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Abstract

Understanding the complexity of transcriptional regulation is a major goal of computational
biology. Because experimental linkage of regulatory sites to genes is challenging, computational
methods considering epigenomics data have been proposed to create tissue-specific regulatory
maps. However, we showed that these approaches are not well suited to account for the
variations of the regulatory landscape between cell-types. To overcome these drawbacks, we
developed a new method called STiTCHIT, that identifies and links putative regulatory sites to
genes. Within STITCHIT, we consider the chromatin accessibility signal of all samples jointly
to identify regions exhibiting a signal variation related to the expression of a distinct gene.
STiTCHIT outperforms previous approaches in various validation experiments and was used
with a genome-wide CRISPR-Cas9 screen to prioritize novel doxorubicin-resistance genes and
their associated non-coding regulatory regions. We believe that our work paves the way for a
more refined understanding of transcriptional regulation at the gene-level.
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Background

Elucidating the diversity of transcriptional regulation is a prevalent problem in computational
biology. While there is a plethora of mechanisms involved in regulating transcription [9], especially
the binding of Transcription Factors (TFs) to regulatory elements (REMs) such as Promoters,
Enhancers, and Repressors has been shown to be essential for orchestrating cellular development
and identity [54], [57]. Importantly, enhancers have been closely linked to several diseases [18] and
recent research suggests that enhancers might be therapeutic targets [57, 45].

n order to describe how REMs might influence their target genes in a systematic way, two
models have been proposed: the scanning model and the looping model [57, [4]. According to
the scanning model, a REM is usually affecting a gene that is located in close genomic distance,
whereas in the looping model, REMs can influence a gene that is located several kilobases (kb)
away from the actual regulatory site via chromatin looping. Because biological evidence has been
found for both models, it is likely that both do occur in-vivo [60, [29].

To elucidate regulatory function, two main problems need to be solved: Firstly, REMs, need
to be identified genome wide and secondly, they need to be assigned to their target genes. The
first problem, identifying REMs genome wide, has been addressed by international projects, e.g.
ENCODE and Roadmap. There, REMs were identified using DNasel-Hypersensitive Sites (DHS),
e.g. sites of accessible chromatin [48] 53], via distinct patterns of Histone Modifications (HMs),
i.e. the co-occurrence of H3K27ac, H3K4mel while H3K4me3 is absent [23], or TF-ChIP-seq
experiments of TFs such as EP300 [55]. Typically, such data sets are analysed with peak calling
algorithms. Although, there is a plethora of peak callers available, designed for ChIP-seq [52]
and chromatin accessibility data [28], peak callers still have several limitations. For instance,
the selection of the cut-off to determine peaks over background is not trivial, and also cell cycle
stage [30] or cell numbers [15] can prevent us from accurately detecting all truly enriched regions.
Furthermore, it is often not clear what level of enrichment is needed such that a region can be
seen as biologically active [7]. Besides, as illustrated in Supplementary Fig. S1, integrating peak
calls across several diverse samples is not straightforward [31]. However, an integrated set of
peaks is required if machine learning approaches should be utilized to associate a defined set of
candidate REMs to potential target genes across many samples. Note that automated integration
of replicates, as offered e.g. in the peak caller JAMM [24], is not designed for such an application.
It is rather meant to provide stable, reproducible peak calls across replicates of the same cell-type
or tissue.

In addition to the efforts taken by ENCODE and Roadmap, putative enhancers were identified
in the Fantom) consortium via the identification of distinct bidirectional expression patterns in
CAGE (Cap Analysis of Gene-Expression) data [I].

Overall, many different ways have been proposed to identify putative REMs using distinct
chromatin signatures. Nevertheless, the problem of linking those regions to the genes they regulate
is still not straightforward to solve. In literature, especially in instances were only few replicates are
available, putative REMs are often linked to their nearest gene according to genomic distance [16],
or aggregated using window based approaches [42] B3]. However, several studies suggest that
especially enhancers and repressors do not regulate their nearest gene but may influence more
distant genes [I], 21} @I]. On top of that, REMs are highly tissue-specific [36], underlying that a
purely distance based detection of REMs is error prone.

Yao et al. [57] describe two approaches attempting to overcome these limitations: (1) methods
based on physical interaction, i.e. capture Hi-C [25], or Chromatin Interaction Analysis by Paired-
End Tag sequencing (ChIA-PET) [I3] and (2) methods based on associating gene-expression to
the activity of REMs, e.g. using DNasel-seq [53, 21], or HM abundance [10].

While methods based on physical interaction are laborious, time consuming and experimentally
challenging, e.g. in terms of providing a sufficient resolution of long-range contacts [38], association
based methods are predestined to use the plethora of available epigenetics data to link REMs to
their target genes.

Using machine learning, Cao et al. propose to integrate predicted REMs into cell-type specific
interaction networks [0], similar to Hait et al., who also provide regulatory-maps derived from
statistical associations between the activity of REMs and target gene-expression [21]. Shooshtari et
al. combined chromatin accessibility data with Genome-Wide Association study Studies (GWAS)
to better pinpoint regulatory events in autoimmune and inflammatory diseases [47]. In the Fantom
consortium, putative REMs have been linked to their target genes by associating enhancer activity
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to gene-expression [I]. Gonzales et al use a nearest gene linkage of DHS sites in an iterative manner
within gene-expression models to link REMsto their target genes [16].

Results

A novel method for the gene-specific identification of regulatory sites

We present STITCHIT a novel segmentation based method to identify gene-specific REMs. Unlike
other approaches [0} 2], STITCHIT is a peak-calling free approach interpreting the epigenetic signal
in relation to the expression of a distinct gene. Basically, STITCHIT solves a classification problem
by segmenting a large genomic area around the target gene. The resulting segmentation highlights
regions exhibiting epigenetic signal variance, which is linked to the expression of the analyzed gene.
As illustrated in Fig. STITCHIT is superior to peak-based approaches as it is able to pinpoint
REMs with high resolution and accuracy. Here, we apply STITCHIT to a large collection of paired,
uniformly reprocessed DNasel-seq and RNA-seq samples from Blueprint, ENCODE, and Roadmap
to determine gene-specific REMs. These datasets are very different, e.g. the Blueprint dataset is
rather homogeneous representing a wide spectrum of the haematopoietic lineage, the ENCODE
dataset is composed of a few diverse samples, and the Roadmap dataset is a large, highly diverse,
heterogeneous dataset. Thus, these three datasets are ideal to test the capabilities of STITCHIT,
which we did in various validation and application scenarios.
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Figure 1: In this illustration, we consider three genes (g1,¢2,93), with distinct, colour coded
regulatory regions indicated at the top of the Figure. These genes are profiled in three samples
using DNasel-seq and RNA-seq, revealing distinct patterns in chromatin accessibility and in gene-
expression, respectively. Two approaches are used to derive regulatory elements (REMs) for these
genes. One the left, REMs are derived based on correlation tests between called peaks and the
expression of the target genes. As shown, the peak based linkage is inaccurate. For instance, the
neighbouring REMS for g; and go are not distinguished accurately due to insufficient resolution
during peak calling. Similarly, a distal REM for g; is predicted to be too large and an intragenic
REM of g3 is missed, due to loss of sensitivity by the peak caller. STITCHIT instead, uses the
OC and gene-expression data in a unified statistical framework to define gene-specific REMs with
greater accuracy, as shown on the right hand site.

STITCHIT has two main parameters that influence performance and runtime: the segment-size
and the resolution. We have tested several values for both parameters and have set the segment-
size to 5000 and the resolution to 10 (Supplementary Fig.s S5) as these parameters yield a good
trade-off between performance and runtime.
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An additional parameter that is to be specified is the size of the considered genomic region up-
and downstream of a gene. This parameter influences whether distal associations can be discovered
and influences the runtime of the tool. We have conducted runtime experiments (Supplementary
Fig. S6) and found that even with a window size of 0.5M B (excluding the size of the genes) REMs
can be learned in about 10 minutes per gene. As regulatory interactions typically arise within
topological associated domains [g], this is also a feasible value in practice, especially for analyses
focusing only on a few distinct genes.

Regulatory regions derived from STITCHIT perform well in gene-expression
prediction

Prior to a biological evaluation of the suggested REMs, we investigate their general characteris-
tics. Here, computed REMs using STITCHIT, the UNIFIEDPEAKS approach, the GENEHANCER
database, and using the aggregation of individual DHS sites for the datasets originating from
Blueprint, ENCODE and Roadmap are investigated more closely.

As illustrated in Fig. 2h both STITCHIT and UNIFIEDPEAKS identify more candidate regions per
gene than GENEHANCER. Simultaneously, the regions retrieved by STITCHIT and UNIFIEDPEAKS
are shorter than those extracted from GENEHANCER (Fig. ) The same observation is made using
Pearson correlation as a measure to filter candidate regions (Supplementary Fig. S7). This suggests
that although STITCHIT predicts more individual segments, the total genomic space covered by
those must not be larger than that of UNIFIEDPEAKS regions. As shown in Supplementary Table
S7, the UNIFIEDPEAKS regions indeed cover a larger fraction of the genome than STITCHIT and
GENEHANCER regions.

Figure [2c depicts the number of genes for which a model could be learned per consortia and
linkage method. STITCHIT and UNIFIEDPEAKS segments lead to more statistically significant mod-
els than GENEHANCER segments, while STITCHIT has a slight quantitative advantages compared
to UNIFIEDPEAKS.

In Fig. [2d, the Spearman correlation of elastic net models predicting gene-expression from
the DNasel-seq signal within the identified REMs is depicted (c.f. Supplementary Fig. S8a for
other measures). To allow for comparability, we only show model performance for genes that are
covered by each tested method. In Supplementary Fig. S8a, we also show the performance for
the window based peak aggregation, labeled as Individual peaks. There, we show for each gene
only the best performing model based on either the 5kb, 50kb, or the geneBody window. Across
all datasets, we observe that models based on STITCHIT regions achieve a significantly better
correlation (p < 0.0001) than models based on the other approaches. This is independent from
the correlation measure used for the initial filtering of REMs within STITCHIT, UNIFIEDPEAKS,
and GENEHANCER. In a gene-to-gene comparison, as shown in Fig. for Roadmap data (c.f.
Supplementary Fig. S8b-d for all datasets), STITCHIT shows a favorable performance.

In case of Blueprint data, we observe that the absolute performance difference between STITCHIT
and UNIFIEDPEAKS is less pronounced than for the other two datasets. This is reflected as well by
the number of selected regions and their length. The median length of selected regions is more sim-
ilar for Blueprint data between STITCHIT and UNIFIEDPEAKS than for ENCODE and Roadmap
data (Fig. ) At the same time, their average length is almost identical, in contrast to the
segments identified in the other two datasets (Fig. [2h). In terms of total genomic coverage, the
UNIFIEDPEAKS approach covers about 1.65 times of the space covered by STITCHIT on Roadmap
data, whereas the difference on Blueprint data is much less (1.02) (Supplementary Table S7).

Further, our results clearly indicate that the supervised generation of REMs outperforms the
unsupervised selection considerably, as different window sizes used with the unsupervised approach
can not generalize well across different genes (Supplementary Fig. S9).

As illustrated in Supplementary Fig. S8a, using Spearman correlation for the internal filtering
leads to a better model performance and was thus used for all remaining experiments in the
manuscript.
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Figure 2: (a) The natural logarithm of the number of segments selected by STITCHIT, UNIFIED-
PEAKs, and GENEHANCER is shown for each dataset respectively, whereas in (b), the average
length of the selected segments is depicted. The number of learned models is shown in (c), sepa-
rately per consortia and method. (d) Boxplots showing Spearman correlation between predicted
and measured gene-expression using linear regression with elastic net penalty considering all re-
gions identified by STITCHIT, the UNIFIEDPEAKS approach, GENEHANCER, and individual peak
aggregation respectively for Blueprint, ENCODE, and Roadmap data. Within STiTcHIT, UNI-
FIEDPEAKS, and GENEHANCER Spearman correlation was used for the initial filtering of candidate
regions. Within each consortia, the same set of genes is displayed to allow comparability (Blueprint:
11140 , ENCODE: 2057 , Roadmap: 9102). As indicated by a two-sided t-test, STITCHIT regions
achieve the best model performance (****: p < 0.0001). The estimated values for the variances
are: 0.018, 0.017 ,0.029, 0.038 (Blueprint), 0.018, 0.024, 0.032, 0.041 (Roadmap), 0.016, 0.021
,0.026, 0.048 (ENCODE), for STITCHIT, UNIFIEDPEAKS, GENEHANCER and the peak aggregation
respectively. (e) Scatter plots comparing the performance of STITCHIT (x-axis) against the indi-
vidual peak aggregation, UNIFIEDPEAKS and GENEHANCER regions (y-axis) on Roadmap data.
Each plots shows 9102 genes. A single dot represents the performance of gene-expression models
for a distinct gene.

STITCHIT learns more putative regulatory regions than related ap-
proaches

To better understand the nature of STITCHIT REMs, we have conducted several statistical analyses.
While not only the number and the length of REMs is different between datasets (Fig. 2a,b,
Supplementary Fig. S1la), we also find that the overlap in terms of genes for which a model could
be learned, is generally less than 50% between two datasets (Supplementary Fig. S10), independent
from the method used for the computation. Specifically for STITCHIT, only 12.7% (4477) of all
gene-specific models are shared between Blueprint, Roadmap, and ENCODE. Roughly 23% (8214)
of all genes could be exclusively modeled using Blueprint data, about 2% (6917) with Roadmap,
and 6% (2175) with ENCODE.

To gain a better understanding of the characteristics of the suggested regions learned with
StiTcHIT, we overlapped them with the ERB. Interestingly, although the absolute numbers differ,
the relative trend among the different datasets is similar: most STITCHIT regions do not overlap
an annotated region (Fig. —d), thus they are labelled as Unknown. Only in about a quarter of
all cases an overlap is found with a state annotated as Promoter, Promoter flanking region, TF
binding site, Enhancer, or Open chromatin. The questions arises whether the remaining regions
are simply noise or whether they reflect REMs that have not been annotated so far. To investigate
whether these unknown REMSs are performing regulatory functions, we assessed the H3K2T7ac
signal in four randomly chosen Blueprint samples within the top 10,000 StiTcHIT REMs (c.f.
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Methods), within a randomly shuffled set of the same size, and within the top 10,000 regions per
class contained in the ERB. As indicated in Fig. the strongest H3K27ac signal occurs within
Promoter and Promoter Flanking Regions. Importantly, the signal of the randomly distributed
regions is the lowest. The signal of the Unknown regions is similar to that of TF binding sites and
Open Chromatin suggesting that these regions do have a regulatory effect.
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Figure 3: (a) The Venn diagram illustrates the overlap of genes for which a model could be
learned using STITCHIT on either one of the datasets used. (b-d) The distribution of a mapping of
STITCHIT sites to the ERB is shown. (e) H3K27ac signal shown for randomly shuffled regions, as
well as STITCHIT regions split according to the categories obtained from intersecting all STITCHIT
segments with the ERB. H3K27ac signal is shown for four Blueprint samples in a window of 1kb
centered in the middle of the putative REMs. STITCHIT regions overlapping Promoter or Promoter
Flanking Regions show the highest H3K27ca signal, while the signal in randomly determined regions
is the lowest. The largest portion of regions, labeled as Unknown have a similar signal intensity as
sites labeled as a TF binding site or Open Chromatin. (f) The density plots delineates the number
of predicted REMs per gene, shown separately for the used datasets and tested methods.

Additionally, the trends between the datasets are varying, e.g. we find most associations with
STITCHIT on the Roadmap dataset, whereas in case of the UNIFIEDPEAKS approach, we find most
associations on Blueprint data.

In Supplementary Fig. S11b, we sketch the distribution of STITCHIT regions around a gene. We
find that most STITCHIT regions are located in intragenic positions, that is within the genebody
of their respective target gene. Importantly, we do not observe an enrichment in identified sites
upstream of the T'SS’s of the considered genes, indicating that we do not focus on promoter specific
features. The histograms of Fig. 3f illustrate how the number of associated REMs are distributed
among their target genes. As expected, the distribution for GENEHANCER is different from that
of UNIFIEDPEAKS and STITCHIT. While the latter two reach the maximum, depending on the
dataset, between 20-30 REMs per gene, GENEHANCER reaches the optimum at 1-4 predicted sites
per gene. Our results also indicate that STITCHIT tends to find more sites per gene than the
UNIFIEDPEAKS approach.

Validation using external data

As STITCHIT can be used to learn interactions to distant sites, we compared the learned interactions
to ChIA-PET data for K562 and MCF-7 cells as well as to Promoter-Capture Hi-C data for
GM12878 cells. On Blueprint and Roadmap data, about one third of all possible interactions
overlap with predictions by STITCHIT and UNIFIEDPEAKS, on ENCODE data about one sixth
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of all ChIA-PET contacts are retrieved (Fig. [#h). While GENEHANCER constantly finds the
smallest overlap, STITCHIT segments overlap with more chromosomal contacts using Blueprint
and Roadmap data, while the UNIFIEDPEAKS approach finds more on ENCODE data. There is
no clear advantage for any method on the Promoter-Capture data (Supplementary Fig. S12d).
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Figure 4: (a) The bar plot indicates how many ChIA-PET contacts are matching the associations of
REMs to their target genes across all three datasets and linkage approaches for the K562 and MCF-
7 cell lines. With the exception of the ENCODE dataset, STITCHIT retrieves more interactions than
both UNIFIEDPEAKS and GENEHANCER. (b) Here, the ratio of recovered entries from the entire
GeneHancer database is shown for STITCHIT and UNIFIEDPEAKS. While UNIFIEDPEAKS retrieves
slightly more entries than STITCHIT on ENCODE data, STITCHIT retrieves more known sites on
Blueprint and Roadmap data. (c-e) Length normalized enrichment of non-coding mutations (c),
of GWAS sites (d) and eQTLs (e). With the exception of (c), which considers only Blueprint data,
all other analysis are performed on all datasets and indicate that STITCHIT regions achieve the
best score.

Another approach to show the reliability of our predictions is to assess the amount of recovered
interactions from GENEHANCER. As shown in Fig. @b about 32 — 36% of GENEHANCER REMs
are retrieved in case of Blueprint and Roadmap respectively and about 18% using ENCODE data.
In the latter case the UNIFIEDPEAKS approach finds marginally more overlapping regions, whereas
STITCHIT finds more known associations with Blueprint and Roadmap datasets.

The COSMIC database is a collection of known somatic mutations in cancer. Especially mu-
tations occurring in the non-coding part of the genome overlapping REMs might be influencing
TF binding in those regions and thus lead to a change in gene-expression that is contributing to
the progression of cancer. By overlapping our predictions with all non-coding mutations stored in
COSMIC, we suggest to which gene the non-coding somatic mutation can be linked (Supplemen-
tary Table S11). In total, we find 1,006, 848 associations between 883,111 somatic mutations and
22,588 distinct genes. STITCHIT is especially well suited for this task, as its overall enrichment
of regulatory sites is higher compared to UNIFIEDPEAKS and GENEHANCER regions (Fig. )
while at the same time also more mutations can be linked (Supplementary Fig. S12b). Inter-
estingly randomly selected regions overlap more mutations than predicted REMs. This suggests
that the sequence in the predicted REMs is conserved and thus likely to be functionally relevant
(Supplementary Fig. S12b).

Similarly, we overlapped GWAS sites from the EMBL-EBI GWAS catalog with our predictions
suggesting to which gene(s) GWAS hits might be associated (Supplementary Table S11). Overall we
find 4697 associations with Blueprint, 888 with ENCODE, and 4588 with Roadmap data covering
3394, 753, and 3366 genes respectively using STITCHIT. Similar to above, STITCHIT yields a
better enrichment score than the other two methods (Fig. ) Compared to a random setting,
all actual regions yield significantly more associations and obtain a significantly better enrichment
score (Supplementary Fig. S12a).

Expression quantitative trait loci (eQTLs) are distinct genomic loci that are linked to the
expression of genes. We obtained eQTL data from the ExSNP database and overlayed it with
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our predictions by computing how many eQTL links are correctly overlapping our predictions. As
shown in Fig. [k, STITCHIT regions obtain the best enrichment score for the identification of eQTL
overlaps supporting the accuracy of STITCHIT predictions and are also enriched in a randomization
experiment (Supplementary Fig. S12c).

CRISPR-Cas9 validated enhancers for ERBB2 are rediscovered using
STITCHIT

Klann et al. [20] analysed regulatory elements for the ERBB2 loci in human SKBR3 breast cancer
cells. They have validated the regulatory effect of several candidate DHS sites using CRISPR-
Cas9 experiments leading to a set comprising 11 validated regions influencing the expression of
ERBB2 (Supplementary Table S2). We obtained interactions for FRBB2 using STITCHIT, UNI-
FIEDPEAKS, and GENEHANCER. Next, we pooled the interactions learned across the three datasets
by intersecting them with all potential SKBR3 DHSs (see Methods).

As depicted in Fig. [B] STrTcHIT finds 9 of the 11 regions, the UNIFIEDPEAKS approach retrieves
7 regions and GENEHANCER retrieves 6 regions. As an additional support of the predictions, we
found that ChIA-Pet data (4DGenome) is linking REMs around GRB7 to ERBB2 [50).
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Figure 5: This genome-browser visualization depicts in the gene track the genomic locus of FRBB2.
The second track shows DHS sites identified in SKBR3 cells and sites highlighted in green have
been validated using CRISPR-Cas9 experiments [26], indicated by the gRNA binding sites shown in
the track below. The track labeled ChIA-PET shows an interaction obtained from the 4DGenome
database. The STITCHIT track contains all STITCHIT regions identified across the three datasets.
A blue color indicates that the region overlaps a validated DHS site. The tracks for UNIFIED-
PEAKS and GENEHANCER are generated analogously. STITCHIT retrieved 9 sites, UNIFIEDPEAKS
identified 7, and GENEHANCER 6.

As shown in Fig. 5] STITCHIT regions are very sharp and are rather a subset of the validated
DHSs, especially for those within the gene-body of FRBB2, while UNIFIEDPEAKS and GENE-
HANCER segments are very broad, not providing a good resolution on the regulatory landscape of
the chromatin around ERBB2. For instance, 6 validated DHS sites are covered by only 2 GENE-
HANCER segments, rendering the GENEHANCER segments less useful in an exploratory analysis of
gene-expression, because the actual sites of importance are not pinpointed precisely. The UNIFIED-
PEAKS approach is performing better in terms of this ratio, as only in one instance an identified
site overlaps 2 validated DHS, but the mean length of the UNIFIEDPEAKS regions (1449bp) is still
longer than the mean length of STITCHIT regions (214bp) and longer than the validated SKBR3
DHSs (562bp). Especially in down-stream applications such as TF-binding predictions or foot-print
calling, the more fine grained resolution of STITCHIT is beneficial and can avoid false-positive calls.

Partitioning of large regulatory elements using STITCHIT

As shown above, the UNIFIEDPEAKS approach produces longer candidate regions than STITCHIT.
We define a split event as the occurrence of a peak that is divided into several regions by STITCHIT
with the additional constraint that the new sub-regions should not be linked to the same gene as
the original peak. As depicted in Fig. [6h such split events do occur frequently. Note, that for
illustration purposes, split events of degree > 10 and smaller than < 2 are not displayed.

An example is provided in Fig. [6p. Here, a peak is linked exclusively to TMEM14B by the
UNIFIEDPEAKS method. The peak itself is located around the promoter of TMEM1/C and covers
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Figure 6: (a) The bar plots indicate on the x-axis the magnitude of a Split event, that is the number
of differently linked STITCHIT segments a peak is split into. The y-axis holds the frequency for
the individual counts. The color code indicates whether STITCHIT associations are fully supported
by conformation data, partially supported or not supported at all. (b) Example for a split event
at the TMEM1/C locus. At the promoter of TMEM1/C, a peak that is linked to TMEM14B is
split into several STITCHIT segments. These are associated to PAK1P1, TMEM14C itself, and
TMEM14B. All STITCHIT associations shown here are supported by ChIA-PET data.

a total genomic range of 2497bp. STITCHIT divides that peak into segments linked to PAK1P1, to
TMEM14C itself, and to TMEM14B. ChIA-PET data obtained from K562 cells supports the long
range interactions to PAK1P1 and TMEM14B. This example, together with the analysis presented
in Fig. [fh underlines the ability of STITCHIT to precisely pinpoint regions of regulatory potential
and suggests the application of segmenting large REMs, into more refined segments and to reveal
their regulatory interactions.

Exploratory analysis of the regulatory landscape of EGR1

To better understand the functional advantage of STITCHIT over UNIFIEDPEAKS, we have inves-
tigated the regulatory landscape of FGR1 in more detail. For FGR1, the Spearman correlation
achieved by the UNIFIEDPEAKS REMs in gene-expression modelling is 0.55, while STITCHIT re-
gions achieve a correlation of 0.72. Here, we test whether this difference in model performance
is also reflected by an improved interpretability of the identified regions regarding the regulation
of EGR1. In Fig. [Th, we show the identified candidate regions ranked according to the absolute
value of the regression coeflicients per site (Supplementary Table S8). A striking difference between
STITCHIT and UNIFIEDPEAKS is that the latter identifies one large segment (Ul: 8970bp) covering
2842bp upstream of EGR1, the entire EGR1 gene as well as 2304bp downstream of FGR1 TTS.
This segment is split up into two regions using STITCHIT: a region downstream of EGRI TTS
(S1), and into a region within the first exon of EGRI (S2). As shown by the DNasel-seq signal
tracks in Fig. [Th, STITCHIT region S1 and S2 do overlap DNasel-seq signal in sample C0010KB, in
which FGR1 is expressed, whereas they lack signal in C005VG11, where EGR1 is not expressed.
It is likely that this difference between STITCHIT and UNIFIEDPEAKS is the main reason for the
observed performance difference.

Another interesting association can be observed for S3 and S8, which also overlap a segment
identified with UNIFIEDPEAKS (U2). S3 has the strongest negative regression coefficient identified
by STITCHIT for EGRI and indeed this region (as well as S8) shows signal in C005V(G11 but not
in C0010KB, supporting the role of the regions as an active repressor of EGR1. The link of S3 to
EGR1 is further supported by ChIA-PET data.
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Figure 7: (a) Genome browser tracks describing the regulation of EGR1. Track C0010KBI (black)
exemplifies the DNasel-seq signal for a sample where EGR1 is expressed, whereas track C005VG11
(gray) illustrates the case where EGR1 is not expressed. For the last three tracks, a green segment
indicates that the respective TF ChIP-seq peak overlaps with a STITCHIT region. (b) Heat map
that is clustered according to the DNasel-seq signal in the candidate REMs S1...510 identified
by STITCHIT, the gene-expression of FGR1 is not used for the clustering itself and shown for
illustration purposes only. The data has been log transformed with a pseudo-count of 1. Two
major clusters can be observed corresponding to samples where EGR1 is expressed and to those
samples where FGR1 is not expressed. The heatmap shows the logs of read counts for DNasel-seq,
and logy of TPM for gene-expression, respectively.

While these examples provide insights on the level of individual samples, we have considered
the DNasel-seq signal within all identified STITCHIT regions and used it to cluster the Blueprint
samples (Fig. [Tp). Using only the signal within the candidate regulatory sites, an almost perfect
clustering into samples according to EGRI expression levels could be obtained. The clustering can
be used to assess the cell-type specificity the suggested regions.

We further hypothesized that regions with the strong reg. coefficient should be functionally
active, e.g. containing TF binding sites. We used Fimo [I7] to predict TF binding in REM S1
(Supplementary Table S9) and REM S3 (Supplementary Table S10), the regions with the strongest
positive and negative association predicted by STITCHIT, respectively. For the top hits (ranked
by FiMO g-value), we checked ENCODE for TF ChIP-seq data. Indeed, we found a peak of
TEAD4 and BHLHE40 in S1, which are ranked as first and fourth hit by Fimo. For the second
and third TF, namely SP8 and BCL6, as well as for most TFs binding in S3 no ChIP-seq data
was available at ENCODE. However, EGR1 ChIP-seq data, which was predicted to bind in S3,
is available. Surprisingly, EGR1 does not only bind to S3, but also to S1, S2 and S10, a region
uniquely identified using STITCHIT that is about 15kb upstream of the EGR1 gene. Overall, the
ChIP-seq analysis not only suggests that the regions identified with STITCHIT are functionally
relevant, it also suggests a potential self regulatory role of EGR1 by binding REMs associated to
its own gene.
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STITCHIT suggests genes and REMs related to Doxorubicin resistance

We use a recently published genome-wide doxorubicin CRISPR-Cas9 resistance screen [56] to show
another possible application of STITCHIT, which is the association of experimentally highlighted
regions to their most likely target genes. As stated above, the CRISPR-Cas9 screen led to 332
non-coding target sites of 226 validated gRNA sequences. In total, we found 111 putative REMs
overlapping with a non-coding gRNA binding site, which could be linked to 100 different genes
using STITCHIT (Supplementary Table S6). Importantly, STITCHIT obtains significantly more
REMs overlapping the gRNA binding sites than randomly selected regions (Supplementary Fig.
S13). Two genes targeted by gRNAs via regulatory element interactions have been previously
reported to be associated with doxorubicin resistance: MMP9 and ATF3 (p-values 0.03 and 0.08,
respectively). Doxorubicin is a chemotherapy medication used to treat different forms of cancer.
It induces double-strand DNA breaks and triggers DNA damage associated cell cycle arrest and
apoptosis pathways, for example via MAPK/ERK pathway [51, [B]. In myocytes, an increase of
Myocardial Metallo Proteinases (MMPs) expression through increasing ROS formation induced
by doxorubicin was observed [49]. At position chr20:45993823, overlaps between a gRNA hit
and STITCHIT predictions assume a regulatory site of MMP9 (Supplementary Table 6), being in
agreement with the finding of Spallarossa et al [49]. ATF3 is a TF known to be involved in cellular
stress response and is enriched in cells exposed to stress signals [20]. Under doxorubicin treatment,
it has been reported that ATF3 affects cell death and cell cycle progression, however it is unclear
whether the factor acts as a negative or positive regulator [35, B7]. Nobori et al. claim that ATF3
plays a pivotal role as transcriptional regulator in the process of doxorubicin-induced cytotoxicity
via an ERK-dependent pathway. STITCHIT identified a REM of ATFS3 in proximity of position
chr1:212621320, a gRNA target site. Both MMP3 and ATF3 are also supported by GENEHANCER
data as well as ChIA-PET interactions.

We observed that in 33% of all cases, intronic or exonic gRNA-target regions of a gene function
as REMs for upstream or downstream located genes, as is the case for APOL5 and FANCA in-
trons, associated to RBFOX2 and ZNF276, respectively (Supplementary Fig. S14a,b). Moreover,
STITCHIT proposes single REMs being linked to multiple genes, demonstrating that one gRNA can
lead to multiple correlated interrogations. For instance, the gRNA target site chr3:147409323 was
linked to altered gene-expression of ZIC1 as well as ZIC4 (Supplementary Fig. S14c). A REM tar-
geting the genomic location chr3:147407359-147412176 has also been identified by GENEHANCER
(GRCh38/hg38, GH03J147407). In an extreme example, STITCHIT indicated one gRNA target
site chr9:92116400 to be linked to four pseudogenes simultaneously (MTATP6P29, LINC00475,
AL354751.3 and AL354751.1, Supplementary Fig. S14d). In sum, the combination of STITCHIT
and CRISPR-Cas9 screens has the potential to prioritise non-coding gRNA hits in known and
unknown REMs.

Discussion

Here, we presented STITCHIT, a novel method to define and link REMs to their target genes.
We compared STITCHIT against three related strategies: (1) an unsupervised linkage of DHS
sites [42], (2) considering known regulatory elements from the GENEHANCER database [I1], and (3)
combining sample specific DHSs in large datasets, referred to as the UNIFIEDPEAKS approach. The
latter is conceptually similar to peak aggregation strategies used by Hait et al. [2I] or Shooshtari
et al. [47]. ITn Hait et al. non-promoter DHS sites with a signal enrichment of > 1RPKM in at least
30 samples are considered as a candidate REM. By default, each gene is linked to the 10 closest
DHSs. In Shooshtari et al. replicate information is used to compute an overlap between DHSs.
The overlap information is used in a clustering algorithm to group individual peaks into clusters.
Cluster borders are defined by the extreme positions of the included DHSs. The UNIFIEDPEAKS
approach is following the idea of merging the peak signal, but due to the sample specific overlap
with the signal, tissue specific information is maintained as far as possible. By relying on the signal
of an epigenetic signature, instead of peak calls, STITCHIT does not only omit the non-trivial peak
calling step, but it is also able to pick up even gene-specific enrichment’s in the signal, which would
be either omitted, or not accurately resolved by peak callers.

In gene-expression prediction experiments, STITCHIT regions achieve a better agreement be-
tween predicted and measured gene-expression than related approaches (Fig. , Supplementary
Fig. S8a). However, the performance of predictive models alone does not proof that the identified
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regions truly play a role in gene regulation. We stress that STITCHIT associations do not imply
causation. Thus, we can not distinguish whether the accessibility of certain regions is driving
expression of a gene, or whether it is a consequence of that gene being expressed. Also indirect
associations, which could for be caused by co-regulation of genes, can not be avoided. Therefore,
it is especially important to characterize the predicted REMs further.

To do so, we intersected them with the ERB (Fig. [k-e). The ERB segments the genome
according to DNasel-seq and HM data for 18 different cell-types, mostly cell-lines. Due to the
limited data and biological diversity, as stated by the authors of the build themselves, the ERB is
not exhaustive [59]. Thus, it it is not surprising that the largest portion of STITCHIT REMs does
not overlap with an annotated regulatory region. To show that these non-overlapping REMs are
still relevant, we assessed the H3K27ac signal within those sites (Fig. ).Compared to randomly
sampled regions the HM signal is higher across the STITCHIT REMs supporting that they are
of regulatory importance. On top of that, STITCHIT obtains a better recall value for retrieving
known regulatory elements from the GENEHANCER database than the UNIFIEDPEAKS approach,
another indication for the reliability of STITCHIT predictions. Furthermore, up to 25% of the
predicted interactions have been experimentally determined using chromatin conformation data.
Importantly, the experimental data is also validating a large portion of split events. This highlights
another potential application of STITCHIT, the segmentation of super enhancers, large genomic
regions with enhancer function.

Throughout this study, we observed that especially on large heterogeneous datasets, such as
the Roadmap dataset, the peak-independent generation of REMs shows clear advantages over the
peak-based strategies. This is especially obvious comparing our results obtained for Blueprint
and Roadmap data. While the Blueprint dataset is composed of primary cells related to the
hematopoietic lineage, the Roadmap dataset is more diverse and also comprised of tissue samples.
On the more homogeneous Blueprint data, STITCHIT and UNIFIEDPEAKS identify almost the
same number of segments with similar length (Fig. ,c). In contrast to that, on Roadmap data,
STITCHIT selects more, but shorter REMs than UNIFIEDPEAKS (Fig. [2b,c, Fig.[3p). This difference
is also reflected by the performance of the gene-expression models. The overall difference between
STITCHIT and UNIFIEDPEAKS is more pronounced for Roadmap, than for Blueprint data (Fig.
, Supplementary Fig. S8). The most likely explanation for this behavior is that due to the high
variance in the Roadmap data, merging peaks introduces a loss of specificity, by removing the
information of the exact genomic location of accessible chromatin (Supplementary Fig. S1). On
the less variable Blueprint dataset, this seems to be less of an issue. STITCHIT is able to resolve the
sample and tissue specific variance, therefore obtaining better results on Roadmap data compared
to the UNIFIEDPEAKS method. However, we note that STITCHIT is not able to outperform the
UNIFIEDPEAKS approach on ENCODE data in terms of recall from the GENEHANCER database as
well as in the overlap with ChIA-PET data, which is likely to be due to the low number of samples
contained in the ENCODE dataset. Compared to Blueprint and Roadmap data, this might also
explain why much fewer REMs have been predicted in total (Fig. ) This shows how closely the
analyzed data is linked to model quality and reliability.

Conclusions

Our novel method STITCHIT solves the combined task of identifying potential REMs, and linking
them to their putative target genes at the same time. This is achieved by combining epigenetics and
gene-expression data to identify a set of potential REMs considering the signal of the epigenetics
data at hand, instead of pre-selected sites of enrichment. Hence, the peak calling step can be
omitted. Subsequently, STITCHIT regions are refined using a two-level learning approach and a
confidence score for each REM is computed. Our modeling approach allows a distinct REM to
influence multiple genes. In this work, uniformly processed DNasel-seq and RNA-seq data from
THEC is used, however our method is conceptually not limited to DNasel-seq data as a carrier of
epigenetic information, but also works with ATAC-seq, FAIRE-seq or ChIP-seq data.

We have compared STITCHIT against related strategies that are based on the integration of
peaks or on known REMs, as stored in the GENEHANCER database [I1]], and show that STITCHIT is
not only able to learn more sites with regulatory potential than the other methods, while achieving
a superior explanatory power of gene-expression. It also performed well in various validation
experiments.
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Furthermore, we illustrate how STITCHIT can be used in an exploratory manner to elucidate the
regulation of a distinct gene exemplary for FGR1, and we delineate how STITCHIT can facilitate
the interpretation of REMs predicted with CRISPR-Cas9 in the non-coding part of the genome.
STITCHIT is efficiently implemented in C++ and freely available on github: www.github.com/
schulzlab/STITCHIT.

We believe that STITCHIT paves the way for a seamless integration of the wealth of epigenetics
data being produced and allows an easy-to-use analysis of transcriptional regulation on the gene-
level.

Methods

Preprocessing

Paired DNasel-seq and RNA-seq data was downloaded from the ENCODE data portal for 41
ENCODE and 110 Roadmap samples. Upon granted access, we obtained 56 paired DNasel-seq
and RNA-seq samples from Blueprint. An overview is provided in Table [I] on sample numbers
and tissue/cell-type diversity. Supplementary Table S1 lists all data accession numbers. Paired
samples are required as they are expected to have a better correlation between chromatin structure
and gene-expression, as both samples originate from the same donor. Details on data processing
as well as used command calls are provided in Supplementary Sec. 1.

Table 1: Overview on the data used in this study.
‘ Blueprint ‘ Roadmap ‘ ENCODE

#paired samples 56 110 41
#different cell-types | 13 33 25
primary cells only Yes No No

Further, we obtained H3K27ac data in wig format from the Blueprint data portal for four
samples (C0011IH1, SO0C0JH1, SOOXUNH1, CO010KH1, see Supplementary Table S1). Also, we
downloaded REMs contained in the GENEHANCER database from the GeneLoc website [40].

Overall workflow and conceptual idea

Conceptually, we pursue the idea to identify regions in large genomic intervals around a gene of
interest that can be associated to the genes expression variation across many samples. To identify
these regions, we utilize paired epigenetics and gene-expression data. The STITCHIT algorithm
uses the actual signal of the epigenetics data to highlight segments of the data showing signal
variation that can be used to separate samples according to the target genes expression. Thus,
the peak-calling step can be omitted and the two tasks of identifying regulatory sites and their
linkage to targets are solved simultaneously. To refine the list of putative REMs identified by
STiTCHIT, we apply a two-level learning approach that is detailed below. This allows us to judge
the explanatory power of the found regions for gene-expression and to obtain a p-value for the
significance of each identified region. The workflow of the proposed methodology is depicted in
Fig. a), details are provided in Supplementary Fig. S2.

The STITCHIT algorithm

In the following, we are given a dataset D, with m rows, corresponding to the samples, and n
columns representing the epigenetic signal at base pair resolution around the target gene g. Further,
to each row, we assign a class label, indicating whether the corresponding sample is associated with
a high, medium or low expression value (C' = 0,1,2). Note that also a two level classification was
used here (C' = 0, 1), depending on the results of the POE method [I4] (c.f. Supplementary Section
3). The algorithm is implemented such that any number of distinct class labels, not exceeding the
number of samples, (|C| < m) can be used. With Cj we relate to all rows to which we assigned
class label k € C.

A segment s has a start point ¢ and an end point j, where 1 < i < j < n. We call §; a
segmentation of Dy, if it contains a set of non-overlapping segments that covers the whole range
from 1 to n. The two trivial cases would be a segmentation consisting of only a single segment
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with start point ¢ = 1 and end point j = n or the segmentation containing n segments, where each
segment only contains a single column, i.e. a single base. The former would contain no information
about the class labels, while the latter would consist of a large set of noisy segments which result
in bad features for the learning step that is based on the segmentation. Our goal is to provide a
small set of robust features for the learning step. We achieve this by joining adjacent base pairs
to segments, such that the variance between the epigenetic signals of base pairs that are contained
in a segment is low, w.r.t. the class label. The optimal segmentation according to the score we
define below, finds a trade-off between the number of segments and the variance.

To score a segmentation, we propose an information theoretic score based on the Minimum
Description Length (MDL) principle [19]. MDL is a practical instantiation to Kolmogorov com-
plexity [27] and thus belongs to the class of compression-based scores. Formally, given a model
class M, MDL identifies the best model M € M for data D as the one minimizing

L(D,M) = L(M)+ L(D | M), (1)

where L(M) is the length in bits of the description of the model M, and L(D | M) is the length in
bits of the description of the data D given M. This is known as two-part, or crude MDL. In essence,
we try to find the simplest model that can explain the data well. We follow the convention that all
logarithms are base two, since the length of the encoding relates to bits, and define 0log0 = 0. In
this work, we use MDL to balance our segmentation between having too few segments and running
at risk of missing structure in the data and finding too many segments, which contain spurious
information and make the post-processing infeasible.

From now on, we consider the model class of segmentations § from which we want to find the
optimal segmentation S ;pt, that is

SgP* = argmin L(S,) + L(Dy | S) . (2)
Sy€S

In particular, we encode a segmentation S, as follows

max — min n—1
L(S,) = Lu(|S,]) + 1,1 log 22X miny o , 3)
T Sg] =1

where |Sy| denotes the number of segments, Ly is the universal prior for integer numbers [19], |C|
is the number of class labels and 7 < 1 is the data resolution.

First, we encode the number of segments, then for each segment per category the associated
mean value by assuming it lies between the minimum and the maximum value in the data and last
the complexity to select |Sy| segments from possible n segments.

To encode the data given a segmentation, we simply sum over the costs per segment

(Dy | Sy) ZZ (Dy | 5,K) , (4)

SES, kEC

where |Cy| corresponds to the number of rows associated with class label k.

To encode the costs for a specific segment and the data associated with class k, we encode the er-
ror assuming a Gaussian distribution. Using 62 as the sample variance over the data corresponding
to segment s and class label k, we get (compare [19])

L(Dy | s,k) = |8H20k| (lnt2) + 10g2(27r62)> + |s||Ck| log T, (5)
with |s| being the length of the segment.

To find the optimal segmentation S, gpt, we use dynamic programming [2]. In essence, we start
with a segmentation containing only a single segment. Then we iteratively compute the best
segmentation containing ¢ segments based on the best segmentation containing ¢ — 1 segments for
i € {2,...,n}. Lastly, we select Sy °Pt among the optimal segmentatlons for each possible number
of segments The runtime complex1ty of this algorithm is O(n?). By selecting a minimum segment
size of 8 and partitioning the search space into [ chunks, we can run each chunk in parallel and
the total runtime complexity reduces to O(%) In our experiments, we use 5 = 10 and set [ to
[ 560 |, which makes the algorithm feasible to be applied on large genomic intervals. Here, we have
considered 25kb upstream of a genes’ Transcription Start Site (TSS) and 25kb downstream of a
genes’ Transcription Termination Site (TTS).

An example is provided in Supplementary Sec. 2.
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Selection of candidate regulatory elements

Those segments that are associated to the observed expression changes need to be extracted from
S gpt. Thus, for all segments s € .S gont we compute both Pearson and Spearman correlation between
the epigenetic signal in s across all samples m and the continuous expression values of the target
gene g. We select all segments that achieve either a Pearson or Spearman correlation with a sig-
nificance threshold of p < 0.05. We apply the same filtering to the alternative methods introduced
below.

Refinement of selected regions using two-level learning

STITCHIT provides for all selected segments s € S,,; a matrix X holding the epigenetic signal
within these regions. The m rows of X denote the samples, the n columns refer to the regions
selected by STITCHIT. To further refine the suggested regions for a distinct gene g, we first train a
linear model using elastic net regularization, as implemented in the glmnet R-package [12]. Here,
we are utilizing the DNasel-seq signal within candidate REMs (X) to predict the expression of
g, stored in y. The grouping effect results in a sparse regression coefficient vector. However,
correlated features prevalent in this application, will be maintained. This is achieved by combining
both the Ridge and the Lasso regularizers:

B= argﬁminlly — XBI[7 + Al |B]” + (1 = )lB]]]- (6)

Here, f represents the feature coefficient vector, 3 the estimated regression coefficients, and A
controls the total amount of regularization. Both the input matrix X and the response vector y
are log-transformed, with a pseudo-count of 1, centered and normalized. The parameter «, which
is optimized in a grid search from 0.0 to 1.0 with a step-size of 0.01 controls the trade-off between
Ridge and Lasso penalty.

As previously performed by Schmidt et al [44], model performance is assessed in terms of Pear-
son and Spearman correlation as well as using the Mean Squared Error (MSE) between predicted
and measured gene-expression. The test is performed on a hold-out test dataset in a ten-fold outer
Monte Carlo cross-validation procedure where 80% of the data are randomly selected as training
data and 20% as test data. The parameter A is fitted in a six-fold inner cross-validation using
the cv.glmnet procedure. The parameters’ final value is determined according to the minimum
cross-validation error which is computed as the average MSE on the inner folds (lambda.min).

Significance of the correlation between predicted and measured gene-expression is corrected
using the Benjamini-Yekutieli correction [3], which is designed to account for dependency between
the tests [2I]. Only models with a g-value < 0.05 are considered for interpretation of the selected
regions. For those models, we refer to all features with a median non-zero regression coefficient
across the outer folds by Xyz.

In a second learning step, as performed by Hait et al [21], we train an Ordinary Least Squares
model (OLS) on the pre-selected features Xy predicting y and report the regression coefficients
Bors as well as the p-values per feature for downstream analysis:

y=XnzPBors- (7)

The OLS model allows for a simple comparison of regression coefficients Sorg across genes, as
there is no bias introduced by the regularization, and provides a straight forward way to compare
individual regions. All regions and model coefficients used for interpretation and validation are
obtained from the OLS models (Supplementary Fig. 3).

Alternative approaches to identify and to link REMs to genes

We compare the REMs identified with STITCHIT to those obtained with three alternative ap-
proaches (Supplementary Fig. S4): (1) an unsupervised, window based aggregation of DHSs per
gene and per sample, (2) taking the union of DHSs across all samples (UNIFIEDPEAKS), and (3)
considering known REMs from the GENEHANCER database. For approaches (1) and (2), we have
used the DHSs called with JAMM (see Methods). Command line arguments along with further de-
tails on how to produce the respective scores are provided in Supplementary Section 4. We applied
exactly the same two-level learning paradigm for approaches (2) and (3) as described above for the
regions identified with STITCHIT. The unsupervised linkage (1) is not considered for interpretation
purposes.
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Unsupervised integration of peaks per sample

Similar to work by others [44, [I6], we determine for each gene g in each sample ¢ considering
a predefined window w how many DHS sites are located within this window ¢/ ,how long are
the accessible regions [J,and we aggregate the signal intensity within the selected DHSs sY.The
contribution of each DHS p is also weighted by its distance dist(p, g) to the TSS of gene g following
an exponential decay. Details are provided in Supplementary Sec. 4.

Unified peaks

Here, we generate consortia specific aggregations of all DHSs called with JAMM. Overlapping sites
are merged using the bedtools merge command. Thereby, we obtain a set of regions representing
all accessible sites within one consortia. Using the bigwig files generated with DEEPTools and
the libBigWig library (https://zenodo.org/record/45278), we compute the DNasel-seq signal
within the merged peaks for each sample. Next, we test for all candidate peaks within a distinct
window w, here w = 25kb upstream of a genes TSS and downstream of its TTS, whether there
is a significant correlation (p < 0.05) between the DNasel-seq signal within the peak and the
expression of the gene. All merged peaks passing this test (/) are considered for the two-level
learning described above. We refer to this as the UNIFIEDPEAKS approach.

This approach is conceptually similar to the peak aggregation approaches pursued by Hait et
al [21] and Shooshtari et al [47].

GeneHancer

For all REMs obtained from the GENEHANCER database, we calculate the sample specific DNasel-
seq signal within each region for each gene, using the libBigWig library. Note that a window or
distance cut-off is not required here since each region is already assigned to its putative target
gene. Considering that the GENEHANCER database is comprised of REMs originating from many
different sources identified with a plethora of assays and molecular signatures, we perform the
same correlation based test as above to identify a subset (G) of regions with sufficient correlation
between the DNasel-seq signal and the gene-expression of the respective target gene.

Implementation & Usability

We have implemented the STITCHIT algorithm, the UNIFIEDPEAKS approach, and a linking using
previously defined regions (e.g. from GENEHANCER) using C++. Each linkage method is available
as a separate executable in our repository. The code can be easily build using CMAKE (version
> 3.1) and requires a C++11 compiler supporting openmp for parallel execution of STITCHIT.
We have thoroughly tested STITCHIT using googletest.

Code Availability

All scripts except for the unsupervised peak linkage, which is available at www.github.com/
schulzlab/TEPIC| [43], are available at www.github.com/schulzlab/STITCHIT.

Validation of putative regulatory regions
Regulatory build overlap

We used the terms: Open chromatin, Promoter, Promoter Flanking Region, TF binding site and
Enhancer from the Ensembl Regulatory Build (ERB) [59] (release 86), to compare predicted REMs
to an established regulatory annotation of the genome.

Overlap with H3K27ac data

We selected the top 10,000 STiTCHIT REMs, ranked by their OLS p-values. Also, we obtained
10, 000 random regions of similar size using the BEDTO0OLS shuffle command excluding the original
positions to obtain a set of randomly distributed sites. Additionally, we obtained the top 10,000
regions according to their label determined by the Regulatory build overlap. Next, we obtained
the H3K27ac signal for four Blueprint samples (see Data) in 1kb windows centered in the middle
of the candidate REMs and visualized the data in R.
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Overlap with GeneHancer

Using BEDToO0LS intersect we computed the overlap between all candidate regulatory sites iden-
tified with STITCHIT and the two-level learning with all unique entries contained in the GENE-
HANCER database that are within the searched 25kb search window and downstream of each gene
(193,298 distinct regions). The same is done for regions based on the UNIFIEDPEAKS approach,
thereby assessing how many known REMs from GENEHANCER can be recovered.

Overlap with non-coding mutations from the COSMIC database

The COSMIC database is a vast collection of somatic mutations occurring in cancer. We assem-
bled a collection M containing non-coding mutations, extracted from the file CosmicNCV.tsv.gz.
Using M, we compute a length normalized score ec describing the enrichment of mutations in
the REMs as

_ Om(Mc,R) - Or(Mc, R) (8)
Lr(Mc,R) ’

where Op; (M, R) is the number of mutations in m € M overlapping a candidate REM r € R,
Or(Mgc, R) is the number of regions r € R overlapping a mutation m € M¢, and Lr(M¢c,R) is
the total genomic space covered by all regions r € R overlapping a mutation m € M. Normalizing
by % is necessary to account for the length difference between STITCHIT, UNIFIEDPEAKS,
and GENEHANCER segments. This normalization factor, which we call resolution, is large, if
Ogr(Me¢, R) is big, that is there are many overlapping REMs, and Lr(Mc, R) is small, that is
the covered genomic space is small. The resolution is small, if Or(M¢, R) is small, that is there
are only a few overlapping REMs, and Lr(M¢,R) is big, that is the covered genomic space is
large. Thus, the normalization adjusts the number of retrieved mutations such that if two methods
identify the same number of mutations Op;(M¢, R), the method with a better resolution, i.e. there
are many distinct REMs covering only a small part of the genome, is preferred.

Here, the score e is computed for all REMs suggested by all methods as well as for ten randomly
shuffled region sets containing the same number of regions as the original sets, respectively. The
COSMIC analysis was only performed on Blueprint data due to the large number of included acute
myeloid leukemia samples.

€c

GWAS hits

We compiled a collection Mg comprising all GWAS sites contained in the EMBL-EBI GWAS
Catalog [32]. Using Mg, we compute a length normalized score eg denoting the enrichment of
GWAS hits in candidate regulatory sites as above:

_ OuMg,R) - On(Ma, R)
¢ LR(MGvR) '

(9)

where Oy (Mg, R) is the number of mutations in m € Mg overlapping a candidate REM r € R
and Or(Mg, R) refers to the number of regions r € R overlapping overlap a GWAS hit m € M.

eQTL analysis

We obtained all eQTLS Q contained in the ExSNP database ([58]), which we mapped to hg38
using dbSNP [46]. To assess how many of those eQTLs overlap regulatory sites that are assigned
to the same target gene as the eQTL, we compared the gene-locus assignment from all ¢ € Q with
our predictions in terms of a length-normalized enrichment score eg:

eQ = LR(Q,R) ’ (10)

where TP refers to true positives, i.e. eQTLs g € Q that overlap a suggested REM that is linked
to the same gene as ¢ itself, Or(Q, R) refers to the number of regions r € R that overlap any
eQTL site ¢ € Q and Lr(Q,R) denotes the entire genomic space covered by overlapping REMs.
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ChIA-Pet & Capture Hi-C data

ChIA-Pet data for K562 and MCF-7 was downloaded from the 4DGenome database [50] and lifted
to hg38 using the UCSC liftover tool. Capture Hi-C data for GM12878 was obtained from Mifsud
et al. [34] and also lifted to hg38. The conformation data allows us to calculate how many contacts
captured by the ChIA-Pet or Promoter Capture data are matching to the associations inferred by
the approaches tested in this study. To match chromatin interaction data to our suggested REMs,
we consider the entire gene-body of the linked gene as the second coordinates. We count a REM as
contained in the conformation datasets if either the gene or the coordinate of the associated REM
overlaps one coordinate of the verified interaction and the second coordinate of the interaction site
overlaps the remaining coordinate of the association. Interactions that could not be detected by
any of the tests, due to an exceeding genomic distance to the target gene or due to the absence of
any DNasel-seq signal in the cell line related to the sample, are excluded from consideration.

Splitting peaks through STITCHIT

From the overlap between UNIFIEDPEAKS (U) and STITCHIT (S) regions it can be computed into
how many STITCHIT segments s a peak p € U is split into. We refer to the instance that p is
divided into several segments s as a split event. The degree of a split event denotes the number
of STITCHIT segments s a peak p € U is segmented into. Within this counting procedure we also
impose that any s overlapping p needs to be linked to a different gene g than p, while any STITCHIT
segment s can be assigned to the same target gene ¢’ as long as ¢’ # ¢. In addition, we quantify
how many split events are supported by conformation data. To this end, for each split event, we
assess how many STITCHIT segments overlap a matching genomic contact obtained from ChIA-Pet
or Capture Hi-C data. If all STITCHIT regions are supported, we call a split fully supported, if not
all but at least one region is supported we call it partially supported.

Validation using Crispr-Cas9 data for ERBB2

Klann et al. validated several REMs for ERBB2 using CRISPR-Cas 9 experiments [26]. We
assembled a list of these validated regions (c.f. Supplementary Table S2) and generated a bed file
containing all validated DHS sites in SKBR3 breast cancer cells using the original DHS calls from
Klann et al, obtained from the GEO [GSE96876] [20].

We have calculated the overlap between all DHS sites identified in SKBR3 cells and predicted
REMS using BEDTOOLS across all datasets. If more than one predicted region overlapped a DHS
site, only the most significant one is kept in the intersection. Supplementary Tables S3, S4, and
S5 provide a list of the overlapping STITCHIT, UNIFIEDPEAKS, and GENEHANCER regions respec-
tively. Additionally, we have used CHIA-Pet data from 4DGenome to illustrate the interaction
between downstream enhancer regions with ERBB2, visualized in IGV [39].

Analysis of Doxorubicin resistance in hTERT-RPE1 cells using CRISPR
experiments

Here, we use a genome-wide CRISPR perturbation library consisting of partially randomized de-
generated oligonucleotides (5-NNDNNNNNHNNNNHDHNVVR-3’) with flanking 3Cs homology
regions which was created using ssDNA of template-plasmids and site-specific mutagenesis tar-
geting coding and non-coding regions of the human genome in hTERT-RPEL cells from ATCC
(CRL-4000) [56]. In total, 226 unique gRNAs could be mapped to the coding and non-coding part
of the genome, resulting in 332 unique genomic target sites. In order to link putative regulatory
sites detected by the gRNAs to genes, the 332 distinct genomic targets sites were extended by
a window of 100bp up and downstream of the gRNA binding site. The extended windows are
intersected with STITCHIT regions. All predicted non-coding interactions as well as additional
ChIA-Pet and GeneHancer support are shown in Supplementary Table S6.
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Additional Files

Additional file 1 — Supplementary Material

Supplementary Section 1 contains details on data IDs and data processing. Supplementary Section
2 holds a more detailed description of the STITCHIT algorithm. In Section 3, details on the
POE method for gene-expression discretization are provided. Details on related methods to link
regulatory elements to genes are shown in Section 4. Additional Figures and Tables are listed in
Supplementary Section 5.

Additional file 2 — Supplementary Excel Sheet

The excel sheet contains information on the intersection between STITCHIT and the COSMIC
database as well as STITCHIT and GWAS hits.

22


https://doi.org/10.1101/585125
http://creativecommons.org/licenses/by-nc-nd/4.0/

