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Abstract

The connectivity of cortical microcircuits is a major determinant of brain function; defining how activity

propagates between different cell types is key to scaling our understanding of individual neuronal behaviour to

encompass functional networks. Furthermore, the integration of synaptic currents within a dendrite depends on

the spatial organisation of inputs, both excitatory and inhibitory. We identify a simple equation to estimate the

number of potential anatomical contacts between neurons; finding a linear increase in potential connectivity

with cable length and maximum spine length, and a decrease with overlapping volume. This enables us to

predict the mean number of candidate synapses for reconstructed cells, including those realistically arranged.

We identify an excess of putative connections in cortical data, with densities of neurite higher than is necessary

to reliably ensure the possible implementation of any given connection. We show that potential contacts allow

the particular implementation of connectivity at a subcellular level.
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Impact statement

A simple equation linking neurite densities of overlapping neurons to their putative anatomical contacts suggests

a potential all-to-all connectivity, typically including sufficient wiring to specifically target individual dendritic

compartments.
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Introduction 1

The functionality of the brain depends fundamentally on the connectivity of its neurons for everything from the 2

propagation of afferent signals (Matthews & Fuchs, 2010; Oh et al, 2014) to computation and memory retention 3

(Hebb, 1949; Hopfield, 1984; Abbott & Regehr, 2004). Connectivity arises from the apposition of complex 4

branched axonal and dendritic arbors which each display a diverse array of forms, both within and between 5

neuronal classes (Bok, 1936; Sholl, 1953; Ascoli et al, 2007, 2008). Despite this complexity, neurons of different 6

classes have been observed to form synapses in highly specific ways, leading to potentially highly structured 7

connectivity motifs within neuronal networks (Binzegger, 2004; Yoshimura & Callaway, 2005; Ohki & Reid, 2007; 8

Perin et al, 2011; Potjans & Diesmann, 2014; Jiang et al, 2015). 9

Whilst the large-scale EM studies necessary to definitively constrain synaptic connectivity remain prohibitively 10

slow (Briggman & Denk, 2006; da Costa & Martin, 2013; Helmstaedter, 2013) and viral synaptic tracing is limited 11

to small numbers of neurons (Wall et al, 2013), putative synaptic locations from the close juxtaposition of dendrite 12

and axon are more readily measured (Markram et al, 1997; Lee et al, 2016) and provide the potential set of 13

all possible synaptic contacts; the backbone upon which neuronal activity can fine tune connectivity. It has 14

been shown that much of the specificity in putative connectivity can be explained by a detailed analysis of the 15

statistical overlap of different axonal and dendritic arbors (Hill et al, 2012; Markram et al, 2015; Reimann et al, 16

2017). However such analyses rely on full neuronal reconstructions with large numbers of parameters and are 17

difficult to apply intuitively to microcircuits; there is value in a simple and easily interpretable description of the 18

expected connectivity between a given pair of cells. 19

The fundamental assumption here is a form of Peters’ Rule, where synapses form uniformly where possible 20

(Peters & Feldman, 1976; Braitenberg & Schüz, 1998). Peters’ rule has been interpreted in a number of different 21

ways at a number of different scales; from predicting of the connectivity between different neuronal classes from 22

their relative abundance (Li et al, 2007) to estimating the number of synapses between a given pair of neurons 23

(Packer et al, 2013). There is experimental evidence both for and against the assumption of uniform synapse 24

formation in different brain regions, species, and under different experimental protocols. A recent review by 25

Rees et al (2017) summarises the experimental evidence for (Packer et al, 2013; van Pelt & van Ooyen, 2013; 26

Merchán-Pérez et al, 2014; Rieubland et al, 2014) and against (Mishchenko et al, 2010; Potjans & Diesmann, 2014; 27

Kasthuri et al, 2015; Lee et al, 2016) Peters’ Rule at the level of individual neurites; but in general it seems that 28

uniform potential structural connectivity is an accurate and powerful model for large regions of the central 29

nervous system. 30

Given a backbone of neurite structure, neuronal activity is able to strengthen or weaken synapses; allowing 31

memory formation (Hebb, 1949), changes in information storage capacity (Stepanyants et al, 2002; Chklovskii et 32

al, 2004), and sensory tuning (Lee et al, 2016). This relies on the relative dynamism of spine growth and retraction, 33

which occurs on timescales of minutes (Lendvai et al, 2000) (although actual synapse formation can be slower 34

(Knott et al, 2002)), compared to neurite remodelling, which is typically stable over timescales of weeks or months 35

in mature cells (Trachtenberg et al, 2002; Chow et al, 2009). The proportion of close appositions that appear to be 36

bridged by spines at a given time is traditionally referred to as the filling fraction (Stepanyants et al, 2002) and 37
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original estimates ranged from 0.1 (macaque V1 visual cortex) to just under 0.4 (rat CA3 hippocampus). A further 38

detail comes from the relationship between the number of anatomical contacts seen under light microscopy 39

with those with synaptic structure under an electron microscope; Markram et al (1997) investigated thick-tufted 40

layer 5 pyramidal cells in rat somatosensory cortex and found that when an axon passed close to a dendrite 41

and displayed substantial swelling indicative of a bouton, then around 80% were true synaptic contacts. Such 42

a reliable and consistent, but not perfect, relationship has since been observed in different neuronal systems 43

(Feldmeyer et al, 1999, 2002; Mishchenko et al, 2010). More recent studies have found, as we observe here in 44

the adult mouse visual cortex dataset of Jiang et al (2015), lower proportions of functional to potential contacts 45

(Kasthuri et al, 2015; Lee et al, 2016). The excess of putative connectivity arises from the extensive branching of 46

cortical neurites and raises questions about the additional functionality provided by this additional metabolic 47

expenditure. 48

On the postsynaptic side, dendritic trees act as a filter on inputs. The passive electrotonic properties of dendritic 49

cables cause synaptic currents to decay in time and space (Rall, 1964), whilst active processes (Llinas, 1988; 50

Schiller et al, 2000) act to amplify integrated signals that locally exceed a threshold. Inputs to specific regions of 51

some cells allow nonlinear computations to be performed at an intraneuron scale (Mel, 1993; Poirazi et al, 2003; 52

Polsky et al, 2004; London & Häusser, 2005; Losonczy & Magee, 2006). The interaction of clustered or distributed 53

excitatory (Behabadi et al, 2012) and inhibitory (Gidon & Segev, 2012) inputs within a dendritic tree mean that a 54

subcellular-resolution connectome is relevant to realistic network function. 55

We investigate how well the number of putative synaptic contacts between pairs of neurons can be predicted 56

from simple and intuitive properties of the spatial overlap of their neurite arbours. We find an excess of potential 57

connectivity, both predicted and measured, beyond that described by Stepanyants et al (2002) and sufficient to 58

reliably implement all possible connections at the level of singe cells. We investigate further how well this allows 59

for specific connectivity at the subcellular level of dendritic compartments. 60

Results 61

Putative synapse number depends on four parameters 62

A putative synaptic contact is defined as a location where the distance between axon and dendrite is small 63

enough for the gap to be bridged by a dendritic spine. The number of putative synaptic contacts N can be 64

estimated by the equation 65

N =
πLaLds

2V
(1)

where La is the length of axon and Ld the length of dendrite within the axo-dendritic overlap, which has volume 66

V . s is the maximum spine length at which a synaptic contact could form and typically lies in the range of 1 to 67

4µm. The full derivation is given in the Methods, but relies on the assumption that straight segments of neurite 68

are distributed at uniform random angles within the overlapping volume and can potentially form a contact if 69

the axon intersects a cylinder of radius s around the dendrite (Fig 1a). The form of the equation predicts that the 70

expected number of putative synapses will increase linearly with the maximal spine distance and the lengths 71
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Fig 1. Four factors predict putative synapse number. A Schematic illustration of a putative contact between axonal (orange)

and dendritic (blue) segments. The grey region is the cylinder of radius s (black line) within which putative contacts can form.

B Shared volume of an example axon (orange) and dendrite (blue). The axo-dendritic overlap is shown in grey. C Schematic of

region excluded from synapse formation (grey) caused by formation of a potential contact (red). The two black putative contacts

are excluded. D Expected putative contact number as a function of Ld, dendritic length within the axo-dendritic length. La = 3mm

and V = 2.4 × 10−3mm3. E Expected putative contact number as a function of axonal length within the axo-dendritic length.

Ld = 2.4mm and V = 2.4 × 10−3mm3. F Expected putative contact number as a function of the volume of the axo-dendritic

overlap. Ld = 2.4mm and La = 3mm. Different colours show different maximum spine lengths s. Error bars show standard error.
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of neurite within the axo-dendritic overlap; increasing each of these increases the chance of an axon passing 72

within a maximum spine distance of a dendrite. If these properties are held constant, the expected number of 73

potential contacts decreases with an increase in the volume of the overlapping region due to the reduced density 74

of neurite. 75

The size and shape of the axo-dendritic overlap is therefore a key component of this equation and is defined as 76

follows. Each neuronal arbor is assigned a spanning field, a connected boundary that encompasses all neuronal 77

branches with a tightness dependent on the underlying arbor shape (see Methods and Bird & Cuntz (submitted)). 78

The part of the axonal tree that lies within the spanning field of the dendritic arbor and the part of the dendritic 79

tree that lies within the spanning field of the axonal arbor are used to define the axo-dendritic overlap. A 80

boundary is created around the union of these two sections of arbor with a tightness taken as the mean of those of 81

the two full original trees. This boundary is illustrated by the grey region in Figure 1b and the volume contained 82

within it is defined as V . 83

We apply our equation to estimate the number of putative contacts between generalised minimum spanning 84

trees Cuntz et al (2010) that reproduce the properties of axonal and dendritic trees, where the measured number 85

is denoted n. In order to prevent an unbounded clustering of synaptic contacts whenever an axon and dendrite 86

pass close together at a single point, we further introduce an exclusion region around each contact (illustrated 87

by the grey sphere in Fig 1c). The closest apposition between dendrite and axon is selected as a contact and 88

all other appositions within a certain distance, typically 3µm, are excluded from forming putative contacts 89

(illustrated by the small black spheres in Fig 1c). The closest remaining apposition is then selected and another 90

exclusion applied. This is repeated until there are no appositions closer than s remaining. The exclusion region is 91

a conservative constraint as Schmidt et al (2017) found that around 20% of synaptic connections in rat medial 92

entorhinal cortex exhibited clustering, with mean intercontact distances within a cluster of 3.7µm and 4.8µm 93

onto excitatory and inhibitory dendrites respectively. The number of synaptic contacts given by this algorithm is 94

therefore likely to be an underestimate of the true number, but ensures that n does not depend strongly on the 95

sampling frequency of the neurite discretisation (or grow to infinity if the neurites are treated continuously). In 96

terms of postsynaptic functionality, tightly clustered contacts are far more likely to innervate a single dendritic 97

compartment and so provide a strong but spatially localised input that does not alter the connectivity structure 98

at the subcellular level. 99

Figures 1d to f plot the number of putative synaptic contacts found numerically for synthetic neuronal arbors 100

generated using generalised minimum spanning trees for different maximum spine lengths s as a function of 101

each of Ld, La, and V when the other parameters are held approximately constant. The dashed lines give the 102

predictions of Eq 1 in each case and show a good match between theory and simulation for these synthetic 103

neurites. The standard deviations are plotted below the mean in each case and are quite large, growing 104

proportionally with the mean. 105

Eq 1 is similar to results introduced by Stepanyants et al (2002) for synaptic contacts onto a given dendritic 106

tree by all axons in a tissue and Chklovskii (2004) to determine the total number of afferent synapses onto a 107

particular dendrite given the total abundance of axons within a cortical column. The application here differs from 108
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previous usage as it explicitly accounts for an individual axonal tree, allowing for estimation of cell-type specific 109

connectivity given the statistics of axo-dendritic pairs. It is also a simplification of the detailed approaches to 110

estimating pairwise connectivity in Hill et al (2012), Markram et al (2015), and Reimann et al (2017) as well as the 111

dendritic-density based approaches of Liley & Wright (1994), Amirikian (2005), van Pelt & van Ooyen (2013), 112

and Aćimović et al (2015). By accurately modelling potential connectivity in terms of four simple parameters, 113

this equation simply and robustly highlights the major determinants of microcircuit structure. 114
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Symbol Interpretation

La Axon length within overlapping region

Ld Dendrite length within overlapping region

M Number of dendritic compartments

n Measured number of putative contacts

N Estimated number of putative contacts

NComplete Number of putative synaptic contacts to innervate all dendritic compartments

pc Probability that a pair of cells are connected (second subscript denotes distribution model)

s Maximum spine length

V Volume of axo-dendritic overlap

µM,n Expected number of dendritic compartments (out of M ) innervated by n synaptic contacts

Table 1. Table summarising symbols and terms.
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Other factors do not substantially influence putative synapse number 115

Neurites take a very wide array of shapes with different branching statistics and locations relative to one another 116

(Bok, 1936; Ascoli et al, 2007, 2008); although we have shown a relationship between four features of a neuronal 117

pairing and the expected putative synapse number N , it is worthwhile to consider whether other factors implicit 118

to our model may have an effect. We have therefore investigated whether three other features alter the accuracy 119

of the prediction under Eq 1. Firstly we considered whether the shape of the domain used to create the synthetic 120

neurites has an impact. For Figure 1, the generalised minimum spanning tree algorithms were used to generate 121

trees within cubes, but various other shapes such as cones, spheres, and cylinders do not affect the results (Fig 122

2a). 123

The balancing factor bf in the generalised minimum spanning tree model determines the balance between costs 124

associated with additional neurite length and conduction delays caused by long path distances between synapses 125

and the soma. A balancing factor of zero corresponds to a pure MST where conduction delays are ignored and in 126

the limit of high balancing factors, all synapses are directly connected to the soma. Typically real non-planar 127

neurons have dendrites with balancing factors in the range 0.2 to 0.8 (Cuntz et al, 2010) and there is a roughly 128

exponential relationship between increasing balancing factor and the centripetal bias as quantified by the root 129

angle distribution (Bird & Cuntz, submitted). We typically set the balancing factors of the dendrite and axon 130

to 0.2 and 0.7 respectively to account for the different features of these neurites (Cuntz et al, 2007; Budd et al, 131

2010; Teeter & Stevens, 2011). Varying the dendritic balancing factor over the range 0.2 to 0.8, the majority of the 132

range observed in reconstructed neurons, whilst keeping other features the same does not alter the accuracy of 133

the predictions of Eq 1 (Fig 2b). This result is particularly surprising as we have recently shown that different 134

balancing factors lead to substantially different distributions of neurite mass within their spanning fields (Fig 135

2b, centre) and violates the assumption of isotropically distributed branches through its effect on the root angle 136

distribution. 137

Finally, the inter-soma distance does not matter as long as the cable lengths and overlapping volume are 138

controlled for (Fig 2c). This last point is particularly interesting, as a number of studies report a strong influence 139

of intersoma distance on predicted connectivity (Hellwig, 2000; Kalisman et al, 2003; van Pelt & van Ooyen, 140

2013); we find that intersoma distance only matters through the negative correlation between distance and the 141

neurite lengths within an overlapping volume. 142

Clustered dendrites modelling the DSCAM-null mutation do not cause a loss of potential connectivity 143

The above results are for dendrties with the properties of relative space-filling and spatial uniformity particular to 144

trees that minimise metabolic costs (Cuntz et al, 2007; Wen et al, 2009; Bird & Cuntz, submitted). A major exception 145

to these properties comes from invertebrate neurons with a Down Syndrome Cell Adhesion Molecule (DSCAM) 146

null mutation (Schmucker et al, 2000). The inactivation of this gene reduces the self-avoidant tendency of neurites 147

and leads to pathologically clustered dendrites (Soba et al, 2007). In Methods we describe a modification of the 148

existing MST model to produce artificial neurites that have the characteristics of DSCAM null mutants. In short, 149

the algorithm iteratively randomly selects branches of the neurite and moves them 10% closer to the closest 150

neighbouring branch. Iterating this process produces progressively more clustered morphologies (Fig 2d, left). 151
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Fig 2. Other factors do not influence putative synapse number. See next page.
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Fig 2. Other factors do not influence putative synapse number (continued). A Left: Example morphologies of neurites

grown in different domains; from left to right, sphere, cylinder, and cone. Right: Measured putative contact number as

a function of estimated putative contact number for different neurite domains. B Left: Example morphologies generated

with different balancing factors; left bf = 0.2 and right bf = 0.8. Scale bar as above. Centre: Mean Sholl intersection profiles

for neurons with different balancing factors. Right: Measured putative contact number as a function of estimated putative

contact number for different balancing factors. C Left: Schematic of intersoma distance. Centre: Mean expected numbers of

contacts as a function of intersoma distance. Right: Measured putative contact number as a function of estimated putative

contact number for different intersoma distances. D Left: Example morphologies with different numbers of iterations of the

DSCAM null algorithm: 0 (generalised MST), 100, 400, and 700. Centre top: Volume spanned by a dendrite as a function of

length for different numbers of iterations of the DSCAM null algorithm. Right top: Measured putative contact number as

a function of estimated putative contact number for different numbers of iterations of the DSCAM null algorithm. Centre

bottom: Expected number of putative contacts as a function of dendrite spanning volume. Right bottom: Expected number

of putative contacts as a function of dendrite length. In all cases, error bars show standard error.

Increasing the number of iterations changes the relationship between length and volume as dendrites become 152

more densely clustered (Fig 2d, centre top). However, when applied to such arbors, the predictions of Eq 1 153

still hold (Fig 2d, right top). This means that the potential connectivity of neurites that do not effectively fill 154

space remains predictable from Eq 1 and that pathological clustering of dendrites does not cause loss of function 155

through lost connectivity beyond that predicted by changes in dendrite length and spanning field (Mychasiuk et 156

al, 2012). This is a slightly counterintuitive finding as Wen et al (2009) found that non-pathological dendritic 157

branching statistics are in line with those that maximise the connectivity repertoire of afferent connections. The 158

null mutation causes a greater density of dendrite within its spanning field and so DSCAM mutants have a 159

relatively high number of putative contacts within a given spanning volume (Fig 2d, centre bottom). However, 160

this is balanced by the reduced amount of axon that typically intersects the dendritic spanning field and so the 161

null mutation has no effect on the relationship between the length of the dendritic tree and the expected number 162

of contacts it receives (Fig 2d, right bottom). 163

Synapse estimation for reconstructed morphologies 164

Our model produces accurate estimates of putative synaptic contact number and connection probability for the 165

generalised MST models that accurately simulate real neurites, but also applies directly to neural reconstructions. 166

To demonstrate this, we consider a dataset of reconstructions from the rat barrel cortex and developmental 167

subplate by Marx et al (2017). When neurons are randomly paired with random offsets in their somata and 168

orientation (see Methods and Fig 3a), Eq 1 correctly predicts the number of putative axo-dendritic synaptic 169

contacts (Fig 3b). The distribution of measured values of n for each expected value N are shown by the heatmap 170

in Figure 3c. 171

It is interesting to note the variability in these results. Figures 1d to f shows the variance in the measured value 172

of N as a function of the underlying parameters and it typically takes large values. Similarly, Figure 3d shows 173

the distribution of measured values of n for each estimated integer value of N . Both illustrate the large variation 174

in possible true numbers of putative contacts for a given set of parameters La, Ld, and V . The wide variability 175
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Fig 3. Predictions for reconstructed morphologies. A Example of dendritic (blue) and axonal (orange) morphologies at an

arbitrary displacement and orientation (Ascoli et al, 2007; Marx et al, 2017). B Mean measured versus estimated putative contact

number (blue markers and error bars). Equality is given by the black line. Error bars show standard error. C Probability distribution

of putative contact numbers for each integer interval of estimated putative contact number. Distributions are normalised for each

estimated interval and square sizes scale linearly with the occurrence of each probability in the grid. D Variance in measured

versus estimated mean putative contact number (blue markers and error bars). The Poisson model variance is shown by the solid

red line and the best fit by the solid black line with the 95% confidence interval in grey (coefficients are 2.937 (2.8, 3.146)). The

dashed blue line shows the Pólya model with parameters fitted to the connection probability (Eq 3). Error bars show standard

error. E Connection probability as a function of estimated putative contact number. The fits from the Poisson, Pólya, and negative

hypergeometric models are shown by the red, blue, and green lines respectively. The fit from Eq 3 is shown by the solid black line

and grey shaded region. F Confidence intervals (25%, 50%, 75%, and 95%) for values of n as a function of N under the negative

hypergeometric model (Eq 16). In all panels, maximum spine distance s = 2.5µm.
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here means that Eq 1 is unlikely to be perfectly accurate when applied to a single axo-dendritic pair, but is a true 176

estimate of the expected number of putative synapses using relatively simple parameters. 177

Connection probability pc and the distribution of n 178

In addition to the expected number of potential connections, the connection probability pc (the probability that 179

n > 0), is important for inference of network structure. If the putative contacts formed independently with 180

a fixed probability, then the probability distribution of measured anatomical contacts for a given value of N 181

under Eq 1 would take a Poisson distribution (Eq 11) with mean and variance both given by N . However, 182

the variance in the measured numbers of putative contacts typically exceeds the mean (Fig 3d) and so makes 183

the assumption of contacts forming independently untenable. van Pelt & van Ooyen (2013) found a similar 184

effect when estimating connection probability from their density based model; correlations in putative contact 185

formation arise from the fact that both neurites are connected trees and so close appositions in one location can 186

increase the chance of more close appositions occurring. Indeed, the connection probability given by the Poisson 187

model fitted to the mean 188

pc,f = 1− e−λ (2)

where λ = N , does not match the measured probabilities (Fig 3e, blue line). The measured connection probability 189

pc,measured is better described by an equation of the form 190

pc,measured = 1− e−N
β

(3)

where the fitted value of β is 0.5437, with a 95% confidence interval of (0.5069, 0.5805) (Fig 3E, black line and 191

shaded area). 192

The Pólya distribution (Eq 12) modifies the Poisson distribution to allow the mean and variance to differ and 193

can be used to describe correlated occurrences (Blom et al, 1993). The variance in n grows faster than N and 194

is well-described by a function of the form var(n) = aN +N b where the parameters are (with 95% confidence 195

intervals) a = 2.944 (2.769, 3.119) and b = −0.124 (−0.246, −0.001). This is plotted as the solid black line and 196

shaded grey area in Figure 3d. The second term N b is necessary to capture the initial growth in the variance for 197

small values of N that is particularly apparent when plotting the Fano factor var(n)/N in Figure S3b. It should 198

be noted that the variance in n as a function of N is fundamentally different to the variances in n as functions 199

of La, Ld, and V shown in Figure 1. The estimates of each value of N come from a wide variety of possible 200

combinations of the underlying parameters that obey Eq 1; the resultant variance in n therefore has a complex 201

dependence on the underlying factors, weighted by their joint likelihood of occurrence, that is best described 202

empirically. 203

Fitting the Pólya distribution to the mean and variance gives the connection probability as 204

pc,g = 1− (1− p)r (4)

where the parameters are given by p = 1−1/(a+N b−1) and r = N/(a−1+N b−1). However, although this gives 205

a better estimate of pc than Eq 2 for large values of N , it is even less accurate for N / 2 (Fig 3e, blue line). This is 206

because the increased variance moves probability mass away from the mean value approximately symmetrically 207
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and so increases the mass at 0 in contrast to the measurements (Fig 3c). It is also possible to fit the connection 208

probability of the Pólya distribution to pc,measured exactly (Eq 13), but this leads to an inaccurate estimate of the 209

variance (Fig 3d, blue dashed line). 210

To better capture the measured properties of the distribution of n given an estimate N , we therefore use a 211

three-parameter negative hypergeometric distribution (Eq 16) to describe the distribution of n for small values of 212

N (less than 10). The negative hypergeometric distribution can be more closely matched to the moments and 213

connection probability of the observed distributions and in particular has connection probability in terms of its 214

parameters ∆, K, and ρ 215

pc,h = 1− Γ(∆− ρ+ 1) Γ(∆−K + 1)

Γ(∆− ρ−K + 1) Γ(∆ + 1)
(5)

where Γ(z) =
∫∞
0
xz−1e−xdx is the gamma function. For larger values of N (greater than 10), the Pólya model, 216

fitted to the mean and variance is a good description of the data (Fig S3). The Pólya distribution typically 217

describes the probability of a number of events occurring, when each occurrence increases the likelihood of 218

subsequent events. This is an appropriate model for n as the spatial correlations within connected neurites 219

mean that a single close apposition increases the chance of neighbouring regions of axon and dendrite also lying 220

close together. The negative hypergeometric distribution can be interpreted as a generalisation of the Pólya 221

distribution to the case where the total number of possible occurrences is limited. In the neurite case this means 222

that a close apposition can increase the probability of more close appositions locally, while globally reducing 223

the probability of more close apposition as it accounts for some proportion of the total available cable. This is 224

particularly important for smaller values of N , when La and Ld are likely to be relatively small. 225

Synapse estimation for reconstructed microcircuits 226

In the previous sections, we considered the number of putative contacts between reconstructed morphologies 227

with random somatic locations. This verified the predictions of the generalised minimum spanning tree model 228

for real axons and dendrites, but left open the question of how the specific arrangement of axonal and dendritic 229

spanning fields within cortical circuits can lead to certain connectivity patterns. Jiang et al (2015) produced a 230

dataset of reconstructions from the visual cortex of adult mice, and in particular often reconstructed multiple 231

cells from the same slice (Fig 4a), allowing Eq 1 to be tested on a large set of cells in context with one another. 232

The predictions hold very well, allowing accurate predictions of both overall (Fig 4b) and cell-type specific (Fig 233

4c) putative connectivity. 234

Putative contact numbers often exceed those necessary for reliable connectivity 235

The numbers of putative contacts from both Eq 1 and direct measurements are often very high in this dataset. 236

Experimental studies find many fewer functional contacts, often an order of magnitude lower, between cell pairs 237

(Markram et al, 1997; Kasthuri et al, 2015; Lee et al, 2016). An initial hypothesis would be that very high numbers 238

of potential contacts are necessary to increase the probability of having at least one potential connection in order 239

to allow a microcircuit to function. Under the model of Eq 3, we estimate that the probability that the cell pair 240

with the greatest number of putative synapses, an elongated (L1) neurogliaform to L2/3 neurogliaform cell, 241

would be disconnected given their neurite lengths within the overlapping region is or less than one in 3 million. 242
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Fig 4. Excess putative connections in a reconstructed microcircuit. A Example of 7 cell types reconstructed from the same slice

(Ascoli et al, 2007; Jiang et al, 2015). Cells are, using the definitions in Jiang et al (2015), L2/3 bitufted cell (2 examples), L2 Martinotti

(2 examples), L2/3 chandelier (2 examples), and L2/3 bipolar (1 example). Diameters are increased by 1µm to increase visibility

and morphologies are coloured by cell class (see below). B Measured putative connectivity as a function of estimated putative

connectivity for the microcircuit data. Colours correspond to postsynaptic cell type (see legend). Maximum spine distance s = 3µm.

C Predicted (left) and measured (right) cell-type specific connectivity. The horizontal axis shows the pre- and the vertical axis

the post-synaptic cell types and contact numbers are per connected pair. Square sizes scale linearly with the occurrence of each

connectivity in the grid. Maximum spine distance s = 3µm. D Nearest- (left) and all- (right) neighbour ratios (see next page)
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Fig 4. Excess putative connections in a reconstructed microcircuit (continued) plotted against the two-sided p-value for

each cell pair. The horizontal lines show p = 0.05 and the vertical lines a ratio of 1. E Number of afferent contacts N as a

function of the number of dendritic compartments M that could be innervated in the axo-dendritic overlap. Colours indicate

dendrite type; circles correspond to the branch estimate of M and diamonds to the electrotonic estimate. The black line

shows the expected number of contacts necessary to innervate every compartment (Eq 4). F Examples of the distributions of

distinct compartments (out of 50) innervated by N = 5, 10, 25, 50, and 100 contacts (Eq 5). G Left: Expected number µn,M of

distinct compartments innervated as a function of the number of contacts N for different numbers of compartments M = 10,

25, 50, and 100 (Eq 6). Solid lines show µn,M and dashed lines show M , the maximum possible number in each case. Right:

Expected number of innervated compartments µn,M as a function of the number of dendritic compartments M that could be

innervated in the axo-dendritic overlap (Eq 6). Colours indicate dendrite type; circles correspond to the branch estimate of M

and diamonds to the electrotonic estimate. The black line shows M , the maximum number of compartments that could be

innervated in each case.

If the axon length within the overlapping volume were to half, the probability of no connection would still be 243

one in thirty thousand. For the tenth most putatively connected cell pair, a pair of L2/3 double bouquet cells, the 244

probabilities decreases from one in two hundred thousand to one in five thousand. These probabilities are not 245

that low given the number of cells within a cortical column, but do suggest that the metabolic cost to reliably 246

establish single connections is far below that typically paid by these cells. It should also be noted that slicing 247

artefacts, by removing neurite outside of the slice, will tend to bias the numbers of putative contacts recorded 248

here down (Jiang et al, 2016); in intact cortex the putative connectivity will be at least as high as that observed 249

here. Our findings are in line with the very high degree of synaptic redundancy observed by Kasthuri et al (2015) 250

in mature mouse somatosensory cortex and Lee et al (2016) in mature mouse visual cortex. 251

Putative contacts are well-distributed within the axo-dendritic overlap 252

To determine the distribution of putative connections within the axo-dendritic overlap, and in particular whether 253

they are more clustered or more regular than a uniform random spatial distribution (ie a homogeneous spatial 254

Poisson process, see Methods), we used both the nearest-neighbour ratio (NNR) and the all-neighbour ratio 255

(ANR) (Chandrashekhar, 1943). The nearest-neighbour ratio quantifies whether the distance between a potential 256

contact and the closest other contact is more or less than would be expected for a spatially homogeneous 257

random process. A nearest-neighbour ratio of one implies that the potential contacts are distributed within the 258

axo-dendritic overlap precisely as one would expect from a homogenous Poisson process, whereas a ratio of 259

less than one implies clustered and more than one well-distributed potential contacts. The number of potential 260

contacts varies widely between cell pairs, so p-values (see Methods) are plotted against the nearest-neighbour 261

ratio in Figure 4d to indicate the significance of the difference from one for each cell pair. Colours in this panel 262

indicate the cell type of the presynaptic neuron. 263

As synaptic contacts are distributed along neurite arbors, there is potential for local spatial correlations to arise 264

and dominate the pairwise measure given by the nearest-neighbour ratio. To determine whether the contacts 265

display local correlation along arbors, but more general independence, we also computed the all-neighbour ratio: 266

the average deviation of each putative contact from the centroid of all contacts. This measure is less sensitive to 267

local correlation and is plotted in Figure 4d. 268
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Cell type
Numbers Efferent contacts Afferent contacts

Examples Pairs nefferent NNR p-value nafferent

SBC-like 21 22 25.79 ± 7.66 1.04 ± 0.18 0.39 ± 0.12 37.43 ± 9.05 (23.39, 53.54)

eNGC 21 17 58.05 ± 11.67 0.89 ± 0.11 0.31 ± 0.14 65.55 ± 12.65 (44.23, 89.55)

L23MC 20 51 39.88 ± 4.89 1.36 ± 0.12 0.29 ± 0.05 45.01 ± 4.79 (27.85, 64.56)

L23NGC 20 28 67.4 ± 11.6 1.12 ± 0.09 0.39 ± 0.09 92.54 ± 11.12 (65.97, 121.71)

BTC 20 50 54.13 ± 6.37 0.94 ± 0.05 0.39 ± 0.06 40.16 ± 5.46 (24.42, 58.27)

BPC 20 54 43.32 ± 5.61 1.29 ± 0.43 0.3 ± 0.09 23.51 ± 4.11 (13.28, 35.3)

DBC 20 15 64.71 ± 16.36 1.04 ± 0.16 0.34 ± 0.11 63.29 ± 13.96 (43.19, 85.86)

L23BC 15 16 52.79 ± 13.65 0.82 ± 0.08 0.24 ± 0.1 53.17 ± 13.77 (36.21, 72.75)

ChC 20 15 26.24 ± 8.45 1.09 ± 0.1 0.47 ± 0.12 19.47 ± 5.58 (8.76, 32.35)

L23Pyr 20 9 29.38 ± 9.61 1.36 ± 0.33 0.61 ± 0.27 28.46 ± 9.29 (15.92, 43.46)

L5MC 21 42 33.69 ± 5 1.31 ± 0.08 0.39 ± 0.07 39.63 ± 5.09 (23.54, 58.27)

L5NGC 21 19 69.24 ± 17.55 1.26 ± 0.15 0.28 ± 0.13 67.84 ± 15.58 (48.6, 89.24)

L5BC 21 36 50.43 ± 8.58 0.94 ± 0.08 0.28 ± 0.06 54.37 ± 8.58 (35.39, 75.96)

HEC 21 32 54.71 ± 10.06 1.11 ± 0.14 0.14 ± 0.03 56.78 ± 9.92 (38.44, 77.78)

DC 21 19 23.58 ± 7.87 1.23 ± 0.34 0.33 ± 0.13 36 ± 9.39 (22.58, 51.58)

L5Pyr 21 9 42.18 ± 20.04 2.63 ± 0 0.09 ± 0 40.36 ± 20.16 (27.36, 55.55)

Table 2. Table of in-context reconstructions of the dataset from Jiang et al (2015). Columns from left to right are: Cell type,

number of individual morphologies, total number of cell pairs involving neurons of this class, mean number of efferent

synapses, mean nearest-neighbour ratio (NNR) of efferent synapses, mean p-value significance that this ratio is different from

one, and mean number of afferent synapses (with 95% confidence interval). ± shows the standard error over different cells

of each class and confidence intervals are for the mean of each class using Eqs 12 and 16.
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Cell type
Compartments

M MProp
n

NComplete

µn,M
M

SBC-like
22.52 ± 1.95

12.86 ± 1.92

11.79 ± 2.05

7.29 ± 1.68

2.45 ± 0.62 (1.1, 3.91)

8.85 ± 2.86 (4.49, 13.99)

0.7 ± 0.08 (0.51, 0.74)

0.73 ± 0.08 (0.58, 0.75)

eNGC
22.57 ± 1.97

14.43 ± 1.64

11.59 ± 1.67

6.59 ± 1.13

2.48 ± 0.39 (1.24, 3.78)

10.88 ± 3.64 (5.96, 16.58)

0.85 ± 0.07 (0.71, 0.86)

0.86 ± 0.07 (0.75, 0.86)

L23MC
29.4 ± 2.47

15.35 ± 1.77

14.28 ± 1.07

6.59 ± 0.61

1.3 ± 0.12 (0.7, 1.96)

4.79 ± 0.65 (2.66, 7.11)

0.76±0.05 (0.59, 0.78)

0.79 ± 0.05 (0.65, 0.79)

L23NGC
32.1 ± 3.11

14.8 ± 1.98

17.2 ± 1.6

8.74 ± 1.37

1.92 ± 0.23 (1.16, 2.73)

27.95±9.14 (19.98, 36, 58)

0.86 ± 0.05(0.75, 0.88)

0.88 ± 0.05 (0.76, 0.89)

BTC
21.15 ± 2.41

10.65 ± 2.43

9.83 ± 1.12

4.84 ± 0.96

2.1 ± 0.27 (0.92, 3.45)

16.89 ± 2.62 (8.64, 26.63)

0.84 ± 0.04 (0.61, 0.86)

0.86±0.04 (0.68, 0.88)

BPC
19.1 ± 2.43

9.75 ± 1.7

9.59 ± 1.28

5.08 ± 0.84

2.98 ± 0.52 (1.19, 5.07)

11.07 ± 2.04 (5.36, 17.7)

0.69 ± 0.06 (0.44, 0.71)

0.7 ± 0.06 (0.45, 0.71)

DBC
22.7 ± 2.94

13.9 ± 1.81

14.2 ± 1.94

8.25 ± 1.22

2.57 ± 0.73 (1.52, 3.7)

5.7 ± 2.13 (3.43, 8.22)

0.77 ± 0.09 (0.67, 0.79)

0.78 ± 0.09 (0.69, 0.74)

L23BC
23.27 ± 2.34

17.4 ± 2.03

14.21 ± 1.86

10.33 ± 1.35

1.66 ± 0.52 (1.07, 2.35)

7.65 ± 5.98 (5.38, 10.22)

0.68 ± 0.08 (0.53, 0.74)

0.71 ± 0.08 (0.56, 0.72)

ChC
18.9 ± 2.09

11 ± 2.05

4.65 ± 1.37

4.71 ± 1.06

3.4 ± 0.84 (1.24, 6.08)

2.72 ± 0.5 (0.93, 4.89)

0.87 ± 0.08 (0.57, 0.88)

0.85 ± 0.08 (0.57, 0.88)

L23Pyr
33.9 ± 3.1

15.95 ± 2.41

15.85 ± 3.98

7.77 ± 2.88

1.52 ± 0.66 (0.81, 2.35)

21.14 ± 9.72 (12.34, 31.67)

0.72 ± 0.12 (0.5, 0.76)

0.77 ± 0.12 (0.67, 0.77)

L5MC
24.48 ± 2.08

11.57 ± 2.07

9.21 ± 0.91

3.54 ± 0.61

2.13 ± 0.34 (1.05, 3.43)

22.02 ± 4 (12.21, 33.48)

0.83 ± 0.05 (0.64, 0.86)

0.86 ± 0.05 (0.71, 0.87)

L5NGC
26.86 ± 2.41

17.19 ± 2.21

16.8 ± 1.86

10.32 ± 1.77

2.11 ± 0.53 (0.99, 3.27)

10.18 ± 3.63 (6.76, 13.96)

0.65 ± 0.09 (0.55, 0.69)

0.66 ± 0.09 (0.56, 0.66)

L5BC
24.48 ± 2.43

15.52 ± 1.8

12.55 ± 1.45

8.25 ± 0.92

2.45 ± 0.34 (1.14, 3.87)

7.66 ± 2.92 (4.39, 11.37)

0.85 ± 0.04 (0.61, 0.93)

0.89 ± 0.04 (0.69, 0.9)

HEC
25 ± 2.08

15.52 ± 1.85

11.39 ± 1.02

6.02 ± 0.71

1.76 ± 0.24 (1.04, 2.59)

6.57 ± 1.76 (4.21, 9.27)

0.81 ± 0.05 (0.6, 0.84)

0.83 ± 0.06 (0.66, 0.85)

DC
24.19 ± 3.49

14.81 ± 2.07

12.96 ± 2.22

8.08 ± 1.7

1.96 ± 0.55 (0.96, 3.2)

4.94 ± 1.62 (2.64, 7.73)

0.63 ± 0.09 (0.55, 0.65)

0.65 ± 0.09 (0.58, 0.65)

L5Pyr
31.38 ± 3.67

17.29 ± 3.41

13.82 ± 3.36

7.45 ± 2.62

1.23 ± 0.5 (0.78, 1.78)

17.41 ± 10.16 (10.53, 25.68)

0.55 ± 0.14 (0.44, 0.6)

0.59 ± 0.15 (0.55, 0.62)

Table 2 (continued). Columns from left to right are: Cell type, mean total number of dendritic compartments M , mean

number of dendritic compartments M that lie within the axo-dendritic overlap, ratio of number of afferent synapses n to the

number necessary to expect to innervate each available dendritic compartment NComplete (with 95% confidence interval),

and ratio of mean number of available compartments innervated µn,M to number of available of compartments M (with 95%

confidence interval). For the last four columns, the upper values come from the branch-based estimate of compartments, and

the lower from the attenuation-based estimate. ± shows the standard error over different cells of each class and confidence

intervals are for the mean of each class using Eqs 12 and 16.
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Both measures show that there is a spread of ratios; 35 of 233 pairs with more than one putative contact are 269

significantly clustered and 31 are significantly regular under the nearest-neighbour ratio, with numbers of 53 270

and 35 for the all-neighbour ratio. However there appears to be no significant and consistent clustering or 271

regularity by either pre- or postsynaptic cell types (see Table 2 for mean nearest-neighbor values and p-values 272

by presynaptic class). This lack of apparent spatial structure in putative connections between a cell pair is 273

an interesting intermediate case. Merchán-Pérez et al (2014) found uniform randomness in the location of all 274

synapses within a volume of neuropil without reference to specific neurites, while synapses along a given axon 275

or dendrite will be clearly spatially correlated. van Pelt & van Ooyen (2013) concluded that spatial correlations 276

were the cause of the mismatch between their model of density-based mean putative contact number predicition 277

and the connection probability and we have observed a similar effect (Fig 3e). However, they did not directly 278

check for spatial correlations in putative contacts and appear to use lower neurite densities than those seen in the 279

reconstructed data here, which could enhance the impact of potential contacts sharing a branch. Of particular 280

interest here is that inhibitory cell types do not appear to form potential contacts in a more spatially structured 281

way than excitatory cells (see Table 2). This is despite the fact that cortical inhibitory neurons stereotypically 282

innervate specific regions of excitatory cells (Ascoli et al, 2008; Hill et al, 2012). These results suggest that such 283

specificity could come entirely from the axonal growth region rather than individual local targeting processes. 284

Excess potential connections allow for the innervation of multiple dendritic compartments 285

Given that expected potential contact numbers are far in excess of that necessary to produce reliable connectivity 286

at the cellular level, and that contacts lack apparent spatial structure, it is both informative and feasible to 287

investigate how cortical neurite densities can implement sub-cellular connectivity by innervating specific or 288

distinct dendritic compartments. Definitions of dendritic compartments vary in the literature (Mel, 1993; Poirazi 289

et al, 2003; Polsky et al, 2004; London & Häusser, 2005; Branco & Häusser, 2010; Cuntz et al, 2010; Behabadi et al, 290

2012) and certainly the electronic structure of a dendritic tree changes dynamically with network activity due 291

to both synaptic activation and thresholded processes (Llinas, 1988; Schiller et al, 2000; Gidon & Segev, 2012; 292

Ferrarese et al, 2018). To investigate compartmentalisation, we consider two simple descriptions of a dendritic 293

compartment. The first is simply that each individual dendritic branch is a compartment (Branco & Häusser, 294

2010) and the second assigns reasonable passive electrotonic properties (see Methods) to a dendrite and divides 295

the tree into regions within which synaptic currents do not attenuate below a certain threshold (Cuntz et al, 296

2010). The first estimate is indicated by diamonds and the second by circles in Figures 4e and 4g. These are both 297

certainly drastic simplifications of the true integrative properties of a dendrite, particularly within an active 298

microcircuit, but provide an informative first step. To account for the fact that the axo-dendritic overlap only 299

covers a part of the dendrite, we scale the compartment number down to match the proportion of dendrite that 300

lies within this volume. 301

The spatial spread of potential contacts means that it is reasonable to assume that they randomly innervate 302

dendritic compartments independently and uniformly. In this case the expected number of contacts necessary to 303

contact every one of M compartments is given by the standard solution to the coupon collector’s problem (see 304
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Methods) 305

NComplete = MHM = M log(M) + γM +
1

2
+O

(
1

M

)
(6)

where HM is the M -th harmonic number and γ ≈ 0.57721 is the Euler-Mascheroni constant. The second equality 306

relies on the asymptotics of harmonic numbers. Plotting M against n (Fig 4e, black line corresponds to Eq 6) 307

for the cells in this dataset shows that most neurons receive enough putative contacts to expect to innervate 308

each of the available dendritic compartments. In Table 2, the ratio of putative contacts to NComplete is above one 309

on average for every cell class considered, even when each individual branch is treated as a distinct dendritic 310

compartment. 311

The second quantity to consider is the distribution of the number of dendritic compartments innervated by at 312

least one synapse. The probability mass function for this quantity, given M compartments and n contacts, is 313

P[k|n,M ] =

{
n

k

}
(M − 1)k
Mn−1 (7)

where
{
n
k

}
is a Stirling number of the second kind (Abramowitz & Stegun, 1965) and (M − 1)k is the falling 314

factorial (M − 1)k = (M − 1)(M − 2) · · · (M − k + 1). This distribution has intuitive properties (Fig 4f): when n 315

is much larger than M , then probability mass is grouped around M as it is highly likely that every compartment 316

will be innervated. Conversely, when M is much larger than n, the probability mass is grouped around n 317

as it is likely that every synapse will innervate a distinct compartment. The mean number µM,n of distinct 318

compartments innervated is given by 319

µM,n = M − (M − 1)n

Mn−1 (8)

Figure 4g (left side) plots µM,n as a function of n for different values of M , highlighting the asymptotic behaviour 320

as n grows larger than M . The right-hand side of Figure 4g plots µM,n against M for the cells in this dataset, 321

given the number of putative contacts they receive. Many cell pairs have sufficient putative contacts to expect 322

to be able to innervate almost all of the available dendritic compartments. In Table 2, the ratio of µM,n to M is 323

frequently above 0.75 when averaged over each cell class, meaning that three out of four available compartments 324

could potentially receive a synaptic contact. 325

Applying the prediction of putative connectivity 326

As a final demonstration of the utility of Eq 1 in predicting putative connectivity, we show how the neurite 327

lengths and shared volumes, as well as the expected number of putative synapses, vary with intersoma distance 328

for the reconstructed cortical morphologies of mouse (Fig 5a, top) and human (Fig 5a, top) cells published by the 329

Allen Institue for Brain Science (Allen Brain Institute, 2015). These cells are not typically imaged in context, but 330

do have the depth of the soma below the cortical surface reliably recorded, alongside the orientation within the 331

slice (see Fig S5). For the demonstration in Figure 5, we randomly pair axonal and dendritic reconstructions 332

using their recorded cortical depth and a random offset in the plane parallel to the cortical surface (see Methods). 333

We can see a decrease in all three relevant parameters La, Ld, and V with increasing intersoma distance (Fig 5b, 334

top three panels), and the fact that the expected number of putative contacts depends on the product of La and 335

Ld over V means that this is accompanied by a decrease in N (Fig 5b, bottom panels). These predictions give an 336
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intuition of the structural backbone to functional connectivity in cortex that can be progressively refined as more 337

reconstructions of individual cell types appear. 338

Discussion 339

Summary 340

We have demonstrated that the expected number of putative synaptic contacts between a pair of neurons is 341

given by a simple equation (Eq 1) and depends on the volume of axo-dendritic overlap, the lengths of axon 342

and dendrite within this region, and the maximum length of dendritic spines. Moreover, if these four factors 343

are controlled for, the number of synapses is insensitive to domain shape, intersoma distance, centripetal bias, 344

and morphological pathologies that cause clustering. These results also hold for reconstructed cortical axons 345

and dendrites at random distances and orientations and are simply applicable to real cells. When applying 346

our results to cells reconstructed in context we found an excess of potential connectivity, meaning that each 347

pair of cells could potentially be connected multiple times. The potential contacts are distributed in space and, 348

on average for each cell class, each axon could be expected to target every available dendritic compartment, 349

whether defined by branches or by electrotonic attenuation. This suggests that such cortical microcircuits require 350

potential connectivity to specific dendritic compartments, rather than simply at a cellular level, and are able to 351

achieve this. 352

Context 353

Theoretical estimates of potential synaptic connectivity between pairs of neurons have long been sought alongside 354

experimental approaches to clarify and generalise the principles observed. It is useful to consider the other 355

approaches taken to this problem, to demonstrate how the estimates of our Eq 1 fit into the broader literature on 356

putative connectivity. 357

An early analytical approach by Uttley (1955) estimated the number of close appositions of axon and dendrite by 358

assuming random and independent neurite growth and its implications on the resultant densities of cable. Liley 359

& Wright (1994) built on this, using a spherically symmetric simplification of dendritic density based on the 360

Sholl intersection profile (Sholl, 1953) to estimate the probabilities of given numbers of anatomical connections 361

forming between pairs of cortical cells. Stepanyants et al (2002) considered the relationship between potential 362

and actual connectivity, introducing the concept of the filling fraction and modelling the number of potential 363

contacts using the independent features of the axon and dendrite. Kalisman et al (2005) used the detailed 364

structure of complete reconstructions to generate more realistic cylindrically symmetric estimates of cortical 365

neurite density and find the probability of putative synapses forming between cell pairs. Stepanyants et al 366

(2004) studied specific connectivity between interneurons and pyramidal cells, confirming that specificity in 367

connections could arise from overlapping volumes of axon and dendrite even in the absence of correlations 368

between neurite branches and finding a linear increase in potential connectivity with maximum spine distance. 369

Chklovskii (2004) considered the volume of connected neuronal circuits and determined the relative contributions 370

of branched axons, dendrites, and dendritic spines to allowing physiological levels of compactness. In particular, 371
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Fig 5. Applying the prediction of putative connectivity. A Example morphologies of axonal (orange) and dendritic (blue) trees

from mouse (top) and human (bottom) cortex (Allen Brain Institute, 2015). Diameters are increased by 1µm to increase visibility.

B The dependencies of shared volume V , axonal length La, dendrite length Ld, and expected putative synapse number N on

intersoma distance for mouse (left) and human (right) cells. 104 random pairs are taken in each case. Distributions are normalised

for each interval of intersoma distance and square sizes scale linearly with the occurrance of each probability in the grid. Black lines

show the mean of each quantity.
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this study estimates the expected number of afferent synapses onto a given neuron from the length of its dendrite, 372

maximal spine length, and the amount of axon in the surrounding tissue. Amirikian (2005) also assumed a 373

cylindrically symmetric density of synapses (based on the dendritic density given by the Sholl intersection 374

profile in a similar manner to Liley & Wright (1994)) and found good agreement with data for a number of 375

cell classes, in particular correctly determining both axo-dendritic and axo-somatic synapses. Wen et al (2009) 376

considered the connectivity repertoire, the number of possible patterns of synaptic contacts a given dendrite 377

can receive. During this study, estimates of the numbers of synaptic contacts onto Purkinje and pyramidal cell 378

basal dendrites were derived in terms of their length, maximal spine distance, and spanning field. Hill et al 379

(2012) took a different approach, using full reconstructions to determine putative synaptic contacts and finding 380

excellent agreement with the potential synapses found experimentally. van Pelt & van Ooyen (2013) directly 381

compared the connectivity predictions from neurite density fields with those of the full arbors, finding that 382

whilst predictions from density fields do generally match the expected number of anatomical contacts, they are 383

unreliable estimators of both the absolute connection probability (the probability that at least one anatomical 384

contact occurs) and the true distribution of possible contact numbers. McAssey et al (2014) greatly expanded on 385

the previous study, simulating the connections between 10, 000 artificially constructed dendrites and relating 386

these to those derived from the neurite density fields. Reimann et al (2015) developed the approach of Hill 387

et al (2012) using observed axo-dendritic overlaps to refine the connectivity patterns, producing a simulated 388

cortical column connectome that was explored by Markram et al (2015). Aćimović et al (2015) used the gaussian 389

description of dendritic density introduced by Teeter & Stevens (2011) to examine how changing the parameters 390

of simplified dendrites could affect the connectivity structure of a large network. 391

Our approach can be seen as a broad generalisation of the above studies. The estimate of Eq 1 is not dependent 392

on the local statistics of different neuronal types, such as those of Kalisman et al (2003, 2005), Hill et al (2012), 393

and Reimann et al (2015, 2017), nor does it rely on the density of neurite within a spanning field such as the work 394

of Uttley (1955), Liley & Wright (1994), Amirikian (2005), van Pelt & van Ooyen (2013), McAssey et al (2014), and 395

Aćimović et al (2015). The simple form of Eq 1 is similar to the equations derived by Stepanyants et al (2002) and 396

Chklovskii (2004) for the total number of synapses in a volume of neural tissue; the novelty of our result is that 397

such a simple equation can be reliably applied to individual cell pairs. 398

Outlook 399

This study provides a simple way to verify the degree of targeting within a neuronal circuit; for a given pair of 400

neurons, the expected number of putative synaptic contacts is predictable by our equation. When the number 401

of close appositions is consistently different from that predicted here, there is evidence of local targeting in the 402

neurite growth processes and potential for a higher degree of hard-coding or specificity in a circuit. This could 403

help to explain some of the controversy over the applicability of versions of Peters’ rule in different systems 404

(Rees et al, 2017), and will become more valuable as connectome data becomes increasingly available 405

We would also like to highlight the importance of the location and shape of the axo-dendritic overlap. Our results 406

suggest that this is both important for the overall connectivity estimate and sufficient to predict the putative 407

locations of inhibitory connections that are known to be highly specific (Ascoli et al, 2008). Hill et al (2012) found 408
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that the statistical description of neuronal morphologies in isolation failed to predict the connectivity of such 409

interneurons, in particular chandelier cells where the interaction of axon and dendrite is assumed to provide 410

additional growth guidance. By taking the overlapping volume relative to the two cells, this factor is already 411

accounted for and a random distribution of neurite within this volume is sufficient to predict connectivity. This 412

contributes to the recognition of the importance of neurite spanning fields in the context of neighbouring cells as 413

a powerful first step towards understanding the structure and function of a given cortical system (Sümbül et al, 414

2014; Bird & Cuntz, submitted). 415

We should note again that putative synaptic contacts are not necessarily bridged by actual dendritic spines, and 416

data suggests that the ratio of actual to putative contacts, the filling fraction, is often very low (Jiang et al, 2015; 417

Kasthuri et al, 2015; Lee et al, 2016). It should not even be assumed that the filling fraction is consistent between 418

different cell pairs as synaptic existence and effective weights will depend on network inputs (Hebb, 1949; Yu et 419

al, 2009; Lee et al, 2016; Ferrarese et al, 2018), intrinsic electrophysiology (Llinas, 1988; Ascoli et al, 2008), and 420

variable short- (Zucker & Regehr, 2002) and long-term (Le Bé & Markram, 2006; Betley et al, 2009; Markram et al, 421

2012) synaptic plasticity. There is also no direct correspondence between the number of functional anatomical 422

contacts and synaptic weight due to variability in postsynaptic spine size and sensitivity (Arellano et al, 2007; 423

Bhumbra & Beato, 2013) as well as presynaptic vesicle number and release probability (Loebel et al, 2009; Bird 424

et al, 2016). Nevertheless, the close appositions between axon and dendrite analysed here do provide a stable 425

structural backbone (Trachtenberg et al, 2002; Knott et al, 2002; Chow et al, 2009), being in the first place necessary 426

for any connectivity at all and allowing neuronal activity to dynamically reshape functional connectivity on 427

timescales from the tens of milliseconds of short-term depression to the years and decades of long-term plasticity 428

(Hebb, 1949; Zucker & Regehr, 2002). The recent review of different interpretations of Peters’ Rule by Rees et al 429

(2017), notes that a number of experimental papers reject the hypothesis that functional contacts form at random 430

in cortex (Potjans & Diesmann, 2014; Kasthuri et al, 2015; Lee et al, 2016). Each of these papers does however 431

find that close axo-dendritic appositions do appear to occur randomly and this is not a contradiction of our 432

hypothesis here. In other neuronal systems, such as the retina (Kim et al, 2014) or fly brain (Takemura et al, 433

2015), neurite interactions do appear to be more hardwired than in cortex or hippocampus, so caution would be 434

necessary when applying these findings elsewhere. 435

The excess putative connectivity we observe in the cortical dataset is in line with the results of Kasthuri et al 436

(2015) and Lee et al (2016), but higher than the earlier estimates cited in Stepanyants et al (2002). The earlier paper 437

interpreted a low filling fraction (ratio of actual to potential contacts) as a signature of a more complex system as 438

more patterns of connectivity can be implemented by choosing a selection of available contacts, enhancing the 439

information storage capacity of the synapse. This view does not fundamentally conflict with that presented here, 440

rather we highlight that the absolute number of potential contacts is potentially very high and show how this 441

could allow for the implementation of connectivity to specific dendritic compartments. The location of dendritic 442

inputs relative to one another are already known to be key to the response properties of neurons (Mel, 1993; 443

Poirazi et al, 2003; Polsky et al, 2004; Behabadi et al, 2012; Gidon & Segev, 2012); and it is unsurprising that 444

neurite structure allows for specific input patterns to be implemented. 445

Neurites allow a broad range of connectivity patterns (Wen et al, 2009; Markram et al, 2015; Jiang et al, 2015), 446

23/45

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 24, 2019. ; https://doi.org/10.1101/529875doi: bioRxiv preprint 

https://doi.org/10.1101/529875
http://creativecommons.org/licenses/by-nc-nd/4.0/


All-to-all putative connectivity Bird, Deters, & Cuntz

whilst obeying optimality principles in volume, length, and signal delays (Chklovskii, 2004; Budd et al, 2010; 447

Cuntz et al, 2010). The specific layout of axonal inputs and branching principles can combine to create diverse 448

dendritic shapes (Cuntz, 2012; Cuntz et al, 2012), which in turn lead to the connectivity patterns seen in neuronal 449

circuits (Hill et al, 2012; McAssey et al, 2014; Potjans & Diesmann, 2014). Whilst the design principles leading 450

to optimal connectivity and optimal wiring could appear at odds, both approaches have proved successful in 451

reconstructing the major features of real neurons (Braitenberg & Schüz, 1998; Stepanyants & Chklovskii, 2005; 452

Cuntz et al, 2007; Wen et al, 2009; Cuntz et al, 2010); this study reaffirms that optimal design principles are 453

common between both goals. Overall our work provides an intuitive way to estimate the putative synaptic 454

connectivity of microcircuits, greatly simplifying the parameters necessary for analytical and numerical studies 455

of the structure of biophysically detailed neuronal networks, including at the level of dendritic compartments. 456
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Materials and methods 459

Data and algorithm availability 460

All simulations were done in MATLAB (ver. 2018b) using the TREES toolbox (ver. 1.15) and custom scripts. The 461

morphologies used in the paper were downloaded from NeuroMorpho.Org (www.neuromorpho.org, Ascoli et 462

al (2007)) and the Cell Types database of the Allen Institute for Brain Science (Allen Brain Institute, 2015) with 463

sources indicated in Table 3. Selection of cells and preprocessing for the morphologies in Figure 5 were performed 464

using the Allen Software Development Kit (freely available at http://alleninstitute.github.io/AllenSDK/install.html) 465

in a Jupyter Notebook (ver. 5.5) running Python (ver. 3.7). All data and code necessary to reproduce the figures 466

and tables in the paper are included as Supplementary File 1. 467

Of particular general utility are the following new MATLAB Trees Toolbox functions: 468

• dscam tree - Applies the DSCAM null algorithm (described below) to a tree to produce clustered dendrites. 469

• M atten tree - Estimates the number of dendritic compartments based on electrotonic attenuation. 470

• peters tree - Determines the number of putative anatomical contacts between two neurites. 471

• share boundary tree - Determines the boundary of the overlap of two neurites and their respective lengths 472

within this region. 473

Generalised minimum spanning trees 474

Synthetic neurites are produced using the generalised minimum spanning tree (MST) algorithm described 475

by Cuntz et al (2010) and available as part of the Trees Toolbox package for MATLAB. Typically neurites are 476

simulated by uniformly randomly distributing a number of points in a cube with sides of length 200µm and 477
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connecting them into a generalised MST using the Trees Toolbox function MST tree. The number of points for 478

both the axonal and dendritic trees is typically taken to be 65, the trees are generated in cubes with 25µm between 479

their centres and the balancing factors of the axonal and dendritic trees are 0.7 and 0.2 respectively. 480

In order to systematically vary the parameters La, Ld, and V it is necessary to vary the numbers of points used 481

to generate the axons and dendrites, the separation of the domains, and the scale of the neurons. To allow for a 482

consistent search of parameter space, we use the fact that any intermediate step in the construction of a minimum 483

spanning tree by a greedy algorithm forms the minimum spanning tree of the set of points it connects (Prim, 484

1957). This allows the Matlab patternsearch optimisation function to be used to find pairs of trees that have the 485

desired properties. Optimisation is stopped when the deviation from the desired properties is less than 5% in 486

total. Such optimisations are potentially time consuming and the Neuroscience Gateway cluster was used to test 487

different approaches (Sivagnanam et al, 2013). Figure S1 plots the resultant distributions of La, Ld, and V used 488

to construct Figure 1. 489

Definining the axo-dendritic overlap 490

To define the boundary of the axo-dendritic overlap (Fig 1a), the following procedure was used. The boundaries 491

of the axonal and dendritic arbors were computed using the Trees Toolbox boundary tree function (Cuntz et al, 492

2010; Bird & Cuntz, submitted). Both arbors were resampled to a resolution of 1µm using the resample tree 493

function. The set of axonal nodes lying within the dendritic boundary and the set of dendritic nodes lying within 494

the axonal boundary were selected. A boundary was constructed around this set of points using the mean 495

convexities of the two neurite arbors (see below). 496

Boundaries and convexities 497

Boundaries are constructed using α-shapes (Edelsbrunner et al, 2006). An α-shape is a generalisation of the 498

convex hull of a point set whereby a boundary is a set of simplices (triangles in three dimensional space) 499

constructed by placing balls of radius 1/α over the point set so that all points are contained within the ball 500

and the vertices of the bounding simplex lie on the surface of the ball. To enable this construction, α must lie 501

between 0 and some small positive value (the generalisation to negative values is not necessary here), but small 502

changes in α do not necessarily lead to distinct α-shapes. An α-spectrum is constructed as the set of α-intervals 503

which define distinct boundaries and a parameter known as the shrink factor defines the proportion of the way 504

through this spectrum that an α value is chosen. In practice this procedure is implemented through the MATLAB 505

boundary function. The shrink factor is taken as one minus the convexity of a tree (Bird & Cuntz, submitted). 506

To define the convexity of a tree, we take the set of terminal neurite points and see what proportion of the direct 507

paths between them lie entirely within the tightest boundary (a shrink factor of 1) that contains all termination 508

points. For a convex hull, all such paths would lie within the boundary and so this measure gives the relative 509

difference between the two extreme shrink factors. We refer to this value, between 0 and 1 as the convexity (where 510

1 gives an entirely convex neuron). The Trees Toolbox function convexity tree carries out this computation 511

(Cuntz et al, 2010; Bird & Cuntz, submitted). 512
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Estimation of putative synapses 513

Putative synaptic contacts are identified by the close apposition of dendrite and axon. An algorithm to do this 514

for neurites in the Trees Toolbox format has been developed. The first step is to resample neurites into sections 515

of a consistent length; this is taken to be 1µm, although shorter distances may be appropriate if the neurites 516

have greater tortuosity. This is done with the existing resample tree function. The second step is to identify 517

the pairs of resampled axonal and dendritic nodes that are less than the maximal spine distance s apart. This 518

will typically lead to a large number of pairs of axonal and dendritic nodes that are very close together due to 519

the connected structure of each neurite. It is rare to find such an arrangement in the data, as distinct synaptic 520

contacts between a pair of neurons are typically more than a few microns apart. To recover a realistic distribution 521

of contact locations and numbers, a greedy deletion step is applied. The closest pair of axonal and dendritic 522

nodes are chosen as a synaptic contact. Then all putative contacts where the axonal node is within a 3µm distance 523

of the axonal node in the existing contact and the dendritic node is within a 3µm distance of the dendritic node in 524

the existing contact are deleted. The closest remaining pair of axonal and dendritic nodes is chosen as a second 525

synaptic contact and the deletion step is repeated until all inappropriate contacts are removed. 526

Derivation of analytical estimate 527

The expected number of putative contacts can be derived by considering the number of crossings of a cylinder of 528

radius s centred on the dendrite by axonal branches. We follow Stepanyants et al (2002) and consider axons and 529

dendrites as a set of isotropically distributed straight segments that are significantly longer than the maximum 530

spine distance s. Let an axonal segment of length lia make an angle θi,j with a dendritic segment of length ljd, 531

both lying within the volume V . Then the probability pθ that they intersect is 532

pθ =
2slial

j
dsin(θi,j)

V
(9)

Taking a sum over i and j gives the expected number of synapses within the volume in terms of the angles θi,j . 533

Assuming that the lengths of neuritic segments are independent allows the sum to be separated as 534

N =
2LaLds

V
E
[
sin(θ)

]
(10)

As the segments are assumed to be distributed isotropically, the expected value of sin(θ) is π
4 and this leads 535

directly to Eq 1. 536

Dimensions of dendritic domains 537

The three additional domains in Figure 2a are chosen to match the volume of the cube with sides of 200µm. 538

Therefore the sphere has radius 200/(4π/3)
1
3 ≈ 143.30µm and the soma is located in the centre. The cylinder 539

is chosen to have the same height and cross-sectional diameter, both are 400/(2π)
1
3 ≈ 216.77µm, again the 540

soma is positioned in the centre. The cone is chosen to have equal height and terminal diameter, both are 541

400/(2π/3)
1
3 ≈ 312.64µm; in this case the soma is located at the point of the cone. It should be noted that the 542

relationship between the volume spanned by a dendrite and the volume in which target points are distributed 543

are not the same; the former will be bounded above by the latter as the number of target points approaches 544
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infinity (Ripley & Rasson, 1977). The volume bounded by a generalised minimum spanning tree within a given 545

target domain depends on the shape of that domain, the balancing factor, and the soma location. Figure S2a 546

shows the relationship between dendrite length and volume in the different domains. 547

DSCAM null model 548

DSCAM null mutants have unusually clustered dendrites (Schmucker et al, 2000; Soba et al, 2007). Such dendrites 549

do not fill space efficiently and are not well-reproduced by the standard generalised MST model of Cuntz et al 550

(2010). To implement an algorithm to produce realistic synthetic dendrites, the following iterative procedure was 551

defined: 552

1. A node a on the tree is uniformly randomly chosen. 553

2. The closest node b that is not directly connected to the first node a and is more than 2µm away from it is 554

identified. 555

3. The first node a is moved 10% closer to node b. 556

4. Steps 1-3 are iterated K times. 557

This algorithm produces dendrites with clustered branches that resemble those of DSCAM null mutants. The 558

restriction of a minimal 2µm distance in step 2 is necessary to prevent branches becoming ‘paired’ and merging 559

together so that additional steps of 10% of the distance between them do not alter the geometry of the tree. 560

It should also be noted that this algorithm is best applied directly to the output of the existing Trees Toolbox 561

MST tree function without any resampling. Increasing the number of steps K qualitatively changes the relation- 562

ship between dendrite length and the volume spanned (Fig 2d). For the DSCAM null synthetic dendrites in 563

Figure 2, K = 100, 400, and 700. 564

Reconstructed morphologies 565

We retrieved 75 neurons from NeuroMorpho.org (Ascoli et al, 2007) to apply our algorithm to reconstruction 566

data. The rat barrel cortex neurons were originally obtained by Marx et al (2017). The data set included five 567

different neuron types (pyramidal-like, multipolar, horizontal, tangential and inverted) from layer 6b (N = 49) 568

and SP (N = 26). The reconstructions were preprocessed in the following way: first they were resampled to 569

1µm line pieces. To separate dendrites and axons, all nodes that were not labelled as axon were deleted and the 570

remaining nodes saved as a dendrite. The axons were obtained in the same way, but with soma and dendrite 571

removed. The volumes and cable lengths differed widely between the reconstructions (Fig S3). Then dendrites 572

and axons were randomly paired and the axon was shifted random amounts between 0 to 100µm in the X, Y, 573

Z directions and rotated uniformly randomly. A resulting example pair of axon and dendrite can be seen in 574

Fig 3a. The number of estimated and measured putative synaptic contacts were calculated for 10, 000 of these 575

combinations. 576
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Distribution of n 577

Assuming that putative contacts are formed uniformly and independently means that the distribution of the 578

number of contacts is Poisson 579

f(n) =
λne−λ

n!
(11)

The parameter λ gives the mean and variance of the distribution, which must be the same. A common generali- 580

sation of the Poisson distribution to allow for these moments to differ is the Pólya distribution g(n) (DeGroot & 581

Schervish, 1983). 582

g(n) =
Γ(n+ r)

Γ(r)n!
(1− p)rpn (12)

where Γ(z) =
∫∞
0
xz−1e−xdx is the gamma function. The mean and variance are given by pr/(1 − p) and 583

pr/(1− p)2 respectively. To fit the connection probability pc,g to pc,measured = 1− e−Nβ (where β = 0.5437), the 584

parameters p and r obey 585

p = 1 +
Nβ−1

W
(
−Nβ−1e−Nβ−1

) , r =
−Nβ

Nβ−1 +W
(
−Nβ−1e−Nβ−1

) (13)

where W is the Lambert W function satisfying z = W (z)eW (z) for any complex number z. These parameters 586

give a poor match to the measure variance for small values of N (blue dashed line in Figure 3d). 587

The skewness γ of a random variable X is defined as γ = E
[
(X − µX)3/σ3

X

]
and measures the degree to which 588

probability mass lies above the mean. Positive values mean that more mass lies above the mean and negative 589

that more mass lies below; further intuitions about the meaning of this statistic can often be flawed (von Hippel, 590

2005). The unbiased skewness γx of a set of samples {xi}i=1,2,..,k of size k with sample mean x̄ is given by 591

γx =
1
k

∑k
i=1

(
xi − x̄

)3(
1
k

∑k
i=1

(
xi − x̄

)2)3/2
(14)

The skewness of the values of n for each interval of N in Figure 3 are plotted in Supplementary Figure S3c. The 592

skewness is well-described by a function of the form γ(N) = e−cN+d where the fitted parameters (with 95% 593

confidence intervals are) c = 0.1184 (0.0860, 0.1509) and d = 0.7615 (0.6268, 0.8962). This is shown by the black 594

line and shaded region in Figure S3c. The skewnesses of the Poisson (γf ) and Pólya (γg) models are given by 595

γf =
1√
λ

, γg =
(1 + p)
√
pr

(15)

Plotting these values with parameters fitted to the measured mean and variance (in the case of the Pólya 596

distribution) shows a poor match to the measured skewness (blue and red lines in Figure S3c), particularly for 597

smaller values of N . 598

The Pólya distribution can be considered a generalisation of the negative binomial distribution, which counts 599

the number of Bernoulli successes at constant probability p before r failures occur, to allow for a non-integer 600

value of the stopping parameter r. Similarly, the negative hypergeometric distribution gives the number of 601

Bernoulli successes that occur before a certain number of failures when each success changes the probability of 602
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future successes. The usual interpretation is drawing from a finite set without replacement. Making a similar 603

generalisation to non-integer parameters, the negative hypergeometric distribution h(n) is given by 604

h(n) =
Γ(n+ ρ) Γ(∆− ρ− n+ 1) Γ(K + 1) Γ(∆−K + 1)

n! Γ(ρ) Γ(∆− ρ−K + 1) Γ(K − n+ 1) Γ(∆ + 1)
(16)

The mean µh and variance σ2
h are given by 605

µh =
ρK

∆−K + 1
, σ2

h =
ρK(∆ + 1)

(∆−K + 1)(∆−K + 2)

[
1− ρ

∆−K + 1

]
(17)

The interpretation of the parameters is typically that n counts the number of Bernoulli successes before ρ failures 606

occur; initially the probability of success is K/∆, but each success decreases (and each failure increases) the 607

subsequent success probability. The parameters therefore obey K ≤ ∆ and ρ ≤ ∆−K. There is no closed-form 608

expression for the skewness so we obtain it numerically (see below). 609

Fitting the three central moments, µh, σ2
h, and γh, as well as pc,measured to the data for each value of N gives the 610

curves in Figure S3d. The mean is fitted exactly and the sum of the relative differences of the other three statistics 611

from their true values is minimised using the Matlab fmincon function.The negative hypergeometric distribution 612

is a good fit for the observed distributions of n for small values of N . Figures S3g and h show the best fits of the 613

Poisson, Pólya, and negative hypergeometric distributions to the observed distributions of n for N = 2, and 5. 614

As N grows, the negative hypergeometric and Pólya models fitted in this way diverge. Figure S3e shows the 615

Kullback-Leibler divergence of Eq 16 from Eq 12 (Kullback & Leibler, 1951). The Kullback-Leibler divergence 616

DKL(H||G) quantifies the information gain (in nats) from using a distribution h(n) instead of g(n) and is defined 617

as 618

DKL(H||G) = −
∞∑
n=0

h(n)log

(
g(n)

h(n)

)
(18)

This approaches zero for N ≈ 10 before growing; using the more complex Eq 16 instead of Eq 12 has little 619

additional utility above this value. The confidence intervals in Table 2 are therefore calculated using the most 620

appropriate distribution. 621

Figure S3i plots the distributions of n for each integer value of N under the negative hypergeometric model. 622

Numerical evaluation of Eq 16 and estimation of skewness γh 623

To evaluate Eqs 12 and 16 for large values of the parameters or n requires a numerical approximation to the 624

gamma function Γ(z) =
∫∞
0
xz−1e−xdx for large arguments z. Following an approach in Bird et al (2016), 625

Stirling’s approximation allows the gamma function to be evaluated as 626

Γ(n+ 1) ≈
√

2πn

(
n

e

)n(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4

)
(19)

In particular, this form allows the logarithm of each factor to be computed separately and so gives an accurate 627

result for the probability mass when large terms in the numerator and denominator of Eq 16 cancel out. 628

The skewness γh is computed using the forms of µh and σ2
h in Eq 17 and the non-central moment E[H3] = 629
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∑K
n=0 n

3h(n) evaluated over the range where n3h(n) is above the smallest IEEE positive double precision number 630

(≈ 2.23× 10−308). Hence 631

γh =
E[H3]− 3µhσ

2
h − µ3

h

σ3
h

(20)

Reconstructed microcircuits 632

We retrieved 323 neurons from NeuroMorpho.org (Ascoli et al, 2007) to apply our algorithm to reconstruction 633

data in context. The mouse visual cortex neurons were originally obtained by Jiang et al (2015). Our dataset 634

contained many fewer morphologies than those reported in the original paper, but comprised the full set of 635

publicly available complete reconstructions from a slice with more than one cell at the time of writing. The data 636

set included sixteen different neuron types (see Table 2) from cortical layers I, II/II and V. Cell-type labels follow 637

directly from the labelling in the initial paper using the approach of Sümbül et al (2014) where classification is 638

done on the distribution of neurite within the cortical layers. The abbreviations used in Figure 4 and Table 2 are 639

as follows: SBC-like single-bouquet cell like, eNGC extended neurogliaform cell, L23MC layer 2/3 Martinotti 640

cell, L23NGC layer 2/3 neurogliaform, BTC bitufted cell, BPC bipolar cell, DBC double-bouquet cell, L23BC 641

layer 2/3 basket cell, ChC chandelier cell, L23Pyr layer 2/3 pyramidal cell, L5MC layer 5 Martinotti cell, L5NGC 642

layer 5 neurogliaform cell, L5BC layer 5 basket cell, HEC horizontally extended cell, DC deep-projecting cell, 643

L5Pyr layer 5 pyramidal cell. 644

The total number of neuron pairs (where pairs are imaged from the same slice) was 434, of which 233 had 645

more than one putative contact. The reconstructions were preprocessed in the following way: first they were 646

resampled to 1µm pieces. To separate dendrites and axons, all nodes that were not labelled as axon were deleted 647

and the remaining nodes saved as a dendrite. The axons were obtained in the same way, but with soma and 648

dendrite removed. The volumes and cable lengths differed widely between the reconstructions (Fig sS4a and b). 649

Nearest- and all-neighbour ratios 650

To establish the spatial distribution of potential contacts within the shared volume, we considered both the 651

nearest- and all-neighbour ratios (Chandrashekhar, 1943). The nearest-neighbour ratio quantifies the pairwise 652

spatial correlation of points in space, whereas the all-neighbour ratio seeks to capture higher order correlation 653

structure. The nearest-neighbour ratio of a set of points bounded by a given volume is defined as the mean 654

ratio of nearest-neighbour distances to that of all possible sets of uniformly distributed points with that same 655

space. The all-neighbour ratio in contrast is the mean distance of each point to the centroid of all other points 656

in the same space. A nearest-neighbour ratio of close to one implies that points are distributed uniformly in 657

space, whereas an all-neighbour ratio of one implies that at larger scales points are uniformly distributed. For 658

each overlapping volume with n potential contacts, we generated 106 sets of n uniformly randomly distributed 659

points to calculate the mean nearest- and all-neighbour distances. This also allowed the p-values to be computed 660

from the proportion of random point sets that have a more extreme ratio in a given volume than the measured 661

synaptic sites. For our data, the nearest- and all-neighbour ratios are highly correlated (Fig S4c), suggesting that 662

the higher-order correlation structure is caught by the pairwise, local measure. 663

The neighbour ratios can often be applied in a biased manner, particularly when the boundary within which the 664
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points are to be distributed is defined by the set of points themselves (Ripley & Rasson, 1977; Anton-Sanchez et 665

al, 2018). Our application, with the boundary defined by the overlapping neurite arbors, rather than strictly the 666

synaptic locations should be relatively free of this bias. To check whether this is indeed the case we examined 667

whether the volumes spanned by the boundary around the putative contacts differed systematically from the 668

boundary around all uniform random point sets with the same number of members. Figure S4d shows that this 669

is not the case. 670

Dendritic compartments 671

The passive electrotonic properties of each interneuron type were estimated from the somatic input resistance 672

values reported in Jiang et al (2015) (Tables S1 S2) and those of the pyramidal cells from the values reported 673

by Guan et al (2015) (Figure 2). There will always be a continuum of pairs of values of axial resistivity ra and 674

membrane conductivity gm that lead to a given somatic input resistance for a given morphology; different pairs 675

will also typically lead to slightly different electrotonic response properties elsewhere in neurons with tapering 676

dendrites due to the distinct contributions of ra and gm to the local electrotonic length constant (Goldstein & 677

Rall, 1974; Bird & Cuntz, 2016). We therefore restricted the allowed values to a physiological range, with axial 678

resistivity between 50 and 200 Ωcm and membrane conductivity allowed to vary between 0 and 10−3 Scm−2. The 679

MATLAB patternsearch optimisation function was used to minimise the difference between the mean somatic 680

input resistance for each class of morphologies and that reported experimentally. The starting values were of 681

ra = 100 Ωcm and gm = 5× 10−5 Scm−2 and the optimisation was stopped once the difference between means 682

was below the standard error quoted in the above papers. In practice, the axial resistivities remained at their 683

initial value in all cases. The somatic input resistances reported by Jiang et al (2015) and Guan et al (2015) and 684

the resultant membrane conductivities estimated by our algorithm are tabulated in Supplemental Table 1. The 685

membrane conductivities derived in this way are higher than is sometimes reported for mouse cortical neurons 686

in detailed electrophysiological studies, but fit the reported somatic input resistance and are consistent with the 687

relatively fast membrane time constants also reported (Gentet et al, 2000). 688

The electrotonic signature, the set of transfer resistances from each node to all other nodes, was computed using 689

the existing Trees Toolbox function sse tree. The compartmentalisation was defined by assigning a threshold 690

value, in this case 0.13995, and finding the regions of the tree within which voltages do not attenuate below this 691

proportion of the maximum input resistance. Different thresholds lead to different numbers of compartments in 692

a given dendrite (Fig S4f). 693

Compartments containing a synapse 694

The expected number of synaptic contacts necessary to innervate M dendritic compartments (NComplete in Eq 6) 695

is given by the solution to a standard problem in probability: the coupon collector’s problem (Blom et al, 1993). 696

The standard statement of (the simplest case of) this problem is that given a set containing elements distributed 697

equally amongst k different classes, how many draws (independent and with replacement) are expected to 698

be necessary until at least one element from each set has been drawn. This is equivalent to the problem of 699

distributing contacts between dendritic compartments. 700
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The distribution of compartments innervated by at least one of the N synaptic contacts (Eq 7) does not appear 701

to be a widely-reported result, so we give a brief derivation here. Write pnk for the probability that k distinct 702

compartments have been innervated by n contacts. Then for n = 1, a single contact must innervate a single 703

compartment, hence p11 = 1 and pk1 = 0 for all other values of k. For n > 1, pnk obeys the recursion relation 704

pnk =
1

M

(
kpn−1k +

(
M − k

)
pn−1k−1

)
(21)

where the first term in brackets is the probability that the n-th contact innervates one of the k compartments 705

already containing a contact and the second term is the probability that it innervates a new compartment. Solving 706

the above difference equation leads to Eq 7. 707

Reconstruction data to demonstrate the predictions 708

We retrieved 126 mouse and 112 human cortical neuron reconstructions from the Allen Brain Institute (Allen 709

Brain Institute, 2015). Morphologies were chosen if they were marked as having a full dendrite and at least 710

200µm of axon. Our dataset comprised the full set of publicly available reconstructions satisfying theses criteria at 711

the time of writing. The data set included numerous different cell types. The reconstructions were preprocessed 712

in the following way: first they were resampled to 1µm pieces. To separate dendrites and axons, all nodes that 713

were not labelled as axon were deleted and the remaining nodes saved as a dendrite. The axons were obtained in 714

the same way, but with soma and dendrite removed. The volumes and cable lengths differed widely between 715

the reconstructions (Fig S5, left hand panels). The cortical depths were recorded in the original dataset (Fig S5 for 716

densities of neurite and somata with cortical depth). To generate the data for Figure 5, random pairs of axon and 717

dendrite were chosen and displaced randomly uniformly by up to 125µm in either direction in the plane parallel 718

to both the slicing direction and cortical surface and by up to 25µm in either direction in the plane perpendicular 719

to the slicing direction and parallel to the cortical surface. Depth measurements are assumed reliable, but we 720

introduce a small amount of jitter by displacing the depth by a normally distributed amount with mean 0µm and 721

standard deviation 10µm. As these deviations are small compared to the range of possible cortical depths (Fig 722

S5, right hand panels), much of the intersoma distance in Figure 5 comes from the layered structure of the cortex. 723

Supporting information 724

S1 File. MATLAB code to reproduce all figures and data. 725
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Fig S1. Supplement to Figure 1: Distributions of neurite length and shared volume for Figure 1. Distributions of dendrite

length (left), axon length (centre), and shared volume (right) when dendrite length (top row), axon length (middle row), and shared

volume (bottom row) vary. Generally, values are constrained to approximately Ld = 2.4mm, La = 3mm, and V = 2.4 × 10−3mm3

(shown by black dots).
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Fig S2. Supplement to Figure 2: Length and volume for dendrites for Figure 2 with different shapes and balancing factors

and correlations with soma separation. A Dendrite spanning volume as a function of length for trees from Figure 2A bounded by

a cube, sphere, cylinder, and cone. B Dendrite spanning volume as a function of length for trees from Figure 2B with balancing

factors of 0.2, 0.4, 0.6, and 0.8. C Plots of shared volume (left) and dendrite length (right) as a function of intersoma distance for

different morphologies (trees from Figure 2D).
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Fig S3. Supplement to Figure 3: Length and volume distributions for the reconstruction data in Figure 3 and parameters for

the distribution of putative connection numbers.A Neurite spanning volume as a function of neurite length for the dendritic

(blue) and axonal (orange) trees. B Fano factor (variance divided by mean) of the number of measured putative connections n

as a function of the expected number N . The black line shows the fit of the variance equation (aN + Nb) and the grey shaded

region shows the 95% confidence interval. The red line shows the Fano factor of the Poisson model. C Skewness of the number of

measured putative connections n as a function of the expected number N . The black line shows the fit of the skewness equation

(e−cN+d) and the grey shaded region shows the 95% confidence interval. Red and blue lines show the skewnesses of the Poisson

and Pólya.models (Eq 15). D Parameters ∆, K, and r of the negative hypergeometric distribution (Eq 16) as a function of expected

putative contact number N . E Kullback-Leibler divergence DKL (Eq 18) of the negative hypergeometric distribution (Eq 16) from

the Pólya distribution (Eq 12) as a function of N . F Confidence intervals (25%, 50%, 75%, and 95%) for values of n as a function of

N under the negative hypergeometric (for N < 10) and Pólya (for N ≥ 10) models (Eq 16 and 12 respectively). G Example fit of

Poisson (Eq 11, red line), Pólya (Eq 12, blue line), and negative hypergeometric (Eq 16, green line) models to data for N = 2. H As

in G for N = 5. I Probability distribution of putative contact numbers n for each integer estimated putative contact number N

under the negative hypergeometric model (Eq 16). Square sizes scale linearly with the occurrence of each probability in the grid.
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Fig S4. Supplement to Figure 4: Neurite size, neighbour ratios, and compartmentalisation for microcircuit data in Figure 4.

A Dendrite spanning volume as a function of dendrite length for cells in the dataset. Colours indicate cell type (see legend). B As

in A, for axons. C Relationship between nearest-neighbour ratio (NNR) and all-neighbour ratio (ANR) for each set of putative

contacts. Colours indicate presynaptic cell type and the linear correlation coefficient is 0.91. D Volume ratio and p-value for sets of

putative contacts. E Number of compartments estimated using the branch definition against the number using the attenuation

definition. Individual cells are shown with transparency and the mean for each cell class by a solid colour. Horizontal and vertical

error bars show the standard error in both definitions. F Number of compartments estimated using the attenuation definition for

different cell classes as a function of the proportional attenuation threshold. Error bars show standard error.
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Fig S5. Supplement to Figure 5: Neurite size and cortical depth for the reconstruction data in Figure 5. A Mouse data. Top left:

Dendrite spanning volume as a function of dendrite length for cells in the dataset. Bottom left: Axon spanning volume as a function

of axon length. Top right: Neurite density (microns of neurite per µm of cortical depth) for all axons (orange) and dendrites (blue)

in the dataset. Bottom right: Soma density (soma per µm of cortical depth) for all neurons in the dataset. B Human data. As in A,

but for cortical human cells.
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Cell type

Electrotonic properties

Input resistance (soma) Membrane conductivity

(MΩ) gm (10−4Scm−2)

SBC-like 136.8± 5.4 1.941

eNGC 132.8± 6.0 2.155

L23MC 126.1± 3.6 1.216

L23NGC 120.6± 7.1 1.495

BTC 131.6± 5.6 1.389

BPC 131.2± 5.4 1.941

DBC 76.7± 2.7 2.765

L23BC 84.5± 3.9 1.941

ChC 111.7± 5.8 2.155

L23Pyr 120± 10* 1.145

L5MC 141.8± 7.1 1.025

L5NGC 95.4± 6.4 2.155

L5BC 95.8± 4.0 1.766

HEC 111.5± 4.9 1.941

DC 141.5± 15.6 1.766

L5Pyr 130± 7* 0.927

Table S1. Somatic input resistances and estimated membrane conductivities for the cell classes in Figure 4. Input resistance

data taken from Jiang et al (2015), except for values labelled with * where Guan et al (2015) is the source. In all cases the axial

resistance ra = 100 Ωcm.
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