudowords without 

meaning. Note, pseudowords with and without semantic associations were 

visually/perceptually familiarized to the same degree. Therefore, the two groups of 

pseudowords only varied regarding their associated semantic meaning. Including this 

additional lexical familiarity condition allowed us to examine potentially different roles of 

word status and the presence of semantic associations.  

 We measured behavioral response times in a repetition priming paradigm. Participants 

had to indicate whether or not a letter string had a semantic association. A yes response 

would be valid for words and familiarized pseudowords with semantic associations, but not 

for novel and only perceptually familiarized pseudowords.  

 As stated above, we also implemented a repetition probability manipulation (i.e., the 

likelihood of prime and target being the same letter string). Repetition probabilities varied 

across three blocks, to investigate if the priming effect (i.e., faster responses for repeated vs. 

non-repeated targets) increases when the local task context allows predicting that the prime is 

highly likely identical to the target. In previous studies with different visual stimuli higher 

repetition probability enhanced priming effects, mainly supporting predictive coding (e.g., 

Grotheer and Kovács, 2014; Olkkonen et al., 2017; Summerfield et al., 2008; 2011). 
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3.1  Methods  

3.1.1  Participants  

 24 healthy native speakers of German recruited from university campuses (16 

females, mean age 23.1±3.4 years, range 19-31 years, 22 right-handers) were included in the 

final data analysis. All participants had normal or corrected-to-normal vision, and normal 

reading abilities as assessed with the adult version of the Salzburg Reading Screening 

(unpublished adult version of Mayringer and Wimmer, 2003). Further participants were 

excluded at different stages of the experiment due to the following reasons: Low reading 

skills (i.e., reading test score below 16
th

 percentile; N = 4), insufficient performance during 

pseudoword familiarization (i.e., accuracy for semantic or familiar pseudowords < 50 % in 

the final learning session; N = 3), or failure to complete the experimental protocol (N = 2). 

Four participants were excluded after data analysis due to insufficient performance (< 25 % 

correct for non-repeated words). All participants gave written informed consent according to 

procedures approved by the local ethics committee and received 10 € per hour or course 

credit as compensation.  

 

3.1.2  Stimuli and presentation procedure 

 60 German nouns (half natural and half man-made; logarithmic word frequency: 

mean ± standard error = 1.93 ± 0.09, range 0.00 to 3.30) and 180 pronounceable 

pseudowords with characteristics similar to Experiment 1 were presented in a repetition 

priming task. Pseudowords were divided into three sets, each of which was matched to the 

word set on orthographic similarity (OLD20, Yarkoni et al., 2008; words: 1.538 ± 0.038; 

pseudowords: 1.605 ± 0.032, 1.542 ± 0.045, and 1.596 ± 0.044) and number of syllables 

(1.833 ± 0.059; 1.95 ± 0.028; 1. 967 ± 0.023; 1.9 ± 0.039, respectively; Table 1). Participants 

were perceptually familiarized with one set analogous to Experiment 1, and additionally 

learned semantic associations for a second set within a paired-association task (see below for 
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details). The third set of pseudowords was never seen by the participants before the priming 

task. For the familiarization procedure, two sets of 60 object images each were chosen from 

the Bank of Standardized Stimuli (BOSS; Brodeur et al., 2010; 2014) such that German 

object names assigned to the images were matched between the two sets for logarithmic word 

frequency (set means: 2.093 ± 0.081; 2.070 ± 0.077), OLD20 (set means: 1.639 ± 0.054; 

1.630 ± 0.053), and number of syllables (set means: 2.000 ± 0.071; 2.000 ± 0.071). Object 

names were determined by having four independent participants write down for each object 

the name they considered most suitable; only objects for which at least three participants 

provided the same name were selected. The two sets of object images finally selected were 

matched on available ratings of familiarity (set means: 4.364 ± 0.040; 4.333 ± 0.043), object 

agreement (i.e., rated similarity between an object imagined by the participants upon 

perceiving the object’s name, and the actual object image; set means: 3.910 ± 0.056; 3.901 ± 

0.064), and rated subjective visual complexity (set means: 2.426 ± 0.058; 2.475 ± 0.066; 

Brodeur et al., 2014), analogous to procedures reported by Breitenstein et al. (2007).  

 Six variants of the familiarization task were prepared, across which the assignment of 

the three pseudoword sets to the familiarized, i.e., familiar vs. semantic, as well as to the 

novel condition was varied (see Table 6). In addition, the assignment of the two object image 

sets to the familiarized pseudowords with and without semantic associations was varied. Note 

that for 18 of the 24 participants, the six experimental versions, as well as the order of blocks 

and response hands in the repetition priming task (see below), were counterbalanced. In 

addition, six participants were included from the pilot investigation in which this was not the 

case (all had the same response hands and the initial block had a repetition probability of 25 

%). Results did not differ qualitatively when these participants were included or not. 

Stimulus presentation procedures were identical to those of behavioral sessions of 

Experiment 1 (Fig. 2a), with the exception that the background was set to grey. 
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3.1.3  Pseudoword Familiarization 

Participants performed five pseudoword familiarization sessions in the course of three 

consecutive days, i.e., two sessions each on day 1 and 2, and one session on day 3 (before the 

repetition priming task). Each session lasted about one hour, and participants could take a 

short break after the first half, as well as a mandatory one-hour break before the next session. 

Each session consisted of reading aloud each pseudoword (mean error rate across sessions: 

1.4 %), a computer-based paired-association task with congruent vs. incongruent parings of 

pseudowords and object images, and a naming task. While one set of pseudowords was 

familiarized pre-lexically as in Experiment 1, i.e., merely through repeated exposure 

(‘familiar pseudowords’), one set was additionally associated with semantic information 

(‘semantic pseudowords’). The paired-association procedure was adapted from previous 

studies (e.g., Breitenstein and Knecht, 2002; Breitenstein et al., 2007; Dobel et al., 2009), 

however using visual instead of auditory pseudowords and naturalistic photographs of objects 

instead of line drawings (see above). Furthermore, we used an explicit instead of an implicit 

learning instruction in order to establish strong associations between pseudowords and the 

assigned meanings.  

Familiar and semantic pseudowords were presented in random order for 800 ms, 

followed by an object image (horizontal and vertical visual angles 15.8°) for 1,500 ms or 

until response (Fig. 2c). During the ITI of 1,000 ms, two vertical black bars indicating the 

center of the screen where participants were asked to fixate were presented. Each 

pseudoword was presented four times in the first and four times in the second half of each 

session (960 trials in total per session). Semantic pseudowords were arbitrarily but above-

chance (i.e., six out of eight presentations) matched with object images so that participants 

could learn to associate their meaning over the course of the familiarization sessions. This 

ratio was chosen so that despite successful learning, false alarms could be investigated which 

provide important information on participants’ sensitivity. In contrast, familiar pseudowords 
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were followed by a different object image in each trial.  

Participants were asked to learn a meaning for the presented pseudowords based on 

the frequency with which the pseudowords were paired with certain object images. They 

were explicitly informed about the inconsistent pairings for half of the pseudowords.  

Participants were instructed to silently read the presented pseudowords and to respond as 

accurately and quickly as possible, whether a presented object image matched the preceding 

pseudoword or not. In addition, they were encouraged to guess if insecure. Participants 

responded by pressing one of two buttons on a keyboard with either the left or right index 

finger. To prevent potential response biases, the assignment of response hand and response 

varied from trial to trial (by presenting a red bar indicating non-match on one side and a 

green bar indicating match on the other side of the object image). In the first familiarization 

session, participants completed a short practice block of ten trials before the start of the actual 

paired-association task.  

 In the naming task (Fig. 2d), each pseudoword from the paired-association task was 

presented once. Participants were instructed to name its associated object if an association 

could be retrieved, or to respond “weiter” (German for “next”) whenever this was not 

possible. The experimenter wrote down the participants’ responses and logged the three 

possible responses (correct, incorrect, next) into the presentation software. Responses were 

considered correct whenever a name suitable for the corresponding object was provided (e.g., 

“cabin” instead of “barn”).  Participants did not receive feedback. 

 LMMs (including participant, object image and pseudoword as random effects on the 

intercept; see Experiment 1 Methods) revealed that d’ for the paired-association task 

significantly increased across sessions from 0.45 in session 1 to 2.04 in session 5 (main effect 

of session: estimate = 0.54, SE = 0.035, t = 15.70; Fig. 3c; see Extended Data Fig. 3-1 

including post hoc analyses for pairwise sessions). This indicates that participants improved 

in identifying matching and non-matching pseudoword-object combinations. In the final 
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familiarization session, participants reached high mean accuracies of 92.68 % (range: 74.72 

to 99.72) for the identification of matching objects for semantic pseudowords, and 89.84 % 

(range: 60.47 to 99.38) for the identification of non-matching objects for pseudowords 

familiarized without semantics (Fig. 3d). Importantly, participants also demonstrated high 

average accuracies of 95.68 % (range: 88.14 to 100) for semantic pseudowords in case they 

were presented with a non-matching object (Fig. 3d), indicating that their high performance 

for matching pseudoword-object combinations cannot be attributed to a response bias, i.e., 

responding “match” whenever a semantic pseudoword was presented. 

 In the pseudoword naming task, which was administered at the end of each 

familiarization session, LMMs (including participant and item as random effects on the 

intercept) revealed that d’ significantly increased from 0.23 in session 1 to 2.43 in session 5 

(main effect of session: estimate = 0.77, SE = 0.040, t = 19.41; Fig. 3e; see Extended Data 

Fig. 3-1 including post hoc analyses for pairwise sessions). In the final session, participants 

named the correct object for between 51.67 to 100 % of semantic pseudowords (mean 78.61; 

Fig. 3f, left) and refrained from a response for 61.67 to 100 % of pseudowords familiarized 

without semantics (mean 90.28; Fig. 3f, right), indicating that they indeed learned the 

corresponding meaning for semantic pseudowords. 

 
 3.1.4  Repetition Priming  

Following the fifth familiarization session on day 3, participants completed a repetition 

priming experiment after a break of at least one hour. Experimental procedures were 

analogous to those described for Experiment 1, with the following exceptions: Semantic 

pseudowords were presented as additional familiarity condition, and no catch trials were 

presented. The prime stimulus in each trial was preceded by 800 ms of hash mark 

presentation. The inter-trial interval varied between 800 and 1,200 ms. Furthermore, the 

repetition probability was varied across the three experimental blocks. 15 participants first 
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completed a block with 25 % repetition probability, followed by 50 % in the second and 75 

% in the last block; the remaining nine participants completed the blocks in the reverse order. 

Participants were informed about the repetition probabilities at the start of each block. Their 

task was to silently read the presented letter strings and respond as accurately and quickly as 

possible to the second letter string in each trial, whether they could explicitly associate a 

meaning or not (button presses on a keyboard with left/right index finger; dominant vs. non-

dominant hand for yes-response: 13 vs. 11 participants, respectively). This task was chosen to 

elicit the same response for semantic pseudowords as for words. Each letter string (i.e., word 

or pseudoword) was presented once per block, either in the repetition or in the non-repetition 

condition. In total, 240 trials (60 per condition) were presented in each block. Letter strings 

were used at maximum twice for non-repetition trials; in this case, they were combined with 

two different letter strings. Prior to the task, eight practice trials were completed. The total 

duration of the priming task was around 45 min.  

 

3.1.5  Analyses  

Analogous to the analysis of the pseudoword familiarization procedure, behavioral data of 

the repetition priming task were analyzed using LMMs allowing random effects of both 

participant and items (prime and target stimulus) on the intercept, as well as analysis of 

imbalanced data (Baayen et al., 2008). We mainly focused on response times of correct 

responses, but also investigated accuracies using generalized LMMs with a binomial link 

function. Response times were log transformed to account for their skewed ex-Gaussian 

distribution.  

We first performed an analysis with factors repetition congruency (repetition vs. non-

repetition trials), reflecting the main manipulation of context effects in Experiment 2, and 

repetition probability (25, 50 or 75 %). To assess pre-lexical and semantic contributions to 

behavioral context and familiarity effects, we investigated the four-way interaction between 
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repetition congruency, repetition probability, pre-lexical, and lexical familiarity. The latter 

two were manipulated orthogonally, such that familiarity was entered as two factors coding 

pre-lexical (0: novel pseudowords and words; 1: familiar pseudowords with and without 

semantics) and lexical familiarity (0: novel and familiar pseudowords without semantics; 1: 

semantic pseudowords and words). Since context provided by the prime stimulus might 

override familiarity effects (Kretzschmar et al., 2015), we additionally investigated the three-

way interaction between pre-lexical familiarity, lexical familiarity, and repetition probability 

in non-repetition trials only (i.e., in the absence of valid contextual information). Note that 

for repetition priming analyses, we set behavioral responses from the first block (i.e., with 75 

% repetition probability) of one participant to NA, because she reported a misinterpretation 

of the task instruction that was clarified for the final two blocks.  

All (generalized) LMMs included the interactions of all fixed effects described so far. 

Since not all trials entered the analyses (due to miss trials and for the response time analysis 

due to exclusion of trials with incorrect responses), which might have affected the match 

across letter string conditions, OLD20 and number of syllables were included as additional 

fixed effects. All fixed effects were centered and z-transformed. For each significant 

interaction, pairwise differences between conditions were investigated using post hoc linear 

mixed models including only the relevant conditions. 

 
3.2  Results 

In the semantic association judgments of the repetition priming experiment, average 

accuracies for repetition trials were high, albeit not at ceiling, across all repetition 

probabilities (86.9 %, 85.8 %, and 83.9 % for 75 %, 50 %, and 25 % repetition probability, 

respectively; Extended Data Fig. 6-1a), as well as across all familiarity conditions with the 

exception of familiarized pseudowords with semantic associations (90.7 %, 88.1 %, 72.2 %, 

and 91.1 % for novel pseudowords, familiarized pseudowords without and with semantic 
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associations, and words, respectively; Extended Data Fig. 6-1b). The lower accuracy for 

semantic pseudowords indicates that participants did not establish a semantic association 

with all (but yet the majority of) pseudowords, which is also consistent with their 

performance in the final naming session (see Analyses section and Fig. 3f). As a 

consequence, we only used correct trials for the response time analysis. Accuracies in non-

repetition trials were overall lower (82.6 %) compared to repetition trials (88.5; Extended 

Data Fig. 6-1a). Statistical analyses of accuracies can be found in Extended Data Tables 10-1 

and 10-2. In contrast to the MEG analysis, we included familiarity effects related to pre-

lexical and lexical familiarity as two separate factors, since pre-lexical familiarity was 

manipulated orthogonally to lexical familiarity (cf. Methods). In the following, we report the 

effects on response times most relevant for our hypotheses, while Tables 7 to 10 provide a 

detailed overview of all statistical results. 

 Repetition priming. For a first manipulation check we investigated the influence of 

repetition probability on context effects irrespective of familiarity conditions (Fig. 6a and 

statistics in Table 7). Here, context effects refer to the classical priming effect reflected in the 

repetition congruency contrast (repetition vs. non-repetition). Response times showed a 

significant interaction between this priming effect and repetition probability. The interaction 

revealed a decrease in response times with increasing repetition probability (main effect of 

repetition probability: estimate = -0.060, SE = 0.0029, t = 20.43) which was stronger for 

repetition (estimate = -0.085, SE = 0.0044, t = 19.28) compared to non-repetition trials 

(estimate = -0.022, SE = 0.0037, t = 6.06). I.e., the priming effect (difference between 

repetition and non-repetition trials) was smaller for a repetition probability of 25 vs. 50 % 

(estimate = -0.040, SE = 0.0055, t = 7.36) and smaller for 50 vs. 75 % (estimate = -0.043, SE 

= 0.010, t = 4.26; Fig. 6a; Table 7). This finding indicates that context effects increase when 

they can be expected more reliably.  

 Familiarity effects. To investigate the influence of pre-lexical and lexical familiarity 
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in the absence of valid contextual information, we focused on non-repetition trials. We 

observed a significant interaction between pre-lexical and lexical familiarity (Table 8). This 

interaction was driven by the strong difference in response times for the two semantic letter 

string groups: Semantic pseudowords showed the longest response times (all t’s > 4 for post 

hoc contrasts of semantic pseudowords vs. the other three conditions; see Table 9 for details), 

reflecting the specific difficulty of retrieving semantics for a newly acquired vocabulary, 

particularly in case of unfulfilled expectations. This notion is also in line with the accuracy 

data (see Extended Data Fig. 6-1b). However, faster response times for words compared to 

novel (estimate = -0.039, SE = 0.0064, t = 6.06) and familiar pseudowords (estimate = -

0.022, SE = 0.0063, t = 3.52; Table 9) indicate facilitated processing of letter strings with 

both fully established semantic associations and word status. In addition, response times were 

faster for familiar vs. novel pseudowords (estimate = -0.016, SE = 0.0046, t = 3.49).  

 Influence of pre-lexical and lexical familiarity on context effects. Repetition 

probability did not interact with pre-lexical or lexical familiarity (all t’s < 1, including the 3-

way interaction; see Table 10). However, a significant interaction between repetition 

congruency and lexical familiarity revealed stronger priming effects for letter strings with 

semantic associations (i.e., words and semantic pseudowords) in comparison to pseudowords 

without semantic associations (estimate = -0.033, SE = 0.0030, t = 11.13; Table 10). In 

repetition trials, the response times for pseudowords with associated semantics were lower 

than for the other pseudoword conditions (pairwise post hoc contrasts: semantic vs. novel 

pseudowords: estimate = -0.048, SE = 0.0059, t = 8.11; semantic vs. familiar pseudowords: 

estimate = -0.051, SE = 0.0060, t = 8.52; Table 9). This indicates that the involvement of 

semantic information increases context effects dramatically, even reversing familiarity effects 

found in the absence of context-based facilitation.  
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Figure 6. Response times in Experiment 2 (semantic association judgment task). a) 

Repetition probability effect for repetition (left) and non-repetition trials (right) averaged 

across familiarity conditions. b) Familiarity influence on context effects, i.e., repeated (left) 

vs. non-repeated targets (right). Effects are separated for familiarity conditions, with an 

additional separation for letter strings with and without semantic associations, averaged 

across repetition probabilities. Colored dots and lines represent individual participants. 

Accuracy data are shown in Extended Data Fig. 6-1. 

 

 

3.3  Discussion Experiment 2.  

In general, the behavioral results replicated the main MEG findings. Context-based 

facilitation, here implemented as repetition congruency, on response times was stronger for 

words and pseudowords with semantic associations in contrast to pseudowords without 

meaning. The interaction of lexical familiarity and context replicated the modulation of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/410795doi: bioRxiv preprint 

https://doi.org/10.1101/410795
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  44 

lexical information on context-based facilitation found in the N400. We also observed that 

recently increased pre-lexical familiarity, in familiarized pseudowords without meaning, 

resulted in faster response times compared to novel pseudowords in non-repetition trials, i.e., 

in the absence of valid contextual information. This finding is compatible with the increased 

activation to familiar pseudowords within the left angular/ supramarginal gyrus shown in the 

MEG. Finally, we found strong general priming effects that replicate the strong context 

effects demonstrated in the MEG results. Once more, we found no evidence for an interaction 

of pre-lexical familiarity and context-based facilitation.  

A word status effect, i.e., words versus pseudowords with associated meaning, was 

also found in response times, but the difference in response times was much smaller when the 

contextual information was valid. This pattern indicates that even recently learned letter 

strings use semantic meaning to facilitate word recognition on a lexical level in a predictable 

context (cf. Tamminen and Gaskell, 2013; van der Ven et al., 2015). Also, we could identify 

a strong repetition probability effect. Here a higher repetition probability resulted in faster 

response times in repetition trials replicating previous studies with different visual stimuli 

(Barbosa and Kouider, 2018; Olkkonen et al., 2017). We expected this finding when one 

implements a predictive coding mechanism. Thus, fatigue is ruled out as a mechanism for 

context-based facilitation. 

 

 

4 Discussion 

In the two experiments of the present study, we found evidence for context-based facilitation 

of visual word recognition within the lexical-semantic processing level based on a predictive 

coding mechanism. Most prevalent was the increased facilitation, reflected in reduced brain 

activation at the left anterior temporal cortex around 400 ms and faster behavioral responses, 

when semantic information was present (see Fig. 7). We found no evidence for context-based 
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facilitation through pre-lexical (i.e., orthographic and/or phonological) familiarity. Also, we 

could not detect evidence for top-down facilitation, as there was no influence of lexical 

information on context effects in earlier time windows (i.e., < 400 ms) associated with visual 

and pre-lexical processing. At the level of visual processing, we found familiarity-unspecific 

repetition effects in the occipital cortex around 100 ms. Combined, we take this pattern as 

evidence for context-based facilitation within lexical and visual processing levels (Fig. 7). 

 

 
Figure 7. Summary of our findings (top) and implications for the comprehensive 

connectionist model of visual word recognition (cf. Carreiras et al., 2014; bottom). In the 

upper part of the figure, we present MEG findings for each processing level separated for 

the letter string conditions (words and pseudowords: PW). On the right, we present the 

behavioral pattern from response times. Note, all data figures are presented in a 

simplified form (combining individual data points and excluding participant outliers outside 

of 1.5 times the interquartile range above the upper quartile and below the lower quartile) 

allowing a more lucid presentation of identified effect patterns. For more details see Fig. 5 

for the MEG data and Fig. 6 for behavior. Our evidence supports context-based 

facilitation within visual and lexical processing levels (bottom). 

 

 

Implications for neuro-cognitive models of visual word recognition 

 One of the main goals of this study was to investigate whether context-based facilitation of 

visual word recognition is implemented via top-down feedback from higher to lower 
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processing levels, or restricted to within each processing level: i.e., assessing the architecture 

of context-based facilitation. The two alternative architectures were formalized in previous 

neuro-cognitive models of visual word recognition. Laszlo and Amstrong (2014) 

implemented a strictly feed-forward model including within-level context-based facilitation. 

The model architecture brought forward by Carreiras et al. (2014) additionally included top-

down connections. The present evidence favors the architecture implemented by Laszlo and 

Amstrong (2014). As described above, at the lexical processing level we could find within-

level context-based facilitation but no evidence for cross-level top-down facilitation. The 

latter is a central component of the architecture described by Carreiras et al., (2014). 

 Despite not finding evidence for pre-lexical influences on context effects in the 

present study, we could identify an activation cluster in the left angular/ supramarginal 

cortex, showing a pre-lexical familiarity effect. At the sensor level, the activation in response 

to familiarized pseudowords differed from novel pseudowords and words without an 

interaction with context. In behavior, we also observed facilitated recognition of pre-lexically 

familiarized in contrast to novel pseudowords when no valid contextual information was 

available. These findings reflect that pre-lexical familiarity has a central role in visual word 

recognition (see also Bermúdez-Margaretto et al., 2015; Glezer et al., 2015; Xue and 

Poldrack, 2007), but no evidence for an increased context-based facilitation within the 

prelexical processing levels, as proposed by Laszlo and Amstrong (2014), was found. 

 One could argue that the learning paradigm did not build up a sufficiently strong pre-

lexical representation to influence context-based facilitation. In our opinion, this is less likely 

for two reasons. In both experiments, we could find pre-lexical facilitation when no valid 

context-based expectations could be formed. This finding is a manipulation check showing 

that pseudoword learning was successful. The second reason is that in the behavioral 

experiment, the learned lexical-semantic information was successfully utilized to increase 

context-based facilitation (see Tamminen and Gaskell, 2013; van der Ven et al., 2015 for 
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similar results). Both these findings strongly indicate that the learning paradigms used here 

were effective in influencing processing of the learned pseudowords. Thus, these findings 

underline the surprising result that additional pre-lexical familiarity did not increase context-

based facilitation. In addition, a previous study found no reliable influence of OLD20 on 

context effects in sentences (Payne et al., 2015). Thus, learning-independent manipulations of 

pre-lexical familiarity did also not modulate context-based facilitation. 

 Previous studies using text- or sentence-based context manipulations found top-down 

influences on visual or pre-lexical processing (e.g., Brothers et al., 2015; Dambacher et al., 

2006; Kim and Lai, 2012; Lee et al., 2012). However, time point (i.e., N170 vs. P2 vs. 

N200/250 component) and direction of these top-down effects were highly inconsistent (see 

Nieuwland, 2019 for a review). One limitation of sentence studies might be that word 

predictability out of a sentence context, reflecting lexical-semantic top-down information, 

and pre-lexical familiarity (e.g., OLD20) are naturally confounded. For example, in the 

Potsdam Sentence Corpus used by Dambacher et al. (2006), sentence-level predictability and 

OLD20 (i.e., item-level word familiarity) correlated with an r of -.24. Typically, these studies 

control for word characteristics like word frequency (r with predictability: .33), which is also 

associated with semantic word characteristics (e.g., r with the semantic neighborhood around 

.75; Goh et al., 2016; Yap et al., 2012), but not orthographic characteristics like OLD20. This 

confound pattern might indicate that only the combined availability of predictable sentence-

level context and high orthographic familiarity enables early context effects, which should be 

explicitly investigated in future studies. 

 

Mechanistic implementation of context-based facilitations. 

As pointed out above, the interaction pattern at the N400 component, in particular, the 

reduction of the difference of words against pseudowords, was informative to determine that 

predictive coding was the most probable mechanism underlying the context-based facilitation 
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phenomena. At the prime, words showed a stronger N400 in contrast to pseudowords. At the 

target, this difference was reversed. This pattern rules out sharpening, as in sharpening the 

expectation is a suppression of the noise in the neuronal signal (cf. Blank and Davis, 2016; 

Kok et al., 2012; Richter et al., 2018). Therefore, the difference between words and 

pseudowords should be easier to detect (i.e., stronger difference). The N400 activation shows 

the opposite pattern when comparing prime (words > pseudowords) and target amplitude 

(words < pseudowords; Fig. 7). We consider the change in effect direction as evidence 

against a sharpening mechanism. Evidence against a fatigue mechanism was the finding that 

a high repetition probability, across trials, resulted in stronger context effects in response 

times. This finding was only expected by predictive coding and previous evidence from 

neuronal (e.g., Delaney-Busch et al., 2017; Grotheer and Kovács, 2014; Lau et al., 2013b; 

Mayrhauser et al., 2014; Summerfield, 2008; 2011; Todorovic et al., 2011) and behavioral 

investigations (Barbosa and Kouider, 2018; Olkkonen et al., 2017) came to similar 

conclusions. 

 In addition, the interaction between with vs. without context (i.e., prime vs. target) 

and valid vs. invalid context (i.e., repetition vs. non-repetition) at the N400 also provides 

evidence against fatigue. A fatigue mechanism cannot explain the increased activation for 

unexpected targets in non-repetition trials compared to primes. At the same time, this 

increase fits well with predictive coding. In Experiment 1, the repetition probability was 

75%. As a consequence, a repetition was likely expected in every trial. Irrespective of 

repetition or non-repetition trials, this expectation is transformed in a prediction and, in case 

of a non-repetition trial, the prediction is not met resulting in a prediction error. The increase 

in the N400 amplitude for non-repeated targets vs. primes might indicate a higher prediction 

error for mispredicted vs. unpredicted stimuli (e.g., Hsu et al., 2015; 2018). Thus, these 

findings indicate that a predictive coding mechanism offers the most appropriate explanation 

for context-based facilitation described here.  
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 The current interpretations concerning the architecture and mechanistic 

implementation of context-based facilitation are not necessarily compatible. First, our 

favored architecture (Laszlo and Armstrong, 2014) implemented a fatigue mechanism. As 

pointed out above, the expected patterns from fatigue and predictive coding are relatively 

similar. Only our repetition probability and repetition congruency manipulations allowed the 

differentiation of predictive coding and fatigue. We expect that the implementation of a 

fatigue mechanism will not be able to simulate the effect of repetition probability presented 

here.  

 Still, another incompatibility is prevalent. We could not find evidence for the 

assumptions concerning the processing levels involved in context-based facilitation and the 

architecture proposed by the predictive coding theory (e.g., Friston, 2005; Rao and Ballard, 

1999). Predictive coding assumes that, at all processing levels, one integrates all available 

information before the presentation of a stimulus to facilitate later stimulus processing 

(Friston, 2005). As a consequence, one could expect the integration of pre-lexical familiarity 

of the learned pseudowords into the prediction process. If this were the case, we should have 

found the interaction of pre-lexical familiarity and context-based facilitation. Also, the 

predictive coding theory assumes a hierarchical architecture in which top-down besides 

within-level predictions facilitate processing (Friston, 2005). Once more, we could not find 

evidence for an architecture that implements top-down facilitation. However, we, on the 

other hand, provide evidence that a core mechanism of predictive coding (i.e., suppression of 

the informative part of expected sensory signals) is computationally implemented during 

visual word processing, to achieve context-based facilitation within, e.g., lexical processing 

levels.  

 Finally, one can speculate that specific lexical and pre-lexical information is 

transformed after completion of lexical access (i.e., after the N400 time window). The 

retrieved pre-lexical and lexical-semantic information might be used to predict the future 
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stimuli already at the sensory level (e.g., Rao and Ballard, 1999). Note, predicting away 

information at the sensory level optimizes processing at later levels since, as prominently 

proposed in the predictive coding models, only the residual, i.e., unpredicted information, is 

processed at higher levels (e.g., Gagl et al., 2018). In line with this notion is that for visual 

and lexical processing a reduction of activation was found. Still, for the implementation of a 

sensory prediction as suggested here, the information has to be transformed, i.e., from lexical 

to visual information, and held active until the presentation of the next stimulus. At the 

prime, the late occipital context effect of higher activation for prime vs. target (i.e., C6, Fig. 

5) might reflect the result of such a transformation process. We speculate that at this point in 

time top-down information might be used to prepare visual processing levels for the 

upcoming target presentation. When the subsequent target is in accordance with the 

prediction, based on predictive coding one can expect that the neuronal activation at the 

visual level is low. This expectation is met by the early context effect found in the occipital 

cortex (i.e., C1 cluster). Here, we expect that future research, e.g., using explicit connectivity 

investigations or specifically investigating the interval between prime and target, might allow 

specifying the information content integrated at the prime to facilitate processing of the 

target. 

 

Conclusion 

In sum, our investigation of context- and familiarity-based facilitation of visual word 

recognition indicated within-level facilitation at visual and lexical processing levels. We 

found no support for hierarchical, top-down facilitation from a predictive (higher-level) 

context (e.g., word semantics) to lower levels of processing (visual, pre-lexical). At a 

mechanistic level, we could identify predictive coding as the most likely candidate for the 

implementation of facilitation processes (as compared to fatigue and sharpening). A novel 

approach of our study was the explicit manipulation of pre-lexical (i.e., orthographic and 
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phonological) familiarity, via a pseudoword familiarization training procedure. We could not 

find support for context-based facilitation at the pre-lexical level but could identify a context-

independent pre-lexical familiarity effect in the left angular/ supramarginal gyrus. Thus, we 

conclude that context-based facilitation relies on information about visual and lexical-

semantic features of upcoming words. Interestingly, in natural reading, visual information is 

typically available through para-foveal pre-processing (Gagl et al., 2014; Schotter et al., 

2012), while lexical-semantic information is available through previous text or sentence 

context (Hawelka et al., 2010; Kliegl et al., 2006). This analogy might indicate that context-

based facilitation in reading mainly operates by visual and lexical representations. 

Investigating this dichotomy further in future studies might provide exciting avenues for 

refining the understanding of contextual influences on efficient word recognition during 

reading. 
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Tables 

Table 1. OLD20 and number of syllables for conditions of Experiment 1 (words, familiar and 

novel pseudowords) and Experiment 2 (words and three pseudoword [PW] sets). 

 Minimum 1
st
 Quartile Median 3

rd
 Quartile Maximum Mean SE 

Experiment 1: OLD20 

Words 1.600 1.750 1.850 1.900 2.050 1.825 0.013 

Familiar 1.250 1.600 1.725 1.863 2.100 1.717 0.026 

Novel 1.250 1.637 1.750 1.863 2.300 1.743 0.027 

Experiment 1: Number of syllables 

Words 1.00 2.00 2.00 2.00 2.00 1.817 0.050 

Familiar 1.00 2.00 2.00 2.00 2.00 1.95 0.028 

Novel 1.00 2.00 2.00 2.00 2.00 1.933 0.032 

Experiment 1: Logarithmic word frequency 

Words 0.000 1.512 2.229 2.858 4.032 2.137 0.115 

Experiment 2: OLD20 

Words 1.000 1.288 1.650 1.750 1.950 1.538 0.038 

PW set 1 1.000 1.500 1.650 1.762 2.000 1.605 0.032 

PW set 2 1.000 1.288 1.650 1.850 2.100 1.542 0.045 

PW set 3 1.000 1.337 1.700 1.850 2.300 1.596 0.044 

Experiment 2: Number of syllables 

Words 1.00 2.00 2.00 2.00 3.00 1.833 0.059 

PW set 1 1.00 2.00 2.00 2.00 2.00 1.95 0.028 

PW set 2 1.00 2.00 2.00 2.00 2.00 1. 967 0.023 

PW set 3 1.00 2.00 2.00 2.00 2.00 1.9 0.039 

Experiment 2: Logarithmic word frequency 

Words 0.000 1.518 1.971 2.189 3.301 1.933 0.095 

Note. SE = standard error of the mean. 
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Table 2. MNI coordinates of source maxima for clusters presented in Fig. 4, 5 and Extended 

Data Fig. 5-2. 

Cluster Contrast MNI coordinates Brain region Activation 

Interaction  

CxR 

Repetition vs. Non-

Repetition:  

Target > Prime 

-59.5  -19.5   -0.5 left superior temporal gyrus 

(extending to anterior 

temporal cortex) 

1.74 

-34.5  -90.5   -10.5 left occipital pole 1.60 

-39.5  -84.5   -10.5 left inferior occipital cortex 1.56 

-59.5  -50.5   10.5 left middle temporal/ 

angular/ supramarginal gyri 

1.36 

Interaction 

CxF 

Prime vs. Target:  

Words > novel PW 

-54.5  10.5   -20.5 left anterior temporal cortex 1.05 

Prime vs. Target:  

Words > familiar PW 

-59.5  -9.5   -30.5 left anterior temporal cortex 1.10 

Familiarity 

F1 

Familiar PW > words -59.5  -50.5   20.5 left angular/ supramarginal 

gyrus 

6.28 

Familiar > novel PW  -59.5  -50.5   20.5 left angular/ supramarginal 

gyrus 

4.29 

Context C1 Prime vs. Target -20.5  -99.5   0.5 left occipital pole 11.1 

Note. Activation refers to peak activation in 10
-9

 signal-to-noise ratio. PW = pseudowords. 
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Table 4. Results from post hoc linear mixed model analyses on ERF values (in 10

-14 
Tesla) 

from sensor and time point of the strongest effect for prelexical (F1) and lexical (F2) 

familiarity clusters represented in Fig. 5e-g and Extended Data Fig. 5-4, respectively. Separate 

post hoc analyses for prime and target stimulus are represented in Extended Data Table 4-1. 

 

F1  F2 

 FE SE t  FE SE t 

Prime vs. target -0.59    0.12 4.71  2.87 0.17   17.33 

Pre-lexical familiarity -0.71    0.16   4.49  0.60 0.23    2.63 

Lexical familiarity -0.080    0.16 0.49  -0.59 0.23  2.55 

Context x Pre-lexical familiarity 0.079    0.14 0.55  -0.20   0.19 1.04 

Context x Lexical familiarity -0.52 0.14 3.63  1.092 0.19 5.71 

OLD20 -0.076 0.14 0.54  -0.090 0.20 0.44 

Number of syllables 0.0091 0.14    0.066  -0.018 0.20 0.092 

Note. Significant effects (i.e., t > 2) are shown in bold numerals. FE = fixed effect estimates, 

SE = standard error. 

 
 

Table 3. Results from post hoc linear mixed model analyses on ERF values (in 

10
-13 

Tesla) from sensor and time point of the strongest effect for the 

prime/target x repetition congruency (repetition vs. non-repetition) interaction 

cluster represented in Fig. 4.  

 

Repetition  Non-Repetition 

 FE SE t  FE SE t 

Prime vs. target 2.22      0.19 11.61  -0.58  0.20   2.94 

OLD20 -0.18      0.22   0.81  -0.28     0.25  - 1.09 

Number of syllables 0.24  0.22    1.12  -0.083     0.25  0.32 

Note. Reliable effects are shown in bold. FE = fixed effects, SE = standard 

error. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/410795doi: bioRxiv preprint 

https://doi.org/10.1101/410795
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  66 

Table 5. Results from post hoc linear mixed model analyses on ERF values (in 10
-14 

Tesla) 

from sensor and time point of the strongest effect for the prime/target x lexical familiarity 

interaction cluster represented in Fig. 5h-j. Separate post hoc analyses for prime and target 

stimulus are represented in Extended Data Table 5-1. 

 FE SE t 

Prime vs. target 1.2 0.097 12.57 

Pre-lexical familiarity 0.33 0.12 2.70 

Lexical familiarity -0.23 0.13 1.85 

Prime/target x Pre-lexical familiarity -0.017 0.11 0.15 

Prime/target x Lexical familiarity 0.83 0.11 7.41 

OLD20 -0.016 0.11 0.15 

Number of syllables 0.049 0.11 0.45 

Note. Significant effects (i.e., t > 2) are shown in bold numerals. FE = fixed effect 

estimates, SE = standard error. 
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Table 6. Overview of the six experimental versions A to F of Experiment 2, indicating which 

of the two object image sets (A, B) was learned and which of the three pseudoword sets (1, 2, 

3) was assigned to which familiarity condition. 

Version Learned object set Pseudoword set Participants 

 Semantic  Familiar Novel  

A A 1 2 3 8 

B B 2 1 3 4 

C A 2 3 1 3 

D  B 3 2 1 3 

E A 3 1 2 3 

F B 1 3 2 3 

Note. Novel = pseudowords first shown in the repetition priming task. Participants refers to 

the number of participants assigned to each version. 
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Table 7. Results from the linear mixed model analyses investigating repetition congruency 

(repetition vs. non-repetition) and repetition probability in log transformed response times 

from the repetition priming task (Experiment 2). 

 FE SE t 

 Full model 

Repetition congruency -0.13 0.0035 39.55 

Probability -0.060 0.0029 20.43 

Repetition congruency x Probability -0.033 0.0033 9.99 

OLD20 -0.0036 0.0047 0.76 

Number of syllables 0.0010 0.0047 0.22 

 Post hoc: Repetition trials 

Probability -0.085 0.0044 19.28 

 Post hoc: Non-Repetition trials 

 -0.022 0.0037 6.06 

 Post hoc: (Repetition – Non-Repetition) 

Probability: 25 vs. 50 % -0.040 0.0055 7.36 

Probability: 50 vs. 75 % -0.043 0.010 4.26 

Note. Significant effects (i.e., t > 2) are shown in bold numerals. FE = fixed effect estimates,  

SE = standard error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/410795doi: bioRxiv preprint 

https://doi.org/10.1101/410795
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  69 

Table 8. Results from the linear mixed model analyses investigating repetition probability, 

familiarity, and semantics in log transformed response times from non-repetition trials only 

(Experiment 2). 

 Non-Repetition 

 FE SE t 

Probability -0.022 0.0036 6.26 

Pre-lexical familiarity 0.021 0.0038 5.62 

Lexical familiarity -0.0027 0.0039 0.69 

Probability x Pre-lexical familiarity -0.0033 0.0034 0.98 

Probability x Lexical familiarity 0.0049 0.0034 1.42 

Pre-lexical x Lexical familiarity 0.039 0.0038 10.10 

Probability x Pre-lexical x Lexical familiarity -0.0011 0.0034 0.32 

OLD20 -0.0042 0.0046 0.92 

Number of syllables -0.0050 0.0047 1.06 

Note. Significant effects (i.e., p < 0.05) are shown in bold numerals. FE = fixed effects, SE = 

standard error.  
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Table 9. Results from post hoc linear mixed model analyses investigating familiarity effects in 

log transformed response times in the repetition priming task (Experiment 2). 

 Repetition  Non-Repetition 

 FE SE t  FE SE t 

 Novel vs. familiar PW 

Familiarity 0.0058 0.0056 1.03  -0.016 0.0046 3.49 

OLD20 -0.016 0.0085 1.91  -0.0053 0.0058 0.91 

Number of syllables -0.0077 0.0082 0.94  -0.0083 0.0059 1.39 

 Novel vs. semantic PW 

Familiarity -0.048 0.0059 8.11  0.023 0.0051 4.54 

OLD20 -0.012 0.0075 1.56  -0.011 0.0064 1.68 

Number of syllables -0.0085 0.0074 1.14  -0.015 0.0067 2.16 

 Novel PW vs. words 

Familiarity -0.076 0.0068 11.24  -0.039 0.0064 6.06 

OLD20 -0.016 0.0067 2.39  -0.0042 0.0061 0.69 

Number of syllables 0.0031 0.0069 0.45  0.0022 0.0067 0.32 

 Familiar vs. semantic PW 

Familiarity -0.051 0.0060 8.52  0.039 0.0053 7.25 

OLD20 -0.0056 0.0077 0.72  -0.0064 0.0063 1.03 

Number of syllables -0.0066 0.0076 0.86  -0.014 0.0064 2.22 

 Familiar PW vs. words 

Familiarity 0.080 0.0079 10.08  -0.022 0.0063 3.52 

OLD20 -0.0087 0.0077 1.12  0.0007 0.0060 0.12 

Number of syllables 0.0049 0.0081 0.60  -0.0008 0.0066 0.12 

 Semantic PW vs. words 

Familiarity 0.026 0.0071 3.64  0.064 0.0073 8.74 

OLD20 -0.0030 0.0070 0.43  -0.0078 0.0070 1.11 

Number of syllables 0.0038 0.0074 0.52  -0.0055 0.0078 0.70 

Note. Significant effects (i.e., t > 2) are shown in bold numerals. FE = fixed effects,  
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SE = standard error. 

 
 

 

Table 10. Results from the linear mixed model analyses investigating repetition congruency 

(repetition vs. non-repetition), probability, familiarity, and semantics in log transformed 

response times in the repetition priming task (Experiment 2). Statistical analyses of accuracy 

data can be found in Extended Data Tables 10-1 and 10-2. 

 FE SE t 

Repetition congruency -0.13  0.0031  41.76 

Probability -0.060   0.0029   20.53 

Pre-lexical familiarity 0.019   0.0032     5.90 

Lexical familiarity -0.036   0.0033  10.80 

Repetition congruency x Probability -0.032   0.0031   10.29 

Repetition congruency x Pre-lexical familiarity -0.0026   0.0029    0.88 

Repetition congruency x Lexical familiarity -0.033   0.0030   11.13 

Probability x Pre-lexical familiarity -0.0036   0.0029    1.26 

Probability x Lexical familiarity 0.0057   0.0029     1.98 

Pre-lexical x Lexical familiarity 0.026   0.0032     7.86 

Repetition congruency x Probability x Pre-lexical familiarity 0.00045  0.0029    0.15 

Repetition congruency x Probability x Lexical familiarity 0.00065  0.0029     0.22 

Repetition congruency x Pre-lexical x Lexical familiarity -0.013   0.0030    4.47 

Probability x Pre-lexical x Lexical familiarity -0.0020   0.0029    0.69 

Repetition congruency x Probability x Pre-lexical x Lexical familiarity -0.00054 0.0029    0.18 

OLD20 -0.0065   0.0036    1.80 

Number of syllables -0.0052   0.0037    1.42 

Note. Significant effects (i.e., p < 0.05) are shown in bold numerals. FE = fixed effects, SE = 

standard error.  
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Extended Data for Figures 

Figure 3-1. Results from the linear mixed model analyses of d' sensitivity indices 

from the pseudoword familiarization sessions of both Experiment 1 and 2, 

including pairwise comparisons from session to session. 

 Experiment 1  Experiment 2 

 Old/New recognition  Paired-association  Naming 

 FE SE t  FE SE t  FE SE t 

All Sessions 0.66 0.039 17.17  0.54 0.035 15.70  0.77 0.040 19.41 

1 vs. 2 0.50 0.060 8.26  0.35 0.048 7.43  0.39 0.051 7.63 

2 vs. 3 0.25 0.029 8.52  0.22 0.028 7.83  0.31 0.048 6.56 

3 vs. 4 0.16 0.029 5.75  0.11 0.046 2.40  0.21 0.041 5.13 

4 vs. 5 - - -  0.12 0.029 4.10  0.20 0.043 4.63 

Note. Significant effects (i.e., t > 2) are shown in bold numerals. FE = fixed 

effect estimates, SE = standard error. 
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Figure 4-1. Overview of clusters demonstrating a prime/target by repetition congruency 

(repetition vs. non-repetition) interaction obtained with separate or common baselines for 

prime and target. 

Cluster Analysis Sensors Time Range p 

1 Separate baselines left frontal 0.28 to 0.45 0.0002 

Common baseline left frontal 0.28 to 0.46 0.0002 

2 Separate baselines right frontal 0.32 to 0.55 0.0002 

Common baseline right frontal 0.29 to 0.5 0.0002 

3 Common baseline left central 0.74 to 0.77 0.018 

4 Common baseline left occipital 0.36 to 0.38 0.039 

Note. Clusters found in both separate and common baseline analysis presented in the results 

section are marked in bold. p refers to the multiple-comparison-corrected ratio of permuted 

cluster statistics larger than the cluster statistic of the original data.  
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Figure 5-1. Overview of clusters form the analysis investigating the prime/target x familiarity 

interaction obtained with separate or common baselines for prime and target, as well as peak-

to-peak analysis. 

Cluster Analysis Sensors Time Range p 

Prime/Target x Familiarity Interaction 

1 

 

Separate baselines left frontal 0.3 to 0.48 0.0002 

Common baseline left frontal 0.29 to 0.48 0.0002 

Peak-to-peak left frontal 0.29 0.0002 

2 Separate baselines right frontal 0.4 to 0.44 0.0008 

Common baseline right frontal 0.4 to 0.46 0.0004 

3 Separate baselines left occipital 0.3 to 0.33 0.0068 

Peak-to-peak left occipital 0.28 0.0002 

4* Separate baselines left central 0.27 to 0.29 0.033 

Common baseline left central 0.26 to 0.29 0.0032 

5 Common baseline left central 0.48 to 0.5 0.0054 

6 Common baseline right frontal 0.35-0.38 0.014 

7 Common baseline right central 0.32-0.34 0.021 

8 Common baseline left frontal 0.01-0.02 0.031 

9 Common baseline left central 0.04-0.05 0.042 

10 Common baseline right central 0.43-0.45 0.042 

Main effect of familiarity 

1 Separate baselines left occipital 0.29 to 0.38 0.0002 

Common baseline left occipital 0.3 to 0.34 0.0002 

Peak-to-peak left occipital 0.28 0.0002 

2 Separate baselines left frontal 0.33 to 0.38 0.0002 

Common baseline left frontal 0.35 to 0.37 0.002 

Peak-to-peak left frontal 0.28 0.0002 

3 Separate baselines left occipital 0.43 to 0.48 0.0002 

4 Separate baselines left occipital 0.56 to 0.6 0.008 

5 Separate baselines right central 0.55 to 0.57 0.014 
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6 Common baseline posterior central  0.05  0.014 

7 Common baseline left temporal -0.11 to -0.1 0.008 

Main effect of prime vs. target 

1 

 

Separate baselines left frontal 0.21 to 0.47 0.0002 

Common baseline left frontal 0.15 to 0.51 0.0002 

Peak-to-peak bilateral frontal 0.27 0.0002 

2 Separate baselines right frontal 0.26 to 0.59 0.0002 

Common baseline right frontal 0.22 to 0.61 0.0002 

Peak-to-peak see above see above see above 

3 

 

Separate baselines left occipital 0.1 to 0.14 0.001 

Common baseline left occipital 0.1 to 0.13 0.0076 

4 Separate baselines right central / 

temporal 

0.47 to 0.53 

0.0002 

Common baseline right central 0.48 to 0.52 0.011 

5 Separate baselines right central 0.38 to 0.42 0.0004 

Common baseline right central 0.37 to 0.42 0.0032 

6 Separate baselines left temporal 0.38 to 0.42 0.0034 

Common baseline left temporal 0.37 to 0.44 0.0008 

7 Separate baselines right central 0.15 to 0.18 0.0038 

Common baseline right central 0.15 to 0.18 0.0006 

8 Separate baselines left occipital 0.59 to 0.69 0.0076 

Common baseline left occipital 0.61 to 0.7 0.0026 

9* Separate baselines right central/ 

frontal 

0.08 to 0.17 

0.0002 

Common baseline right central 0.09 to 0.11 0.010 

10* Separate baselines right occipital 0.2 to 0.25 0.0072 

Common baseline right occipital 0.22 to 0.24 0.034 

11 Separate baselines left central/ 

temporal 

0.08 to 0.13 

0.0002 

12 Separate baselines right occipital 0.1 to 0.13 0.017 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/410795doi: bioRxiv preprint 

https://doi.org/10.1101/410795
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  76 

13 Separate baselines right central 0.59 to 0.62 0.027 

14 Common baseline right central -0.11 to -0.04 0.001 

15 Common baseline left central 0.05 to 0.08 0.002 

16 Common baseline left central -0.06 to -0.01 0.0038 

17 Common baseline right central -0.04 to -0.02 0.030 

18 Common baseline right frontal 0.62 to 0.66 0.047 

Note. Clusters found in both separate and common baseline analysis presented in the results 

section are marked in bold. Asterisks mark clusters that were significant in both analyses but 

not interpreted due to the short duration < 30 ms. For peak-to-peak analysis, the time range 

row represents the peak latency averaged across all conditions and significant sensors. p refers 

to the multiple-comparison-corrected ratio of permuted cluster statistics larger than the cluster 

statistic of the original data. 

 
 
 
 

 
Figure 5-2. Source locations for a) the familiarity cluster F1 contrasting familiar pseudowords 

> words and b) the interaction cluster CxF contrasting prime vs. target by words vs. 

familiar pseudowords. 
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Figure 5-3. Main effect of lexical familiarity. a) Topographical map, b) ERF time course, and 

c) boxplot, averaged across prime and target.  
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Figure 5-4. Same results as in Fig. 5 depicted for a low-pass filter of 40 instead of 20 Hz.  
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Figure 5-5. Significant clusters obtained in the peak-to-peak analysis for a) the interaction of 

context (prime vs. target) by lexical familiarity, b) main effects of pre-lexical familiarity, c) 

main effects of lexical familiarity and d) main effect of context (prime vs. target). 

Topographical maps represent F-values of significant sensors; note the different scales. 

Non-significant sensors are set to zero. Peak latencies averaged across significant sensors 

and all conditions are depicted above the topographical maps.  

 
 
 

 
Figure 6-1. Accuracies in Experiment 2 (semantic association judgment task). a) Repetition 

probability effect for repetition (left) and non-repetition trials (right) averaged across 

familiarity conditions. b) Familiarity influence on context effects, i.e., repeated (left) vs. non-

repeated targets (right). Effects are separated for familiarity conditions, with an additional 

separation for letter strings with and without semantic associations, averaged across 

repetition probabilities. Colored dots and lines represent individual participants. 
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Extended Data for Tables 

Table 4-1. Results from post hoc linear mixed model analyses on ERF values (in 10
-14 

Tesla) 

from sensor and time point of the strongest effect, separately for prime and target, for pre-

lexical (F1) and lexical (F2) familiarity clusters represented in Fig. 5d-i and Extended Data 

Fig. 5-4, respectively. 

 

Prime  Target 

 FE SE t  FE SE t 

 F1 

 Word vs. novel PW 

Familiarity -0.95  0.50   1.93  1.31 0.46    2.89 

OLD20 -0.25 0.24 1.04  -0.0059 0.22 0.026 

Number of syllables -0.097     0.24 0.40  -0.0046 0.22 0.021 

 Words vs. familiar PW 

Familiarity -2.59     0.48   5.44  0.052     0.46 0.11 

OLD20 -0.057    0.24   0.24  0.023  0.23 0.10 

Number of syllables -0.12     0.23   0.51  -0.028 0.22 0.13 

 Familiar vs. novel PW 

Familiarity 1.65  0.42 3.92   1.32      0.47 2.78 

OLD20 -0.038     0.21 0.18  -0.11  0.24   0.48 

Number of syllables 0.35 0.21 1.67  -0.019 0.24   0.081 

 F2 

 Word vs. novel PW 

Familiarity 3.44      0.84    4.10  -1.00     0.71 1.40 

OLD20 -0.11      0.41  0.27  -0.049     0.35   0.14 

Number of syllables 0.12  0.42    0.30  -0.092  0.35 0.26 

 Words vs. familiar PW 

Familiarity  5.33   0.81    6.60  -0.18      0.65  0.27 

OLD20 0.23  0.41   0.56  -0.24 0.33   0.74 

Number of syllables 0.30  0.39 0.77  -0.30 0.31 0.94 
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 Familiar vs. novel PW 

Familiarity -1.66     0.67  2.46  -0.81      0.60   1.35 

OLD20 0.035      0.34    0.10   -0.37  0.30   1.26 

Number of syllables 0.024     0.34 0.069  -0.25 0.30   0.84 

Note. Significant effects (i.e., t > 2) are shown in bold numerals. FE = fixed effect estimates, 

SE = standard error. 

 
 
 

 
 

Table 5-1. Results from post hoc linear mixed model analyses on ERF values (in 10
-14 

Tesla) 

from sensor and time point of the strongest effect, separately for prime and target, for the 

prime/target x lexical familiarity interaction cluster represented in Fig. 5h-j. 

 

Prime  Target 

 FE SE t  FE SE t 

 Word vs. novel PW 

Familiarity  2.15      0.47   4.54  -1.20     0.37 3.23 

OLD20 -0.099     0.23  0.43  0.091     0.18  0.50 

Number of syllables 0.11     0.23  0.46  0.026 0.18 0.14 

 Words vs. familiar PW 

Familiarity 3.07  0.42    7.39  -0.65     0.37 1.76 

OLD20  0.19 0.2101    0.91  -0.17     0.19   0.90 

Number of syllables 0.14 0.20 0.71  0.045   0.18    0.25 

 Familiar vs. novel PW 

Familiarity -0.70 0.40  1.75  -0.66  0.33 1.98 

OLD20 -0.023     0.20  0.11  -0.061     0.17   0.37 

Number of syllables 0.038     0.20  0.19  -0.15 -0.17   0.91 

Note. Significant effects (i.e., t > 2) are shown in bold numerals. FE = fixed effect estimates, 

SE = standard error. 
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Table 10-1. Results from the linear mixed model analyses investigating repetition congruency 

(repetition vs. non-repetition), probability, familiarity, and semantics in accuracies during 

repetition priming (Experiment 2). 

 FE SE z p 

Repetition congruency 0.29 0.027  10.78 <  2e-16 

Probability 0.023     0.028    0.82  0.41 

Pre-lexical familiarity -0.44 0.027 16.08 <  2e-16 

Lexical familiarity -0.27 0.027 -9.8 <  2e-16 

Repetition congruency x Probability 0.10 0.028 3.58 0.00034 

Repetition congruency x Pre-lexical familiarity -0.09 0.027 3.31 0.00093 

Repetition congruency x Lexical familiarity 0.027 0.027 1.00 0.32 

Probability x Pre-lexical familiarity -0.021 0.028 -0.76 0.44 

Probability x Lexical familiarity 0.064 0.028 2.32 0.020 

Pre-lexical x Lexical familiarity -0.28 0.027 10.38 <  2e-16 

Repetition congruency x Probability x Pre-lexical familiarity -0.037 0.028 1.35 0.18 

Repetition congruency x Probability x Lexical familiarity 0.075 0.028 2.72 0.0065 

Repetition congruency x Pre-lexical x Lexical familiarity -0.039 0.027 1.44 0.15 

Probability x Pre-lexical x Lexical familiarity -0.015 0.028 0.54 0.59 

OLD20 0.071 0.023 3.06 0.0022 

Number of syllables 0.045 0.024 1.84 0.065 

Note. Significant effects (i.e., p < 0.05) are shown in bold numerals. FE = fixed effects, SE = 

standard error.  
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Table 10-2. Results from the linear mixed model analyses on accuracies during repetition 

priming (Experiment 2), separately for repetition and non-repetition trials. 

 Repetition  Non-Repetition 

 FE SE z p  FE SE z p 

Probability 0.11 0.040    2.81 0.0049  -0.067 0.036 1.87 0.061 

Pre-lexical familiarity -0.56 0.042  13.54   < 2e-16  -0.40    0.040  9.84   < 2e-16 

Lexical familiarity -0.18 0.041 -4.38  1.21e-05  -0.33    0.041   -8.02  1.02e-15 

Probability x Pre-lexical 

familiarity 

-0.053     0.039 1.34   0.18  0.0037   0.034   0.11     0.91 

Probability x Lexical familiarity 0.13 0.040 3.24 0.0012  -0.0052 0.034   -0.16     0.88 

Pre-lexical x Lexical familiarity -0.36 0.042 8.66 < 2e-16  -0.30 0.040 7.53  5.19e-14 

Probability x Pre-lexical x 

Lexical familiarity 

-0.063 0.039 1.60   0.11  0.027   0.033 0.80     0.42 

OLD20 0.10     0.036    2.77  0.0055  0.051  0.050  1.03     0.31 

Number of syllables 0.073 0.040    1.82  0.069  0.017  0.053 0.33  0.75  

Note. Significant effects (i.e., p < 0.05) are shown in bold numerals. FE = fixed effects, SE = 

standard error.  
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