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Zusammenfassung

Wie aus der Quantenstatistik wohl bekannt ist, können Fluktuationen

physikalischer Observable wertvolle Hinweise auf kritische Punkte im Phasendia-

gramm liefern. Diese Betrachtungen gelten auch für das Phasendiagramm hadro-

nischer Materie, welches gegenwärtig von verschiedenen Arbeitsgruppen in the-

oretischer und experimenteller Hinsicht erforscht wird. Die vorliegende Arbeit

ist eine systematische Analyse von Fluktuationen und Korrelationen in rela-

tivistischen Schwerionenstößen auf der Basis des HSD Transportmodells, welches

eine mikroskopische Beschreibung dieser Reaktionen liefert. Der Vorteil solcher

mikroskopischer Simulationen liegt darin, daß die komplizierten experimentellen

Triggerbedingungen für jede einzelne Schwerionenreaktion implementiert werden

können. Auf diese Weise können experimentelle Zentralitäts-Bestimmungen für

Eventklassen explizit in die Analyse integriert werden. Der Vergleich mit dif-

ferenziellen experimentellen Daten gibt sodann Aufschluß über die Frage, in-

wieweit gemessene Signale auf einen Phasenübergang bzw. kritischen Punkt

hinweisen. Des Weiteren liefern die mikroskopischen Phasenraumsimulationen

– unter Ausschluß von spezifischen Cuts – wertvolle Hinweise darauf, welche Ob-

servablen durch mikrokanonische, kanonische oder großkanonische Gesamtheiten

beschrieben werden können.

Nach einer detaillierten Ableitung und Beschreibung des HSD Transport-

modells in Kapitel 2 wurde in Kapitel 3 zunächst die Abhängigkeit der Fluk-

tuationen in den Teilchenmultiplizitäten von der Zentralität der Reaktionen un-

tersucht. Dabei wurden verschiedene Ansätze zur Definition der Zentralität in

diesen Reaktionen verwendet, die den jeweiligen experimentellen Randbedingun-

gen genügen. Bei SPS Energien wurden Gesamtheiten mit fester Anzahl von

Projektil-Partizipanten, Nproj
P , ausgewählt während bei den PHENIX Experi-

menten am RHIC Gesamtheiten mit unterschiedlicher Phasenraumbesetzung bei

Midrapidität ausgewählt wurden. Eine Abnahme der Teilchenfluktuationen mit
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der Zentralität der Reaktion konnte in beiden Energiebereichen festgestellt wer-

den.

In Kapitel 4 konnte weiterhin gezeigt werden, daß Fluktuationen in der Zahl

der Target-Partizipanten großen Einfluß auf die Fluktuationen in der Baryonen-

zahl haben. Dieses kommt dadurch zustande, daß durch den experimentellen

Trigger auf feste ZahlNproj
P zwar die Anzahl der Projektil-Partizipanten festgelegt

wird, jedoch keine Einschränkung in der Anzahl der Target-Partizipanten erfolgt.

Letztere fluktuiert daher signifikant um Nproj
P . Als Folge zeigen die gemessenen

Fluktuationen in der Zahl der geladenen Teilchen eine explizite Abhängigkeit

von der Rapidität y. Diese Abhängigkeit kann wiederum benutzt werden, um die

Durchdringung der longitudinalen Flüsse von Projektil- und Target-Hadronen

im Vergleich mit dem Experiment zu bestimmen. In der Tat zeigen die HSD

Rechnungen eine nur geringe Mischung von Target- und Projektil-Hadronen im

Vergleich mit den Daten der NA49 Kollaboration, was auf – in HSD nicht enthal-

tene – partonische Freiheitsgrade hinweist. Andereseits zeigen die HSD Rechnun-

gen für die Ladungsfluktuation ∆Φ eine gute Übereinstimmung mit den NA49

Daten, was bedeutet, daß diese Observable durch Wechselwirkungen in der späten

hadronischen Phase dominiert wird und daher wenig Information über eine frühe

partonische Phase liefert.

Bei RHIC Energien wurden die Fluktuationen in der Teilmultiplizität für

Au+Au bei
√
s = 200 GeV berechnet und mit den vorläufigen Daten der

PHENIX Kollaboration konfrontiert. In der Tat wird eine qualitative und quan-

titative Übereinstimmung zwischen den Rechnungen und Daten gefunden, was

darauf hindeutet, daß die Zentralitätsabhängigkeit der gegenwärtigen Daten der

PHENIX Kollaboration vorwiegend auf Fluktuationen in der Zahl der Partizipan-

ten zurückzuführen ist.

Die Anregungsfunktion der Fluktuationen in der Teilchenmultiplizität wurde

in Kapitel 5 untersucht und mit Resultaten des statistischen Modells verglichen.

Während HSD ein Anwachsen der skalierten Fluktuationen mit der Kollision-

senergie liefert, zeigt das statistische Modell ein konstantes Verhältnis bei hohen

Energien. So ist der Unterschied zwischen HSD Vorhersagen und dem statistis-

chen Modell bereits ein Faktor 10 bei der RHIC Energie
√
s = 200 GeV. Jedoch

liefert ein direkter Vergleich mit experimentellen Daten für sehr zentrale Reaktio-

nen von Pb+Pb bei 160 A GeV keine signifikanten Differenzen zwischen beiden

Modellen. Dieses ist darauf zurückzuführen, daß bei SPS Energien die Unter-
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schiede ohnehin nur klein sind und durch die geringe experimentelle Akzeptanz

weiter reduziert werden. Daher sind neue Messungen bei höheren Energien mit

deutlich verbesserter Akzeptanz erforderlich, um zwischen den Modellen experi-

mentell eine Präferenz festzulegen.

Die geplanten Experimente der NA61 Kolloboration bei SPS Energien von

20 - 158 A GeV wurden in Kapitel 6 untersucht, einerseits in Hinsicht auf

die Abhängigkeit der Fluktuationen von der Kollisionsenergie, andererseits in

Abhängigkeit von der Systemgröße und Zentralität. Zu diesem Zweck wurden

C+C, S+S, In+In und Pb+Pb Reaktionen bei 10, 20, 30, 40, 80 und 158 A

GeV mit hoher Statistik berechnet. Insbesondere der Einfluß von Fluktuatio-

nen in der Zahl der Partizipanten stellte sich erneut als dominant heraus. Um

diesen ‘geometrischen’ Effekt zu minimieren, sollte man nur sehr zentrale Stöße

betrachten. Jedoch ist zu beachten, daß für ‘leichte Systeme’ wie C+C und

S+S selbst die Festlegung ‘sehr zentraler Stöße’ modellabhängig bleibt. Die HSD

Rechnungen zeigten eine monotone Abhängigkeit der Fluktuationen von der Ein-

schußenergie und Systemgröße auch bei sehr zentralen Reaktionen. Da in diesen

Transportrechnungen keine expliziten partonischen Freiheitsgrade enthalten sind,

bedeutet dieses Ergebnis für das Experiment, daß nicht-monotone Fluktuationen

(in sehr zentralen Eventklassen) ein Anzeichen für das Auftreten eines kritischen

Punktes sein könnten.

Weitere kritische Observablen sind Verhältnisse von Hadronen zueinander wie

K/π, p/π, Λ/p etc., die nicht zu sehr von Volumenfluktuationen beeinflußt wer-

den. Insbesondere Fluktuationen in diesen Teilchenverhältnissen wie K/π wur-

den lange Zeit als vielversprechende Observable betrachtet.Eine entsprechende

systematische Analyse wurde in Kapitel 7 vorgestellt für Schwerionenkollisionen

von den unteren SPS Energien bis zu den höchsten Energien bei RHIC. Neben

den HSD Rechnungen wurden statische Modellrechnungen für mikrokanonische,

kanonische und großkanonische Gesamtheiten herangezogen, um insbesondere den

Einfluß von Erhaltungsgrößen auf diese Observablen zu studieren. Es ergaben sich

signifikante Unterschiede zwischen dem HSD Transportmodell und den statitis-

chen Ansätzen in den verschiedenen Varianten für die skalierten Varianzen ωA und

Korrelationsparameter ρAB. Bei SPS Energien zeigten die HSD Rechnungen eine

weitgehende Übereinstimmung mit mikrokanonischen und kanonischen Rechnun-

gen, was auf die dominante Rolle von Resonanzzerfällen und Erhatungssätzen

hinweist. Dagegen ergaben sich deutliche Unterschiede für die skalierten Vari-
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anzen und Korrelationsparameter ρAB bei RHIC Energien, die in erster Linie auf

die Nichtgleichgewichts-Dynamik der HSD Transportrechnungen zurückzuführen

sind. Dieses bedeutet andererseits, daß die Observablen gut geeignet sein sollten,

das Maß an Äquilibrierung in Reaktionen bei RHIC experimentell festzulegen.

Des Weiteren zeigte sich, daß die dynamischen Korrelationen, charakterisiert

durch die Variable σdyn sehr stark von Niederenergieeigenschaften des Modells

abhängen, so daß von experimenteller Seite hier keine eindeutigen Schlußfolgerun-

gen gezogen werden können.

Es ist hervorzuheben, daß die HSD Rechnungen die gemessene Anregungs-

funktion in den Fluktuationen des K/π Verhältnisse bei SPS Energien sehr gut

beschreibt, was bisherigen Modellen nicht gelang. In diesem Zusammenhang

ist darauf hinzuweisen, daß Akzeptanz-Cuts und die spezielle Wahl der Zen-

tralitäts-Definition keinen signifikanten Einfluß auf diese Observable haben. Bei

RHIC Energien dagegen wurde eine starke Abhängigkeit dieser Observablen von

Akzeptanz-Cuts festgestellt.

Als weitere charakterische Observable werden Korrelationen in der Ra-

piditätsverteilung von Hadronen angesehen. Ein Vergleich der STAR Daten

für solche ‘Forward-Backward’ Korrelationen mit den HSD Rechnungen zeigt

eine qualitative übereinstimmung. Im Gegensatz zu mittleren Multiplizitäten

in verschiedenen Rapiditätsbereichen sind die ‘Forward-Backward’ Korrelationen

jedoch sehr sensitiv auf die Wahl der Eventklassen; eine geometrische Bestim-

mung über den Stoßparameter und eine über eine Referenz-Teilchenmultiplizität

ergeben hier stark unterschiedliche Resultate. Allerdings kann man diese Korre-

lationen zusätzlich als Funktion der Ensemble-Größe untersuchen wie auch Inter-

vallgröße für die betrachteten Rapiditätsintervalle. Die Studien haben gezeigt,

daß mit kleinen Intervallgrößen die induzierten geometrischen Korrelationen

kleiner werden und zu einer weniger ausgeprägten Abhängigkeit von der Zen-

tralität führen sollten.

Die systematischen Analysen dieser Arbeit, einerseits mit mikroskopischen

Transportmodellen, andererseits mit statistischen Modellen für verschiedene

Gesamtheiten, haben gezeigt, daß die experimentelle Bestimmung des kritis-

chen Punktes im hadronischen Phasendiagramm ein sehr komplexes Unterfan-

gen ist. Bisher wenig beachtete Parameter wie Fluktuationen in der Zahl der

Partizipanten haben sich als entscheidend für die gegenwärtigen Messungen her-

ausgestellt. Doch konnten in dieser Arbeit Wege aufgezeigt werden, mit denen
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‘geometrische Effekte’ klarer von physikalischen Korrelationen zu trennen sind.

Die nächsten Generationen von Experimenten am SPS (NA61) sowie am RHIC

(STAR, PHENIX) – sollten ein tieferes Verständnis der dynamischen Fluktuatio-

nen erlauben. Auch für die zukünftigen Experimente der CBM Kollaboration bei

FAIR sollten die Resultate dieser Arbeit von Bedeutung sein.
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Chapter 1

Introduction

1.1 Relativistic Heavy-Ion Collisions

Hot and dense nuclear matter can be generated in the laboratory in a wide

range of temperatures and densities by colliding atomic nuclei at high energies.

In the collision zone, the matter is heated and compressed for a very short pe-

riod of time. If the energy pumped into the formed fireball is sufficiently large

the quark-gluon substructure of nucleons comes into play. At moderate tem-

peratures, nucleons are excited to short-lived states (baryonic resonances) which

decay by the emission of mesons. At higher temperatures, also baryon-antibaryon

pairs are created. This mixture of baryons, antibaryons and mesons, all strongly

interacting particles, is generally called hadronic matter, or baryonic matter if

baryons prevail. At even higher temperatures or densities the hadrons melt, and

the constituents, the quarks and gluons, form a new phase, the Quark-Gluon

Plasma (QGP). High-energy heavy-ion collision experiments provide the unique

possibility to create and investigate these extreme states of matter.

The study of nuclear matter under extremely high baryon density and tem-

perature – where according to lattice quantum chromodynamics (QCD) [1, 2, 3]

the hadronic matter transforms to a Quark-Gluon Plasma – is the aim of a

variety of experiments at current and future facilities: NA38, NA49, NA50,

NA60 and NA61/SHINE at the Super-Proton-Synchrotron (SPS) [4, 5, 6, 7, 8];

PHENIX, STAR, PHOBOS and BRAHMS at the Relativistic-Heavy-Ion-Collider

(RHIC) [9, 10, 11, 12]; ALICE at the Large-Hadron-Collider (LHC) [13]; CBM

and PANDA at the Facility for Antiproton and Ion Research (FAIR) [14]; MPD
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at the Nuclotron-based Ion Collider Facility (NICA) [15].

Relativistic nucleus-nucleus collisions have been studied so far at beam ener-

gies from 0.1 to 2 A·GeV at the SIS (SchwerIonen-Synchrotron), from 2 to 11.6

A·GeV at the AGS (Alternating Gradient Synchrotron) and from 20 to 160 A·GeV

at the SPS [16, 17]. While part of these programs are closed now, the heavy-ion

research has been extended at RHIC with Au+Au collisions at invariant energies
√
s from ∼ 20 to 200 GeV (equivalent energies in a fixed target experiment: 0.2 to

21.3 A·TeV). In the near future, further insight into the physics of matter at even

more extreme conditions will be gained at the LHC, which will reach center-of-

mass energies of the few TeV scale. Apart from LHC, the SPS successor SHINE

will operate at CERN in order to scan the 10A-158A·GeV energy range with light

and intermediate mass nuclei [8]. At FAIR, which is expected to start operation

in 2015, collisions of gold nuclei from 5 A·GeV up to 35 A·GeV will be studied.

At NICA it is planned to start the experimental program of colliding Au and/or

U ions as well as polarized light nuclei at energies up to of 5 A·GeV in 2013 (an

upgrade to
√
s = 9 GeV is foreseen [18]).

At very high beam energies – as available at RHIC and LHC – the research

programs concentrate on the study of the properties of deconfined QCD matter

at very high temperatures and almost zero net baryon densities, whereas at mod-

erate beam energies (SPS, FAIR and NICA) experiments focus on the search for

structures in the QCD phase diagram such as the critical endpoint, the predicted

first order phase transition between hadronic and partonic matter, and the chiral

phase transition. The critical endpoint and the first order phase transition are

expected to occur at finite baryon chemical potential and moderate temperatures.

In the following we continue with the QCD phase diagram.

1.2 The Phase Diagram of Strongly Interacting

Matter

Particle yields or ratios measured at different beam energies and analyzed

with the statistical model provide sets of thermal parameters, temperature (T )

and baryo-chemical potential (µb), which establish a ”line of chemical freeze-out”

[19, 20, 21]. The results of the fits to experimental data are shown in a phase

diagram of hadronic and quark-gluon matter in Fig. 1.1 [22] with full circles.
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Figure 1.1: The phase diagram with the critical end point at µB ≈ 400 MeV, T ≈
160 MeV as predicted by Lattice QCD. In addition, the time evolution in the
T −µ-plane of a central cell in UrQMD calculations [27, 28] is depicted for differ-
ent bombarding energies. Note, that the calculations indicate that bombarding
energies ELAB ≤ 40 A·GeV are needed to probe a first order phase transition.
At RHIC (see insert at the µB scale) this point is accessible in the fragmentation
region only (taken from Ref. [29]).

Lattice QCD results [1, 23, 24] (cf. Fig. 1.1) show a crossing, but no first order

phase transition to the QGP for vanishing or small chemical potentials µB, i.e. at

the conditions accessible at central rapidities at RHIC full energies. A first order

phase transition does occur according to the QCD lattice calculations [1, 23, 24]

only at high baryochemical potentials or densities, i.e. at SIS-300 and lower SPS

energies and in the fragmentation region of RHIC, y ≈ 4−5 [25, 26]. The critical

baryochemical potential is predicted [1, 23, 24] to be µc
B ≈ 400± 50MeV and the

critical temperature Tc ≈ 150 − 160 MeV.

A comparison of the thermodynamic parameters T and µB extracted from

the UrQMD-transport model in the central overlap regime of Au+Au collisions

[29] with the QCD predictions is shown in Fig. 1.1, where the full dots with

error bars denote the ’experimental’ chemical freeze-out parameters – determined

from fits to the experimental yields – taken from Ref. [21]. The triangular and

quadratic symbols (time-ordered in vertical sequence) stand for temperatures
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T and chemical potentials µB extracted from UrQMD transport calculations in

central Au+Au (Pb+Pb) collisions at RHIC (21.3 A·TeV), 160, 40 and 11 A·GeV

[27, 28] as a function of the reaction time (separated by 1 fm/c steps from top to

bottom). The open symbols denote nonequilibrium configurations and correspond

to T parameters extracted from the transverse momentum distributions, whereas

the full symbols denote configurations in approximate pressure equilibrium in

longitudinal and transverse direction.

During the nonequilibrium phase (open symbols) the transport calculations

show much higher temperatures (or energy densities) than the ’experimental’

chemical freeze-out configurations at all bombarding energies (≥ 11 A·GeV).

These numbers are also higher than the critical point (circle) of (2+1) flavor -

Lattice QCD calculations by the Bielefeld-Swansea-Collaboration [24] (large open

circle) and by the Wuppertal-Budapest-Collaboration [1, 23] (the star shows ear-

lier results from [1, 23]). The energy density at (µc, Tc) is in the order of ≈
1 GeV/fm3 (or slightly below). At RHIC energies a cross-over is expected at

midrapidity, when stepping down in temperature during the expansion phase of

the ’hot fireball’. This situation changes at lower SPS (and top AGS) as well as at

the future GSI SIS-300 energies: sufficiently large chemical potentials µB should

allow for a first order phase transition [30] (to the right of the critical point in the

(T, µB) plane). The transport calculations show high temperatures (high energy

densities) in the very early phase of the collisions, only. Here, hadronic interac-

tions are weak due to formation time effects and yield little pressure. Diquark,

quark and gluon interactions should cure this problem.

1.3 Signatures of the critical point and onset of

deconfinement

The challenge is to identify signatures of the partonic phase, of the coexistence

phase, or of the critical point which survive hadronization. It is obvious that those

observables, which are generated in the early phase of the collision and interact

weakly with other particles during the evolution of the fireball, are the most

promising candidates in this respect.

One of the observables, which develop early, is the elliptic flow as it is related

to the anisotropic fireball shape in coordinate space. An important question is
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whether the hadron elliptic flow still remembers its partonic origin, as it is sug-

gested by the data obtained at RHIC: the observed elliptic flow is extremely large

and its strength scales with the number of constituent quarks, independent of the

quark flavor content. Will this strength and its scaling break down below a cer-

tain beam energy? The answer to this question requires a beam energy scan of

the elliptic flow of pions, kaons, φ-mesons, D-mesons, charmonium, as well as for

nucleons, and (multi-) strange hyperons (including the antiparticles). Particu-

larly sensitive probes of the partonic phase are φ-mesons and particles containing

charm quarks because of their small hadronic cross sections. The experimen-

tal challenge is to measure all these particles up to high transverse momenta.

This would also allow to search for the disappearance of the suppression of high

energetic particles at a given beam energy as a signature for the phase transition.

The microscopic properties of QCD matter vary with temperature and density.

The structure of hot and dense hadronic matter as created in energetic heavy-ion

collisions is strongly related to the spectral properties of the hadrons and their

interactions in the medium. Therefore, the investigation of hadronic excitations

will shed light on the conditions inside the fireball. The in-medium properties

of strange and charmed hadrons are not directly measurable, but might be ex-

tracted from their abundance, phase-space distributions, and flow pattern. Using

electromagnetic radiation as a probe, one can study the in-medium modifications

of light vector mesons. The dilepton observable accumulates information on the

entire collision history, and, thus, provides a undistorted insight into the hot and

dense phase [31].

The dissociation of charmonium due to Debye-screening in the QGP has been

proposed as a signature for the deconfined phase [32]. Lattice QCD calculations

predict different dissociation temperatures for the various charmonium states. As

a consequence, the observation of sequential melting of ψ′ and J/ψ mesons might

serve as an indication for the onset of deconfinement [33].

Another sensitive probe of the structure of strongly interacting matter are the

charm diffusion coefficients which differ for the QGP as compared to the hadronic

phase [34]. These coeficients will affect significantly both the nuclear suppression

factor and the elliptic flow of D mesons in a consistent way. Moreover, the relative

yields of hadrons containing charm quarks (D+, D−, D0, Ds, J/ψ, ψ′, Λc) may

allow to distinguish whether the early phase is partonic or hadronic [35]. Possible

in-medium effects on theD meson are expected to modify the observed charmonia
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ratio ψ′/(J/ψ).

Particle correlations - in particular strange particle correlations - might serve

as an indication for a phase coexistence which is expected to cause clustering

or clumping of particles in the spinodal region. Nonstatistical fluctuations of

charges, particle abundances or mean transverse momenta measured event-by-

event have been proposed as a signature for critical opalescence which might

occur at the critical endpoint.

1.4 LQCD results on susceptibilities

The concepts of fluctuations and correlations have a well defined physical in-

terpretation for a system in thermal equilibrium. In this case fluctuations and

correlations are related to the second cumulants of the partition function. These

cumulants, or susceptibilities, can also be expressed in terms of integrals of equal-

time correlation functions, which in turn characterize the (space-like) static re-

sponses of the system. In the case of heavy-ion collisions other, non-statistical,

effects may contribute to the measured correlations. For example, the dynamical

evolution of the system may be too fast for long range correlations to build up.

As already mentioned, the study of fluctuations is essential for the charac-

terization of phase transitions. In case of a second order phase transition, the

fluctuations of the order parameter diverge with a critical exponent specific to the

universality class of the transition [36]. Furthermore, the system size dependences

of the fluctuations can be used to distinguish between cross-over transitions and

first or second order phase transitions using finite size scaling arguments.

A strongly interacting system in thermal equilibrium can be studied in the

framework of Lattice QCD (LQCD) (see e.g. [37] for a review). Here we will just

use the results from LQCD as input to discuss the relevant physics

A system in thermal equilibrium (for a grand-canonical ensemble) is charac-

terized by its partition function

Z = Tr

[

exp

(

−H − ∑

i µiQi

T

)]

(1.1)

where H is the Hamiltonian of the system, and Qi and µi denote the conserved

charges and the corresponding chemical potentials, respectively. In case of three

flavor QCD these are strangeness, baryon-number, and electric charge, or, equiv-
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Figure 1.2: χq/T
2 as a function of T/T0 for various µq/T according to Ref. [38].

alently, the three quark flavors up, down, and strange. The mean values and the

(co-)variances are then expressed in terms of derivatives of the partition function

with respect to the appropriate chemical potentials,

〈Qi〉 = T
∂

∂µi
log(Z) (1.2)

〈δQiδQj〉 = T 2 ∂2

∂µi∂µj

log(Z) ≡ V Tχi,j

with δQi = Qi − 〈Qi〉. Here we have introduced the susceptibilities

χi,j =
T

V

∂2

∂µi∂µj

log(Z) (1.3)

which are generally quoted as a measure of the (co-)variances. The diagonal

susceptibilities, χi,i, are a measure for the fluctuations of the system, whereas the

off-diagonal susceptibilities, χi,j (i 6= j), characterize the correlations between the

conserved charges Qi and Qj .
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Quark number (q) susceptibility is defined as follows [38]:

χq

T 2
=

(
∂

∂(µu/T )
+

∂

∂(µd/T )

)
nu + nd

T 3
, (1.4)

Eq. 1.4 has been used in Fig. 1.2 to plot the dimensionless quark number

susceptibility χq/T
2 as a function of T/T0 for various µq/T . The peak, which

develops in χq as µq increases, is a sign that fluctuations in the baryon density

are growing as the critical endpoint in the (µ, T ) plane is approached.

1.5 Fluctuations and Correlations in High En-

ergy Collisions

Fluctuations and correlations are important characteristics of any physical

system. They provide essential information about the effective degrees of free-

dom and their possible quasi-particle nature. In addition, the susceptibilities,

which characterize the correlations and fluctuations, determine the response of

the system to small external forces.

In general, one can distinguish between several classes of fluctuations. On the

most fundamental level there are quantum fluctuations, which arise if the specific

observable does not commute with the Hamiltonian of the system under consid-

eration. These fluctuations probably play less a role for the physics of heavy-ion

collisions. Second, there are “dynamical” fluctuations and correlations reflecting

the underlying dynamics of the system. Examples are density fluctuations, which

are controlled by the compressibility of the system. Finally, there are “trivial”

fluctuations induced by the measurement process itself, such as finite number

statistics, etc. These need to be understood, controlled and subtracted in order

to access the dynamical fluctuations which tell as about the properties of the

system.

A prominent example, where the measurement of correlations has lead to a

scientific breakthrough, are the fluctuations of the cosmic microwave background

radiation, first carried out by the COBE satelite [39] and later refined by WMAP

[40]. In the case of the cosmic microwave background the fluctuations are on

the level of 10−4 with respect to the thermal distribution. In addition, a large

dipole correlation, due to the motion of the earth through the heatbath of the
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microwave background, has been seen and needed to be subtracted before the

more interesting correlations, due to the big bang, could be revealed.

Increased fluctuations of various observables are expected at the onset of de-

confinement, near the critical point or when the system passes the first order

phase transition line during expansion.

It is predicted [41] that the onset of deconfinement should lead to a non-

monotonous behaviour in the energy dependence of multiplicity fluctuations, the

so-called “shark fin”. Furthermore, an increase of multiplicity fluctuations near

the critical point of strongly interacting matter is expected [42].

In a very simplified picture, due to fluctuations the system can either be in

a quark-gluon plasma phase or not when the mean temperature of the fireball

is close to the transition temperature. Even if the collision energy is fixed, the

temperature in that picture fluctuates and can therefore be in some collisions

sufficient for the creation of QGP and in some not.

For a first order phase transition it is expected that a mixed phase of hadrons

and QGP is formed at the temperature of the phase transition. For a large

range of energy densities the temperature stays constant while more matter is

transformed to QGP (“latent heat”). Therefore, at a fixed collision energy, one

does not expect two different classes of events, but the events should only differ

in the amount of QGP created at the early stage of the collision.

It is therefore not sufficient to look just for two different classes of events;

a more sophisticated analysis of fluctuations is needed. The commonly used

fluctuation observables are the event-by-event fluctuations of particle ratios, the

electrical charge, the mean transverse momentum and the particle multiplicity.

The centrality (Chapter 3), energy (Chapter 5) and system size dependence

(Chapter 6) of event-by-event fluctuations in the particle multiplicity in heavy-ion

collisions are studied in this thesis. Our main tool is the Hadron-String-Dynamics

(HSD) transport approach (Chapter 2). Electric charge and baryonic number are

also objects of consideration in Chapter 4. Fluctuations of the K/π number ratio

are presented in Chapter 7 and compared with statistical model results. STAR

results on forward-backward multiplicity correlations are discussed in Chapter 8.

A summary in Chapter 9 concludes the thesis, while specific details are presented

in the Appendixes.
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Chapter 2

The Hadron-String-Dynamics

Transport Approach

2.1 Off-shell relativistic transport

The description of strongly interacting quantum fields - as encountered in

relativistic nucleus-nucleus collisions - is based on two-particle irreducible (2PI)

approaches that allow for a consistent treatment of quantum systems out-of-

equilibrium as well as in thermal equilibrium. Especially the powerful method

of the ‘Schwinger-Keldysh’ [43, 44, 45, 46] or ‘closed time path’ (CTP) (non-

equilibrium) real-time Greens functions has been shown to provide an appropri-

ate basis for the formulation of the complex problems in the various areas of

nonequilibrium quantum many-body physics. Within this framework one can

derive valid approximations - depending, of course, on the problem under con-

sideration - by preserving overall consistency relations. Originally, the resulting

causal Dyson-Schwinger equation of motion for the one-particle Greens func-

tions (or two-point functions), i.e. the Kadanoff-Baym (KB) equations [47], have

served as the underlying scheme for deriving various transport phenomena and

generalized transport equations. A brief derivation of such transport schemes is

presented in the following (closely in line with the review [48]).

2.1.1 The Kadanoff-Baym equations

As mentioned above a natural starting point for non-equilibrium quantum

theory is provided by the closed-time-path (CTP) method. Here all quantities
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are given on a special real-time contour with the time argument running from

−∞ to ∞ on the chronological branch (+) and returning from ∞ to −∞ on the

antichronological branch (−). In cases of systems prepared at a time t0 this value

is (instead of −∞) the start and end point of the real-time contour (cf. Fig. 2.1).

In particular the path ordered Green functions (in case of real scalar fields φ(x)

which provide a representative example) are defined as

G(x, y) = 〈 T P { φ(x) φ(y) } 〉 (2.1)

= ΘP (x0 − y0)〈 φ(x) φ(y) 〉 + ΘP (y0 − x0)〈 φ(y) φ(x) 〉

where the operator T P orders the field operators according to the position of

their arguments on the real-time path as expressed by the path step-functions

ΘP . The expectation value in Eq. 2.1 is taken with respect to some initial density

matrix ρ0, which is constant in time, while the operators in the Heisenberg picture

contain the entire time dependence of the non-equilibrium system, i.e. O(t) =

exp(iH(t− t0)) O exp(−iH(t− t0)).

Figure 2.1: The closed time contour in the Schwinger-Keldysh formalism. The
figure is taken from Ref. [48].

Self-consistent equations of motion for these Green functions can be obtained

with help of the two-particle irreducible (2PI) effective action Γ[G]. It is given

by the Legendre transform of the generating functional of the connected Green

functions W as

Γ[G] = Γo +
i

2
[ ln(1 −⊙p Go ⊙p Σ) + ⊙p G⊙p Σ ] + Φ[G] (2.2)

in case of vanishing vacuum expectation value < 0|φ(x)|0 >= 0. In Eq. 2.2

Γo depends only on free Green functions and is treated as a constant, while the

symbols ⊙p represent convolution integrals over the closed time path in Fig. 2.1.
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The functional Φ is the sum of all closed 2PI diagrams built up by full propagators

G; it determines the self-energies by functional variation as

Σ(x, y) = 2i
δΦ

δG(y, x)
. (2.3)

From the effective action Γ(G) the equations of motion for the Green function

are determined by the stationarity condition

δΓ/δG = 0 . (2.4)

In line with the position of the coordinates on the contour there exist four different

two-point functions (in case of scalar boson fields φ as an example)

i Gc(x, y) = i G++(x, y) = < T c { φ(x) φ(y) } > , (2.5)

i G<(x, y) = i G+−(x, y) = < { φ(y) φ(x) } > ,

i G>(x, y) = i G−+(x, y) = < { φ(x) φ(y) } > ,

i Ga(x, y) = i G−−(x, y) = < T a { φ(x) φ(y) } > .

Here T c (T a) represent the (anti-)time-ordering operators in case of both argu-

ments lying on the (anti-)chronological branch of the real-time contour. These

four functions are not independent of each other. In particular the non-continuous

functions Gc and Ga are built up by the Wightman functions G> and G< and

the usual Θ-functions in the time coordinates.

By using the stationarity condition for the action Eq. 2.4 and resolving the

time structure of the path ordered quantities one obtains the Kadanoff-Baym

equations for the time evolution of the Wightman functions [49, 50]:
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−
[
∂x

µ∂
µ
x + m2

]
G>
<

(x, y) = Σδ(x) G>
<

(x, y) (2.6)

+

∫ x0

t0

dz0

∫

dd z [ Σ>(x, z) − Σ<(x, z) ] G>
<

(z, y)

−
∫ y0

t0

dz0

∫

dd z Σ>
<

(x, z) [ G>(z, y) −G<(z, y) ] ,

−
[
∂y

µ∂
µ
y + m2

]
G>
<

(x, y) = Σδ(y) G>
<

(x, y)

+

∫ x0

t0

dz0

∫

dd z [ G>(x, z) −G<(x, z) ] Σ>
<

(z, y)

−
∫ y0

t0

dz0

∫

dd z G>
<

(x, z) [ Σ>(z, y) − Σ<(z, y) ] ,

Figure 2.2: Self-energies of the Kadanoff-Baym equation in case of the scalar
Φ4-theory: tadpole self-energy (l.h.s.) and sunset self-energy (r.h.s.). Since the
lines represent full Green functions the self-energies are self-consistent with the
external coordinates indicated by full dots. The figure is taken from Ref. [48].

As an example let us consider again the case of the scalar Φ4-theory. Within

the 3-loop approximation for the 2PI effective action one gets two different self-

energies: In leading order of the coupling constant only the tadpole diagram

(l.h.s. of Fig. 2.2) contributes and leads to the generation of an effective mass for

the field quanta. This self-energy (in coordinate space) is given by

Σδ(x) =
λ

2
i G<(x, x) , (2.7)

and is local in space and time. In next order in the coupling constant (i.e. λ2)



24 Chapter 2: The Hadron-String-Dynamics Transport Approach

the non-local sunset self-energy (r.h.s. of Fig. 2.2) enters the time evolution as

Σ>
<

(x, y) = − λ2

6
G>
<

(x, y) G>
<

(x, y) G<
>

(y, x) (2.8)

−→ Σ>
<

(x, y) = − λ2

6

[

G>
<

(x, y)

]3

.

Thus the Kadanoff-Baym Eq. 2.6 (in Φ4-theory) includes the influence of a mean-

field on the particle propagation – generated by the tadpole diagram – as well as

scattering processes as inherent in the sunset diagram.

The Kadanoff-Baym equation describes the full quantum nonequilibrium time

evolution on the two-point level for a system prepared at an initial time t0, i.e.

when higher order correlations are discarded. The causal structure of this initial

value problem is obvious since the time integrations are performed over the past

up to the actual time x0 (or y0, respectively) and do not extend to the future.

Furthermore, also linear combinations of the Green functions in single-time

representation are of interest and shed further light on the spectral properties of

the system. The retarded Green function GR and the advanced Green function

GA are given as

GR(x1, x2) = Θ(t1 − t2) [ G>(x1, x2) −G<(x1, x2) ] (2.9)

= Θ(t1 − t2) 〈 [ φ(x1) , φ(x2) ]− 〉

= Gc(x1, x2) − G<(x1, x2) = G>(x1, x2) − Ga(x1, x2) ,

GA(x1, x2) = − Θ(t2 − t1) [ G>(x1, x2) −G<(x1, x2) ] (2.10)

= − Θ(t2 − t1) 〈 [ φ(x1) , φ(x2) ]− 〉

= Gc(x1, x2) − G>(x1, x2) = G<(x1, x2) − Ga(x1, x2) .

These Green functions contain exclusively spectral but no statistical information

of the system. Their time evolution is determined by Dyson-Schwinger equations
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and given by (cf. Ref. [50])

−
[
∂x1

µ ∂
µ
x1

+ m2 + Σδ(x1)
]
GR(x1, x2) (2.11)

= δ(d+1)(x1 − x2) +

∫

dd+1 z ΣR(x1, z) G
R(z, x2) ,

−
[
∂x1

µ ∂
µ
x1

+ m2 + Σδ(x1)
]
GA(x1, x2) (2.12)

= δ(d+1)(x1 − x2) +

∫

dd+1 z ΣA(x1, z) G
A(z, x2) ,

where the retarded and advanced self-energies ΣR, ΣA are defined via Σ>, Σ<

similar to the Green functions. Thus the retarded (advanced) Green functions

are determined by retarded (advanced) quantities, only.

The framework specified above now allows for a general derivation of covariant

transport approaches.

2.1.2 Off-shell relativistic transport theory

The derivation of generalized transport equations starts by rewriting the

Kadanoff-Baym equation for the Wightman functions in coordinate space (x1 =

(t1, ~x1), x2 = (t2, ~x2)) Eq. 2.6 as

[ ∂µ
x1
∂x1

µ +m2 + Σδ(x1) ] i G>
<

(x1, x2) = i I>
<
1 (x1, x2) . (2.13)

The collision terms on the r.h.s. of Eq. 2.13 are given in D = d + 1 space-time

dimensions by convolution integrals over coordinate space self-energies and Green

functions:

I>
<
1 (x1, x2) = −

∫ t1

t0

dD z [ Σ>(x1, z) − Σ<(x1, z) ] G>
<

(z, x2) (2.14)

+

∫ t2

t0

dD z Σ>
<

(x1, z) [ G>(z, x2) −G<(z, x2) ] .

In the general case of an arbitrary (scalar) quantum field theory Σδ is the local

(non-dissipative) part of the path self-energy while Σ>
<

resemble the non-local col-

lisional self-energy contributions. In the representation Eq. 2.14 the integration

boundaries are exclusively given for the time coordinates, while the integration
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over the spatial coordinates extends over the whole spatial volume from −∞ to

+∞ in d dimensions.

Since transport theories are formulated in phase-space one now changes to

the Wigner representation via Fourier transformation with respect to the rapidly

varying (’intrinsic’) relative coordinate ∆x = x1−x2 and treats the system evolu-

tion in terms of the (’macroscopic’) mean space-time coordinate x = (x1 + x2)/2

and the four-momentum p = (p0, ~p). The functions in Wigner space (indicated

by a ’bar’) are obtained as

F̄ (p, x) =

∫ ∞

−∞

dD ∆x e+i ∆xµ pµ

F (x1 = x+ ∆x/2, x2 = x− ∆x/2) . (2.15)

For the formulation of transport theory in the Wigner representation one has to

focus not only on the transformation properties of ordinary two-point functions

as given in Eq. 2.15, but also of convolution integrals as appearing in Eq. 2.14.

A convolution integral in D dimensions (for arbitrary functions F,G),

H(x1, x2) =

∫ ∞

−∞

dDz F (x1, z) G(z, x2) (2.16)

transforms as

H̄(p, x) =

∫ ∞

−∞

dD ∆x e+i ∆xµ pµ

H(x1, x2) (2.17)

=

∫ ∞

−∞

dD ∆x e+i ∆xµ pµ

∫ ∞

−∞

dDz F (x1, z) G(z, x2)

= e
+i 1

2
(∂µ

p
· ∂x′

µ − ∂µ

x
· ∂p′

µ ) [
F̄ (p, x) Ḡ(p′, x′)

]
∣
∣
∣
∣
x′=x, p′=p

.

In accordance with the standard assumption of transport theory one assumes

that all functions only smoothly evolve in the mean space-time coordinates and

thus one restricts to first order derivatives. All terms proportional to second or

higher order derivatives in the mean space-time coordinates (also mixed ones)

will be dropped. Thus the Wigner transformed convolution integrals (Eq. 2.16)

are given in first order gradient approximation by,

H̄(p, x) = F̄ (p, x) Ḡ(p, x) + i
1

2
{ F̄ (p, x) , Ḡ(p, x) } + O(∂2

x) , (2.18)
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using the relativistic generalization of the Poisson bracket

{F̄ (p, x), Ḡ(p, x)} = ∂p
µF̄ (p, x) · ∂µ

x Ḡ(p, x) − ∂µ
x F̄ (p, x) · ∂p

µḠ(p, x) . (2.19)

In order to obtain the dynamics for the spectral functions within the approxi-

mate scheme one starts with the Dyson-Schwinger equations for the retarded and

advanced Green functions in coordinate space (Eq. 2.11, Eq. 2.12). The further

procedure consists in the following steps: First one has to

i) transform the above equations into the Wigner representation and apply the

first order gradient approximation. In this limit the convolution integrals yield

the product terms and the general Poisson bracket of the self-energies and the

Green functions {ΣR/A, GR/A}. Furtheron, both equations are represented in

terms of real quantities by the decomposition of the retarded and advanced Green

functions and self-energies as

ḠR/A = Re ḠR ± i Im ḠR = Re ḠR ∓ i Ā/2 , Ā = ∓ 2 Im ḠR/A, (2.20)

Σ̄R/A = Re Σ̄R ± i Im Σ̄R = Re Σ̄R ∓ i Γ̄/2 , Γ̄ = ∓ 2 Im Σ̄R/A .

In Wigner space the real parts of the retarded and advanced Green functions

and self-energies are equal, while the imaginary parts have opposite sign and are

proportional to the spectral function Ā and the width Γ̄, respectively. The next

step consists in

ii) the separation of the real part and the imaginary part of the two equations

for the retarded and advanced Green functions that have to be fulfilled inde-

pendently. Thus one obtains four real-valued equations for the self-consistent

retarded and advanced Green functions. In the last step

iii) one gets simple relations by linear combination of these equations, i.e. by

adding/subtracting the relevant equations.

This finally leads to two algebraic relations for the spectral function Ā and

the real part of the retarded Green function Re ḠR in terms of the width Γ̄ and
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the real part of the retarded self-energy Re Σ̄R as [51, 52]:

[ p2
0 − ~p 2 −m2 − Σ̄δ +Re Σ̄R ] Re ḠR = 1 +

1

4
Γ̄ Ā , (2.21)

[ p2
0 − ~p 2 −m2 − Σ̄δ +Re Σ̄R ] Ā = Γ̄ Re ḠR . (2.22)

Note that all terms with first order gradients have disappeared in Eq. 2.21 and

Eq. 2.22. A first consequence of Eq. 2.22 is a direct relation between the real and

the imaginary parts of the retarded/advanced Green function, which reads (for

Γ̄ 6= 0):

Re ḠR =
p2

0 − ~p 2 −m2 − Σ̄δ − Re Σ̄R

Γ̄
Ā . (2.23)

Inserting Eq. 2.23 in Eq. 2.21 one ends up with the following result for the spectral

function and the real part of the retarded Green function

Ā =
Γ̄

[ p2
0 − ~p 2 −m2 − Σ̄δ −Re Σ̄R ]2 + Γ̄2/4

=
Γ̄

M̄2 + Γ̄2/4
, (2.24)

Re ḠR =
[ p2

0 − ~p 2 −m2 − Σ̄δ − Re Σ̄R ]

[ p2
0 − ~p 2 −m2 − Σ̄δ −Re Σ̄R ]2 + Γ̄2/4

=
M̄

M̄2 + Γ̄2/4
, (2.25)

where the mass-function M̄(p, x) in Wigner space has been introduced as:

M̄(p, x) = p2
0 − ~p 2 −m2 − Σ̄δ(x) −Re Σ̄R(p, x) . (2.26)

The spectral function (Eq. 2.24) shows a typical Breit-Wigner shape with energy-

and momentum-dependent self-energy terms. Although the above equations are

purely algebraic solutions and contain no derivative terms, they are valid up to

the first order in the gradients!

In addition, subtraction of the real parts and adding up the imaginary parts

lead to the time evolution equations

pµ ∂x
µ Ā =

1

2
{ Σ̄δ +Re Σ̄R, Ā } +

1

2
{ Γ̄, Re ḠR } , (2.27)

pµ ∂x
µ Re Ḡ

R =
1

2
{ Σ̄δ +Re Σ̄R, Re ḠR } − 1

8
{ Γ̄, Ā } . (2.28)

The Poisson bracket containing the mass-function M̄ leads to the well-known
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drift operator pµ ∂x
µ F̄ (for an arbitrary function F̄ ), i.e.

{ M̄ , F̄ } = { p2
0 − ~p 2 −m2 − Σ̄δ −Re Σ̄R , F̄ } (2.29)

= 2 pµ ∂x
µ F̄ − { Σ̄δ +Re Σ̄R , F̄ } ,

such that the first order Eq. 2.27 and Eq. 2.28 can be written in a more compact

form as

{ M̄ , Ā } = { Γ̄ , Re ḠR } , (2.30)

{ M̄ , Re ḠR } = − 1

4
{ Γ̄ , Ā } . (2.31)

When inserting Eq. 2.24 and Eq. 2.25 one finds that these first order time evolu-

tion equations are solved by the algebraic expressions. In this case the following

relations hold:

{ M̄ , Ā } = { Γ̄ , Re ḠR } = { M̄ , Γ̄ } M̄2 − Γ̄2/4

[ M̄2 + Γ̄2/4 ]2
, (2.32)

{ M̄ , Re ḠR } = − 1

4
{ Γ̄ , Ā } = { M̄ , Γ̄ } M̄ Γ̄/2

[ M̄2 + Γ̄2/4 ]2
. (2.33)

Thus one has derived the proper structure of the spectral function (Eq. 2.24)

within the first-order gradient (or semiclassical) approximation. Together with

the explicit form for the real part of the retarded Green function (Eq. 2.25) the

dynamics of the spectral properties now are fixed in a consistent manner (up to

first order in the gradients).

2.1.3 Generalized transport equation

As a next step one rewrites the memory terms in the collision integrals

(Eq. 2.14) such that the time integrations extend from −∞ to +∞. In this re-

spect one considers the initial time t0 = −∞ whereas the upper time boundaries
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t1, t2 are taken into account by Θ-functions, i.e.

I>
<
1 (x1, x2) = −

∫ ∞

−∞

dDx′ Θ(t1 − t′) [Σ>(x1, x
′) − Σ<(x1, x

′)] G>
<

(x′, x2) (2.34)

+

∫ ∞

−∞

dDx′ Σ>
<

(x1, x
′) Θ(t2 − t′) [G>(x′, x2) −G<(x′, x2)]

= −
∫ ∞

−∞

dDx′ ΣR(x1, x
′) G>

<
(x′, x2) + Σ>

<
(x1, x

′) GA(x′, x2) .

One now performs the analogous steps as invoked before for the retarded and

advanced Dyson-Schwinger equations. One starts with a first order gradient

expansion of the Wigner transformed Kadanoff-Baym equation using Eq. 2.34

for the memory integrals. Again the real and the imaginary parts in the resulting

equation are separated and have to be satisfied independently. At the end of this

procedure one obtains a generalized transport equation [47, 53, 54, 51, 52, 55, 56,

57, 58]:

2pµ∂x
µi Ḡ

>< − {Σ̄δ +Re Σ̄R, iḠ>
<
}

︸ ︷︷ ︸
− {i Σ̄>

<
, Re ḠR} = i Σ̄< iḠ> − i Σ̄> i Ḡ< (2.35)

{M̄, i Ḡ>
<
} − {i Σ̄>

<
, Re ḠR} = i Σ̄< iḠ> − i Σ̄> i Ḡ<

as well as a generalized mass-shell equation

[p2 −m2 − Σ̄δ −Re Σ̄R]
︸ ︷︷ ︸

M̄

iḠ>
<

= iΣ̄>
<
Re ḠR +

1

4
{iΣ̄>, iḠ<} − 1

4
{iΣ̄<, iḠ>} (2.36)

with the mass-function M̄ specified in Eq. 2.26. Since the Green function

G>
<

(x1, x2) consists of an antisymmetric real part and a symmetric imaginary

part with respect to the relative coordinate x1 −x2, the Wigner transform of this

function is purely imaginary. It is thus convenient to represent the Wightman

functions in Wigner space by the real-valued quantities iḠ>
<

(p, x). Since the col-

lisional self-energies obey the same symmetry relations in coordinate space and

in phase-space, they will be kept also as iΣ̄>
<

(p, x) furtheron.

In the transport equation (Eq. 2.35) one recognizes on the l.h.s. the drift

term pµ ∂x
µ iḠ>

<
, as well as the Vlasov term with the local self-energy Σ̄δ and

the real part of the retarded self-energy Re Σ̄R. On the other hand the r.h.s.
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represents the collision term with its typical ‘gain and loss’ structure. The loss

term iΣ̄> iḠ< (proportional to the Green function itself) describes the scattering

out of a respective phase-space cell whereas the gain term iΣ̄< iḠ> takes into

account scatterings into the actual cell.

The last term on the l.h.s. of Eq. 2.35 { iΣ̄>
<
,Re ḠR } (so called ’backflow’

term) is very peculiar since it does not contain directly the distribution function

iḠ<. This second Poisson bracket vanishes in the quasiparticle approximation and

thus does not appear in the on-shell Boltzmann limit. As demonstrated in detail

in Refs. [47, 51, 52, 55, 56, 57, 58] the second Poisson bracket { iΣ̄>
<
,Re ḠR }

governs the evolution of the off-shell dynamics for nonequilibrium systems.

Although the generalized transport equation (Eq. 2.35) and the generalized

mass-shell equation (Eq. 2.36) have been derived from the same Kadanoff-Baym

equation in a first order gradient expansion, both equations are not exactly equiv-

alent [54, 51, 58]. Instead, they deviate from each other by contributions of second

gradient order, which are hidden in the term { iΣ̄>
<
,Re ḠR } (see below).

2.1.4 Transport in the Botermans-Malfliet scheme

Furthermore, one recognizes by subtraction of the iḠ> and iḠ< mass-shell and

transport equations, that the dynamics of the spectral function Ā = iḠ>− iḠ< is

determined in the same way as derived from the retarded and advanced Dyson-

Schwinger equations (Eq. 2.24 and Eq. 2.30). The inconsistency between the two

equations Eq. 2.35 and Eq. 2.36 vanishes since the differences are contained in

the collisional contributions on the r.h.s. of Eq. 2.35.

In order to evaluate the { iΣ̄<, Re ḠR }-term on the l.h.s. of Eq. 2.35 and to

explore the differences between the KB- and BM-form of the transport equations

(see below) it is useful to introduce distribution functions for the Green functions

and self-energies as

iḠ<(p, x) = N̄(p, x) Ā(p, x) , iḠ>(p, x) = [1 + N̄(p, x)] Ā(p, x) , (2.37)

iΣ̄<(p, x) = N̄Σ(p, x) Γ̄(p, x) , iΣ̄>(p, x) = [1 + N̄Σ(p, x)] Γ̄(p, x) .

In equilibrium the distribution function with respect to the Green functions N̄

and the self-energies N̄Σ are given as Bose functions in the energy p0 at given

temperature (in case of a bosonic theory); they thus are equal in equilibrium
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but in general might differ out-of-equilibrium. Following the argumentation of

Botermans and Malfliet [54] the distribution functions N̄ and N̄Σ in Eq. 2.37

should be identical within the second term of the l.h.s. of Eq. 2.35 in order to

obtain a consistent first order gradient expansion (without hidden higher order

gradient terms). In order to demonstrate their argument let’s write

iΣ̄< = Γ̄ N̄Σ = Γ̄ N̄ + K̄ . (2.38)

The ‘correction’ term

K̄ = Γ̄ ( N̄Σ − N̄ ) = ( iΣ̄< iḠ> − iΣ̄> iḠ< ) Ā−1 , (2.39)

is proportional to the collision term of the generalized transport equation

(Eq. 2.35), which itself is already of first order in the gradients. Thus, when-

ever a distribution function N̄Σ appears within a Poisson bracket, the difference

term (N̄Σ − N̄) becomes of second order in the gradients and should be omit-

ted for consistency. As a consequence N̄Σ can be replaced by N̄ and thus, the

self-energy in the Poisson bracket term {iΣ̄<, Re ḠR} is

iΣ̄< = iḠ< · Γ̄/Ā = N̄ Γ̄ . (2.40)

The generalized transport equation (Eq. 2.35) then can be written in short-hand

notation

1

2
Ā Γ̄

[

{ M̄ , iḠ<} − 1

Γ̄
{ Γ̄, M̄ · iḠ<}

]

= iΣ̄< iḠ> − iΣ̄> iḠ< (2.41)

with the mass-function M̄ (Eq. 2.26). The transport equation (Eq. 2.41) within

the Botermans-Malfliet (BM) form resolves the discrepancy between the gener-

alized mass-shell equation (Eq. 2.36) and the generalized transport equation in

its original Kadanoff-Baym (KB) form (Eq. 2.35). In fact, as shown in Ref. [48]

numerical solutions of both transport schemes (KB and BM) are very close to

each other (at least for the strongly interacting Φ4-theory).
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2.1.5 Generalized testparticle representation

The generalized transport equation (Eq. 2.41) allows to extend the traditional

on-shell transport approaches for which efficient numerical recepies have been set

up [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73] (and Refs. therein).

In order to obtain a practical solution to the transport equation (Eq. 2.41) one

introduces a testparticle ansatz for the Green function G<, more specifically for

the real and positive semidefinite quantity

F (X,P ) = N̄(X,P ) Ā(X,P ) = i G<(X,P ) (2.42)

∼
N∑

i=1

δ3( ~X − ~Xi(t)) δ
3(~P − ~Pi(t)) δ(P0 − εi(t)) .

In the most general case (where the self energies depend on four-momentum P ,

time t and the spatial coordinates ~X) the equations of motion for the testparticles

read [52]

d ~Xi

dt
=

1

1 − C(i)

1

2εi

[

2~Pi + ~∇Pi
ReΣR

(i) +
ε2

i − ~P 2
i −M2

0 − ReΣR
(i)

Γ(i)

~∇Pi
Γ(i)

]

(2.43)

d~Pi

dt
= − 1

1 − C(i)

1

2εi

[

~∇Xi
ReΣR

i +
ε2

i − ~P 2
i −M2

0 −ReΣR
(i)

Γ(i)

~∇Xi
Γ(i)

]

, (2.44)

dεi

dt
=

1

1 − C(i)

1

2εi

[

∂ReΣR
(i)

∂t
+

ε2
i − ~P 2

i −M2
0 −ReΣR

(i)

Γ(i)

∂Γ(i)

∂t

]

, (2.45)

where the notation F(i) implies that the function is taken at the coordinates of

the testparticle, i.e. F(i) ≡ F (t, ~Xi(t), ~Pi(t), εi(t)).

In Eq. 2.43 - Eq. 2.45 a common multiplication factor (1 − C(i))
−1 appears,

which contains the energy derivatives of the retarded self energy

C(i) =
1

2εi

[

∂

∂εi

ReΣR
(i) +

ε2
i − ~P 2

i −M2
0 −ReΣR

(i)

Γ(i)

∂

∂εi

Γ(i)

]

. (2.46)

It yields a shift of the system time t to the ’eigentime’ of particle i defined

by t̃i = t/(1 − C(i)). As one immediately verifies, the derivatives with respect

to the ’eigentime’, i.e. d ~Xi/dt̃i, d~Pi/dt̃i and dεi/dt̃i then emerge without this
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renormalization factor for each testparticle i when neglecting higher order time

derivatives in line with the semiclassical approximation scheme.

Some limiting cases should be mentioned explicitly: In case of a momentum-

independent ’width’ Γ(X) one takes M2 = P 2−ReΣR as an independent variable

instead of P0, which then fixes the energy (for given ~P and M2) to

P 2
0 = ~P 2 + M2 + ReΣR

X ~P M2
. (2.47)

Eq. 2.45 then turns to (∆M2
i = M2

i −M2
0 )

d∆M2
i

dt
=

∆M2
i

Γ(i)

dΓ(i)

dt
↔ d

dt
ln

(
∆M2

i

Γ(i)

)

= 0 (2.48)

for the time evolution of the test-particle i in the invariant mass squared. In

case of Γ = const the familiar equations of motion for testparticles in on-shell

transport approaches are regained.

2.1.6 Collision terms

The collision term of the Kadanoff-Baym equation can only be worked out in

more detail by giving explicit approximations for Σ< and Σ>. A corresponding

collision term can be formulated in full analogy to Refs. [61, 74], e.g. from

Dirac-Brueckner theory following detailed balance as (omitting the bars for the

phase-space representation, i.e. Ā = A, N̄ = N, Γ̄ = Γ etc.)

Icoll(X, ~P ,M
2) = Tr2Tr3Tr4A(X, ~P ,M2)A(X, ~P2,M

2
2 )A(X, ~P3,M

2
3 )A(X, ~P4,M

2
4 )

|T ((~P ,M2) + (~P2,M
2
2 ) → (~P3,M

2
3 ) + (~P4,M

2
4 ))|2A,S δ

(4)(P + P2 − P3 − P4)

[

NX ~P3M2
3

NX ~P4M2
4

f̄X ~PM2 f̄X ~P2M2
2

− NX ~PM2 NX ~P2M2
2

f̄X ~P3M2
3

f̄X ~P4M2
4

]

(2.49)

with

f̄X ~PM2 = 1 + η NX ~PM2 (2.50)

and η = ±1 for bosons/fermions, respectively. The indices A,S stand for the

antisymmetric/symmetric matrix element of the in-medium scattering amplitude

T in case of fermions/bosons. In Eq. 2.49 the trace over particles 2,3,4 reads
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explicitly for fermions

Tr2 =
∑

σ2,τ2

1

(2π)4

∫

d3P2
dM2

2

2

√

~P 2
2 +M2

2

, (2.51)

where σ2, τ2 denote the spin and isospin of particle 2. In case of bosons one has

Tr2 =
∑

σ2,τ2

1

(2π)4

∫

d3P2

dP 2
0,2

2
, (2.52)

since here the spectral function AB is normalized as

∫
dP 2

0

4π
AB(X,P ) = 1 (2.53)

whereas for fermions one obtains

∫
dP0

2π
AF (X,P ) = 1. (2.54)

Neglecting the ’gain-term’ in Eq. 2.49 one recognizes that the collisional width of

the particle in the rest frame is given by

Γcoll(X, ~P ,M
2) = (2.55)

Tr2Tr3Tr4 |T ((~P,M2) + (~P2,M
2
2 ) → (~P3,M

2
3 ) + (~P4,M

2
4 ))|2A,S

A(X, ~P2,M
2
2 )A(X, ~P3,M

2
3 )A(X, ~P4,M

2
4 )

δ4(P + P2 − P3 − P4) NX ~P2M2
2

f̄X ~P3M2
3

f̄X ~P4M2
4

,

where – as in Eq. 2.49 – local on-shell scattering processes are assumed for the

transitions P + P2 → P3 + P4. The extension of Eq. 2.49 to inelastic scatter-

ing processes (e.g. NN → N∆) or (πN → ∆ etc.) is straightforward when

exchanging the elastic transition amplitude T by the corresponding inelastic one

and taking care of Pauli-blocking or Bose-enhancement for the particles in the

final state.

For particles of infinite life time in vacuum – such as protons – the collisional

width (Eq. 2.55) has to be identified with twice the imaginary part of the self

energy. Thus the transport approach determines the particle spectral function
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dynamically via Eq. 2.55 for all hadrons if the in-medium transition amplitudes T

are known in their full off-shell dependence. Since this information is not available

for configurations of hot and dense matter, which is still the major subject of fu-

ture development, a couple of assumptions and numerical approximation schemes

have to be invoked in actual applications as in the HSD transport approach to

be employed in the investigations within this work.

2.2 The covariant transport approach HSD

Whereas nucleus-nucleus collisions at top SPS or RHIC energies are domi-

nated by the mesons dynamics this no longer holds for nucleus-nucleus collisions

at lower energies and especially for proton-nucleus or pion-nucleus reactions. In

the latter cases the dynamics of the hadronic fermions (nucleons and their elemen-

tary excitations) are more important and require a slightly different dynamical

treatment since the fermion degrees follow a Dirac equation instead of a Klein-

Gordon equation. Especially when considering a nucleus close to its groundstate

only nucleon degrees of freedom play a role since time-like bosonic states cannot

be excited. Accordingly, the general off-shell dynamics outlined in section 2.1 has

to be reformulated for the case of fermions, too.

The general connection between bosonic and fermionic degrees of freedom is

given by the mass-function (Eq. 2.26). For the bosons B the mass function is

MB(p, x) = p2
0 − ~p 2 −m2 − ReΣ(p, x) (2.56)

where the (local and nonlocal) selfenergies are included in ReΣ(p, x). In case of

fermions the Lorentz covariant mass-function (Eq. 2.56) has to be modified, i.e.

one has to split in explicit contributions due to scalar and vector interactions,

separately. This leads to the mass-function for fermions F

MF (p, x) = Π2
0 − ~Π 2 −m∗2

h , (2.57)

with the effective mass and four-momentum given by

m∗
h(x, p) = mh + US

h (x, p) (2.58)

Πµ(x, p) = pµ − Uµ
h (x, p) .
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In Eq. 2.58 US
h (x, p) and Uµ

h (x, p) denote the real part of the scalar and vector

hadron self-energies, respectively, and mh stands for the bare (vacuum) mass of

baryon h. The quantities US
h (x, p) and Uµ

h (x, p) will be specified below.

With the replacement Eq. 2.57 the fermion off-shell dynamics can be defined

in full analogy to the mesonic sector in subsection 2.2.5. Since the explicit and

formulae play no relevant role in the present study, which essentially addresses

high energy nucleus-nucleus collisions at top SPS and RHIC energies, an explicit

representation of the latter equations is omitted here.

Inserting Eq. 2.57 in the generalized transport equation (Eq. 2.35 or Eq. 2.41),

the covariant off-shell transport theory emerges, that has been denoted as

Hadron-String-Dynamics (HSD) [73, 61]. It is formally written as a cou-

pled set of transport equations for the phase-space distributions Nh(x, p) (x =

(t, ~r), p = (ε, ~p)) of fermion h [73, 75, 61] with a spectral function Ah(x, p) (using

iḠ<
h (x, p) = Nh(x, p)Ah(x, p)), i.e.

{(
Πµ − Πν∂

p
µU

ν
h −m∗

h∂
p
µU

S
h

)
∂µ

x +
(
Πν∂

x
µU

ν
h +m∗

h∂
x
µU

S
h

)
∂µ

p

}
Nh(x, p) Ah(x, p)

− {iΣ<, Re GR} =
∑

h2h3h4

Tr2Tr3Tr4 [T †T ]12→34δ
4(Π + Π2 − Π3 − Π4) (2.59)

× Ah(x, p)Ah2
(x, p2)Ah3

(x, p3)Ah4
(x, p4)

×
{
Nh3

(x, p3)Nh4
(x, p4)f̄h(x, p)f̄h2

(x, p2) −Nh(x, p)Nh2
(x, p2)f̄h3

(x, p3)f̄h4
(x, p4)

}
.

Here ∂x
µ ≡ (∂t, ~∇r) and ∂p

µ ≡ (∂ε, ~∇p), (µ = 0, 1, 2, 3). The backflow term in

Eq. 2.59 is given by

−{iΣ<, ReGR} = ∂µ
p

(
Mh(x, p)

Mh(x, p)2 + Γh(x, p)2/4

)

∂x
µ (Nh(x, p) Γh(x, p)) (2.60)

− ∂x
µ

(
Mh(x, p)

Mh(x, p)2 + Γh(x, p)2/4

)

∂µ
p (Nh(x, p) Γh(x, p)) .

It stands for the off-shell evolution which vanishes in the on-shell limit, when

the spectral function Ah(x, p) does not change its shape during the propagation

through the medium, i.e. ~∇rΓ(x, p)=0 and ~∇pΓ(x, p)=0.

In Eq. 2.59 [T+T ]12→34 is the ’transition rate’ for the process 1 + 2 → 3 + 4

(which is taken to be on-shell in the default HSD approach). In the cms of the
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colliding particles the transition rate is given by

[T †T ]12→34 => v12
dσ

dΩ

∣
∣
∣
∣
1+2→3+4

, (2.61)

where dσ/dΩ is the differential cross section of the reaction and v12 the relative

velocity of particles 1 and 2. Note, that a generalized collisional term for n↔ m

reactions is given in Ref. [76] and optionally included in HSD, which is, however,

not used in the present study.

The hadron quasi-particle properties in Eq. 2.59 are defined via the mass-

function (Eq. 2.57) with Eq. 2.58 while the phase-space factors

f̄h(x, p) = 1 ±Nh(x, p) (2.62)

are responsible for fermion Pauli-blocking or Bose enhancement, respectively, de-

pending on the type of hadron in the final/initial channel. The transport approach

(Eq. 2.59) is fully specified by US
h (x, p) and Uµ

h (x, p), which determine the mean-

field propagation of the hadrons, and by the transition rates T †T in the collision

term, that describe the scattering and hadron production/absorption rates. Note

that the collisional width Γcoll is given explicitly by Eq. 2.55. Accordingly, the

coupled set of hadronic transport equations (Eq. 2.59) may be employed for a

large variety of hadronic systems at relativistic (and nonrelativistic) energies.

2.2.1 Scalar and vector potentials in HSD

Apart from differential cross sections in the general transport equations the

scalar and vector potentials US
h and Uµ

h play an essential role for nuclear binding

close to the groundstate as well as for proton-nucleus scattering where the optical

potential modifies the proton wavelength while propagating through the nucleus.

There are several ways to determine US
h and Uµ

h in a relativistic framework:

i) one may start with a covariant Ansatz for the in-medium nucleon-nucleon

interaction and then fit the parameters to nuclear masses and excitation spectra;

ii) independently one can address a many-body framework like Dirac-Brueckner

theory for US
h and Uµ

h and fit the numerical results by an analytic function in the

baryon density ρ and the relative nucleon momentum ~p. The strategy employed

in HSD is based on both concepts simultaneously and involves extrapolations to
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high nucleon densities and relative momenta ~p.

The baryon density ρ here stands for

ρ =
√

jµ jµ (2.63)

with jµ denoting the baryon four-curent:

jµ(x) =
∑

h

Tr pµ Nh(x, p) Ah(x, p) , (2.64)

where the sum runs over all baryons h. In the on-shell limit Eq. 2.64 reads as

jµ(x) =
∑

h

∫
d3p

E
pµ Nh(x, p). (2.65)

Figure 2.3: The nucleon scalar (US) and negative vector potential (−U0) as a
function of the nuclear density ρ and relative momentum p of the nucleon with
respect to the nuclear matter rest frame as implemented in the HSD transport
approach. The figure is taken from Ref. [77].

In Ref. [73] the scalar and vector mean-fields US
h and Uµ

h have been deter-

mined in the mean-field limit from an effective hadronic Lagrangian density LH

that has been fitted to the equation of state of nucleonic matter as resulting from

the Nambu-Jona-Lasinio (NJL) model. Without going through the detailed argu-

ments the nucleon scalar (US) and negative vector potential (−U0) are shown in

Fig. 2.3 as a function of the baryon density ρ and relative momentum ~p of the nu-

cleon with respect to the nuclear matter rest frame. Whereas the vector potential
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Figure 2.4: The potential USEP (5) – as resulting from the nucleon scalar (US)
and vector potential (U0) in Fig. 2.3 – as a function of the nuclear density ρ and
relative momentum p of the nucleon with respect to the nuclear matter rest frame.
The figure is taken from Ref. [77].

increases practically linearly with density (at low momentum ~p) the scalar po-

tential saturates with density such that the nucleon effective mass m∗ = m0 +US

almost drops to zero for ρ ≥ 0.6 fm−3. Both potentials decrease rather fast in

magnitude with momentum ~p and practically vanish above a few GeV/c. Accord-

ingly, these nucleon potentials play no decisive role in nucleus-nucleus collisions

at very high energies.

In Fig. 2.4 the real part of the potential

USEP = U0(ρ0, ~p) +
√

~p2 + (mN + US)2 −
√

~p2 +m2
N (2.66)

is shown as a function of ρ and ~p. Whereas one sees a net attraction for momenta

|~p| ≤ 0.5 GeV/c up to densities of ≈ 0.3 fm−3, the net potential becomes repulsive

for higher momenta, reaches a maximum repulsion at |~p| ≈ 1 GeV/c and then

drops again with |~p|. As stated in the review [61] at density ρ0 the potential

USEP compares well with the potential from the experimental data analysis of

Hama et al. [78] as well as Dirac-Brueckner computations from Ref. [79] up to a

kinetic energy Ekin of 1 GeV [73]. Furthermore, Eq. 2.66 reduces to the familiar

expression for the Schroedinger equivalent potential (Eq. (3.16) of Ref. [61]) in

the low density limit, which has the familiar interpretation of a nonrelativistic

potential.
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2.2.2 Hadronic degrees of freedom

The HSD approach propagates explicitly on the baryonic side nucleons (p, n),

∆(1232), N∗(1440), N∗(1535), Λ, Σ and Σ∗ hyperons, Ξ’s, Ξ∗’s and Ω’s as well as

their antiparticles. The mesonic sector includes the pseudoscalar 0− and vector

1− SU(4)-16 plets states - cf. Fig. 2.5 - as well as the axialvector 1+ a1 meson,

which plays a particular role in dilepton production but is of no specific relevance

in this work.

Figure 2.5: SU(4) diagram showing the 16-plets for pseudoscalar (a) and vector
mesons (b) made of u, d, s and c quarks as a function of isospin I, charm C and
hypercharge Y = S + B − C/3, where B is the baryon number. The figure is
taken from [80].

In a first approximation it is assumed in HSD that all baryons (made out of

light (u, d) quarks) have the same scalar and vector self-energies as the nucleons

while the hyperons pick up a factor 2/3 according to the light quark content and

Ξ’s a factor of 1/3, respectively. The multi-strange Ω’s are propagated without

potentials. Baryons of mass > 1.6 GeV (or mesons of mass > 1.3 GeV) are treated

as ’strings’ which have to be considered as color neutral continuum excitations of

the hadrons.
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As pre-hadronic degrees of freedom HSD includes ’effective’ quarks (anti-

quarks) and diquarks (antidiquarks) which interact with cross sections in ac-

cordance with the constituent quark model (cf. subsection 2.2.3).

2.2.3 Hadron-hadron interactions

Inelastic baryon–baryon BB → X and meson-baryonmB → X collisions with

energies above
√
sth ≃ 2.6 GeV for BB and

√
sth ≃ 2.3 GeV for mB collisions

are described by the FRITIOF string model [81, 82] (incorporating PYTHIA v

5.5 with JETSET v 7.3 for the production and fragmentation of jets [83]).

The low energy hadron–hadron collisions – baryon-baryon (BB), meson-

baryon (mB) and meson-meson (mm) - are modeled in line with experimental

cross sections when available or based on different microscopic models. The back-

ward reactions for 2-particle interaction 2 ↔ 2 and resonance formation and decay

1 ↔ 2 channels are calculated using detailed balance. A detailed description of all

channels included in HSD as well as elementary cross sections in comparison with

existing experimental data are given in the early Refs. [73, 84, 61]. The updated

version of the off-shell production cross section for the vector mesons (ρ, ω, φ) (in-

cluding different in-medium scenarios) as well as an updated η-production cross

section in BB and mB collisions is given in Ref. [85].

It worth to point out that the low energy nucleon-nucleon and meson-nucleon

cross sections fit well to the high energy parametrizations as shown in Fig. 2.6

for π+p (upper part) and pp (lower part) reactions together with the data from

Ref. [80].

2.2.4 The LUND String model

In the HSD approach the high energy inelastic hadron-hadron collisions are

described by the FRITIOF model [81, 82], where two incoming hadrons emerge

the reaction as two excited color singlet states, i.e. ’strings’. According to the

Lund model [81, 82] a ’string’ is characterized by the leading constituent quarks of

the incoming hadron and a tube of color flux is supposed to be formed connecting

the rapidly receding string-ends. In the HSD approach baryonic (qq − q) and

mesonic (q − q̄) strings are considered with different flavors (q = u, d, s). In the

uniform color field of the strings virtual qq̄ or qqq̄q̄ pairs are produced causing

the tube to fission and thus to create mesons or baryon-antibaryon pairs.
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Figure 2.6: The total and elastic π+-proton (upper part) and proton-proton (lower
part) cross sections in comparison with the experimental data from Ref. [80]. The
figure is taken from Ref. [84].

The production probability P of massive ss̄ or qqq̄q̄ pairs is suppressed in

comparison to light flavor production (uū, dd̄) according to the Schwinger formula

[43]

P (ss̄)

P (uū)
= γs = exp

(

−π
m2

s −m2
q

2κ
,

)

(2.67)

with κ ≈ 1 GeV/fm denoting the string tension. Thus in the Lund string picture

the production of strangeness and baryon-antibaryon pairs is controlled by the

constituent quark and diquark masses. Inserting the constituent quark masses

mu = 0.3 GeV and ms = 0.5 GeV a value of γs ≈ 0.3 is obtained. While the
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strangeness production in proton-proton collisions at SPS energies is reasonably

well reproduced with this value, the strangeness yield for p + Be collisions at

AGS energies is underestimated by roughly 30% (cf. [84]). For that reason the

relative factors used in the HSD model are [84]

u : d : s : diquark =

{

1 : 1 : 0.3 : 0.07 for
√
s ≥ 20 GeV

1 : 1 : 0.4 : 0.07 for
√
s ≤ 5 GeV

(2.68)

with a linear transition of the strangeness suppression factor as a function of
√
s

in between.

Additionally a fragmentation function f(x,mt) has to be specified, which is

the probability distribution for hadrons with transverse mass mt = (p2
t +m2)1/2

to acquire the energy-momentum fraction x from the fragmenting string,

f(x,mt) ≈
1

x
(1 − x)a exp

(
−bm2

t /x
)
, (2.69)

with a = 0.23 and b = 0.34 GeV−2 [84].

Furthermore, the LUND model [81, 82] includes partonic diffractive scattering

and mini-jet production as well [83]. The latter phenomena are not important at

SPS energies and below, however, become appreciable at RHIC energies. In this

respect the HSD approach dynamically also includes the hard partonic processes

as far as quarks and antiquarks are involved. However, it does not employ hard

gluon-gluon processes beyond the level of ’string phenomenology’. This has to be

kept in mind with respect to the predictive power of the model at RHIC energies

and beyond.

The medium modifications due to the hadron self-energies, furthermore, re-

quire to introduce some conserving approximations in the collision terms in line

with the modified quasi-particle properties. Since these in-medium modifications

– related to ’low momentum physics’ – are not of primary interest in this study

an explicit discussion here is discarded and refered to Refs. [73, 61].

The implementation of the string fragmentation model into a covariant trans-

port theory implies to use a time scale for the particle production process, i. e.

the formation time τF . The formation time includes the formation of the string,

the fission of the string due to qq̄ and qqq̄q̄ production into small sub-strings and

the time to form physical hadrons. It can be interpreted as the time needed for a
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hadron to tunnel out of the vacuum and to form its internal wavefunction. The

’unformed’ hadrons, i.e. those under formation time, are called ’pre-hadrons’.

In the HSD model the formation time is a single fixed parameter for all hadrons

and is set to τF = 0.8 fm/c [73] in the rest frame of the new produced particle.

In the center of mass of a string the hadronization starts after the formation time

and proceeds to the stringends as illustrated in Fig. 2.7. The formation point of

a new produced hadron with velocity ~β in the string cms is given by

~x = ~xcoll + ~β · τF , (2.70)

where ~xcoll is the collision point of the two incoming hadrons.

Figure 2.7: Dynamical evolution of a baryonic string; the fragmentation into
hadrons starts after the formation time τF . The figure is taken from [84].

Due to time dilatation and Lorentz γ-factors of ≈ 2 − 6 for the leading con-

stituent quarks for AGS to SPS energies the formation time of the leading hadrons

are long in comparison to the time between two consecutive collisions in heavy-

ion reactions. Thus applying the concept of string fragmentation to heavy-ion

collisions one has to specify the interaction of strings and their constituents with

the surrounding hadrons. The cross section of the secondary interactions of the

leading quarks/diquarks are reduced prior to the formation as

σ(q − B) = 1/3 σ(B − B) ≈ 10mb

σ(qq − B) = 2/3 σ(B − B) ≈ 20mb

σ(qq − q) = 2/9 σ(B − B) ≈ 6.6mb
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and so on. In order to treat this scheme within the FRITIOF string picture

the q (qq) is assumed to form a meson (baryon) together with its prospective

quark partner inside the string. This procedure has to be seen as a heuristic

approximation of the underlying soft partonic dynamics. Nevertheless, the global

properties of heavy-ion collisions, the baryon stopping and pion production, can

be described within this procedure over a wide energy range [61].

The interaction of the string field spanned between the constituent quarks

with other hadrons is not taken into account. This is motivated by the fact,

that most of the strings (in a given space-time volume) fragment within a small

time interval. Thus the interaction of secondaries with the string field should

be negligible in first order. Furthermore, since most of the strings are stretched

longitudinally, no string-string interaction or a string fusion to color ropes as

suggested in [86, 87, 88] is included in order to avoid new parameters.

Additionally to the formation time τF = 0.8 fm/c there is another criterium

in HSD for the ’transition’ of pre-hadrons to hadrons, i.e. an energy-density cut

(in the local rest frame), which does not allow hadron formation when the energy

density is above 1 GeV/fm3 which corresponds roughly to the critical energy

density for a parton/hadron phase transition. Above this critical energy density

explicit parton-parton interactions have to be considered which are not included

in HSD, however, incorporated in an extended HSD version denoted by PHSD

(Parton-Hadron-String-Dynamics) [48, 89].

2.2.5 Numerical realization of the HSD model

The set of coupled differential-integral equations (Eq. 2.59) is solved via a

test-particle Ansatz (cf. Eq. 2.42) for the spectral phase-space densities:

F (~r, ~p,M, t) = N(~r, ~p,M, t) · A(~r, ~p,M, t) (2.71)

=
1

N

N ·A∑

i=1

δ(~r − ~ri(t))δ
3(~p− ~pi(t))δ(M −Mi(t))

where ~ri, ~pi and Mi denote the position, momentum and mass of the test particle i

at time t and N is the number of test particles per physical particle. Futhermore,

A denotes the number of hadrons at time t. Here the mass Mi(t) is used instead

of the energy εi(t) employing Eq. 2.47.
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In the HSD model the method of parallel ensembles is used, i.e. the test

particles are divided into N different ensembles which do not influence each other.

This is equivalent to simulating N independent nuclear reactions in parallel and

averaging the observables over the ensembles in the end. For a test-particle

number N → ∞ the test particles will give the time evolution of the spectral

phase-space densities.

When initializing a nuclear reaction the test particles, that correspond to

nucleons of the nucleus, are distributed in position space following a Woods-

Saxon distribution:

ρ(r) =
ρ0

1 + exp
(

r−R
a

) (2.72)

with the parameters a = 0.13 fm and R = 1.124 ·A1/3 fm. Here ρ0 = 0.168 fm−3

denotes the saturation density of nuclear matter.

For the initialization in momentum space the local Thomas-Fermi approxima-

tion is used: the nucleus remains close to its ground state and the phase-space

density N can be approximated by the phase space density of (uncorrelated) cold

nuclear matter

N(~r, ~p) ∼ Θ(pF (~r) − |~p|) (2.73)

with the local Fermi momentum

pF (~r) =

(
3π2

g
ρ(r)

)1/3

. (2.74)

The calculation is performed on a discretized dynamical grid in space-time

(∆t,∆x,∆y,∆z). The grid size ∆z is chosen initially as ∆z = 1/γ in order to

optimize the computational performance; the time grid also is adjusted dynam-

ically - i.e. ∆t is getting sufficiently small during the high density phase and

becomes larger during the expansion phase.

In each time step ∆t the test particles are first assumed to move as non-

interacting particles in the mean fields US and Uµ. They follow the extended

off-shell equations of motion (Eq. 2.43 - Eq. 2.45). However, between the time

steps the particles may also interact. We do not assume any medium modification

of the matrix elements M that enter the collision term in Eq. 2.59. If one accounts
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for the energy shift caused by the potentials US ad Uµ, the transition rates can

be directly taken from the corresponding vacuum cross sections [61].

The collision criteria are chosen in line with the method by Kodama et al.

[90]: Two particles collide in a time step ∆t if the impact parameter b, i.e. the

minimum separation in their center-of-momentum system, is smaller than

b ≤ bmax =

√
σgeom

π
. (2.75)

Furthermore, it is checked if both particles reach this minimal distance during

the time step ∆t. In Eq. 2.75 σgeom denotes the maximal cross section for the

interaction of the two particles which is estimated using a simple geometrical

picture. The further choice of individual channels i, which might be realized in

this collision, is done by the Monte-Carlo method with a probability

Pi =
σi

σgeom

. (2.76)

An important feature of the HSD model is the decay of unstable particles with

massM and energy E during a time step ∆t. The corresponding decay probability

is given by

Pdec = 1 − exp

(

−Γd(M)

γ
∆t

)

, (2.77)

where γ = E/M is the Lorentz factor while Γd denotes the decay width of the

particle in its rest frame. The final state of the decay products is again determined

by Monte Carlo assuming the decay to be isotropic in the rest frame of the

decaying particle since the spin degree of freedom is neglected. Due to the low

densities of highly excited baryons Pauli blocking is only accounted for in collisions

and decays that involve nucleons in the final state.
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Chapter 3

Multiplicity Fluctuations in

Nucleus-Nucleus Collisions

The first part of this chapter contains the result for study the particle number

fluctuations in Pb+Pb collisions at 158 AGeV within HSD transport model [91].

The correspondent UrQMD results are shown for the comparison. This allows

to check the robustness of the two approaches and derive physical consequences

from the results of the HSD and UrQMD simulations. The results of transport

models are compared also to the simplistic wounded nucleon model.

The results for the charged multiplicity fluctuations in Au+Au collisions at

RHIC energy
√
s = 200GeV [92] are presented in the second part in comparison

with data from PHENIX Collaboration [93, 94]. This study is based on the

wounded nucleon model while employing the HSD transport model to define the

centrality selection and to calculate the properties of hadron production sources.

3.1 Scaled Variance

Let us introduce some notations. We define the deviation ∆NA from the

average number 〈NA〉 of the particle species A by NA = 〈NA〉 + ∆NA. Then we

define covariance for species A and B,

∆ (NA, NB) ≡ 〈∆NA∆NB〉 = 〈NANB〉 − 〈NA〉〈NB〉 , (3.1)
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scaled variance

ωA ≡ ∆ (NA, NA)

〈NA〉
=

〈(∆NA)2〉
〈NA〉

=
〈N2

A〉 − 〈NA〉2
〈NA〉

, (3.2)

Note that ω = 1 for the Poisson multiplicity distribution, P (N) = exp(−N)N
N
/N ! .

3.2 Multiplicity Fluctuations in Pb+Pb Colli-

sions at 158 AGeV

3.2.1 Fluctuations in the number of participants

Figure 3.1: Non-central heavy ion collision. Spectators in the projectile and
target are denoted as Nproj

P and N targ
P . ’Participant region’ indicates the region

where the particle production occurs due to the interaction of participants from
target and projectile. Note that in a fix target experiment it is possible to fix
the number of projectile participant by detecting projectile spectators via Zero
Degree Calorimeter (ZDC).

The multiplicity fluctuations are measured experimentally versus the number

of participants. Fig. 3.1demonstrates non-central Au+Au collision, where in each

collision only a fraction of all 2A nucleons interact. These are called participant

nucleons and are denoted as Nproj
P and N targ

P for the projectile and target nuclei,

respectively. The correspondent nucleons, which do not interact, are called the

projectile and target spectators, Nproj
S = A−Nproj

P and N targ
S = A−N targ

P .



3.2 Multiplicity Fluctuations at SPS 51

0 50 100 150 200
0

50

100

150

200

 

 

Nproj
P

N
ta
rg

P

0
0.4
0.8
1.2
1.6
2.0

Figure 3.2: The HSD simulations of the participant (from projectile, Nproj
P , and

target, N targ
P ) distribution for Pb+Pb collision at 158AGeV . The dashed lines

demonstrate that even for fixed Nproj
P = 100, number of target participants vary

from 75 to 125.

The fluctuations in high energy A+A collisions are dominated by a geomet-

rical variation of the impact parameter. However, even for the fixed impact

parameter the number of participants, NP ≡ Nproj
P +N targ

P , fluctuates from event

to event. This is due to the fluctuations of the initial states of the colliding nu-

clei and the probabilistic character of the interaction process. The fluctuations

of NP form usually a large and uninteresting background. In order to mini-

mize its contribution the NA49 Collaboration has selected samples of collisions

with a fixed numbers of projectile participants. This selection is possible due

to a measurement of Nproj
S in each individual collision by a calorimeter which

covers the projectile fragmentation domain. However, even in the samples with

Nproj
P = const the number of target participants fluctuates considerably. Hence,

an asymmetry between projectile and target participants is introduced, i.e. Nproj
P

is constant by constraint, whereas N targ
P fluctuates independently. As an example

Fig. 3.2 shows the HSD simulations of the distribution of projectile and target

participants for Pb+Pb collision at 158AGeV . One can see that even for fixed

Nproj
P = 100, number of target participants vary from 75 to 125.

In each sample withNproj
P = const the number of target participants fluctuates

around its mean value, 〈N targ
P 〉 with the scaled variance ωtarg

P . From an output
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Figure 3.3: The HSD simulations in Pb+Pb collisions at 158 AGeV for the average
value 〈N targ

P 〉 as functions of Nproj
P .

0 50 100 150 200
0

1

2

3

4

 HSD
 UrQMD

Pb+Pb, 158 A GeV

ωω ωω
ta

rg

P

Nproj

P

Figure 3.4: Scaled variance ωtarg
P for the fluctuations of the number of target

participants, N targ
P . HSD and UrQMD simulations show similar behavior of ωtarg

P

as a function of Nproj
P .

of the HSD minimum bias simulations of Pb+Pb collisions at 158 AGeV the

samples of events with fixed values of Nproj
P have been formed. Fig. 3.3 presents

the HSD average value 〈N targ
P 〉 as functions of Nproj

P . One finds 〈N targ
P 〉 ≃ Nproj

P ;

the deviations are only seen at very small (Nproj
P ≈ 1) and very large (Nproj

P ≈
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A) numbers of projectile participants. Fig. 3.4 shows both HSD and UrQMD

results for the scaled variances ωtarg
P as functions of fixed number of Nproj

P . The

fluctuations of N targ
P are quite strong; the largest value of ωtarg

P = 3 − 3.5 occurs

at Nproj
P = 20 − 30.

3.2.2 HSD and UrQMD results in comparison to the

NA49 Data

The NA49 Collaboration has minimized the event by event fluctuations of

the number of nucleon participants in measuring the multiplicity fluctuations

by selecting the samples of collisions with a fixed number of projectile spec-

tators, Nproj
S = const, and thus a fixed number of projectile participants,

Nproj
P = A− Nproj

S . This selection is possible in fixed target experiments, where

Nproj
S is measured by a Zero Degree Veto Calorimeter, which covers the projectile

fragmentation domain (Fig. 3.1).

From an output of the HSD and UrQMD minimum bias simulations the sam-

ples of Pb+Pb events with fixed values of Nproj
P have been formed. Fig. 3.5

presents the HSD and UrQMD results and compare them with the NA49 data for

the scaled variances of negatively, positively, and all charged particles in Pb+Pb

collisions at 158 AGeV. The average values, 〈Ni〉 and the scaled variances ωi (see

Eq. 3.2, here i = +,−, ch) are calculated for the samples of collision events with

fixed values of the projectile participants, Nproj
P .

The final particles in the HSD and UrQMD simulations are accepted at ra-

pidities 1.1 < y < 2.6 (y corresponds to the particle rapidities in the Pb+Pb

c.m.s. frame) in accord to the NA49 transverse momentum filter [95]. This is

done to compare the HSD and UrQMD results with the NA49 data. The HSD

and UrQMD simulations both show flat ωi values, ω− ≈ ω+ ≈ 1.2, ωch ≈ 1.5, and

exhibit almost no dependence on Nproj
P . The NA49 data, in contrast, exhibit an

enhancement in ωi for Nproj
P ≈ 50. The data show maximum values, ω− ≈ ω+ ≈ 2

and ωch ≈ 3, and a rather strong dependence on Nproj
P .

Fig. 3.5 also shows results of the HSD and UrQMD simulations for the full 4π

acceptance for final particles, and shows the NA49-like acceptance in the mirror

rapidity interval, −2.6 < y < −1.1 of the target hemisphere. HSD and UrQMD

both result in large values of ωi, i.e. large fluctuations in the backward hemi-

sphere: in the backward rapidity interval −2.6 < y < −1.1 (target hemisphere)
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Figure 3.5: The results of the HSD (left) and UrQMD (right) simulations are
shown for ω−, ω+, and ωch in Pb+Pb collisions at 158 AGeV as functions of
Nproj

P . The black points are the NA49 data. The different lines correspond to
the model simulations with the original NA49 acceptance, 1.1 < y < 2.6, in
the projectile hemisphere (lower lines), the NA49-like acceptance in the mirror
rapidity interval, −2.6 < y < −1.1, in the target hemisphere (middle lines), and
full 4π acceptance (upper lines).

the fluctuations are much larger than those calculated in the forward rapidity

interval 1.1 < y < 2.6 (projectile hemisphere, where the NA49 measurements
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have been done). Even larger fluctuations follow from the HSD and UrQMD

simulations for the full acceptance of final particles.

3.2.3 Multiplicity fluctuations in the wounded nucleon

model

At fixed values of the numbers of participants Nproj
P and N targ

P one can intro-

duce the average multiplicity (i = −,+, ch):

Ni ≡
∑

Ni≥0

Ni W (Ni | N targ
P , Nproj

P ) , (3.3)

where W (Ni | N targ
P , Nproj

P ) is the probability for producing Ni final hadrons at

fixed N targ
P and Nproj

P . In fact, only Nproj
P is fixed experimentally – hence, also

in the HSD and UrQMD simulations presented in Fig. 3.5. The value of N targ
P

fluctuates, and the average over the target participants is denoted as

〈· · · 〉 ≡
A∑

Ntarg
P ≥1

· · · W (N targ
P | Nproj

P ) , (3.4)

where W (N targ
P | Nproj

P ) is the probability for a given value of N targ
P in a sample

of events with fixed number of the projectile participants, Nproj
P .

The total averaging procedure, performed at fixed number of projectile partic-

ipants, Nproj
P , includes both the averaging Eq. 3.3 and Eq. 3.4, so that the total

variance is:

V ar(Ni) ≡ 〈N2
i 〉 − 〈Ni〉2

≡ 〈N2
i 〉 − 〈Ni

2〉 + 〈Ni
2〉 − 〈Ni〉2

= ω∗
i 〈Ni〉 + ωP ni 〈Ni〉 , (3.5)

where

ω∗
i ≡ N2

i −Ni
2

Ni

, ωP ≡ 〈N2
P 〉 − 〈NP 〉2

〈NP 〉
, ni ≡ 〈Ni〉

〈NP 〉
, (3.6)

and NP = N targ
P +Nproj

P , is the total number of participants. At the last step in
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Eq. 3.5 two assumptions have been made. First, it is assumed that ω∗
i does not

depend on NP and can be thus taken out from the averaging, 〈· · · 〉, in Eq. 3.4.

The second assumption is that the average multiplicities Ni are proportional to

the number of participating nucleons, i.e. Ni = NPni, where ni (defined in

Eq. 3.6) is the average number of particles of i-th type per participant.

Finally, the scaled variances, ωi, can be presented as:

ωi ≡ V ar(Ni)

〈Ni〉
= ω∗

i + ωP ni . (3.7)

The total number of participants fluctuates due to the fluctuations of N targ
P (the

values of Nproj
P are fixed experimentally, as well as in the HSD and UrQMD

simulations). One calculates the average values, 〈N targ
P 〉 ≃ Nproj

P , and scaled

variances, ωtarg
P , for the target participants in both the HSD and UrQMD models

(see Fig. 3.4). The scaled variance ωP (Eq. 3.6) for the total number of partic-

ipants is easily found, ωP = ωtarg
P /2, as only a half of the total number, NP , of

participants, i.e., N targ
P , does fluctuate.

Putting everything together one gets:

ωi = ω∗
i +

1

2
ωtarg

P ni . (3.8)

The value of ωtarg
P depends on Nproj

P , as shown by the HSD and UrQMD results in

Fig. 3.4. The average particle number ni of i-th type (i = positive, negative and

all charged) per participant calculated within the HSD (solid lines) and UrQMD

(dashed lines) models for full acceptance (4π) are presented in Fig. 3.6. The

squares correspond to the NA49 data (extrapolated to full acceptance [5]) for

the average π+K− multiplicity (which is an approximately 95% of all negatively

charged hadrons) over the number of nucleon participants, using π ≡ (π−+π+)/2.

As seen from Fig. 3.6, both transport models show a good agreement with each

other as well as with the extrapolated 4π NA49 data. ni from Fig. 3.6 will be

used for the further model calculations.

The Eq. 3.7 coincides with the result of the so called wounded nucleon model

(WNM) 1, i.e. a model which treats the A+A collision as a superposition of inde-

pendent nucleon-nucleon (N+N) interactions. The same result (Eq. 3.7) can be

1Also known as ’participant model’ or independent sources model (see e.g., [96])
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Figure 3.6: The average particle number of i-th type (i = positive, negative and
all charged) per participant calculated within the HSD (solid lines) and UrQMD
(dashed lines) models for full acceptance (4π).The squares correspond to the the
NA49 data (extrapolated to full acceptance [5]) for the average π+K− multiplicity
over the number of nucleon participants, using π ≡ (π− + π+)/2.

obtained within a more general framework. One assumes that a part of the initial

projectile and target energy is converted into hadron sources. The numbers of

projectile and target related sources are taken to be proportional to the number

of projectile and target participant nucleons, respectively. This results in Eq. 3.7.

The physical meaning of the different sources depends on the model under con-

sideration (e.g., wounded nucleons [97], strings and resonances [73, 61, 63, 64], or
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the fluid cells at chemical freeze-out, in the hydrodynamical models). The Eq. 3.7

presents the final multiplicity fluctuations as a sum of two terms: the fluctuations

from one source, ω∗
i , and the contribution due to the fluctuations of the number

of sources, ωPni.

In peripheral A+A collisions there are only few N+N collisions, and rescatter-

ings are rare, so that the picture of independent N+N collisions looks reasonable.

In this case, a hadron production source can be associated with a N+N collision

and, therefore, the fluctuations from one source read:

ω∗
i = ωNN

i =
αpp ω

pp
i Ni

pp
+ αpn ω

pn
i Ni

pn
+ αnn ω

nn
i Ni

nn

αpp Ni
pp

+ αpn Ni
pn

+ αnn Ni
nn , (3.9)

where

αpp = Z2/A2 = 0.155 ,

αpn = 2Z(A− Z)/A2 = 0.478 ,

αnn = (A− Z)2/A2 = 0.367 (3.10)

are the probabilities of proton-proton, proton-neutron, and neutron-neutron col-

lisions in Pb+Pb reactions (A=208, Z=82). The average multiplicities and scaled

variances for elementary collisions calculated within the HSD simulations at 158

GeV are equal to:

Nch
pp

= 6.2 , Nch
pn

= 5.8 , Nch
nn

= 5.4 , (3.11)

ωpp
ch = 2.1 , ωpn

ch = 2.4 , ωnn
ch = 2.9 . (3.12)

For negatively and positively charged hadrons, the average multiplicities and

scaled variances in elementary reactions can be presented in terms of corre-

sponding quantities for all charged particles: N± = 0.5(Nch ± γ) and ω± =

0.5ωchNch/(Nch ± γ), with γ = 2, 1, 0 for pp, pn and nn reactions, respectively.
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This yields:

N−
pp

= 2.1 , N−
pn

= 2.4 , N−
nn

= 2.7 ,

N+
pp

= 4.1 , N+
pn

= 3.4 , N+
nn

= 2.7 ,

ωpp
− = 1.55 , ωpn

− = 1.5 , ωnn
− = 1.45 ,

ωpp
+ = 0.8 , ωpn

+ = 1.0 , ωnn
+ = 1.45 . (3.13)

Thus, using Eq. 3.9 one finds the HSD results for ω∗
i per N+N collision at 158

GeV:

ω∗
ch = 2.5 , ω∗

− = 1.5 , ω∗
+ = 1.1 . (3.14)

The above arguments of the WNM are not applicable for central A+A colli-

sions, where a large degree of thermalization is expected. In the limit ofNproj
P = A

one can take the values of ω∗
i from the Pb+Pb data or model simulations. In this

limit, ωP = ωtarg
P /2 ≈ 0 (see Fig. 3.4), and thus ωi ≈ ω∗

i . It has been found that

Eq. 3.14 gives a reasonable description of ωi in the HSD simulations for central

Pb+Pb collisions, too. Therefore, we will use Eq. 3.8 and Eq. 3.14 for all val-

ues of Nproj
P . A comparison of ωi calculated according to Eq. 3.8 with the terms

obtained from HSD simulations (in full 4π acceptance) is presented in Fig. 3.7.

The values of ωtarg
P and ni are calculated within the HSD model (see Fig. 3.4

and Fig. 3.6), and for ω∗
i we use Eq. 3.14. As seen from Fig. 3.7, there is a

qualitative agreement between Eq. 3.8 and the HSD simulations. The fluctuations

of the total hadron multiplicities - generated by the HSD dynamics - are large

(the ωi are essentially larger than 1). The main contributions to ωi come from

the second terms in Eq. 3.8, which are due to the fluctuations of N targ
P . These

fluctuations of the target nucleon participants presented in Fig. 3.4 explain both,

the large values of ωi and their strong dependence on Nproj
P . Therefore, Eq. 3.8

takes into account two main ingredients of the multiplicity fluctuations in Pb+Pb

collision: a fluctuation of the particle number created in a single N+N collision

and a fluctuation in the number of nucleon participants. Fig. 3.7 shows that

the HSD dynamics produces even larger values of ωi than those calculated from

Eq. 3.8. A very similar picture occurs for the UrQMD model.

Fig. 3.8 supports the previous findings. HSD events with fixed target partici-
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Figure 3.7: The boxes are the results of the HSD simulations for ωi in full 4π
acceptance as functions of Nproj

P . The solid lines correspond to ωi from Eq. 3.8
obtained in the WNM where ω∗

i are taken from Eq. 3.14.

pant number, N targ
P = Nproj

P , exhibit much smaller multiplicity fluctuations. This

is due to the fact that terms proportional to ωtarg
P in Eq. 3.8 do not contribute,

and ωi become approximately equal to ω∗
i .

3.2.4 Transparency, Mixing, and Reflection models

Different models of hadron production in relativistic A+A collisions can be

divided into three limiting groups: transparency, mixing, and reflection models

(see Ref. [98]). The first group assumes that the final longitudinal flows of the
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Figure 3.8: The circles, triangles, and boxes are the results of the HSD simulations
for ωi in full 4π acceptance with N targ

P = Nproj
P . This condition yields ωtarg

P = 0,
and Eq. 3.8 is reduced to ωi = ω∗

i . The dashed lines correspond to ω∗
i taken from

Eq. 3.14.

hadron production sources related to projectile and target participants follow in

the directions of the projectile and target, respectively. One calls this group of

models as transparency (T-)models. If the projectile and target flows of hadron

production sources are mixed, these models are called as mixing (M-)models.

Finally, one may assume that the initial flows are reflected in the collision process.

The projectile related matter then flows in the direction of the target and the

target related matter flows in the direction of the projectile. This class of models

corresponds to the reflection (R-)models. The rapidity distributions resulting

from the T-, M-, and R-models are sketched in Fig. 3.9 taken from Ref. [98].

An asymmetry between the projectile and target participants introduced by

the experimental selection procedure in a fix target experiment can be used to dis-

tinguish between projectile related and target related final state flows of hadron

production sources as suggested in Ref. [98]. One expects large fluctuations of

hadron multiplicities in the domain of the target related flow and small fluctua-

tions in the domain of the projectile related flow. When both flows are mixed,

intermediate fluctuations are predicted. The different scenarios are presented

in Fig. 3.9. The multiplicity fluctuations measured in the projectile momentum

hemisphere clearly are larger than those measured in the target hemisphere in
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Figure 3.9: The sketch of the rapidity distributions of the baryon number or the
particle production sources (horizontal rectangles) in nucleus-nucleus collisions
resulting from the transparency, mixing and reflection models. The spectator
nucleons are indicated by the vertical rectangles. In the collisions with a fixed
number of projectile spectators only matter related to the target shows significant
fluctuations (vertical arrows). See Ref. [98] for more details.

T-models. The opposite relation is predicted for R-models, whereas for M-models

the fluctuations in the projectile and target hemispheres are expected to be the

same.

Note that there are models which assume the mixing of hadron production

sources, however, the transparency of baryon flows, e.g. three-fluid hydrodynam-

ical model [99, 100]. R-models appear rather unrealistic and are included for

completeness in the discussion.
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Figure 3.10: The scaled variances ωi for the projectile (boxes) and target (circles)
hemispheres in the HSD (left) and UrQMD (right) simulations.

3.2.5 Fluctuations in the projectile and target hemi-

spheres

Now the fluctuations of the particle multiplicities in the projectile (y > 0)

and target (y < 0) hemispheres are concidered. As one can see from Fig. 3.4, in
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samples with Nproj
P = const the number of target participants, N targ

P , fluctuates

considerably. Of course, this event selection procedure introduces an asymmetry

between projectile and target participants: Nproj
P is constant, whereas N targ

P fluc-

tuates. Then both simulations, HSD and UrQMD, give very different results for

the particle number fluctuations in the projectile and target hemispheres. The

particle number fluctuations in the target hemispheres are much stronger (see

Fig. 3.10) than those in the projectile hemispheres. There is also a strong Nproj
P -

dependence of ωi in the target hemisphere, which is almost absent for the ωi in

the projectile hemisphere. This is due to the asymmetry between projectile and

target participants. The target participants, N targ
P , play a quite small role for

the particle production in the projectile hemisphere. Thus, the fluctuations of

N targ
P have a small influence on the final multiplicity fluctuations in the projectile

hemisphere, but they contribute very strongly to those in the target hemisphere.

0 50 100 150 200
0.16

0.18

0.20

            HSD
 all charged

 NA49 acceptance 

qp ch

Nproj

P

Figure 3.11: The ratio of charged multiplicity within the NA49 acceptance to
that in the whole projectile hemisphere. Similar results are obtained for negative
and positive hadron multiplicities.

In real experiments only a fraction of all final state particles is accepted. In

the case of weak correlations between particles, the scaled variances in the limited

acceptance can be calculated ( [96, 101]) as ωacc
i = 1 − qi + qi · ωi. Here the qi

are the probabilities that particles of type i are accepted. The qi values can

be calculated as the ratio of the average multiplicity of the i-th hadrons within

the given experimental acceptance inside the projectile (target) hemisphere to

the average multiplicity in the whole projectile (target) hemisphere. The HSD



3.2 Multiplicity Fluctuations at SPS 65

values of qp
i ≈ 0.18 are presented as functions of Nproj

P in Fig. 3.11 in the NA49

acceptance (in the projectile hemisphere).

Under the above assumptions, the scaled variances of the multiplicity distri-

butions in the projectile hemisphere, ωproj
i , and target hemisphere, ωtarg

i , in the

T-, M- and R-models read [98]:

ωproj
i (T ) = 1 − qp

i + qp
i · ω∗

i ,

ωtarg
i (T ) = 1 − qt

i + qt
i ·

(
ω∗

i + ωtarg
P ni

)
, (3.15)

ωproj
i (M) = ωtarg

i (M) = 1 − qp,t
i + qp,t

i ·
(
ω∗

i + 0.5 ωtarg
P ni

)
, (3.16)

ωproj
i (R) = 1 − qp

i + qp
i ·

(
ω∗

i + ωtarg
P ni

)
,

ωtarg
n (R) = 1 − qt

i + qt
i · ω∗

i . (3.17)

Here qp
i and qt

i are the acceptances in the projectile and target hemispheres,

respectively.

Results presented in Fig. 3.10 suggest that HSD and UrQMD are closer to T-

models. Using Eq. 3.15 the HSD simulations yield within the NA49 acceptance,

and within the analogous acceptance in the mirror target rapidity interval,

ωproj
− (T ) ∼= 1.09 , ωproj

+ (T ) ∼= 1.02 , ωproj
ch (T ) ∼= 1.27 , (3.18)

ωtarg
− (T ) ∼= 1.09 + 0.18 · ωtarg

P · n−,

ωtarg
+ (T ) ∼= 1.02 + 0.18 · ωtarg

P · n+ ,

ωtarg
ch (T ) ∼= 1.27 + 0.18 · ωtarg

P · nch . (3.19)

Here, the values of qp
i = qt

i ≈ 0.18 are taken from the HSD calculations (Fig. 3.11),

and the ω∗
i from Eq. 3.14 are used. The results of Eq. 3.18 and Eq. 3.19 agree

well with the HSD simulations (Fig. 3.12) for large projectile participant number

and retain the general trend also for more peripheral collisions. Similar results

are obtained within the UrQMD simulations. Hence, both the HSD and UrQMD

approach are closer to T-models of hadron production sources.

Using Eq. 3.16 one can estimate ωi for the NA49 acceptance in M-models. It

follows:

ωproj
i (M) = ωtarg

i (M) = 0.82 + 0.18 ·
(
ω∗

i + 0.5 ωtarg
P ni

)
. (3.20)
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Figure 3.12: The HSD simulations in the NA49 acceptance in the projectile, 1.1 <
y < 2.6, and target, −2.6 < y < −1.1, hemispheres. The solid lines correspond
to Eq. 3.18 and Eq. 3.19, which assume transparency of the longitudinal flows of
the hadron production sources.

In Fig. 3.13 the results of Eq. 3.20 (with ω∗
i (Eq. 3.14), ωtarg

P , and ni taken from

the HSD simulations) are compared with the NA49 data. Eq. 3.20 for the M-

model gives a much better agreement with the NA49 data than Eq. 3.18 for the

T-model. The NA49 data suggest therefore a large degree of mixing in the longi-

tudinal flow of the projectile- and target hadron production sources, in agreement
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Figure 3.13: The solid lines correspond to Eq. 3.20 with ω∗
i (Eq. 3.14), ωtarg

P , and
ni taken from the HSD simulations; the points are the NA49 data.

with suggestions formulated in Ref. [98].

A selection of collisions with a fixed number of Nproj
P and fluctuating number

of N targ
P means that the projectile and target initial flows are marked in fluctua-

tions [98] in the number of colliding nucleons. The projectile and target related

matters in the final state of collisions can be then distinguished by an analysis of

fluctuations of extensive quantities. In the case of non-identical nuclei (different
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baryon number and/or proton to neutron ratios) one can trace flows of the con-

served charges – baryon number and electric charge – by looking at their inclusive

final state distributions [63, 102]. The analysis of the fluctuations can be applied

also to collisions of identical nuclei. Furthermore, it gives a unique possibility to

investigate the flows of particle production sources.
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Figure 3.14: Particle number fluctuations (ω−, ω+, and ωch) in the HSD (left) and
UrQMD simulations (right) in different rapidity intervals in the projectile (y > 0)
and target hemispheres (y < 0).

3.2.6 Fluctuations in different rapidity intervals

Fig. 3.14 shows the particle number fluctuations (ω−, ω+ and ωch) in the HSD

and UrQMD simulations, given in different rapidity intervals of the projectile
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Figure 3.15: Particle number fluctuations (ω−, ω+, and ωch) from the HSD (left)
and UrQMD (right) approaches as a function of rapidity y for different number
of projectile participants Npart

p .

(y > 0) and target (y < 0) hemispheres. The same information is presented in

Fig. 3.15, where ω−, ω+, and ωch are displayed explicitly as functions of rapid-

ity for different Nproj
p values. It is clearly seen that the bias on a fixed number

of projectile participants reduces strongly the particle fluctuations in the for-



3.3 Multiplicity Fluctuations in Au+Au Collisions at RHIC 71

ward hemisphere, in particular within the NA49 acceptance (1.1 < y < 2.6).

The fluctuations of the target participant numbers influence strongly the hadron

production sources in the target hemispheres. They also contribute to the pro-

jectile hemisphere, but this contribution is only important in the rapidity interval

0 < y < 1, i.e. close to midrapidity. It turns out that this ”correlation length”

in rapidity, ∆y ≈ 1, as seen in Fig. 3.14 and Fig. 3.15, is not large enough to

reproduce the data. The large values of ωi and their strong Nproj
P -dependence in

the NA49 data (cf. Fig. 3.5) in the projectile rapidity interval, 1.1 < y < 2.6,

thus demonstrate a significantly larger amount of mixing in peripheral reactions

than generated in simple hadron/string transport approaches.

3.3 Multiplicity Fluctuations in Au+Au Colli-

sions at RHIC

The charged multiplicity fluctuations in Au+Au collisions at
√
s = 200 GeV

have been measured recently by the PHENIX Collaboration [93, 94]. This section

presents the results based on wounded nucleon model while employing the HSD

transport model to define the centrality selection and to calculate the properties

of hadron production sources (see [92] for details). This combined picture leads

to a good agreement with the PHENIX data and suggests that the measured

multiplicity fluctuations result dominantly from participant number fluctuations.

The centrality selection is an important aspect of fluctuation studies in A+A

collisions. As it was discussed in the previous section 3.2 the samples of collisions

with a fixed number of projectile participants Nproj
P can be selected to minimize

the participant number fluctuations at a fixed target experiment. This selection

is possible due to a measurement of the number of nucleon spectators from the

projectile, Nproj
S , in each individual collision by a calorimeter which covers the

projectile fragmentation domain.

In a collider type experiment charged spectators (e.g. protons, α-particles)

turn in magnetic field of the detectors and cannot be measured. Thus another

centrality trigger should be used. For multiplicity fluctuations data the PHENIX

Collaboration uses the following centrality selection. There are two kinds of

detectors which define the centrality of Au+Au collision, Beam-Beam Counters

(BBC) and Zero Degree Calorimeters (ZDC). At the c.m. pair energy
√
s =
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200 GeV, the BBC measure the charged particle multiplicity in the pseudorapidity

range 3.0 < |η| < 3.9, and the ZDC – the number of neutrons with |η| > 6.0

[93, 94]. These neutrons are part of the nucleon spectators. Due to technical

reasons the neutron spectators can be only detected by the ZDC (not protons

and nuclear fragments), but in both hemispheres. The BBC distribution will be

used in the HSD calculations to divide Au+Au collision events into 5% centrality

samples. HSD does not specify different spectator groups – neutrons, protons, and

nuclear fragments such that one can not use the ZDC information. In Fig. 3.16

(left) the HSD results for the BBC distribution and centrality classes in Au+Au

collisions at
√
s =200 GeV are shown. One finds a good agreement between

the HSD shape of the BBC distribution and the PHENIX data [93, 94]. The

experimental estimates of 〈NP 〉 for different centrality classes are based on the

Glauber model. These estimates vary by less than 0.5% depending on the shape

of the cut in the ZDC/BBC space or whether the BBC alone is used as a centrality

measure [93, 94]. Note, however, that the HSD 〈NP 〉 numbers are not exactly

equal to the PHENIX values. It is also not obvious that different definitions for

the 5% centrality classes give the same values of the scaled variance ωP for the

participant number fluctuations.
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Figure 3.16: HSD model results for Au+Au collisions at
√
s = 200 GeV. Left:

Centrality classes defined via the BBC distribution. Right: The average number
of participants, 〈NP 〉, and the scaled variance of the participant number fluctua-
tions, ωP , calculated for the 5% BBC centrality classes.

Defining the centrality selection via the HSD transport model (which is similar

to the BBC in the PHENIX experiment) we calculate the mean number of nucleon

participants, 〈NP 〉, and the scaled variance of its fluctuations, ωP , in each 5%
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centrality sample. The results are shown in Fig. 3.16, right. The Fig. 3.17 (left)

shows the HSD results for the mean number of charged hadrons per nucleon

participant, ni = 〈Ni〉/〈NP 〉, where the index i stands for “−”, “+”, and “ch”,

i.e negatively, positively, and all charged final hadrons. Note that the centrality

dependence of ni is opposite to that of ωP : ni increases with 〈NP 〉, whereas ωP

decreases.
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Figure 3.17: HSD results for different BBC centrality classes in Au+Au collisions
at

√
s = 200 GeV. Left: The mean number of charged hadrons per participant,

ni = 〈Ni〉/〈NP 〉. Right: The fraction of accepted particles, qi = 〈Nacc
i 〉/〈Ni〉.

The PHENIX detector accepts charged particles in a small region of the phase

space with pseudorapidity |η| < 0.26 and azimuthal angle φ < 245o and the pT

range from 0.2 to 2.0 GeV/c [93, 94]. The fraction of the accepted particles

qi = 〈Nacc
i 〉/〈Ni〉 calculated within the HSD model is shown in the r.h.s. of

Fig. 3.17. According to the HSD results only 3 ÷ 3.5% of charged particles are

accepted by the mid-rapidity PHENIX detector.

To estimate the role of the participant number event-by-event fluctuations the

wounded nucleon model has been used (see e.g., Refs [96, 91, 103, 98]),

ωi = ω∗
i + ni ωP . (3.21)

The first term in the r.h.s. of Eq. 3.21 corresponds to the fluctuations of the

hadron multiplicity from one source, and the second term, ni ωP , gives additional

fluctuations due to the fluctuations of the number of sources. As usually, it

has been assumed that the number of sources is proportional to the number of

nucleon participants. The value of ni in Eq. 3.21 is then the average number of

i’th particles per participant, ni = 〈Ni〉/〈NP 〉. Also it has been assumed that
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nucleon-nucleon collisions define the fluctuations ω∗
i from a single source. To

calculate the fluctuations ωacc
i in the PHENIX acceptance the acceptance scaling

formula (see e.g., Refs. [96, 91, 103, 98]) is used:

ωacc
i = 1 − qi + qi ωi , (3.22)

where qi is the fraction of the accepted i’th hadrons by the PHENIX detector.

Using Eq. 3.21 for ωi one finds,

ωacc
i = 1 − qi + qi ω

∗
i + qi ni ωP . (3.23)

The HSD results for ωP (Fig. 3.16, right), ni (Fig. 3.17, left), qi (Fig. 3.17, right),

together with the HSD nucleon-nucleon values, ω∗
− = 3.0, ω∗

+ = 2.7, and ω∗
ch = 5.7

at
√
s = 200 GeV, define completely the results for ωacc

i according to Eq. 3.23.

We find a surprisingly good agreement of the results given by Eq. 3.23 with the

PHENIX data shown in Fig. 3.18. Note that the centrality dependence of ωacc
i

stems from the product, ni · ωP , in the last term of the r.h.s. of Eq. 3.23.

3.4 Summary of Chapter 3

The centrality dependence of multiplicity fluctuations have been studied for

Pb+Pb collisions at 158 AGeV (in line with NA49 data) and Au+Au collisions

at
√
s = 200 GeV (PHENIX data). Different centrality selections have been

performed in the analyses in correspondence to experimental situations. For the

fix-target experiment NA49 samples of events with fixed numbers of the projectile

participants, Nproj
P , have been studied while in collider type experiment PHENIX

centrality classes of events have been defined by multiplicity in certain phase

space. A decrease of participants fluctuations (and thus volume fluctuations) for

more central collisions in both experiments has been obtained.

In section 3.2 the results for the scaled variances of negative, positive, and all

charged hadrons in Pb+Pb minimum bias simulations at 158 AGeV have been

presented based on HSD transport model. Also the UrQMD results have been

shown for the comparison (see [91] for the details).

The samples with Nproj
P = 20 − 60 show the large fluctuations of the num-

ber of target nucleons, N targ
P , which participate in inelastic collisions, ωtarg

P ≥ 2.
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Figure 3.18: The scaled variance of charged particle fluctuations in Au+Au col-
lisions at

√
s = 200 GeV with the PHENIX acceptance. The circles are the

PHENIX data [93, 94] while the open points (connected by the solid line) corre-
spond to Eq. 3.23 with the HSD results for ωP , ni, and qi.

The final hadron multiplicity fluctuations exhibit analogous behavior, which ex-

plains the large values of the HSD and UrQMD scaled variances ωi in the target

hemispheres and in the full 4π acceptance. On the other hand, the asymmetry

between the projectile and target participants – introduced in the data samples

by the trigger condition of fixed N targ
P – can be used to explore different dynam-

ics of nucleus-nucleus collisions by measuring the final multiplicity fluctuations

as a function of rapidity (cf. Fig. 3.15). This analysis reveals that the NA49

data indicate a rather strong mixing of the longitudinal flows of the projectile
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and target hadron production sources. This is so not only for central collisions

– in line with the HSD and UrQMD approaches [104, 29, 105] – but also for

rather peripheral reactions. This sheds new light on the nucleus-nucleus reaction

dynamics at top SPS energies for peripheral and mid-peripheral Pb+Pb colli-

sions. It demonstrates a significantly larger amount of mixing than is generated

in simple hadron/string transport approaches.

In section 3.3 the results for multiplicity fluctuations in Au+Au collisions at
√
s = 200 GeV based on the wounded nucleon model (see [92]) are presented in

comparison to the preliminary PHENIX data [93, 94]. Assuming that the number

of hadron sources are proportional to the number of nucleon participants, the HSD

transport model has been used to calculate the scaled variance of participant

number fluctuations, ωP , and the number of i’th hadrons per nucleon accepted

by the mid-rapidity PHENIX detector, qini, in different Beam-Beam Counter

centrality classes. The HSD model for nucleon-nucleon collisions has been also

used to estimate the fluctuations from a single source, ω∗
i . It has been found that

this such combined model is in a good agreement with the PHENIX data [93, 94].

In different (5%) centrality classes ωP goes down and qini goes up with increasing

〈NP 〉. This results in non-monotonic dependence of ωacc
i on 〈NP 〉 as seen in the

PHENIX data.

Thus, one can conclude that both qualitative and quantitative features of the

centrality dependence of the fluctuations seen in the present PHENIX data are

the consequences of participant number fluctuations. To avoid a dominance of

the participant number fluctuations one needs to analyze most central collisions

with a much more rigid (≤ 1%) centrality selection.
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Chapter 4

Baryon Number and Electric

Charge Fluctuations in Pb+Pb

Collisions at SPS energies

The aim of the present chapter is to study the event-by-event fluctuations

of the net baryon number and electric charge in Pb-Pb collisions at 158 AGeV

energies within the HSD transport approach [103]. An important role of the

fluctuations in the number of target nucleon participants is revealed since they

strongly influence all measured fluctuations even in the samples of events with

rather rigid centrality trigger.

4.1 Net Baryon Number Fluctuations

Let’s start with a quantitative discussion by first considering the fluctuations

of the net baryon number in different regions of the participant domain in colli-

sions of two identical nuclei. These fluctuations are most closely related to the

fluctuations of the number of participant nucleons because of baryon number

conservation.

The HSD results for ωB in Pb+Pb at 158 AGeV are presented in Fig. 4.1.

In each event the nucleon spectators when counting the number of baryons are

subtracted. The net baryon number in the full phase space, B ≡ NB−NB, equals

then to the total number of participants NP = N targ
P +Nproj

P . At fixed Nproj
P the

NP number fluctuates due to fluctuations of N targ
P . These fluctuations correspond
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Figure 4.1: The HSD simulations for Pb+Pb collisions at 158 AGeV for fixed
values of Nproj

P . Left: The baryon number fluctuations in full acceptance, ωB,
in projectile hemisphere, ωp

B (lower curve), and in target hemisphere, ωt
B (upper

curve). The dashed line, 0.5 ωtarg
P , demonstrates the validity of the relation

(Eq. 4.1). Right: The scaled variances of the baryon number fluctuations in
different rapidity intervals.

to an average value, 〈N targ
P 〉 ≃ Nproj

P , and a scaled variance, ωtarg
P (see Fig. 3.4).

Thus, for the net baryon number fluctuations in the full phase space one finds,

ωB =
V ar(NP )

〈NP 〉
≃ 〈

(
N targ

P

)2〉 − 〈N targ
P 〉2

2〈N targ
P 〉

=
1

2
ωtarg

P . (4.1)

A factor 1/2 in the right hand side of Eq. 4.1 appears because only half of the

total number of participants fluctuates.

One introduces ωp
B and ωt

B, where the superscripts p and t mark quanti-

ties measured in the projectile and target momentum hemispheres, respectively.

Fig. 4.1 demonstrates that ωt
B > ωp

B, both in the whole projectile-target hemi-

spheres and in the symmetric rapidity intervals. On the other hand one observes

that ωp
B ≈ ωt

B in most central collisions. This is because the fluctuations of the

target participants become negligible in this case, i.e. ωtarg
P → 0 (Fig. 3.4, right).

As a consequence the fluctuations of any observable in the symmetric rapidity

intervals become identical in most central collisions. Note also that transparency-

mixing effects are different at different rapidities. From Fig. 3.4 (right) it follows

that ωp
B in the target rapidity interval [−2,−1] is much larger than ωt

B in the sym-

metric projectile rapidity interval [1, 2]. This fact reveals the strong transparency

effects. On the other hand, the behavior is different in symmetric rapidity inter-

vals near the midrapidity. From Fig. 3.4 (right) one observes that ωp
B in the target
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rapidity interval [−1, 0] is already much closer to ωt
B in the symmetric projectile

rapidity interval [0, 1]. This gives a rough estimate of the width, ∆y ≈ 1, for

the region in rapidity space where projectile and target nucleons communicate to

each others.

As discussed in subsection 3.2.4, the mixing of the projectile and target par-

ticipants is absent in T- and R-models. Therefore, in T-models, the net baryon

number in the projectile hemisphere equals to Nproj
p and does not fluctuate, i.e.

ωp
B(T ) = 0, whereas the net baryon number in the target hemisphere equals to

N targ
p and fluctuates with ωt

B(T ) = ωtarg
P . These relations are reversed in R-

models. One introduces now a mixing of baryons between the projectile and

target hemispheres. Let α be the probability for a (projectile) target participant

to be detected in the (target) projectile hemisphere. One denotes by nt and np

the number of baryons which end uo in the target and projectile hemisphere,

respectively, from the opposite hemisphere. Then the probabilities to detect Bt

baryons in the target hemisphere, and Bp baryons in the projectile hemisphere,

can be written as,

P (Bt;Nproj
P ) =

∑

Ntarg
P

W (N targ
P ;Nproj

P )

Ntarg
P∑

nt=1

Nproj
P∑

np=1

αnp

(1 − α)Ntarg
P −np N targ

P !

np!(N targ
P − np)!

× αnt

(1 − α)Nproj
P −nt Nproj

P !

nt!(Nproj
P − nt)!

δ
(
Bt −N targ

P − nt + np
)
, (4.2)

P (Bp;Nproj
P ) =

∑

Ntarg
P

W (N targ
P ;Nproj

P )

Ntarg
P∑

nt=1

Nproj
P∑

np=1

αnp

(1 − α)Ntarg
P −np N targ

P !

np!(N targ
P − np)!

× αnt

(1 − α)Nproj
P −nt Nproj

P !

nt!(Nproj
P − nt)!

δ
(
Bp −Nproj

P − np + nt
)
, (4.3)

where W (N targ
P ;Nproj

P ) is the probability distribution of N targ
P in a sample with

fixed value of Nproj
P . From Eq. 4.2 and Eq. 4.3 with a straightforward calculation
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one finds:

ωt
B = (1 − α)2 ωtarg

P + 2α(1 − α) ,

ωp
B = α2 ωtarg

P + 2α(1 − α) . (4.4)

A (complete) mixing of the projectile and target participants is assumed in M-

models. Thus each participant nucleon with equal probability, α = 1/2, can

be found either in the target or in projectile hemispheres. In M-models the

fluctuations in both projectile and target hemispheres are identical. The limiting

cases, α = 0 and α = 1, of Eq. 4.4 correspond to T- and R-models, respectively.

In summary, the scaled variances of the net baryon number fluctuations in the

projectile, ωp
B, and target, ωt

B, hemispheres are:

ωp
B(T ) = 0 , ωt

B(T ) = ωtarg
P , (4.5)

ωp
B(M) = ωt

B(M) =
1

2
+

1

4
ωtarg

P , (4.6)

ωp
B(R) = ωtarg

P , ωt
B(R) = 0 , (4.7)

in the T- (Eq. 4.5), M- (Eq. 4.6) and R- (Eq. 4.7) models of the baryon number

flow. The different models lead to significantly different predictions for ωp
B and

ωt
B.

Fig. 4.2 shows the predictions of T-, M- and R-models (Eq. 4.5-Eq. 4.7) with

ωtarg
P from Fig. 3.4 for Pb+Pb collisions at 158A GeV.
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Figure 4.2: The ωt
B (left) and ωp

B (right) of the HSD simulations in comparison
to T-, M- and R-models (Eq. 4.5-Eq. 4.7), with ωtarg

P taken from Fig. 3.4.

From Fig. 4.2 one concludes that the HSD results are close to the T-model
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estimates for baryon flow. However, the deviations from the results (Eq. 4.5) are

clearly seen: ωp
B > 0 and ωt

B > ωtarg
P . One can not fit the HSD values of ωt

B and

ωp
B by Eq. 4.4. To make ωp

B > 0 one needs α > 0, but this induces ωt
B < ωtarg

P ,

i.e. a mixing of baryons between the projectile and target hemispheres creates a

non-zero baryon number fluctuations in the projectile hemisphere on the expense

of fluctuations in the target hemisphere. Indeed, it follows from Eq. 4.4 that ωp
B

increases with α for all α, if ωtarg
P > 1, and for α < (2−ωtarg

P )−1, if ωtarg
P < 1. On

the other hand, ωt
B increases with α if α < (1 − ωtarg

P )(2 − ωtarg
P )−1. This shows

that an increase of ωt
B with α is only possible for ωtarg

P < 1. Thus, for ωtarg
P > 1

one finds an increase of ωp
B with α and a decrease of ωt

B with α for all physical

values of α from 0 to 1. Therefore, the HSD values of ωt
B (i.e. the fact that

ωt
B > ωtarg

P ) can not be explained by Eq. 4.4 with α > 0.

The numbers of target and projectile participants are defined as N targ
P ≡

A−N targ
S and Nproj

P ≡ A−Nproj
S . The actual event-by-event numbers of baryons

in the target and projectile hemispheres, N t
B and Np

B, may differ from N targ
P and

Nproj
P . This is because a transfer of baryons between the projectile and target

hemispheres arises from the production of baryon-antibaryon pairs. The partners

of each newly created bb-pair can be detected with non-zero probability in different

hemispheres. One introduces bt ≡ N t
B −N targ

P and the number of antibaryons in

the target hemisphere, b
t
. Similarly, bp ≡ Np

B − Nproj
P , while b

p
is the number of

antibaryons in the projectile hemisphere. One finds:

ωt
B ≡ V ar(N targ

P + bt − b
t
)

〈Bt〉 = ωtarg
P +

1

Nproj
P

[V ar(bt)

+ V ar(b
t
) + 2 ∆(N targ

P , bt) − 2 ∆(N targ
P , b

t
) − 2 ∆(bt, b

t
) ] , (4.8)

ωp
B ≡ V ar(Nproj

P + bp − b
p
)

〈Bp〉 =
1

Nproj
P

×
[

V ar(bp) + V ar(b
p
) − 2 ∆(bp, b

p
)

]

, (4.9)

where

∆(N1, N2) ≡ 〈N1 · N2〉 − 〈N1〉 · 〈N2〉 . (4.10)

As Nproj
P = const in the sample, it follows that ωproj

P = 0, ∆(Nproj
P , bp) = 0,

∆(Nproj
P , b

p
) = 0, these terms are absent in the r.h.s. of Eq. 4.9. Different terms
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of Eq. 4.8 and Eq. 4.9 found from the HSD simulations are presented in Fig. 4.3.
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Figure 4.3: Different terms of Eq. 4.8, left, and Eq. 4.9, right, are presented as a
function of Nproj

P .

One observes that terms of Eq. 4.8 and Eq. 4.9 expressing the fluctuations

of antibaryons, V ar(b
p
)/Nproj

P , and the correlation terms, 2∆(N targ
P , b

t
)/Nproj

P

and − 2∆(bt, b
t
)/Nproj

P , with antibaryons included, are small. Therefore, one

finds, ωp
B
∼= V ar(bp)/Nproj

P . In the target hemisphere, the ωtarg
P gives the main

contribution to ωt
B in Eq. 4.8. The term V ar(bt)/Nproj

P also contributes to ωt
B,

similarly to that, V ar(bp)/Nproj
P , in the projectile hemisphere. However, the

main additional term to ωt
B is 2∆(N targ

P , bt)/Nproj
P , which is due to (positive)

correlations between N targ
P and bt. This implies that in events with largeN targ

P (i.e.

N targ
P > 〈N targ

P 〉 ∼= Nproj
P ) some additional baryons move from the projectile to

the target hemisphere, and when N targ
P is small (i.e. N targ

P < 〈N targ
P 〉 ∼= Nproj

P ) the

baryons move in the reverse direction from the target to the projectile hemisphere

as shown in Fig. 4.4.

Remind that Eq. 4.4 predicts for ωt
B the opposite behavior: due to a simple

mixing of baryons between the target and projectile hemispheres the initially large

fluctuations, ωtarg
P , are transformed into smaller ones, ωt

B. It seems that the origin

of this effect is the following: For N targ
P > Nproj

P each projectile nucleon interacts,

in average, more often than the target nucleon. The projectile participant loses

then a larger part of its energy, and in the rapidity space its position becomes

closer to yc.m. = 0 than the position of target participants. This gives to projectile

participants more chances to move due to further rescatterings from projectile

to target hemisphere, in a comparison with target participants to move in the

opposite direction. For N targ
P < Nproj

P there is a reverse situation. This fact was

not taken into account in Eq. 4.2 and Eq. 4.3 where it has been assumed that
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Figure 4.4: The HSD results for Pb+Pb collisions at 158 AGeV for the ra-
pidity distributions of baryon numbers in nonsymmetric samples with Nproj

P =
50, N targ

P = 78 (left), and Nproj
P = 50, N targ

P = 20 (right). The numbers in the
areas mark the correspondent baryon numbers.

the mixing probability α is the same for projectile and target participants, and

independent of N targ
P .

4.2 Net Electric Charge Fluctuations

The T-, M- and R-models give very different predictions for ωp
B and ωt

B for the

samples of events with fixed values of N targ
P . Additional interesting correlations

between the Bt and Bp numbers, as those seen in the HSD simulations, can be ex-

pected. Unfortunately, it is difficult to test experimentally such correlations since

an identification of protons and a measurement of neutrons in a large acceptance

in a single event is difficult.

In this section we consider the HSD results for the net electric charge, Q,

fluctuations. As Q ∼= 0.4B in the initial heavy nuclei one can naively expect that

Q fluctuations are quite similar to B fluctuations. However, there is a principal

difference between Q and B in relativistic A+A collisions. Fig. 4.5 demonstrates

the rapidity distributions of the net baryon number, B = NB − NB (left), and

total number of baryons, NB + NB (right), for different centralities in Pb+Pb

collisions at 158 AGeV. One observes that both quantities are very close to each

other; the y-dependence and absolute values are very close for B and NB − NB

distributions. This is, of course, because the number of antibaryons is rather

small, NB ≪ NB.

Fig. 4.6 shows the same as Fig. 4.5 but for the electric charge Q = N+ −
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Figure 4.5: The HSD rapidity distributions in Pb+Pb collisions at 158 AGeV
for the net baryon number, B = NB − NB (left), and total number of baryons,
NB +NB (right), at different Nproj

P and in the minimum bias (m.b.) sample.

N− (left), and total number of charged particles, Nch ≡ N+ +N− (right).
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Figure 4.6: The same as in Fig. 4.5 but for the electric charge Q = N+−N− (left),
and total number of charged particles, Nch ≡ N+ +N− (right).

The y-dependence of dQ/dy and dNch/dy is quite different. Besides, the

absolute values of Nch are about 10 times larger than those of Q. This implies

that Q≪ N+ ≈ N−.

In the previous section the scaled variance ωB to quantify the measure of the

net baryon fluctuations has been used. It appears to be a useful variable as ωB

is straightforwardly connected to ωtarg
P and due to the relatively small number

of antibaryons. Fig. 4.6 tells that ωQ is a bad measure of the electric charge

fluctuations in high energy A+A collisions. One observes that ωQ ≡ V ar(Q)/〈Q〉
is much larger than 1 simply due to the small value of 〈Q〉 in a comparison with

N+ and N−. If the A+A collision energy increases, it follows, 〈Q〉 → 0, and thus

ωQ → ∞. The same will happen with ωB, too, at much larger energies. A useful
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measure of the net electric charge fluctuations is the quantity (see, e.g., [106]):

XQ ≡ V ar(Q)

〈Nch〉
. (4.11)

A value of XQ can be easily calculated for the Boltzmann ideal gas in the grand

canonical ensemble. In this case the number of negative and positive particles

fluctuates according to the Poisson distribution (i.e. ω− = ω+ = 1), and the

correlation between N+ and N− are absent (i.e. 〈N+N−〉 = 〈N+〉〈N−〉), so that

XQ = 1. On the other hand, the canonical ensemble formulation (i.e. when

Q = const fixed exactly for all microscopic states of the system) leads to XQ = 0.

Fig. 4.7 shows the results of the HSD simulations for the full acceptance, for the

projectile and target hemispheres (left), and also for symmetric rapidity intervals

in the c.m.s. (right).
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Figure 4.7: Left: The HSD simulations in Pb+Pb collisions at 158 AGeV for XQ

at different values of Nproj
P in the full acceptance (lower curve), for the projectile

(middle curve) and target (upper curve) hemispheres. Right: The same, but for
symmetric rapidity intervals in the c.m.s.

The Q fluctuation in the full acceptance is due to N targ
P fluctuations. As

Q ∼= 0.4B in colliding (heavy) nuclei, one may expect V ar(Q) ∼= 0.16 V ar(B).

In addition, 〈Nch〉 ∼= 4〈NP 〉 at 158 AGeV, so that one estimates XQ
∼= 0.04 ωB

for the fluctuations in the full phase space. The actual values of XQ presented

in Fig. 4.7 (left) are about 3 times larger. This is because of Q fluctuations due

to different event-by-event values of proton and neutron participants even in a

sample with fixed values of Nproj
P and N targ

P .

From Fig. 4.7 (right) one sees only a tiny difference between the XQ values

in the symmetric rapidity intervals in the projectile and target hemispheres, and
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slightly stronger effects for the whole projectile and target hemispheres (Fig. 4.7,

right). In fact, the fluctuations of N+ and N− are very different in the projectile

and target hemispheres, and the scaled variances ωt
+ and ωt

− have a very strong

Nproj
P -dependence. This is shown on top-left and middle-left panels of Fig. 3.10.

The XQ can be presented in two equivalent forms

XQ = ω+
〈N+〉
〈Nch〉

+ ω−
〈N−〉
〈Nch〉

− 2
∆(N+, N−)

〈Nch〉

= 2 ω+
〈N+〉
〈Nch〉

+ 2 ω−
〈N−〉
〈Nch〉

− ωch . (4.12)

Eq. 4.12 is valid for any region of the phase space: full phase space, projectile or

target hemisphere, etc. As seen from Fig. 3.10, both ωt
+ and ωt

− are large and

strongly Nproj
P -dependent. This is not seen in X t

Q because of strong correlations

between N t
+ and N t

−, i.e. the term 2 ∆(N+, N−)/〈Nch〉 compensates ω+ and ω−

terms in Eq. 4.12. This is also seen on bottom-left of Fig. 3.10.

A cancellation of strongNproj
P -dependence in the target hemisphere takes place

between the sum of ωt
+ and ωt

− terms of Eq. 4.12, and the ωt
ch-term.

Fig. 4.8 shows a comparison of the HSD results for XQ with NA49 data in

Pb+Pb collisions at 158 AGeV for the forward rapidity interval 1.1 < y < 2.6

inside the projectile hemisphere with additional pT -filter imposed.

As an illustration, the HSD results in the symmetric backward rapidity in-

terval −2.6 < y < −1.1 (target hemisphere) are also included. One observes no

difference between the XQ results for the NA49 acceptance in the projectile and

target hemispheres. The HSD values for ω+, ω−, and ωch are rather different in

the projectile and target hemispheres for the NA49 acceptance (see Fig. 3.10).

This is not seen in Fig. 4.8 for XQ. As explained above a cancellation between

ω+, ω− and ωch terms take place in Eq. 4.12. In fact, NA49 did not perform the

XQ measurements. The XQ-data (solid dots) presented in Fig. 4.8 are obtained

from Eq. 4.12 using the NA49 data for ω+, ω−, and ωch as well as 〈N+〉, 〈N−〉,
and 〈Nch〉 [95, 107, 108]. Such a procedure leads, however, to very large errors

for XQ (which are not indicated in Fig. 4.8) which excludes any conclusion about

the (dis)agreement of HSD results with NA49 data.
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Figure 4.8: The HSD results for XQ for Pb+Pb collisions at 158 AGeV for the
forward rapidity interval 1.1 < y < 2.6 inside the projectile hemisphere. The
solid dots are the estimates obtained from Eq. 4.12 using the NA49 experimental
data [95, 107, 108] (the error bars are not indicated here). For illustration, the
HSD results in the symmetric backward rapidity interval −2.6 < y < −1.1 (target
hemisphere) are also presented.

4.3 Fluctuations in Most Central Collisions

In this section the baryon number and electric charge fluctuations in the sym-

metric rapidity interval [−y, y] in the c.m.s. for the most central Pb+Pb events

are considered. The sample of most central events is chosen by restricting the

impact parameter to b < 2 fm. It gives about 2% most central Pb+Pb collisions

from the whole minimum bias sample. Fig. 4.9 shows the HSD results for elec-

tric charge fluctuations in 2% most central Pb+Pb collisions for the symmetric

rapidity interval ∆Y = [−y, y] in the c.m.s. as the function of ∆y = ∆Y/2.

For ∆Y → 0 one finds XQ → 1. This can be understood as follows: For

∆Y → 0 the fluctuations of negatively, positively and all charged particles behave

as for the Poisson distribution: ω+
∼= ω−

∼= ωch
∼= 1. Then from Eq. 4.12 it follows

that XQ
∼= 1, too. From Fig. 4.9 (right) one observes that ω+, ω−, and ωch all

increase with increasing interval ∆Y . However, XQ decreases with ∆Y and –

because of global Q conservation – it goes approximately to zero when all final

particles are accepted.

In Fig. 4.10 (left) the HSD results for the scaled variances are presented in full

acceptance as functions of Nproj
P . Fig. 4.10 (right) demonstrates the probability
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Figure 4.9: The HSD results for electric charge fluctuations in 2% most central
Pb+Pb collisions at 158 AGeV in the symmetric rapidity interval, ∆Y = [−y, y]
as a function of ∆y = ∆Y/2 in the c.m.s. A left panel shows the behavior of XQ,
and a right one demonstrates separately ω+, ω−, and ωch.

distribution of events with b < 2 fm over Nproj
P .
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Figure 4.10: The HSD results in Pb+Pb collisions at 158 AGeV. Left: The scaled
variances ω+, ω−, and ωch in the full acceptance (like in Fig. 3.5). Right: The
distributions of events over Nproj

P in most central collisions with b < 2 fm.

One observes that even in the 2% centrality sample the values of Nproj
P are

noticeably smaller than the maximum value, A = 208. As seen from Fig. 4.10

(left) the HSD values of ω+, ω−, and ωch become then essentially larger than 1

in agreement with those presented in Fig. 4.9.

Fig. 4.11 shows the net baryon number fluctuations in the symmetric rapidity

interval [−y, y] in the c.m.s. as the function of ∆Y .
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Figure 4.11: The HSD results for net baryon number fluctuations in 2% most
central Pb+Pb collisions at 158 AGeV in the symmetric rapidity interval ∆Y =
[−y, y] as a function of ∆y = ∆Y/2 in the c.m.s. The left panel shows the
behavior of XB, and a right panel presents separately ωNB

, ωN
B
, and ωNB+N

B
.

As a measure of the net baryon number fluctuations one has used the quantity,

XB ≡ V ar(B)

〈NB + NB〉
. (4.13)

As for the electric charge, one finds that XB → 1 at ∆Y → 0 (this is because all

ωNB
, ωNB

, and ωNB+NB
go to 1 in this limit (see Fig. 4.11, left), and XB → 0 at

upper limit of ∆Y because of global baryon number conservation.

Writing the variance V ar(B) in the form,

V ar(B) = 2 V ar(NB) + 2 V ar(NB) − V ar(NB + NB) , (4.14)

one finds

XB = 2 ωNB

〈NB〉
〈NB + NB〉

+ 2 ωNB

〈NB〉
〈NB + NB〉

− ωNB+NB
. (4.15)

The behavior of the different terms in Eq. 4.15 is the following: As seen from

Fig. 4.11, right, ωNB

∼= 1 for all values of ∆Y . This is because NB ≪ NB, and

baryon number conservation does not affect the fluctuations of antibaryons. Due

to the small number of antibaryons in comparison to baryons, one also observes

ωB
∼= ωNB

∼= ωNB+NB
.
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4.4 Electric charge fluctuations: comparison to

the data

This section presents the HSD results for the event-by-event electric charge

fluctuations as measured by the NA49 Collaboration in central Pb+Pb collisions

at 20, 30, 40, 80 and 160 A GeV [109]. The interest in this observable (as a signal

of deconfinement) is related to the predicted in Refs.[110, 111] suppression of

event-by-event fluctuations of the electric charge in a quark-gluon plasma relative

to a hadron gas. However, these predictions were based on the assumption that

the initial electric charge fluctuations survive the hadronization phase.

The first experimental measurement of charge fluctuations in central heavy-

ion collisions by PHENIX [112] and STAR [113] at RHIC and by the NA49 [109]

at SPS showed a quite moderate suppression of the electric charge fluctuations.

This observation has been attributed to the fact that the initial fluctuations are

distorted by the hadronization. In particular, the observed fluctuations might be

related to the final resonance decays.

In this respect it is important to compare the experimental data with the

results of microscopic transport models such as HSD where the resonance de-

cays are included by default. The event-by-event electric charge fluctuations are

quantified by Φ defined as [109, 114]:

Φq =

√

〈Z2〉
〈N〉 −

√

z2 , (4.16)

where

z = q − q, Z =
N∑

i=1

(qi − q). (4.17)

Here q denotes a single particle variable, i.e. electric charge q; N is the number

of particles of the event within the acceptance, and over-line and 〈...〉 denote

averaging over a single particle inclusive distribution and over events, respectively.

By construction, Φ of the system, which is an independent sum of identical sources

of particles, is equal to the Φ for a single source [114, 115].

In order to remove the sensitivity of the final signal to the trivial global charge
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conservation (GCC) the measure ∆Φq is defined as the difference:

∆Φq = Φq − Φq,GCC . (4.18)

Here the value of Φq is given by [116, 117]:

Φq,GCC =
√

1 − P − 1, (4.19)

where

P =
〈Nch〉
〈Nch〉tot

(4.20)

with 〈Nch〉 and 〈Nch〉tot being the mean charged multiplicity in the detector ac-

ceptance and in full phase space (excluding spectator nucleons), respectively.

By construction, the value of ∆Φq is zero if the particles are correlated by

global charge conservation only. It is negative in case of an additional correla-

tion between positively and negatively charged particles, and it is positive if the

positive and negative particles are anti-correlated [117].

Fig. 4.12 shows the HSD results for the dependence of Φq (l.h.s.) and ∆Φq

(r.h.s.) on the fraction of accepted particles 〈Nch〉 and 〈Nch〉tot (calculated for ten

different rapidity intervals increasing in size from ∆y = 0.3 to ∆y = 3 in equal

steps) for central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV. The NA49

data [109] are shown as full symbols, whereas the open symbols (connected by

lines) reflect the HSD results. The dashed line shows the dependence expected for

the case if the only source of particle correlations is the global charge conservation

Φq,GCC (Eq. 4.19).

The data as well as the HSD results for Φq (Fig. 4.12, l.h.s.) are in a good

agreement and show a monotonic decrease with increasing fraction of accepted

particles. After substraction the contribution by global charge conservation (the

dashed line in Fig. 4.12), the values of ∆Φq vary between 0 and −0.05 which

are significantly larger than the values expected for QGP fluctuations (−0.5 <

∆Φq < −0.15 [117]).

Fig. 4.13 presents the energy dependences of ∆Φq for two selected rapidity

intervals – the intermediate rapidity interval ∆y = 1.2 (l.h.s.) and for the largest

rapidity interval ∆y = 3 (r.h.s.). The both, data and HSD results, show the a
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Figure 4.12: The dependence of the Φq (l.h.s.) and ∆Φq (r.h.s.) on the fraction of
accepted particles for central Pb+Pb collisions at 20-158 AGeV. The NA49 data
[109] are shown as full symbols, whereas the open symbols (connected by lines)
stay for the HSD results. The dashed line shows the dependence expected for the
case if the only source of particle correlations is the global charge conservation
Φq,GCC , Eq. 4.19.
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Figure 4.13: The energy dependence of ∆Φq measured in central Pb+Pb collisions
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∆y = 3 (r.h.s.). The NA49 data [109] are shown as full symbols, whereas the the
open symbols (connected by lines) reflect the HSD results.
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weak decrease of ∆Φq with increasing energy.

The fact that the HSD model, that includes no explicit phase transition,

describes the experimental data can be considered an independent proof that

the event-by-event charge fluctuations are driven by the hadronization phase and

dominantly by the resonance decays (which are naturally included in HSD) and

no longer sensitive to the initial phase fluctuations from a QGP.

4.5 Summary of Chapter 4

The goal of this study was to investigate the sensitivity of event-by-event

fluctuations of baryon number and electric charge to the early stage dynamics

of hot and dense nuclear matter created in heavy-ion collisions at SPS energies

and the influence of the further hadronization and rescattering phase. The study

has been based on the microscopic HSD transport model which allows also to

investigate (on event-by-event basis) the influence of the experimental acceptance

and the set-up on the final observables.

It has been found that the fluctuations in the number of target participants

strongly influences the baryon number and charged multiplicity fluctuations. The

consequences of this fact depend crucially on the dynamics of the initial flows of

the conserved charges and inelastic energy.

For a better quantitative understanding of the HSD results three limiting

groups of models for nucleus-nucleus collisions have been discussed: transparency,

mixing and reflection. These ”pedagogical” considerations indicate that the

HSD model shows only a small mixing on initial baryon flow and is closer

to the transparency model (cf. section 3.2). This supports the findings from

Ref. [104, 29, 105, 118] about the influence of the partonic degrees of freedom on

the initial phase dynamics which might increase the mixing by additional strong

parton-parton interactions. Thus, the measurement of the net baryon number

fluctuations helps to quantify the mixing of initial baryon flow.

The first microscopic event-by-event calculations of the charge fluctuations

∆Φq within the HSD model show a good agreement with the NA49 data at SPS

energies. Thus, this observable is dominated by the final stage dynamics, i.e.

the hadronization phase and the resonance decays, and rather insensitive to the

initial QGP dynamics.
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Chapter 5

Excitation Function of the

Multiplicity Fluctuations in

Central Nucleus-Nucleus

Collisions

This Chapter presents the results of HSD study on the excitation function

of the multiplicity fluctuations in central nucleus-nucleus collisions. For better

understanding of the dynamics effects the A+A are compared with corresponding

p+p.

Note, that some observables in p+p and A+A collisions are rather close to each

other. For example, the charged hadron multiplicity per participating nucleon,

nch ≡ 〈Nch〉/〈NP 〉, at SPS energies of 20 ÷ 158 AGeV are not much different in

central Pb+Pb and inelastic p+p collisions [16, 119], Rch ≡ (nch)AA / (nch)pp =

1 ÷ 1.5 1. This explains a vitality of the wounded nucleon model (WNM) [97]

which treats the final state in A+A collision as the result of independent nucleon-

nucleon (N+N) collisions (see, e.g., Ref. [121] which discusses the recent data [122]

on d+Au collisions at the RHIC energies of
√
sNN = 200 GeV). However, the

basic concept of the WNM is in a severe conflict with many other data, e.g., with

multi-strange baryon production, RΩ ≡ (nΩ)AA / (nΩ)pp
∼= 12.5 [123] in Pb+Pb

at 158 AGeV. The RΩ enhancement is expected to be even stronger at smaller

1Note that Rch < 1 at low collision energies. The change in behavior of Rch is discussed in
Ref. [120].
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collision energies. The search for quark-gluon plasma signatures in A+A collisions

is usually based on the expectation of a very different behavior of special physical

observables in A+A and p+p collisions. Famous examples of QGP signatures

are the ‘strangeness enhancement’, ‘J/ψ suppression’, and ‘jet quenching’. In all

these cases one compares a suitably normalized physical quantity in A+A and in

p+p reactions at the same collision energy per nucleon.

In general, one can define two groups of hadron observables. The first group

includes observables which are rather similar in A+A and p+p collisions, thus,

they can be reasonably described within the WNM. The second group consists

of A+A observables which are very different from those in p+p collisions. The

question arises: are the multiplicity fluctuations in A+A collisions close to those

in p+p reactions, or are they very different? The aim of present chapter is to

answer this question [124].

5.1 p+p collisions

The compilation of proton-proton (p+p) data for 〈Nch〉 and ωch are taken from

Ref. [96] and presented in Fig. 5.1. The energy dependence can be parameterized

by the functions [96]:

〈Nch〉 ∼= − 4.2 + 4.69

(√
sNN

GeV

)0.31

, ωch
∼= 0.35

(〈Nch〉 − 1)2

〈Nch〉
, (5.1)

where
√
sNN is the center of mass energy. At high collision energies the KNO

scaling [125] holds which implies that the multiplicity distribution P (Nch) behaves

as

〈Nch〉P (Nch) = ψ(Nch/〈Nch〉)

(see also Ref. [126, 127]). For 〈Nch〉 ≫ 1 it follows,

〈Nk
ch〉 = Ck〈Nch〉k.

In particular, ωch ∝ 〈Nch〉 [128] as also seen from the parametrization (Eq. 5.1).

The HSD model description of the p+p data (for p+p reaction this is almost

equivalent to the Lund-String model [82]) is shown in Fig. 5.1 by the solid lines. It

gives a good reproduction of the p+p data for 〈Nch〉, but slightly underestimates
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Figure 5.1: The multiplicity (left) and scaled variance (right) of all charged
hadrons in p+p inelastic collisions as functions of collision energy. The dashed
lines correspond to the parametrization (Eq. 5.1) from Ref. [96]. The solid lines
are the HSD results.

ωch at high collision energies. For negatively and positively charged hadrons the

average multiplicities and scaled variances in p+p collisions can be presented in

terms of the corresponding quantities for all charged particles,

〈N±〉 =
1

2
(〈Nch〉 ± 2) , ω± =

1

2
ωch

〈Nch〉
〈Nch〉 ± 2

. (5.2)

5.2 N+N collisions

To compare central collisions of heavy nuclei and N+N collisions within the

HSD model one constructs the multiplicities and scaled variances of N+N using

the HSD results for p+p, p+n and n+n collisions (as in subsection 3.2.3):

〈NNN
i 〉 = αpp 〈Npp

i 〉 + αpn 〈Npn
i 〉 + αnn 〈Nnn

i 〉 , (5.3)

ωNN
i =

1

〈NNN
i 〉 [αpp ω

pp
i 〈Npp

i 〉 + αpn ω
pn
i 〈Npn

i 〉 + αnn ω
nn
i 〈Nnn

i 〉] , (5.4)

where αpp = Z2/A2 ∼= 0.16, αpn = 2Z(A− Z)/A2 ∼= 0.48, αnn = (A− Z)2/A2 ∼=
0.36 are the probabilities of proton-proton, proton-neutron, and neutron-neutron

collisions in Pb+Pb (A=208, Z=82) or Au+Au (A=197, Z=79) reactions. The

results are presented in Fig. 5.2. A small difference between p+p and N+N

collisions is only seen at SPS energies (shown separately in the left upper corners)
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and gradually disappears at RHIC energies.
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Figure 5.2: The HSD results for nch (left) and ωch (right) in p+p (dashed line),
p+n (dashed-dotted line), n+n (dotted line), and N+N (solid line) collisions.

In Fig. 5.3 the HSD model results are shown for the multiplicities per par-

ticipating nucleons, ni = 〈Ni〉/〈NP 〉, and for the scaled variances, ωi, in central

collisions (zero impact parameter, b = 0) of Pb+Pb at Elab = 10, 20, 30, 40,

80, 158 AGeV and Au+Au at
√
sNN = 62, 130, 200 GeV. From Fig. 5.3 one

concludes that the HSD results for the scaled variances in central A+A collisions

are close to those in N+N collisions. For the SPS energy region all scaled vari-

ances, ω± and ωch, in central A+A collisions are slightly below the N+N results.

The reversed situation is observed for RHIC energies. Thus, the HSD results for

multiplicity fluctuations are rather similar to those of the WNM. For the samples

with a fixed number of nucleon participants, Nproj
P = N targ

P = const, in Pb+Pb

collisions at 158 AGeV, HSD shows fluctuations of the final hadrons close to those

in N+N collisions at the same energy. This happens to be also valid for most

central collisions (b = 0) considered in the present study. The participant number

fluctuations are found to be rather small for collisions with b = 0. For example,

in Pb+Pb collisions with b = 0 at 158 AGeV the mean number of participants is

〈NP 〉 ∼= 392, and the scaled variance is ωP
∼= 0.055 . The additional fluctuations,

∆ωi, of ith hadrons due to participant number fluctuations can be estimated as
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Figure 5.3: The multiplicities per participant, ni (left), and scaled variances,
ωi (right). The solid lines are the HSD results for N+N collisions according to
Eq. 5.3. The full circles are the HSD results for central A+A collisions for zero
impact parameter, b = 0. The full squares for n− are the NA49 data [16, 119] for
(〈π−〉 + 〈K−〉)/〈NP 〉 in the samples of 7% most central Pb+Pb collisions. The
HSD results for ωi after the subtraction of the contributions ∆ωi (Eq. 5.5) are
shown by open triangles. The dotted lines are the MCE HG model results for
ωi [129]. The HG parameters correspond to the chemical freeze-out conditions
found from fitting the hadron yields.

(see subsection 3.2.3),

∆ωi = ni ωP . (5.5)
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The HSD results for ωi after subtraction of the contributions ∆ωi (Eq. 5.5) are

shown in Fig. 5.3 by open triangles. The contributions to ωi due to participant

number fluctuations estimated by Eq. 5.5 are small, and they do not explain the

(positive) difference, ωi(AA) − ωi(NN) seen in Fig. 5.3 at
√
sNN = 200 GeV.

On the other hand in the statistical model the scaled variances ωi = 1 for

the ideal Boltzmann gas in the grand canonical ensemble (GCE). The deviations

of ωi from unity in the hadron-resonance gas (HG) model stem from Bose and

Fermi statistics, resonance decays, and exactly enforced conservations laws within

the canonical ensemble (CE) or micro-canonical ensemble (MCE) [129, 101, 130].

Note that the statistical model gives no predictions for the energy dependence

of hadron multiplicities. All yields are proportional to the system volume V

which is a free model parameter fitted to the multiplicity data at each collision

energy. However, the statistical model does predict the scaled variances as ωi to

become independent of the system volume for large systems. In Fig. 5.3 the scaled

variances ωi calculated within the MCE HG model along the chemical freeze-out

line (see Ref. [129] for details) are presented by the dotted lines: ωi reach their

asymptotic values at RHIC energies, ω±(MCE)∼= 0.3 and ωch(MCE)∼= 0.6. The

corresponding results in the GCE and CE are the following: ω±(GCE)∼= 1.2 and

ωch(GCE)∼= 1.6, ω±(CE)∼= 0.8 and ωch(CE)∼= 1.6. The HSD results for ωi in

central A+A collisions are very different. They remain close to the corresponding

values in p+p collisions and, thus, increase with collision energy as ωi ∝ ni. One

observes no indication for ‘thermalization’ of fluctuations in the HSD results.

This is especially seen for RHIC energies: ωi(HSD)/ωi(MCE)≥ 10 at
√
sNN =

200 GeV.

5.4 Comparison to the data

The fluctuations of the number of nucleon participants correspond to volume

fluctuations, hence, they translate directly to the final multiplicity fluctuations.

To avoid these ‘trivial’ fluctuations, one has to select a sample of very central,

≤ 1%, collisions. Such a rigid centrality selection has been recently done for the

NA49 data [131] by fixing the number of projectile participants, Nproj
P

∼= A.

The HG model was compared with the NA49 data [131] for the sample of 1%

most central collisions at the SPS energies, 20 ÷ 158 AGeV in Ref. [129]. It was
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found that the MCE results for ω± are very close to the data, they are shown by

the dashed lines in Fig. 5.4. The NA49 acceptance probabilities for positively and

negatively charged hadrons are approximately equal, and their numerical values

are: q = 0.038, 0.063, 0.085, 0.131, 0.163, at the SPS energies of 20, 30, 40, 80,

158 AGeV, respectively. In the statistical model the scaled variances ωacc
± for

the accepted particles are calculated from ω± in the full space according to the

acceptance scaling formulae (see Ref. [129] for details):

ωacc
± = 1 − q + q ω± . (5.6)

Note that the energy dependence of ωacc
± seen in Fig. 5.4 is strongly influenced

by an increase with energy of the acceptance parameter q: only about 4% of the

hadrons are detected at 20 AGeV and 16% at 158 AGeV.

The comparison of the HSD results for central Pb+Pb collisions (zero impact

parameter, b = 0) with the preliminary NA49 data of 1% most central colli-

sions, selected by the number of projectile spectators, is presented in Fig. 5.4. It

demonstrates a good agreement of the HSD results with the preliminary NA49

data. There are also no essential differences between the MCE HG model and the

HSD transport model results. Several comments are needed at this point: The

HSD results within the NA49 acceptance demonstrate that the acceptance scal-

ing formulae (Eq. 5.6) is violated. The straightforward calculations (full circles in

Fig. 5.4) lead to smaller values of ωacc
± than those obtained with the acceptance

scaling formulae (Eq. 5.6) (open circles in Fig. 5.4). This difference may lead to

a 10% effect in ωacc
± for the NA49 acceptance conditions. Thus, the MCE results

for ωacc
± may also be about 10% smaller than those obtained from Eq. 5.6 and

shown in the upper panel of Fig. 5.4. The lower panel of Fig. 5.4 demonstrates

that the MCE and HSD results for ω± at the lowest SPS energy 20 AGeV are

‘occasionally’ rather close to each other. They both are also close to ω± in p+p

collisions (cf. Fig. 5.2 and Fig. 5.3). The HSD scaled variances ωi increase with

collision energy. In contrast, the MCE ωi values remain approximately constant.

The ratio of the HSD to MCE values of ω± reaches about the factor of 2 at

the highest SPS energy 158 AGeV. It becomes a factor of 10 at the top RHIC

energy
√
sNN = 200 GeV. However, the rigid centrality selection is absent for

the available RHIC fluctuation data. Due to this reason the participant number

fluctuations give a dominant contribution to ωi. On the other hand, for the SPS
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Figure 5.4: Upper panel. The scaled variances ωacc
± for central Pb+Pb collisions.

The squares with error bars are the NA49 data for 1% most central collisions
[131]. The dotted lines show the MCE HG model results calculated from full 4π
scaled variances using Eq. 5.6. The full circles present the HSD results in Pb+Pb
collisions for b = 0 with the NA49 experimental acceptance conditions, while the
open circles are obtained from the 4π HSD scaled variances using Eq. 5.6. Lower
panel. The MCE HG (dotted line) and HSD (full circles) results for the 4π scaled
variances ω± (the same as in Fig. 5.3 are shown for SPS energies.

data the small values of the acceptance, q = 0.04 ÷ 0.16, and 10% possible am-

biguities coming from Eq. 5.6 almost mask the difference between the HSD and

MCE results (Fig. 5.4, upper panel).

5.5 Summary of Chapter 5

The particle number fluctuations in central A+A collisions from 10 to 21300

AGeV have been studied within the HSD transport model. HSD predicts that the

scaled variances ωi in central A+A collisions remain close to the corresponding

values in p+p collisions and increase with collision energy as the multiplicity per

participating nucleon, i.e. ωi ∝ ni. The scaled variances ωi calculated within the
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statistical HG model along the chemical freeze-out line show a rather different

behavior: ωi approach finite values at high collision energy. At the top RHIC

energy
√
sNN = 200 GeV the HSD values for ωi(HSD) are already about 10

times larger than the corresponding MCE HG values for ωi(MCE).

Thus, the HSD and HG scaled variances ωi show a different energy dependence

and are very different numerically at high energies. However, a comparison with

preliminary NA49 data of very central, ≤ 1%, Pb+Pb collisions at the SPS

energy range does not distinguish between the HSD and MCE HG results. This

happens because of two reasons: First, the MCE HG and HSD results for ωi at

SPS energies are not too much different from each other and from ωi in p+p

collisions. Second, small experimental values of the acceptance, q = 0.04 ÷
0.16, and 10% possible ambiguities coming from the acceptance scaling relation

(Eq. 5.6) make the difference between the HSD and MCE HG results almost

invisible. New measurements of ωi for samples of very central A+A collisions

with large acceptance at both SPS and RHIC energies are needed to allow for a

proper determination of the underlying dynamics.
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Chapter 6

Multiplicity Fluctuations in

Nucleus-Nucleus Collisions:

Dependence on Energy and

Atomic Number

An ambitious experimental program for the search of the QCD critical point

has been started by the NA61 Collaboration at the SPS [8, 132]. The program

includes a variation in the atomic mass number A of the colliding nuclei as well

as an energy scan (see Fig. 6.1 taken from [133]). This allows to scan the phase

diagram in the plane of temperature T and baryon chemical potential µB near

the critical point as argued in Ref. [8, 132]. One expects to ‘locate’ the position of

the critical point by studying its ‘fluctuation signals’. High statistics multiplicity

fluctuation data will be taken for p+p, C+C, S+S, In+In, and Pb+Pb collisions

at bombarding energies of Elab=10, 20, 30, 40, 80, and 158 AGeV.

The aim of the chapter is to study the same energy and system size dependence

of event-by-event multiplicity fluctuations within the HSD microscopic transport

approach. The UrQMD calculations have been performed by Benjamin Lungwitz

[134] and are used here for comparison and completeness of the picture. Our

study thus is in full correspondence to the experimental program of the NA61

Collaboration [8, 132].

The QCD critical point is expected to be experimentally seen as a non-

monotonic dependence of the multiplicity fluctuations, i.e. a specific combination
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Figure 6.1: Left: The data sets on central A+A collisions planned to be registered
by NA61 in a search for the critical point of strongly interacting matter and
a study of the properties of the onset of deconfinement. Right: Hypothetical
positions of the chemical freeze-out points of the reactions (In+In, S+S, C+C and
p+p from bottom to top at 158A, 80A, 40A, 30A, 20A and 10A GeV from left to
right) to be studied by NA61 in the (temperature)-(baryon-chemical potential)
plane are shown by full dots. The open squares show the existing NA49 data.

of atomic mass number A and bombarding energy Elab could move the chemical

freeze-out of the system close to the critical point and show a ‘spike’ in the mul-

tiplicity fluctuations. Since HSD and UrQMD do not include explicitly a phase

transition from a hadronic to a partonic phase, a clear suggestion for the location

of the critical point can not been made – it is beyond the scope of such hadron-

string models. However, this study might be helpful in the interpretation of the

upcoming experimental data since it will allow to subtract simple dynamical and

geometrical effects from the expected QGP signal. The deviations of the future

experimental data from the HSD and UrQMD predictions may be considered as

an indication for the critical point signals.

Theoretical estimates give about 10% increase of the multiplicity fluctuations

due to the critical point [135, 42, 136]. It is large enough to be observed ex-

perimentally within the statistics of NA61 [8, 132]. To achieve this goal, it is

necessary to have a control on other possible sources of fluctuations. One of

such sources is the fluctuation of the number of nucleon participants. It has

been shown in Chapter 3 that these fluctuations give a dominant contribution

to hadron multiplicity fluctuations in A+A collisions. On the other hand one

can suppress the participant number fluctuations by selecting most central A+A
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collisions (see Ref. [91, 98] for details). That’s why the NA61 Collaboration plans

to measure central collisions of light and intermediate ions instead of peripheral

Pb+Pb collisions. It is important to stress, that the conditions for the centrality

selection in the measurement of fluctuations are much more stringent than those

for mean multiplicity measurements.

6.1 Multiplicity fluctuations in proton-proton

collisions
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Figure 6.2: The average multiplicity (left) and scaled variance (right) of charged
hadrons in p+p inelastic collisions. The open circles and squares (connected by
solid lines) show the results of HSD and UrQMD, respectively, whereas the full
circles present the experimental data from Ref. [96].

Fig. 6.2 shows the HSD and UrQMD results for inelastic p+p collisions in

comparison to the experimental data taken from Ref. [96]. Both models give a

good reproduction of the p+p data for 〈Nch〉, but slightly (over) underestimate

ωch at high collision energies. The differences between the HSD and UrQMD

model results for ωch can be attributed to different realizations of the string

fragmentation model, in particular, differences in the fragmentation functions

and the fragmentation scheme, i.e. fragmentation via heavy baryonic and mesonic

resonances in UrQMD and direct light hadron production by string fragmentation

in HSD.

For negative and positive charged hadrons the average multiplicities and scaled
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variances in p+p collisions can be presented in terms of the corresponding quan-

tities for all charged particles,

〈N±〉 =
1

2
(〈Nch〉 ± 2) , ω± =

1

2
ωch

〈Nch〉
〈Nch〉 ± 2

. (6.1)

Note, that the energy dependence of the measured charged multiplicity and

fluctuations for p+p collisions can be parametrized by Eq. 5.1.

6.2 Participant number fluctuations

To minimize the event-by-event fluctuations of the number of nucleon parti-

cipants in measuring the multiplicity fluctuations the NA49 Collaboration has

been trying to fix Nproj
P in Pb+Pb collisions. Samples of collisions with a

fixed number of projectile spectators, Nproj
S = const (and thus a fixed num-

ber of projectile participants, Nproj
P ), have been selected according to the criteria

|y − ybeam(target)| ≤ 0.32. This selection is possible in fixed target experiments at

the SPS, where Nproj
S is measured by a Zero Degree Veto Calorimeter covering

the projectile fragmentation domain. A similar centrality selection is expected

to be implemented in the future NA61 experiment. However, even in samples

with Nproj
P = const the number of target participants will fluctuate considerably.

Hence, an asymmetry between projectile and target participants is introduced,

i.e. Nproj
P is constant by constraint, whereas N targ

P fluctuates independently (the

consequences of this asymmetry have been discussed in Ref. [98]).

In each sample withNproj
P = const the number of target participants fluctuates

around its mean value with the scaled variance ωtarg
P . The mean value equals to

〈N targ
P 〉 ∼= Nproj

P , if Nproj
P is not too close to its limiting values, Nproj

P = 1 and

Nproj
P =A. The scaled variance of target participants ωtarg

P as a function of fixed

number of projectile participants Nproj
P has been obtained from HSD and UrQMD

in Chapter 3 for Pb+Pb collisions at 158 AGeV.

Fig. 6.3 presents the HSD scaled variances ωtarg
P for C+C, O+O, Ne+Ne,

S+S, In+In, and Pb+Pb collisions at 158 AGeV as a function of Nproj
P . The

fluctuations of N targ
P are quite strong for peripheral reactions (small Nproj

P ) and

negligible for the most central collisions (large Nproj
P ). A vanishing of ωtarg

P
∼= 0 at

Nproj
P

∼=A does not, however, show up in collisions of light nuclei (from C to S).

Even for the maximal values of Nproj
P = A the fluctuations ωtarg

P do not vanish and
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Figure 6.3: The scaled variance ωtarg
P for the fluctuations of the number of target

participants, N targ
P . The HSD simulations of ωtarg

P as a function of Nproj
P are

shown for different colliding nuclei, In+In, S+S, Ne+Ne, O+O and C+C at
Elab=158 AGeV.

increase with decreasing atomic mass number A. For example in C+C collisions

for Nproj
P = A = 12 the number of participants from the target still fluctuates

and the scaled variance amounts to ωtarg
P

∼= 0.25.

The temperature T and baryon chemical potential µB at the hadron chemical

freeze-out demonstrate the dependence on both the collision energy and system

size [137]. Thus, changing the number of participating nucleons one may scan

the T − µB plane. Some combination of NP and Elab might move the chemical

freeze-out point close the QCD critical point. One could then expect an increase

of multiplicity fluctuations in comparison to their ‘background values’.

Why does one need central collisions of light and intermediate ions instead of

studying peripheral Pb+Pb collisions for a search of the critical point? Fig. 6.3

explains this issue. At fixed Nproj
P the average total number of participants,

NP ≡ Nproj
P + N targ

P , is equal to 〈NP 〉 ∼= 2Nproj
P , and, thus, it fluctuates as

ωP = 0.5ωtarg
P . Then, for example, the value of Nproj

P
∼= 30 corresponds to almost

zero participant number fluctuations, ωP
∼= 0, in S+S collisions while ωP becomes

large and is close to 1 and 1.5 for In+In and Pb+Pb, respectively. Even if Nproj
P

is fixed exactly, the sample of the peripheral collision events in the heavy-ion
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case contains large fluctuations of the participant number: this would ‘mask’ the

critical point signals. As also seen in Fig. 6.3 (right), the picture becomes actually

more complicated if the atomic mass number A is too small. In this case, the

number of participants from a target starts to fluctuate significantly even for the

largest and fixed value of Nproj
P =A.

6.3 Multiplicity fluctuations at zero impact pa-

rameter

6.3.1 Centrality Selection in A+A Collisions by Impact

Parameter

The importance of a selection of the most central collisions for studies of

hadron multiplicity fluctuations has been stressed in our previous chapters. Due

to its convenience in theoretical studies (e.g., in hydrodynamical models) one

commonly uses the condition on impact parameter b, for the selection of the ‘most

central’ collisions in model calculations. However, the number of participant even

at b = 0 is not strictly fixed and fluctuates according to some distributions (cf.

Fig. 4.10). It should be stressed again that the conditions b < bmax can not be

fixed experimentally since the impact parameter itself can not be measured in

a straightforward way. Actually, in experiments one accounts for the 1%, 2%

etc. most central events selected by the measurement of spectators in the Veto

calorimeter, which corresponds to the event class with the largest Nproj
P . As it

will be demonstrated below the multiplicity fluctuations are very sensitive to the

centrality selection criteria. In particular, the transport model results for b = 0

and for 1% events with the largest Nproj
P are rather different (see below).

Let’s start with the b = 0 centrality selection criterium. Recall that the

charged multiplicity fluctuations are closely related to the fluctuations of the

number of participants (cf. Chapter 3). Therefore, it is useful to estimate the

average number of participants, 〈NP 〉, and the scaled variances of its fluctuations,

ωP , in A + A collision events which satisfy the b = 0 condition. The left panel

in Fig. 6.4 shows the ratio, 〈NP 〉/2A, in A +A collisions with b = 0 for different

nuclei at collision energies Elab = 10 and 158 AGeV. Both transport models (HSD

and UrQMD) show a monotonous increase of 〈NP 〉/2A with collision energy for
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Figure 6.4: Left: Mean 〈NP 〉, divided by the maximum number of participants
2A in events with b = 0 for different nuclei at collision energies Elab=10 and
158 AGeV. Right: The scaled variance ωP in events with b = 0 for different nuclei
at collision energies Elab=10 and 158 AGeV.

all nuclei in the energy range 10÷158 AGeV (Fig. 6.4, left). Correspondingly, the

fluctuations of the number of participants ωP for all nuclei become smaller with

increasing collision energy (Fig. 6.4, right.). As seen from Fig. 6.4 (left) about

90% of all nucleons are participants for Pb+Pb collisions with b = 0. This number

becomes essentially smaller, about 60-70%, for C+C collisions. One can therefore

expect that participant number fluctuations at b = 0 are small for heavy nuclei

but strongly increase for light systems. This is demonstrated in Fig. 6.4 (right):

ωP is about 0.1÷0.2 in Pb+Pb and In+In but becomes much larger, 0.5÷0.7, in

C+C collisions.

One can conclude that the condition b = 0 corresponds to ‘most central’

A + A collisions only for nuclei with large atomic mass number (In and Pb).

In this case the average number of participants is close to its maximum value

and its fluctuations are rather small. However, in the studies of event-by-event

multiplicity fluctuations in the collisions of light nuclei (C and S) the criterium

b = 0 is far from selecting the ‘most central’ A+ A collisions.
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6.3.2 HSD and UrQMD Results for the Multiplicity Fluc-

tuations for b=0

Results of HSD and UrQMD transport model calculations for the scaled vari-

ance of negative, ω−, positive, ω+, and all charged, ωch, hadrons are shown in

Fig. 6.5 and Fig. 6.6 at different collision energies, Elab = 10, 20, 30, 40, 80,

158 AGeV, and for different colliding nuclei, C+C, S+S, In+In, Pb+Pb. The

transport model results correspond to collision events for zero impact parameter,

b = 0. To make the picture more complete, the transport model results for inelas-

tic p+p collisions are shown too, for reference. Note that the proton spectators

are not accounted for in the calculation of N+ and Nch. Thus, proton spectators

do not contribute to ω+ and ωch.

One sees a monotonic dependence of the multiplicity fluctuations on both Elab

and A: the scaled variances ω−, ω+, and ωch increase with Elab and decrease with

A. The results for p+p collisions are different from those for light ions. Note that

within HSD and UrQMD a detailed comparison of the multiplicity fluctuations

in nucleon-nucleon inelastic collisions and b = 0 heavy-ion collisions (Pb+Pb and

Au+Au), including the energy dependence up to
√
sNN = 200 GeV, has been

presented in Chapter 5 and in Refs. [124, 138].

Fig. 6.5 corresponds to the full 4π acceptance, i.e. all particles are accepted

without any cuts in phase space. In actual experiments the detectors accept

charged hadrons in limited regions of momentum space. Fig. 6.6 shows the HSD

and UrQMD results for multiplicity fluctuations in the projectile hemisphere (i.e.

positive rapidities, y > 0 in the c.m. frame). This corresponds to the maximal

possible acceptance, up to 50% of all charged particles, by the optimized detectors

of the NA61 Collaboration [8, 132]. One observes from Fig. 6.6 that the energy

and system size dependencies of the multiplicity fluctuations in the projectile

hemisphere (y > 0) become less pronounced than in full 4π acceptance. Note

also that the centrality selection criterium b = 0 keeps the symmetry between the

projectile and target hemispheres. Thus, the results for a y < 0 acceptance are

identical to those for y > 0 presented in Fig. 6.6.
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Figure 6.5: The results of HSD (left) and UrQMD (right) simulations for ω− (top
panel), ω+ (middle panel), and ωch (lower panel) in p+p and central C+C, S+S,
In+In, Pb+Pb collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV. The condition
b = 0 is used here as a criterium for centrality selection. There are no cuts in
acceptance.

6.3.3 Comparison to the Independent Source Model

The multiplicity fluctuations in elementary nucleon-nucleon collisions and fluc-

tuations of the number of nucleon participants are presented in the right panels
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Figure 6.6: The same as in Fig. 6.5, but only hadrons with positive c.m. rapidi-
ties, y > 0 (projectile hemisphere), are accepted.

of Fig. 6.2 and Fig. 6.4, respectively. Their combination explains the main fea-

tures of hadron multiplicity fluctuations in A + A collisions shown in Fig. 6.5

and Fig. 6.6, in particular, the dependence on collision energy and atomic mass

number. They also are responsible for the larger values of ωi in the UrQMD sim-

ulations in comparison to those from HSD. To illustrate this the wounded nuclear

model, WNM (see subsection 3.2.3) is considered.
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The multiplicity fluctuations in A+A collisions can be then written according

to the WNM as:

ωi = ω∗
i + ni ωP , (6.2)

where ω∗
i denotes the fluctuations of the hadron multiplicity from one source and

the term ni ωP gives additional fluctuations due to the fluctuations of the num-

ber of sources. One usually assumes that the number of sources is proportional

to the number of nucleon participants. The value of ni in Eq. 6.2 then is the

average number of i’th particles per participant, ni = 〈Ni〉/〈NP 〉, and ωP equals

the scaled variance for the number of nucleon participants. Nucleon-nucleon col-

lisions, which are the weighted combinations of p+p, p+n, and n+n reactions,

define the fluctuations ω∗
i from a single source (see details in Refs. [91, 124]).
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Figure 6.7: The left panel illustrates the energy dependence of ω− in S+S collisions
at b = 0 in the full 4π acceptance, the right panel – the ω− dependence on atomic
mass number at Elab=80 AGeV. The HSD results are shown by the squares while
the circles correspond to Eq. 6.2 of the wounded nuclear model. The stars show
the first term, ω∗

−, in the right. of Eq. 6.2 – scaled variance for negative hadrons
in nucleon-nucleon collisions, where the values of ω∗

−, ni, and ωP are calculated
within HSD.

In Fig. 6.7 the HSD results for ωi in A+A collisions at b = 0 are compared to

the WNM – Eq. 6.2. One concludes that the transport model results for the mul-

tiplicity fluctuations are in qualitative agreement with Eq. 6.2 of the independent

source model. Both ni and ω∗
i increase strongly with collision energy as seen from

Fig. 6.2. This explains, due to Eq. 6.2, the monotonous increase with energy of
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the scaled variances ωi in A + A collisions at b = 0 seen in Fig. 6.5 and Fig. 6.6.

Note that ωP at b = 0 decreases with collision energy as shown in Fig. 6.4, right.

This, however, does not compensate a strong increase of both ni and ω∗
i . The

atomic mass number dependence of the scaled variances ωi in A + A collisions

with b = 0 follows from the A-dependence of ωP . Fig. 6.4 (right) demonstrates a

strong increase of ωP for light nuclei. This, due to Eq. 6.2, is transformed to the

corresponding behavior of ωi seen in Fig. 6.5 and Fig. 6.6.

6.4 Multiplicity fluctuations in 1% most central

collisions

In this section the centrality selection procedure by fixing the number of pro-

jectile participants Nproj
P is concidered. This corresponds to the real situation

of A + A collisions in fixed target experiments. As a first step one simulates in

HSD and UrQMD the minimal bias events - which correspond to an all impact

parameter sample - and calculate the event distribution over the number of par-

ticipants Npart. Then, one selects 1% most central collisions which correspond to

the largest values of Nproj
P . In such a sample of A+A collisions events with largest

Nproj
P from different impact parameters can contribute. After that one calculates

the values of ωP in these samples. Note, that even for a fixed number of Nproj
P

the number of target participants N targ
P fluctuates. Thus, the total number of

participants NP = N targ
P + Nproj

P fluctuates, too. In our 1% sample, both N targ
P

and Nproj
P fluctuate. Besides there are correlations between N targ

P and Nproj
P .

Fig. 6.8 shows the ratio 〈NP 〉/2A and the scaled variance, ωP , for 1% most

central collisions selected by the largest values of Nproj
P . These results are com-

pared with those for the b = 0 centrality selection. For heavy nuclei, like In and

Pb, one finds no essential differences between these two criteria of centrality se-

lection. However, the 1% centrality trigger defined by the largest values of Nproj
P

looks much more rigid for light ions (S and C). In this case the ratio 〈NP 〉/2A
is larger, and ωP is essentially smaller than for the criterion b = 0. As a result

the 1% centrality trigger by the largest values of Nproj
P leads to a rather weak

A-dependence of ωP .

Some comments are appropriate at this point. Let’s define the centrality

c(N) as a percentage of events with a multiplicity larger than N (this can be
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Figure 6.8: The HSD (left) and UrQMD (right) results for the ratio 〈NP 〉/2A
(the upper panel) and the scaled variance of the participant number fluctuations,
ωP (the lower panel), for the 1% most central collisions selected by the largest
values of Nproj

P (full symbols), for different nuclei at collision energies Elab=10
and 158 AGeV. The open symbols present the results of Fig. 6.4 (right) for b = 0.

the number of produced hadrons, number of participants, etc.). It was argued in

Ref. [139] that a selection of c(N) of most central A + A collisions is equivalent

to restricting the impact parameter, b < b(N), with,

b(N) =

√
σinel

π
c(N) , (6.3)

where σinel is the total inelastic A+A cross section. Thus, the centrality criterion

by the multiplicity N is equivalent to the geometrical criterion by the impact

parameter b. Moreover, the result (Eq. 6.3) does not depend on the specific ob-

servable N used to define the c-percentage of most central A+A collisions. Eq. 6.3
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should remain the same for any observable N which is a monotonic function of b.

Therefore, the relation (Eq. 6.3) reduces any centrality selection to the geomet-

rical one. This result was obtained in Ref. [139] by neglecting the fluctuations of

multiplicity N at a given value of b. This is valid if c is not too small and the

colliding nuclei are not too light. In the sample of A+A events with 1% of largest

Nproj
P , the relation (Eq. 6.3) can not be applied for S+S and C+C collisions.
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Figure 6.9: The dependence of ω− on atomic mass number at Elab=80 AGeV for
the HSD (left) and UrQMD (left) simulations. The squares correspond to b = 0,
and circles to 1% largest Nproj

P .

Fig. 6.9 shows a comparison of the A-dependence of ω− in the transport mod-

els for two different samples of the collision events: for b = 0 and for the 1% of

events with largest Nproj
P values. One can see that the multiplicity fluctuations

are rather different in these two samples. Moreover, these differences are in the

opposite directions for heavy nuclei and for light nuclei. For light nuclei, ω− is

essentially smaller in the 1% sample with largest Nproj
P values, whereas for heavy

nuclei the smaller fluctuations correspond to b = 0 events. Note that in the 1%

sample with largest Nproj
P values the A-dependence of multiplicity fluctuations be-

comes much weaker. In this case a strong increase of the multiplicity fluctuations

for light nuclei, seen for b = 0, disappears.

For the 1% most central A+A collision events - selected by the largest values

of Nproj
P - the HSD multiplicity fluctuations are shown in Fig. 6.10 and Fig. 6.12

and the corresponding UrQMD results are shown in Fig. 6.11 and Fig. 6.13. The

results from both models are also presented in Table Table 6.1. The model un-

certainties are shown as errorbars in Fig. 6.10 and Fig. 6.11. For light nuclei (S
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and C) the multiplicity fluctuations in the samples of 1% most central collisions

are smaller than in the b = 0 selection and the atomic mass number dependencies

become less pronounced (compare Fig. 6.10 and Fig. 6.11 with Fig. 6.5). This

is because the participant number fluctuations ωP have now essentially smaller

A-dependence, as seen in Fig. 6.8.

Fig. 6.5 shows that both HSD and UrQMD predict a monotonic dependence

of the charge particle multiplicity with energy. So, the hadronic ‘background’ for

the NA61 experiments is expected to be a smooth monotonic function of beam

energy.

Besides of differences in the realization of the string fragmentation model in

HSD and UrQMD 1.3 mentioned above (cf. Fig. 3.4), additional deviations can

be attributed to different initializations of the nuclei in both models. Indeed, the

event-by-event observables show a higher sensitivity to the initial nucleon density

distribution than the standard single particle observables [140]. A pilot study

using UrQMD shows different ω when applying different initialization shapes.

Due to this effects a systematic error of 20% is attributed to ω. Such a sensitivity

of the A-dependence of ωch to the details of the models indicates a necessity for

further studies of the initializations of the nuclei in transport model approaches.

This becomes important for the theoretical interpretation of future experimental

data on event-by-event fluctuations.

Note that the wounded nuclear model and Eq. 6.2 work for the multiplicity

fluctuations simulated by the transport models in full 4π acceptance but not for

the acceptance in a specific rapidity region. The results for inelastic p+p collisions

are identical in the projectile and target hemispheres. This is not the case in the

sample of 1% most central A+ A collisions selected by Nproj
P . The total number

of nucleons participating in A + A collisions fluctuates. These fluctuations are

not symmetric in forward-backward hemispheres: in the selected 1% sample the

number of target participants N targ
P fluctuates essentially stronger than that of

Nproj
P . The consequences of the asymmetry in an event selection depend on the

dynamics of A+A collision (see Ref. [98] for details). The HSD and UrQMD

results in Fig. 6.12 and Fig. 6.13 clearly demonstrate larger values for all scaled

variances, ω−, ω+, and ωch, for y < 0 acceptance than those for y > 0 one. This

is due to stronger target participant fluctuations, ωtarg
P > ωproj

P .
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Figure 6.10: The HSD results for ω− (upper panel), ω+ (middle panel), and ωch

(lower panel) in A + A and p+p collisions for the full 4π acceptance in 3D (left)
and 2D (right.) projection. The 1% most central C+C, S+S, In+In, and Pb+Pb
collisions are selected by choosing the largest values of Nproj

P at different collision
energies Elab=10, 20, 30, 40, 80, 158 AGeV. The errorbars indicate the estimated
uncertainties in the model calculations. The HSD results from inelastic p+p
collisions are the same as in Fig. 6.5.
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Figure 6.11: The same as in Fig. 6.10, but for the UrQMD.

6.5 Summary of Chapter 6

The event-by-event multiplicity fluctuations in nucleus-nucleus collisions have

been studied for different energies and system sizes within the HSD transport ap-

proach. For comparison the corresponding results from the UrQMD v1.3 model

have been presented also. This study is in full correspondence to the future ex-

perimental program of the NA61 Collaboration at the SPS. The central C+C,
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HSD: full acc. HSD: y > 0
- + ch - + ch

p
+

p

10
20
30
40
80

158

0.74 0.17 0.54
0.75 0.25 0.74
0.79 0.30 0.87
0.82 0.34 0.96
0.92 0.45 1.21
1.04 0.58 1.49

0.85 0.33 0.53
0.83 0.39 0.68
0.83 0.42 0.77
0.84 0.44 0.82
0.88 0.49 0.96
0.94 0.58 1.16

C
+

C

10
20
30
40
80

158

0.64 0.50 1.02
0.69 0.57 1.18
0.76 0.64 1.34
0.81 0.69 1.44
0.97 0.86 1.79
1.20 1.07 2.23

0.73 0.53 0.77
0.73 0.56 0.86
0.74 0.58 0.91
0.74 0.62 0.97
0.82 0.69 1.16
0.94 0.78 1.39

S
+

S

10
20
30
40
80

158

0.61 0.48 0.99
0.66 0.55 1.14
0.79 0.68 1.41
0.86 0.75 1.54
1.01 0.89 1.85
1.28 1.15 2.39

0.72 0.52 0.76
0.70 0.56 0.83
0.76 0.59 0.94
0.80 0.62 1.01
0.83 0.70 1.17
0.96 0.79 1.41

In
+

In

10
20
30
40
80

158

0.56 0.45 0.94
0.62 0.53 1.10
0.67 0.59 1.22
0.76 0.68 1.41
0.94 0.84 1.75
1.18 1.08 2.24

0.71 0.54 0.77
0.68 0.56 0.82
0.69 0.60 0.87
0.74 0.63 0.98
0.80 0.70 1.13
0.93 0.80 1.38

P
b
+

P
b

10
20
30
40
80

158

0.54 0.45 0.93
0.58 0.51 1.05
0.66 0.58 1.20
0.71 0.64 1.33
0.89 0.80 1.67
1.08 1.00 2.07

0.68 0.56 0.76
0.69 0.59 0.82
0.69 0.63 0.90
0.75 0.64 0.98
0.77 0.71 1.11
0.93 0.80 1.34

Table 6.1: The HSD scaled variances ω−, ω+, and ωch for the 1% of most central
collisions selected by largest values of Nproj

P . The numbers correspond to those
presented in Fig. 6.10 and Fig. 6.12.

S+S, In+In, and Pb+Pb nuclear collisions from Elab= 10, 20, 30, 40, 80,

158 AGeV have been investigated. The influence of participant number fluctu-
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Figure 6.12: The same as in Fig. 6.10, but for final hadrons accepted in the
projectile hemisphere, y > 0 (left), and in the target hemisphere, y < 0 (right).
The HSD results in inelastic p+p collisions are the same as in Fig. 6.6.

ations on hadron multiplicity fluctuations has been emphasized and studied in

detail. To make these ‘trivial’ fluctuations smaller, one has to consider the most

central collisions. Indeed, one needs to make a very rigid selection – 1% or smaller

– of the ‘most central’ collision events. In addition, one wants to compare the

event-by-event fluctuations in these ‘most central’ collisions for heavy and for



122 Chapter 6: NA61

Figure 6.13: The same as in Fig. 6.12, but for the UrQMD.

light nuclei. Under these new requirements different centrality selections are not

equivalent to each other. As a consequence, there is no universal geometrical

selection by the impact parameter. This is a new and serious problem for theo-

retical models (e.g., for hydrodynamical models) in a precision description of the

event-by-event fluctuation data. The above statements have been illustrated by

the b = 0 selection criterium considered in this work. For light nuclei even these

‘absolutely central’ geometrical collisions lead to rather large fluctuations of the



6.5 Summary of Chapter 6 123

number of participants, essentially larger than in the 1% most central collisions

selected by the largest values of the projectile participants Nproj
P .

Furthermore, the number of projectile participants has been used to define

the centrality selection. This is the most promising way of the centrality selec-

tion in fixed target experiments. It also corresponds to the experimental plans

of the NA61 collaboration. The 1% most central collisions has been defined by

selecting the largest values of the projectile participants Nproj
P . The multiplicity

fluctuations calculated in these samples show a much weaker dependence on the

atomic mass number A than for the criterium b = 0. A monotonic energy depen-

dence for the multiplicity fluctuations is obtained in both the HSD and UrQMD

transport models. The two models demonstrate a similar qualitative behavior of

the particle number fluctuations. However, the UrQMD 1.3 results for the scaled

variances ω−, ω+, and ωch are systematically larger than those obtained within

HSD. This is mainly due to the corresponding inequalities for the scaled vari-

ances ωch (see Fig. 6.2, right) for p+p collisions in these models. This study has

demonstrated a sensitivity of the multiplicity fluctuations to some specific details

of the transport models. Nevertheless, the present HSD and UrQMD results for

the scaled variances provide a general trend of their dependencies on A and Elab

and also indicate quantitatively the systematic uncertainties.

It has to be stressed again, that HSD and UrQMD do not include explicitly

a phase transition to the QGP. The expected enhanced fluctuations - attributed

to the critical point and phase transition - can be observed experimentally on

top of a monotonic and smooth ‘hadronic background’. The most promising sig-

nature of the QCD critical point would be an observation of a non-monotonic

dependence of the scaled variances with bombarding energy Elab for central A+A

collisions with fixed atomic mass number. In the fixed target SPS experiments

the centrality selection in A+A collisions is defined by the number of the pro-

jectile participants. The measurements of ω−, ω+, and ωch are then preferable

in the forward hemispheres. In this case the remaining small fluctuations of the

number of target participants in the 1% most central collisions become even less

important, as they contribute mainly to the particle fluctuations in the backward

hemisphere. These findings should be helpful for the optimal choice of collision

systems and collision energies for the experimental search of the QCD critical

point.
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Chapter 7

Ratio Fluctuations in

Nucleus-Nucleus Collisions:

Statistical and Transport Models

Several hadronic observables in central Pb+Pb collisions show qualitative

changes in their energy dependence. The ratio of average 〈K+〉 to 〈π+〉 yields ex-

hibits a non-monotonic behavior in the low-energy SPS range close to
√
s

NN
≈ 7.6

GeV [141]. In the same energy range, the slopes of the hadron transverse mo-

mentum distributions show an approximately constant value after a rapid rise at

lower energies [142]. These features are not observed in elementary interactions

and appear to be unique characteristics of heavy-ion collisions. The data are con-

sistent with the expected signals of the onset of a phase transition in heavy-ion

collisions at low SPS energies [141, 120].

The measurement of the fluctuations in the kaon to pion ratio by the NA49

Collaboration [143] was the first event-by-event measurement in nucleus-nucleus

collisions. It was suggested that this ratio might allow to distinguish events with

enhanced strangeness production attributed to the QGP phase. Nowadays, the

excitation function for this observable is available in a wide range of energies: from

the NA49 collaboration [144] in Pb+Pb collisions at the CERN SPS and from

the STAR collaboration [145, 146] in Au+Au collisions at RHIC. Results from

NA49 show an enhancement of fluctuations in the kaon to pion multiplicity ratio

for low energies which may be a signal of a deconfinement phase transition. On

the other hand there is no enhancement for the proton to pion ratio fluctuations.
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First statistical model estimates of the K/π fluctuations have been reported

in Refs. [147, 148]. A further statistical model analysis has been presented in

Fig. 7.1 and Ref. [149]. One should mention again the complexity of applying

experimental acceptance cuts to the statistical model results. The lower panel of

Fig. 7.1 shows K/π fluctuations only in full acceptance with and without corre-

lation between kaons and pions (full and empty symbols). Chemical equilibrium

has been tested using the parameter γq. The equilibrium case (γq = 1, boxes

in the figure) under-estimates the K/π fluctuations at all energies, while the

non-equilibrium case (when γq is fitted, triangles) describes the higher energies

SPS and RHIC acceptably. It, however, considerably under-estimates the data

at lower SPS energies. The results from the transport model UrQMD have been

presented in Ref. [150] for the SPS energy range. It is also fails to explain the

rise of K/π fluctuations for low SPS energies (sf. section 7.4).
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Figure 7.1: The excitation function of the K/π ratio (top panel) and ratio fluctu-
ations (low panel) within statistical model calculations. The figure is taken from
Ref. [149].

This chapter presents the results of a systematic study of K/π, K/p and p/π

ratio fluctuations based on the HSD transport model in comparison to statistical

model results in different ensembles [151, 152]. The statistical model calculations

have been performed by M. Hauer and shown here for completeness and relative
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comparison.

7.1 Measures of Particle Ratio Fluctuations

7.1.1 Notations and Approximations

Let’s introduce some notations. The deviation ∆NA from the average num-

ber 〈NA〉 of the particle species A is defined by NA = 〈NA〉 + ∆NA, while the

covariance for species A and B is:

∆ (NA, NB) ≡ 〈∆NA∆NB〉 = 〈NANB〉 − 〈NA〉〈NB〉 , (7.1)

the scaled variance

ωA ≡ ∆ (NA, NA)

〈NA〉
=

〈(∆NA)2〉
〈NA〉

=
〈N2

A〉 − 〈NA〉2
〈NA〉

, (7.2)

and the correlation coefficient

ρAB ≡ 〈∆NA ∆NB〉
[
〈(∆NA)2〉 〈(∆NB)2〉

]1/2
. (7.3)

The fluctuations of the ratio RAB ≡ NA/NB will be characterised by [147, 148]

σ2 ≡ 〈(∆RAB)2〉
〈RAB〉2

. (7.4)

Using the expansion,

NA

NB
=

〈NA〉 + ∆NA

〈NB〉 + ∆NB
=

〈NA〉 + ∆NA

〈NB〉
×

[

1 − ∆NB

〈NB〉
+

(
∆NB

〈NB〉

)2

− · · ·
]

, (7.5)
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one finds to second order in ∆NA/〈NA〉 and ∆NB/〈NB〉 the average value and

fluctuations of the A to B ratio:

〈RAB〉 ∼= 〈NA〉
〈NB〉

[

1 +
ωB

〈NB〉
− ∆ (NA, NB)

〈NA〉〈NB〉

]

, (7.6)

σ2 ∼= ∆ (NA, NA)

〈NA〉2
+

∆ (NB, NB)

〈NB〉2
− 2

∆ (NA, NB)

〈NA〉〈NB〉

=
ωA

〈NA〉
+

ωB

〈NB〉
− 2ρAB

[
ωAωB

〈NA〉〈NB〉

]1/2

. (7.7)

If species A and B fluctuate independently according to the Poisson distribu-

tions (this takes place, for example, in the GCE for an ideal Boltzmann gas) one

finds, ωA = ωB = 1 and ρAB = 0. Eq. 7.7 then reads

σ2 =
1

〈NA〉
+

1

〈NB〉
. (7.8)

In a thermal gas, the average multiplicities are proportional to the system volume

V . Eq. 7.8 demonstrates then a simple dependence σ2 ∝ 1/V on the system

volume.

A few examples concerning to Eq. 7.7 are appropriate here. When 〈NB〉 ≫
〈NA〉, e.g., A = K+ +K− and B = π+ +π−, the σ2 (Eq. 7.7) is dominated by the

less abundant particles and the resonances decaying into it. When 〈NA〉 ∼= 〈NB〉,
e.g., A = π+ and B = π−, the correlation term in Eq. 7.7 may become especially

important. A resonance decaying always into a π+π−-pair does not contribute

to σ2 (Eq. 7.7), but contributes to π+ and π− average multiplicities. This leads

[148] to a suppression of σ2 (Eq. 7.7) in comparison to its value given by Eq. 7.8.

For example, if all π+ and π− particles come by pairs from decay of resonances,

one finds the correlation coefficient ρπ+π− = 1 in Eq. 7.7, and thus σ2 = 0. In

this case, the numbers of π+ and π− fluctuate as the number of resonances, but

the ratio π+/π− does not fluctuate!
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7.1.2 Mixed Events Procedure

The experimental data for NA/NB fluctuations are usually presented in terms

of the so called dynamical fluctuations [153]1

σdyn ≡ sign
(
σ2 − σ2

mix

) ∣
∣σ2 − σ2

mix

∣
∣
1/2

, (7.9)

where σ2 is defined by Eq. 7.7, and σ2
mix corresponds to the following mixed events

procedure2. One takes a large number of nucleus-nucleus collision events, and

measures the numbers of NA and NB in each event. Then all A and B particles

from all events are combined into one set. A construction of mixed events is

done like the following: One fixes a random number N = NA + NB according

to the experimental probability distribution P (N), takes randomly N particles

(A and/or B) from the whole set, fixes the values of NA and NB, and returns

these N particles into the set. This is the mixed event number one. Then one

constructs event number 2, number 3, etc.

Note that the number of events is much larger than the number of hadrons, N ,

in any single event. Therefore, the probabilities pA and pB = 1 − pA to take the

A and B species from the whole set can be considered as constant values during

the event construction. Another consequence of a large number of events is the

fact that all A and B particles in any constructed mixed event most probably

belong to different physical events of nucleus-nucleus collisions. Therefore, the

correlations between NB and NA numbers in a physical event are expected to

be destroyed in a mixed event. This is the main purpose of the mixed events

construction. For any function f of NA and NB the mixed events averaging is

then defined as,

〈f(NA, NB)〉mix =
∑

N

P (N)
∑

NA,NB

f(NA, NB) ×

δ(N −NA −NB)
(NA +NB)!

NA!NB!
pNA

A pNB

B . (7.10)

The straightforward calculation of mixed averages (Eq. 7.10) can be simplified by

1Other dynamical measures, Φ [114, 154] and F [148], can be also used.
2 The idealized mixed events procedure appropriate for model analysis is described here.

The real experimental mixed events procedure is more complicated and includes experimental
uncertainties, such as particle identification etc.
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introducing the generating function Z(x, y),

Z(x, y) ≡
∑

N

P (N)
∑

NA,NB

δ(N −NA −NB)
(NA +NB)!

NA! NB!
(xpA)NA (ypB)NB

=
∑

N

P (N) (xpA + ypB)N . (7.11)

The averages (Eq. 7.10) are then expressed as x- and y-derivatives of Z(x, y) at

x = y = 1. One finds:

〈NA〉mix =

(
∂Z

∂x

)

x=y=1

= pA 〈N〉 ,

〈NB〉mix =

(
∂Z

∂y

)

x=y=1

= pB 〈N〉 , (7.12)

〈NA(NA − 1)〉mix =

(
∂2Z

∂2x

)

x=y=1

= p2
A 〈N(N − 1)〉 , (7.13)

〈NB(NB − 1)〉mix =

(
∂2Z

∂2y

)

x=y=1

= p2
B 〈N(N − 1)〉 , (7.14)

〈NANB〉mix − 〈NA〉mix〈NB〉mix =

(
∂2Z

∂x∂y

)

x=y=1

= pApB ωN 〈N〉 , (7.15)

where

〈N〉 ≡
∑

N

N P (N) ,

〈N2〉 ≡
∑

N

N2 P (N) ,

ωN ≡ 〈N2〉 − 〈N〉2
〈N〉 . (7.16)

Calculating the NA/NB fluctuations for mixed events according to Eq. 7.7 one
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gets:

σ2
mix ≡ ∆mix (NA, NA)

〈NA〉2
+

∆mix (NB, NB)

〈NB〉2
− 2

∆mix (NA, NB)

〈NA〉〈NB〉

=

[
1

〈NA〉
+

ωN − 1

〈N〉

]

+

[
1

〈NB〉
+

ωN − 1

〈N〉

]

− 2
ωN − 1

〈N〉

=
1

〈NA〉
+

1

〈NB〉
. (7.17)

A comparison of the final result in Eq. 7.17 with Eq. 7.8 shows that the mixed

event procedure gives the same σ2 for NA/NB fluctuations as in the GCE formu-

lation for an ideal Boltzmann gas, i.e. ωA = ωB = 1 and ρAB = 0. If ωN = 1

(e.g., for the Poisson distribution P (N)), one indeed finds ωmix
A = ωmix

B = 1 and

ρmix
AB = 0. Otherwise, if ωN 6= 1, the mixed events procedure leads to ωmix

A 6= 1,

ωmix
B 6= 1, and to non-zero NANB correlations, as seen from the second line of

Eq. 7.17. However, the final result for σ2
mix (Eq. 7.17) is still the same simple. It

does not depend on the specific form of P (N). Non-trivial (ωmix
A,B 6= 1) fluctua-

tions of NA and NB as well as non-zero ρmix
AB correlations may exist in the mixed

events procedure, but they are canceled out exactly in σ2
mix.

7.2 Fluctuations of Ratios in Statistical Models

7.2.1 Quantum Statistics and Resonance Decays

The occupation numbers, np,j , of single quantum states (with fixed projection

of particle spin) labeled by the momentum vector p are equal to np,j = 0, 1, . . . ,∞
for bosons and np,j = 0, 1 for fermions. Their average values are

〈np,j〉 =
1

exp [(ǫpj − µj) /T ] − αj

, (7.18)

and their fluctuations read

〈 (∆np,j)
2 〉gce ≡ 〈(np,j − 〈np,j〉)2〉gce

= 〈np,j〉 (1 + αj 〈np,j〉) ≡ v2
p,j , (7.19)
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where T is the system temperature, mj is the mass of a particle j and ǫpj =
√

p2 +m2
j is the single particle energy. A value of αj depends on quantum

statistics, it is +1 for bosons and −1 for fermions, while αj = 0 gives the

Boltzmann approximation. The chemical potential µj of a species j equals to:

µj = qj µQ + bj µB + sj µS, where qj , bj , sj are the particle electric charge,

baryon number, and strangeness, respectively, while µQ, µB, µS are the corre-

sponding chemical potentials which regulate the average values of these global

conserved charges in the GCE.

In the equilibrium hadron-resonance gas the mean number of primary particles

(or resonances) are calculated as:

〈N∗
j 〉 ≡

∑

p

〈np,j〉 =
gjV

2π2

∫ ∞

0

p2dp 〈np,j〉 , (7.20)

where V is the system volume and gj is the degeneracy factor of a particle of

species j (the number of spin states). In the thermodynamic limit, V → ∞, the

sum over the momentum states can be substituted by a momentum integral.

It is convenient to introduce a microscopic correlator, 〈∆np,j∆nk,i〉, which in

the GCE has a simple form:

〈∆np,j ∆nk,i〉gce = υ2
p,j δij δpk . (7.21)

Hence there are no correlations between different particle species, i 6= j, and/or

between different momentum states, p 6= k. Only the Bose enhancement, v2
p,j >

〈np,j〉 for αj = 1, and the Fermi suppression, v2
p,j < 〈np,j〉 for αj = −1, exist

for fluctuations of primary particles in the GCE. The correlator (Eq. 7.1) can be

presented in terms of microscopic correlators (Eq. 7.21):

〈∆N∗
j ∆N∗

i 〉gce =
∑

p,k

〈∆np,j ∆nk,i〉gce = δij
∑

p

v2
p,j . (7.22)

In the case of i = j the above equation gives the variance of primordial particles

(before resonance decays) in the GCE.

For the hadron resonance gas – formed in relativistic A+A collisions – the

corrections due to quantum statistics (Bose enhancement and Fermi suppression)
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are small3. For the pion gas at T = 160 MeV, one finds ωπ
∼= 1.1, instead of

ω = 1 for Boltzmann particles. The quantum statistics effects are even smaller

for heavier particles like kaons and almost negligible for resonances.

The average final (after resonance decays) multiplicities 〈Ni〉 are equal to:

〈Ni〉 = 〈N∗
i 〉 +

∑

R

〈NR〉〈ni〉R . (7.23)

In Eq. 7.23, N∗
i denotes the number of stable primary hadrons of species i, the

summation
∑

R runs over all types of resonances R, and 〈ni〉R ≡
∑

r b
R
r n

R
i,r is

the average over resonance decay channels. The parameters bRr are the branching

ratios of the r-th branches, nR
i,r is the number of particles of species i produced in

resonance R decays via a decay mode r. The index r runs over all decay channels

of a resonance R with the requirement
∑

r b
R
r = 1. In the GCE the correlator

(Eq. 7.1) after resonance decays can be calculated as [148]:

〈∆NA∆NB〉gce = 〈∆N∗
A∆N∗

B〉gce

+
∑

R

[
〈∆N2

R〉〈nA〉R〈nB〉R + 〈NR〉〈∆nA∆nB〉R
]
, (7.24)

where 〈∆nA ∆nB〉R ≡
∑

r b
R
r n

R
A,rn

R
B,r − 〈nA〉R〈nB〉R .

7.2.2 Global Conservation Laws

In the MCE, the energy and conserved charges are fixed exactly for each mi-

croscopic state of the system. This leads to two modifications in comparison with

the GCE. First, additional terms appear for the primordial microscopic correla-

tors in the MCE. They reflect the (anti)correlations between different particles,

i 6= j, and different momentum levels, p 6= k, due to charge and energy conser-

3Possible strong Bose effects are discussed in Ref. [155, 156]
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vation in the MCE [129],

〈∆np,j∆nk,i〉mce = υ2
p,j δij δpk −

υ2
p,jv

2
k,i

|A| [ qiqjMqq + bibjMbb + sisjMss

+ (qisj + qjsi)Mqs − (qibj + qjbi)Mqb − (bisj + bjsi)Mbs

+ ǫpjǫkiMǫǫ − (qiǫpj + qjǫki)Mqǫ + (biǫpj + bjǫki)Mbǫ

− (siǫpj + sjǫki)Msǫ ] , (7.25)

where |A| is the determinant and Mij are the minors of the following matrix,

A =









∆(q2) ∆(bq) ∆(sq) ∆(ǫq)

∆(qb) ∆(b2) ∆(sb) ∆(ǫb)

∆(qs) ∆(bs) ∆(s2) ∆(ǫs)

∆(qǫ) ∆(bǫ) ∆(sǫ) ∆(ǫ2)









, (7.26)

with the elements, ∆(q2) ≡ ∑

p,j q
2
jυ

2
p,j , ∆(qb) ≡ ∑

p,j qjbjυ
2
p,j , ∆(qǫ) ≡

∑

p,j qjǫpjυ
2
p,j , etc. The sum,

∑

p,j , means integration over momentum p,

and the summation over all hadron-resonance species j contained in the model.

The first term in the r.h.s. of Eq. 7.25 corresponds to the microscopic corre-

lator (Eq. 7.21) in the GCE. Note that the presence of the terms containing a

single particle energy, ǫpj =
√

p2 +m2
j , in Eq. 7.25 is a consequence of energy

conservation. In the CE only charges are conserved, thus the terms containing

ǫpj in Eq. 7.25 are absent. The A in Eq. 7.26 becomes then a 3 × 3 matrix

(see Ref. [130]). An important property of the microscopic correlator method is

that the particle number fluctuations and the correlations in the MCE or CE,

although being different from those in the GCE, are expressed by quantities cal-

culated within the GCE. The microscopic correlator (Eq. 7.25) can be used to

calculate the primordial particle (or resonances) correlator in the MCE (or in the

CE):

〈∆Ni ∆Nj 〉mce =
∑

p,k

〈∆np,i ∆nk,j〉mce . (7.27)

A second feature of the MCE (or CE) is the modification of the resonance

decay contribution to the fluctuations in comparison to the GCE (Eq. 7.24). In
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the MCE (or CE) it reads[130, 129]:

〈∆NA ∆NB〉mce = 〈∆N∗
A∆N∗

B〉mce

+
∑

R

〈NR〉 〈∆nA ∆nB〉R

+
∑

R

〈∆N∗
A ∆NR〉mce 〈nB〉R

+
∑

R

〈∆N∗
B ∆NR〉mce 〈nA〉R

+
∑

R,R′

〈∆NR ∆NR′〉mce 〈nA〉R 〈nB〉R′ . (7.28)

Additional terms in Eq. 7.28 compared to Eq. 7.24 are due to correlations (for

primordial particles) induced by energy and charge conservations in the MCE.

The Eq. 7.28 has the same form in the CE [130] and MCE [129], the difference

between these two ensembles appears because of different microscopic correla-

tors (Eq. 7.25). The microscopic correlators of the MCE together with Eq. 7.27

should be used to calculate the correlators 〈∆N∗
A∆N∗

B〉mce , 〈∆N∗
A ∆NR〉mce ,

〈∆N∗
A ∆NR〉mce , 〈∆N∗

B ∆NR〉mce , and 〈∆NR ∆NR′〉mce entering in Eq. 7.28.

The correlators (Eq. 7.28) define finally the scaled variances ωA and ωB (Eq. 7.2),

and correlations ρAB (Eq. 7.3) between NA and NB numbers. Together with the

average multiplicities 〈NA〉 and 〈NB〉 they define completely the fluctuations σ2

(Eq. 7.7) in the particle A and B number ratio.

7.3 Statistical and HSD model results

This section presents the results of HSD transport model and the hadron-

resonance gas statistical model (SM) for the multiplicity fluctuations of pions,

kaons, protons and their ratios in central nucleus-nucleus collisions. To carry

out the SM calculations one has to fix the chemical freeze-out parameters.

The dependence of µB on the collision energy is parameterized as in Ref [157]:

µB

(√
sNN

)
= 1.308 GeV · (1 + 0.273

√
sNN)−1 , where the c.m. nucleon-nucleon

collision energy,
√
sNN , is taken in units of GeV. The system is assumed to be

net strangeness free, i.e. S = 0, and to have the charge to baryon ratio of the

initial colliding nuclei, i.e. Q/B = 0.4. These two conditions define the system

strange, µS, and electric, µQ, chemical potentials. For the chemical freeze-out



7.3 Statistical and HSD model results 135

condition we chose the average energy per particle, 〈E〉/〈N〉 = 1 GeV [20]. Fi-

nally, the strangeness saturation factor, γS, is parametrized as in Ref. [137]:

γS = 1 − 0.396 exp (− 1.23 T/µB) . This determines all parameters of the

model. An extended version of the THERMUS framework [158] is used for the

SM calculations (for more details see Ref. [129]).

7.3.1 Results for ωA and ρAB

According to Eq. 7.7 the fluctuation of the K = K+ + K− to π = π+ + π−

ratio is given by

σ2 =
ωK

〈NK〉 +
ωπ

〈Nπ〉
− 2ρKπ

[
ωK ωπ

〈NK〉〈Nπ〉

]1/2

. (7.29)

The same is valid for K/p and p/π fluctuations.

√
sNN HSD full acceptance

[ GeV ] 〈Nπ〉 〈NK〉 〈Np〉 ωπ ωK ωp ρKπ ρpπ ρKp

6.27 612.03 43.329 181.83 0.961 1.107 0.506 -0.091 0.048 -0.137
7.62 732.11 60.801 180.03 1.077 1.141 0.526 -0.063 0.025 -0.128
8.77 823.71 75.133 179.43 1.159 1.168 0.546 -0.033 0.016 -0.129
12.3 1072.3 116.44 180.81 1.378 1.250 0.596 0.046 -0.006 -0.126
17.3 1364.6 165.52 186.97 1.619 1.348 0.641 0.126 -0.010 -0.118
62.4 2933.9 449.29 240.53 3.006 1.891 0.863 0.412 0.074 -0.029
130 4304.2 692.59 307.31 4.538 2.378 1.020 0.557 0.177 0.067
200 5204.0 861.77 352.91 5.838 2.765 1.122 0.634 0.251 0.135

Table 7.1: The HSD results for the average multiplicities 〈Nπ〉, 〈NK〉, 〈Np〉 and
values of ωπ, ωK , ωp, and ρKπ, ρKp, ρpπ for central (impact parameter b = 0)
Pb+Pb (Au+Au) collisions at different c.m. energies

√
sNN .

The values of ωπ, ωK , ωp and ρKπ, ρKπ, ρKπ for the HSD simulations of

Pb+Pb (Au+Au) central (with impact parameter b = 0) collisions are presented

in Table 7.1. Both the SM and HSD results are shown in Fig. 7.2 and Fig. 7.3.

Let us first comment the SM results. In the SM the scaled variances ωA and

correlation parameter ρAB approach finite values in the thermodynamic limit of

large volumes. These limiting values are presented in Fig. 7.2 and Fig. 7.3. For

central Pb+Pb and Au+Au collisions the corresponding volumes in the SM are

large enough. Finite volume corrections are expected on the level of a few percent.

The finite volume effects for the scaled variances and correlation parameters in



136 Chapter 7: Ratio Fluctuations

10 100
0

1

2

3

4

5

6
 HSD
 SM GCE
 SM CE
 SM MCE

 

SNN    (GeV)

10 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0
 HSD
 SM GCE
 SM CE
 SM MCE

 

K

SNN    (GeV)

10 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 HSD
 SM GCE
 SM CE
 SM MCE

 p

SNN    (GeV)

Figure 7.2: The SM results in the GCE, CE, and MCE ensembles and the HSD
results (impact parameter b = 0) are presented for the scaled variances ωπ, ωK ,
ωp for Pb+Pb (Au+Au) collisions at different c.m. energies

√
sNN .

the CE and MCE are, however, difficult to calculate (see Ref. [159]) and they will

not be considered here.
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Figure 7.3: The SM results in the GCE, CE, and MCE ensembles and the HSD
results (impact parameter b = 0) are presented for the correlation parameters
ρKπ, ρKp, ρpπ for Pb+Pb (Au+Au) collisions at different c.m. energies

√
sNN

The π-K correlations ρKπ are due to resonances having simultaneously K and

π mesons in their decay products. In the hadron-resonance gas within the GCE
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ensemble, these quantum statistics and resonance decay effects are responsible for

deviations of ωK and ωπ from 1, and of ρKπ from 0. The most important effect

of an exact charge conservation in the CE ensemble is a suppression of the kaon

number fluctuation. This happens mainly due to exact strangeness conservation

and is reflected in smaller CE values of ωK at low collision energies in comparison

to those from the GCE ensemble. The MCE values of ωK and ωπ are further

suppressed in comparison those from the CE ensemble. This is due to exact

energy conservation. The effect is stronger for pions than for kaons since pions

carry a larger part of the total energy. An important feature of the MCE is the

anticorrelation between Nπ and NK , i.e. negative values of ρKπ. This is also

a consequence of energy conservation for each microscopic state of the system

in the MCE [129]. The presented results demonstrate that global conservation

laws are rather important for the values of ωπ, ωK , and ρKπ. In particular, the

exact energy conservation strongly suppresses the fluctuations in the pion and

kaon numbers and leads to ωK < 1 and ωπ < 1 in the MCE ensemble, instead of

ωK > 1 and ωπ > 1 in the GCE and CE ensembles. The exact energy conservation

changes also the π-K correlation into an anticorrelation: instead of ρKπ > 0 in

the GCE and CE ensembles one finds ρKπ < 0 in the MCE. The effects of global

conservation laws and resonance decays are also seen for ρKp, ρpπ and ωp.

As seen from Fig. Fig. 7.2 and Fig. 7.3 the HSD results for ωA and ρAB (de-

noted by the solid lines) are close to the CE and MCE results for low SPS energies.

One may conclude that the influence of conservation laws is more stringent at

low collision energies. The HSD values for ωA and ρAB increase, however, at

high collision energies and a sizeable deviation of the HSD results from those in

the MCE SM is observed with increasing energies for
√
sNN > 200 GeV. Similar

behaviour has been observed earlier in Ref. [124] for the scaled variance of all

charged hadrons.

A strong deviation of HSD from the SM with increasing energies is a conse-

quence of non-equilibrium dynamics in the hadron-string model which is driven

by the formation of heavy strings and their decay. Indeed, future experimental

data on multiplicity fluctuations and correlations allow to shed more light on the

equilibration pattern achieved in heavy-ion collisions.

We point out again that important aspects of the event-by-event fluctuations

in nucleus-nucleus collisions are the dependence on the centrality selection and

experimental acceptance. We accordingly discuss the role of these effects using
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HSD results for the scaled variance ωπ of the pion number fluctuations. In Fig. 7.4

the scaled variance ωπ (calculated within HSD) for the full acceptance and for the

experimental acceptance are shown in nucleus-nucleus collisions for zero impact

parameter b = 0 (see the next Section for details of the experimental acceptance).

Introducing the probability q of pion experimental acceptance as the ratio of an

average accepted to the total multiplicities, q = 〈Nacc
π 〉/〈N tot

π 〉, one finds:

ωacc
π = 1 − q + q ωfull

π . (7.30)

Eq. 7.30 connects the scaled variance ωfull
π in the full 4π space with ωaccc

π defined

for the experimental acceptance. The acceptance scaling (Eq. 7.30) assumes (see,

e.g. Ref. [101]) an absence of particle correlations in momentum space. Fig. 7.4

demonstrates that the acceptance scaling (Eq. 7.30) underestimates the scaled

variance ωaccc
π at RHIC energies.
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Figure 7.4: (Color online) The HSD results for ωπ are presented for Pb+Pb
(Au+Au) collisions with zero impact parameter (b = 0) at different c.m. energies√
sNN . The upper solid line corresponds to the full 4π-acceptance and the middle

one to the experimental acceptance. The lower dashed line corresponds to the
acceptance scaling (Eq. 7.30).

The samples of collision events selected experimentally are 3.5% of most cen-

tral collision events in Pb+Pb collisions at the SPS energies and 5% in Au+Au

collisions at RHIC energies. Fig. 7.5 presents the HSD results for ωπ in these
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Figure 7.5: (Color online) The HSD results for ωπ for Pb+Pb (Au+Au) collisions
at different c.m. energies

√
sNN within the full 4π-acceptance. The lower solid

line corresponds to zero impact parameter (b = 0) and the upper one to the
experimentally selected samples of collision events. The dashed line reflects the
model of independent sources (Eq. 7.31).

samples of the most central events and their comparison with the HSD results

at zero impact parameter. One finds much larger values of ωπ in the centrality

selected samples than for b = 0. The effect is especially strong at RHIC energies.

This can be qualitatively understood within the model of independent sources:

ωπ = ωs
π + nπ ωP , (7.31)

where ωs
π is the scaled variance for pions produced by one source, ωP is the

scaled variance for the fluctuations of nucleon participants, and nπ is the average

pion multiplicity per participating nucleon which increases monotonously with

collision energy. Collisions with zero impact parameter correspond to ωP
∼= 0.

Thus, ωs
π can be approximately taken as ωπ at b = 0. The HSD results correspond

approximately to ωP
∼= 0.5 for the 3.5% most central Pb+Pb collisions at SPS

energies and ωP
∼= 1 for the 5% most central Au+Au collisions at RHIC energies.

Please note that we used the restrictions on impact parameter b in the HSD

calculations to form the samples of most central events. The results of the model

of independent sources (Eq. 7.31) for ωπ are shown by the dashed line in Fig. 7.5
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and are close to the actual values of the HSD simulations for ωπ.

7.3.2 σ, σmix, and σdyn for K/π ratio fluctuations

The fluctuation in the kaon to pion ratio is dominated by the fluctuations of

kaons alone since the average multiplicity of kaons is about 10 times smaller than

that of pions. Thus, the 1-st term in the r.h.s. of Eq. 7.29 gives the dominant

contribution, and the 2-nd and 3-rd terms give only small corrections. The model

calculations of Eq. 7.29 require, in addition to ωK , ωπ, and ρKπ values, the knowl-

edge of the average multiplicities 〈NK〉 and 〈Nπ〉. For the HSD simulations (im-

pact parameter b = 0 in Pb+Pb collisions at SPS energies and Au+Au collisions

at RHIC) the corresponding average multiplicities are presented in Table 7.1.

To fix average multiplicities in the SM one needs to choose the system volume.

For each collision energy the volume of the statistical system has been fixed in

a way to obtain the same kaon average multiplicity in the SM as in the HSD

calculations: 〈NK〉stat = 〈NK〉HSD. Recall that average multiplicities of kaons

and pions are the same in all statistical ensembles. The SM volume in central

Pb+PB (Au+Au) collisions is large enough and all statistical ensembles are ther-

modynamically equivalent for the average pion and kaon multiplicities, since these

multiplicities are much larger than 1.

In Fig. 7.6 the values of σ (in percent) – calculated according to Eq. 7.29 and

Eq. 7.17 – are presented, in the left and right panel, respectively, for the SM in

different ensembles as well as for the HSD simulations. The first conclusion from

Fig. 7.6 (left) is that all results for σ in the different models are rather similar.

One observes a monotonic decrease of σ with collision energy. This is just because

of an increase of the kaon and pion average multiplicities with collision energy.

The mixed event fluctuations σmix in the model analysis are fully defined by these

average multiplicities according to Eq. 7.17. The values of σmix are therefore the

same in the different statistical ensembles. They are also very close to the HSD

values because the statistical system volume has been defined to obtain the same

kaon average multiplicities in the statistical model as in HSD at each collision

energy. As seen from Fig. 7.6 (right) the requirement of 〈NK〉stat = 〈NK〉HSD

leads to almost equal values of σmix in both HSD and the SM.

Differences between the statistical ensembles as well as between the statistical

and HSD results become visible for other measures of K/π fluctuations, such as
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Figure 7.6: Left: The SM results in the GCE, CE, and MCE ensembles as well as
the HSD results (impact parameter b = 0) are presented for σ·100% defined by
Eq. 7.29 for Pb+Pb (Au+Au) collisions at different c.m. energies

√
sNN . Right:

The same as in the left panel, but for σmix·100% in mixed events defined by
Eq. 7.17, σ2

mix = 1/〈NK〉 + 1/〈Nπ〉.
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Figure 7.7: Left: The results for the K/π fluctuations at different c.m. energies√
sNN in the GCE, CE, and MCE ensembles as well as from HSD (impact pa-

rameter b = 0) are presented for σdyn·100% defined by Eq. 7.9). Right: The same
as in the left panel but for F = σ2/σ2

mix.

σdyn defined by Eq. 7.9 and F = σ2/σ2
mix. They are shown in Fig. 7.7, left

and right, respectively. At small collision energies the CE and MCE results in

Fig. 7.7 demonstrate negative values of σdyn, respectively F < 1. When the

collision energy increases, σdyn in the CE and MCE ensembles becomes positive,

i.e. F > 1. Moreover, the different statistical ensembles approach to the same

values of σdyn and F at high collision energy. In the statistical model the values

of σ and σmix approach to zero at high collision energies due to an increase of
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the average multiplicities. The same trivial limit should be also valid for σdyn

in the SM. In contrast, the measure F shows a non-trivial behavior at high

energies: the SM gives F ∼= 1.05 in high energy limit. The HSD result for F

demonstrates a monotonic increase with collision energy. An interesting feature

of the SM is the approximately equal values of σ (and, thus, σdyn and F ) in

the CE and MCE ensembles. From Fig. 7.2 and Fig. 7.3 one observes that both

ωK , ωπ and ρKπ are rather different in the CE and MCE. Thus, as discussed

above, an exact energy conservation influences the particle scaled variances and

correlations. These changes are, however, canceled out in the fluctuations of the

kaon to pion ratio.

7.3.3 Volume Fluctuations

It has been mentioned in the literature (see, e.g., [147]) that the particle

number ratio is independent of volume fluctuations since both multiplicities are

proportional to the volume. In fact, the average multiplicities 〈NK〉 and 〈Nπ〉,
but not NK and Nπ, are proportional to the system volume. Let us consider the

problem in the SM assuming the presence of volume fluctuations at fixed values

of T and µB. This assumption corresponds approximately to volume fluctuations

in nucleus-nucleus collisions from different impact parameters in each collision

event. Under these assumptions the SM values remain the same for any vol-

ume (if only this volume is large enough and the finite size corrections can be

neglected). However, the average hadron multiplicities are proportional to the

volume. Therefore, the SM result for σ2 reads, σ2 = σ2
0V0/V, where V0 is the

average system volume, and σ2
0 is calculated for the average multiplicities corre-

sponding to this average volume V0. Expanding V0/V = V0/(V0 +δV ) in a serious

of δV/V0, one finds to second order in δV/V0,

σ2 ∼= σ2
0

[

1 +
〈(δV )2〉
V 2

0

]

, (7.32)

where

〈(δV )2〉 =

∫

dV (V − V0)
2 W (V ) (7.33)
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corresponds to averaging over the volume distribution function W (V ) which de-

scribes the volume fluctuations. As clearly seen from Eq. 7.32 the volume fluctu-

ations influence, of course, the K/π particle number fluctuations and make them

larger. Comparing the K/π particle number fluctuations in, e.g., 1% of most

central nucleus-nucleus collisions with those in, e.g., 10% one should take into

account two effects. First, in the 10% sample the average volume V0 is smaller

than that in 1% sample and, thus, σ2
0 in Eq. 7.32 is larger. Second, the volume

fluctuations (Eq. 7.33) in the 10% sample is larger, and this gives an additional

contribution to σ2 according to Eq. 7.32.

One may also consider volume fluctuations at fixed energy and conserved

charges (see, e.g., Ref. [160]). In this case the connection between the average

multiplicity and the volume becomes more complicated. The volume fluctuation

within the MCE ensemble can strongly affect the fluctuations in the particle

number ratios. This possibility will be discussed in more detail in a forthcoming

study.

7.4 Excitation function for the ratio fluctua-

tions: Comparison with data

A comparison of the SM results for fluctuations in different ensembles with

the data looks problematic at present; the same is true for most other theo-

retical models. This is because of difficulties in implementing the experimental

acceptance and centrality selection which, however, can be taken into account

in the transport approach. In order to compare the HSD calculations with the

measured data, the experimental cuts are applied for the simulated set of HSD

events. In Fig. 7.8 the HSD results of σdyn for the K/π, p/π and K/p ratios

are shown in comparison with the experimental data by the NA49 Collabora-

tion at the SPS [144] and the preliminary data of the STAR Collaboration at

RHIC [145, 146, 161, 162]. The available results of UrQMD calculations (from

Refs. [144, 150, 163]) are also shown by the dashed lines.

For the SPS energies we use the NA49 acceptance tables from Ref. [144]. For

the RHIC energies we use the following cuts: in pseudorapidity, |η| < 1, and in

transverse momentum, 0.2 < pT < 0.6 GeV/c for kaons and pions and 0.4 <

pT < 1 GeV/c for protons [145, 146, 161, 162]. We note also, that HSD results
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Figure 7.8: The HSD results for the excitation function in σdyn for the K/π,
K/p, p/π within the experimental acceptance (solid line) in comparison to the
experimental data measured by the NA49 Collaboration at SPS [144] and by the
STAR Collaboration at RHIC [145, 146, 161, 162]. The UrQMD calculations are
shown by dotted lines.
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presented in Fig. 7.8 correspond to the centrality selection as in the experiment:

the NA49 data correspond to the 3.5% most central collisions selected via veto

calorimeter, whereas in the STAR experiment the 5% most central events with

the highest multiplicities in the pseudorapidity range |η| < 0.5 have been selected.

One sees that the UrQMD model gives practically a constant σKπ
dyn, which

is by about 40% smaller than the results from HSD at the lowest SPS energy.

This difference between the two transport models may be probably attributed to

different realizations of the string and resonance dynamics in HSD and UrQMD:

in UrQMD the strings decay first to heavy baryonic and mesonic resonances which

only later on decay to ‘light’ hadrons such as kaons and pions. In HSD the strings

dominantly decay directly to ‘light’ hadrons (from the pseudoscalar meson octet)

or the vector mesons ρ, ω and K∗ (or the baryon octet and decouplet in case

of baryon number ±1). Such a ‘non-equilibrated’ string dynamics may lead to

stronger fluctuations of the K/π ratio. Note that all differences between SM and

transport models, as well as between different versions of the transport models,

become clearly seen at the smallest bombarding energies. This is only because of

using σdyn as a measure of theK/π ratio fluctuations. If one uses F = σ2/σ2
mix as a

measure of theK/π fluctuations the conclusion will be opposite: as Fig. 7.7 (right)

demonstrates the difference between the SM and HSD predictions measured in F

would increase with collision energy.

At the SPS energies the HSD simulations lead to negative values of σdyn for

the proton to pion ratio. This is in agreement with the NA49 data in Pb+Pb

collisions. On the other hand HSD gives large positive values of σpπ
dyn at RHIC

energies which strongly overestimate the preliminary STAR data for Au+Au

collisions [161]. For σKp
dyn only preliminary STAR data in Au+Au collisions are

available [162] which demonstrate a qualitative agreement with the HSD results

(Fig. 7.8). The HSD results for σKp
dyn show a weak energy dependence in both

SPS and RHIC energy regions. A peculiar feature is, however, a strong ‘jump’

between the SPS and RHIC values, seen in the middle panel of Fig. 7.8, in the

HSD calculations which is caused by the different acceptances in the SPS and

RHIC measurements.

The influence of the experimental acceptance is clearly seen at 160 A GeV

where a switch from the NA49 to the STAR acceptance leads to the jump in σKp
dyn

by 3% - middle panel of Fig. 7.8. On the other hand, our calculations for Pb+Pb

(3.5% central) and for Au+Au (5% central) collisions - performed within the
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NA49 acceptance for both cases at 160 A GeV - shows a very week sensitivity of

σKp
dyn on the actual choice of the collision system and centrality – cf. the coincident

open circle and triangle at 160 A GeV in the middle panel of Fig. 7.8.

7.5 Summary of Chapter 7

The event-by-event multiplicity fluctuations of pions, kaons, protons as well

as their correlations and ratio fluctuations in central Au+Au (or Pb+Pb) colli-

sions from low SPS up to top RHIC energies have been studied within the HSD

transport approach and in the statistical hadron-resonance gas model for different

statistical ensembles – the grand canonical ensemble (GCE), canonical ensemble

(CE), and micro-canonical ensemble (MCE). The substantial differences in the

HSD and statistical model results for the scaled variances ωA (Fig. 7.2) and the

correlation parameters ρAB (Fig. 7.3) has been obtained. The HSD results at SPS

energies are close to those in the CE and MCE statistical model. This indicates

a dominant role of resonance decays and global conservation laws for low energy

nucleus-nucleus collisions. On the other hand, substantial differences in HSD

and statistical model results have been observed at RHIC energies which can be

attributed to non-equilibrium dynamical effects in the HSD simulations. These

quantities may serve as good observables to probe the amount of equilibration

achieved in central nucleus-nucleus collisions.

On the other hand, it has been found that the observable σdyn, which char-

acterizes ratio fluctuations, appears to be rather sensitive to the details of the

model at low collision energies. The CE and MCE results in Fig. 7.7 demonstrate

negative values of σKπ
dyn, while the GCE gives approximately a constant positive

value of σKπ
dyn. The HSD results correspond to larger values of σKπ

dyn than those

in the GCE statistical model. They even show an increase at the lowest SPS

energies.

It has been found that the HSD model can qualitatively reproduce the mea-

sured excitation function for the K/π ratio fluctuations in central Au+Au (or

Pb+Pb) collisions from low SPS up to top RHIC energies. Accounting for the

experimental acceptance as well as the centrality selection has a relatively small

influence on σdyn and does not change the shape of the σdyn excitation function.

The HSD results for σpπ
dyn appear to be close to the NA49 data at the SPS.
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The data for σKp
dyn in Pb+Pb collisions at the SPS energies will be available soon

and allow for further insight. A comparison of the HSD results with preliminary

STAR data in Au+Au collisions at RHIC energies are not fully conclusive: σdyn

from HSD calculations is approximately in agreement with data [162] for the kaon

to proton ratio, but overestimate the experimental results [161] for the proton to

pion ratio. New data on event-by-event fluctuations in Au+Au at RHIC energies

will help to clarify the situation.



149

Chapter 8

Forward-backward correlations in

nucleus-nucleus collisions:

baseline contributions from

geometrical fluctuations

Correlations of particles between different regions of rapidity have for a long

time been considered to be a signature of new physics. A shortening in the

correlation length in rapidity has been thought to signal a transition to a quark-

gluon plasma [164, 165]. Conversely, the appearance of long-range correlations

has been associated with the onset of the percolation limit, also linked to the QCD

phase transition [166, 167]. Recently, the correlations across a large distance in

rapidity have also been suggested to arise from a color glass condensate [168, 169].

The observation of such correlations in A+A collisions at RHIC energies by the

STAR Collaboration [170, 171] has therefore elicited a lot of theoretical interest.

The purpose of this Chapter is to identify some baseline contributions to the

experimentally observed correlations, contributions that do not depend on new

physics [172]. Two models that incorporate event-by-event fluctuations in initial

conditions have been used to illustrate the effect of these contributions: the HSD

transport model and a ‘toy’ wounded nucleon model. The HSD results are an

essential element of the thesis, whereas the results of the ‘toy’ wounded nucleon

model, obtained by M. Hauer, are presented for comparison. Based on such a

comparison one can argue that a study of the dependence of correlations on the
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centrality bin definition as well as the bin size may distinguish between ‘trivial’

correlations and correlations arising from ‘new physics’.

8.1 Definition of Observables

The statistical properties of a particular sample of events can be characterized

by a set of moments or cumulants of some observable. These properties depend

upon a set of criteria which are used to select this sample. Applied to the context

of heavy-ion collisions this translates to the construction of centrality bins of

collision events from minimum-bias data. The charged hadron multiplicities NA

and NB will be considered in two symmetric intervals ∆η of pseudo-rapidity.

After construction of the centrality bins, one can calculate the moments of a

resulting distribution P
ηgap
c (NA, NB; ∆η):

〈Nk
A ·N l

B〉ηgap
c ≡

∑

NA,NB

Nk
A N l

B P ηgap
c (NA, NB; ∆η) . (8.1)

In Eq. 8.1 the subscript c denotes a particular centrality bin, while the superscript

ηgap denotes the separation of two symmetric intervals ∆η in pseudo-rapidity

space where particle multiplicities NA and NB are measured. The correlation

coefficient1 is defined by

ρ ≡ 〈∆NA · ∆NB〉ηgap
c

√

〈(∆NA)2〉ηgap
c 〈(∆NB)2〉ηgap

c

(8.2)

and measures how strongly multiplicities NA and NB – in a given centrality bin c

for pseudo-rapidity separation ηgap – are correlated. In Eq. 8.2, ∆N ≡ N−〈N〉ηgap
c

and 〈(∆NA)2〉ηgap
c = 〈(∆NB)2〉ηgap

c for symmetric intervals.

The recent preliminary data on the forward-backward correlation coefficient

(Eq. 8.2) of charged particles by the STAR Collaboration [170, 171] exhibit two

striking features: a) an approximate independence on the width of the pseudo-

rapidity gap ηgap , b) a strong increase of ρ with centrality.

1 A different notation from Refs. [170, 171] is used denoting the correlation coefficient as ρ

and reserve the letter b for the impact parameter.
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8.2 Glauber Monte Carlo Model

The PHOBOS Glauber Monte Carlo code [173] coupled to a ‘toy’ wounded

nucleon model is used here, referred to as GMC. The aim of this model is to

emphasize two crucial aspects: 1) an averaging over different system sizes within

one centrality bin introduces correlations; 2) the strength of these correlations

depend on the criteria used for the centrality definition and on the size of the

centrality bins.

Employing the Glauber code the distribution of the number of participat-

ing nucleons, NP , is modeled in each nucleus-nucleus collision for given impact

parameter b (cf. Fig. 8.1, left). This is done for Au+Au with standard Wood-

Saxon profile and the nucleon-nucleon cross section of σNN = 42 mb. The ‘event’

construction proceeds then in a two-step process. Firstly, the total number of

charged particles is randomly generated:

Nch =

NP∑

i=1

ni
ch , (8.3)

where the number of charged particles ni
ch per participating nucleon are generated

by independently sampling a Poisson distribution with given mean value nch =

10. Secondly, these charged particles are randomly distributed according to a

Gaussian in pseudo-rapidity space:

dNch

dη
∝ exp

(

− η2

2ση

)

, (8.4)

where ση = 3 defines the width of the pseudo-rapidity distribution. Hence, in each

single event there are no correlations between the momenta of any two particles.

Note that numerical values of nch and ση are fixed in a way to have a rough

correspondence with the data on charged particle production at
√
s = 200 GeV.

Fig. 8.1 (left) shows the GMC event distribution in the (b, NP )-plane. For each

of these events we randomly generate the number of charge particles Nch and their

η-distribution according to Eq. 8.3 and Eq. 8.4, respectively. The construction

of centrality classes can now be done in several ways. The following criteria

are chosen: via impact parameter b, via the number of participating (wounded)

nucleons NP , and via the charged particle multiplicity N ref
ch in the midrapidity
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Figure 8.1: Left: The histogram shows the distribution of events with a fixed
number of participating nucleons NP and fixed impact parameter b in Au+Au
collisions at

√
s = 200 GeV. Right: The scaled variance ωP of the distribution of

participating nucleons in 10% bins as defined via b, NP , and N ref
ch .

window |η| < 1.

In the case of choosing the number of participating nucleons NP for centrality

definition, one takes vertical cuts in Fig. 8.1 (left), while choosing the impact

parameter b, one takes horizontal cuts. Hence, depending on the centrality def-

inition, one may assign a particular event (characterized by NP and b) to two

different centrality bins.

Fig. 8.1 (right) shows the resulting scaled variance ωP ,

ωP ≡ 〈(∆NP )2〉c
〈NP 〉c

, (8.5)

of the underlying distribution of the number of participating nucleons NP in each

centrality bin. Using the centrality selection via impact parameter b, which is only

the theoretically available trigger, one generally obtains a rather wide distribution

of participating nucleons in each bin. The lines for centrality selections via N ref
ch

and via NP are similar due to the event construction by Eq. 8.3 and Eq. 8.4. An

interesting feature of the GMC model is that ωP increases with centrality for the

selection via NP . This conclusion of the GMC model seems to have a rather

general origin.

The sensitivity of the forward-backward correlation signal as a function of the

separation ηgap of two narrow intervals (∆η = 0.2) on the centrality definition is
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Figure 8.2: The forward-backward correlation coefficient ρ for 10% centrality
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multiplicity in the central rapidity region N ref

ch (right).

investigated now. This is done for the 10% centrality defined via NP , via b, and

via N ref
ch . The results are shown in Fig. 8.2. In the GMC one can identify the

number of participating nucleons NP with the system size, and ωP as the measure

for system size fluctuations. Having a large system – as measured by NP – implies

a large number of charged particles Nch. In GMC they are distributed indepen-

dently in pseudo-rapidity space. Conversely, an event with small NP contains

only few charged particles. By grouping the collision events into 10% centrality

bins one finds rather large NP -fluctuations in one specific bin. The averaging

over different states in the centrality bin introduces correlations between any two

regions of pseudo-rapidity. Small systems will have few particles ‘on the left’ and

few particles ‘on the right’ with respect to midrapidity. Large systems will have

many particles ‘on the left’ and many particles ‘on the right’. But this just means

a non-zero forward-backward correlation. From the definition (Eq. 8.2) one finds

a positive correlation coefficient ρ due to averaging over system sizes.

Note that centrality selections via NP and via Nch give essentially the same

results for ρ in the GMC (cf. left and right panels of Fig. 8.2). Using the impact

parameter b for the centrality definition generates centrality bins with almost

constant ρ as seen in Fig. 8.2 (middle). This is due to a rather flat dependence

of ωP on the centrality defined via b as shown in Fig. 8.1 (right). In the GMC

model the apparent ordering of ρ values with respect to centrality bins originates
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from the width of the underlying distribution in the number of wounded nucleons

in each bin, i.e. from the values of ωP .

The measured and apparently strong forward-backward correlations can be

accounted for by a ‘toy’ model such as the GMC, provided it produces particles

over the whole rapidity range and includes strong enough event-by-event fluctu-

ations of NP . The next section will show that an introduction of dynamics and

hadron re-interactions within HSD does not alter these conclusions significantly.

8.3 HSD Transport Model Simulations

A physically more reasonable scenario which, however, also does not include

any ‘new physics’ (such as color glass condensate, quark-gluon plasma, etc.)

can be obtained in the Hadron-String-Dynamics (HSD) transport approach (see

Chapter 2 for the details).
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Figure 8.3: The HSD and GMC distributions of events over NP . The vertical
lines indicate 10% centrality bins.

As before within the GMC, the HSD events are generated according to a

uniform distribution, Nev(b) ∼ b. The resulting distribution of events in the

(NP , b)-plane is similar to the GMC result depicted in Fig. 8.1 (left).

Fig. 8.3 shows the distribution of events with fixed NP for both models. The

vertical lines indicate 10% centrality bins as defined by theNP distribution. Note,

that the peripheral part of the distribution determines also the centrality binning

and the real bin widths. This is crucial for most central collisions where the

number of events is small. Slight uncertainties in the peripheral “tail” of the
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distribution leads to large errors in the sizes of most central bins and hence to

large changes in results for fluctuations and correlations.

In contrast to the STAR data, the charged particle reference multiplicity N ref
ch

in the same pseudo-rapidity range |η| < 1 for all values of ηgap is used in the

HSD simulations. This procedure introduces a systematic bias, since the pseudo-

rapidity regions for the measured multiplicity in a small ∆η window (signal) and

for the reference multiplicity partially overlap. This bias, however, is small and

does not affect any of the conclusions.
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Figure 8.4: The HSD results for the fluctuations ωpart as a function of the mean
value 〈NP 〉 of the participating nucleons within bins as defined via b, NP , and
N ref

ch . The left panel corresponds to a 10% and the right to a 2% bin width.

Fig. 8.4 shows the scaled variance of the underlying NP distribution for 10%

(left) and 2% (right) centrality bins defined via different centrality triggers within

HSD. The results for 10% bins can be compared with the scaled variance ωP in

the GMC model in Fig. 8.1 (right). Fluctuations of the number of participants,

as well as their average values, are similar in both HSD and GMC models when

the centrality bins are defined via NP . These quantities are completely defined

by the NP distribution, which is similar in both models (Fig. 8.3). Binning via

the impact parameter b in HSD, as well as in GMC, gives decreasing fluctuations

in the participant number with increasing collision centrality. The results for

10% bins defined via the reference multiplicity are rather different in the GMC

and HSD models. In GMC the charged multiplicity distribution is implemented

according to Eq. 8.3 and Eq. 8.4. Hence, the results obtained by binning via the

reference multiplicity follow the line obtained by binning via NP . In contrast to
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the GMC, in the HSD simulations the average number of charged particles nch per

participating nucleon is not a constant, but increases with NP . Additionally, the

shape of rapidity distribution is also different in different centrality bins. These

two effects lead to different values of ωP in the centrality bins defined via N ref
ch

in the GMC and HSD models.

One comment is appropriate here. It was argued in Ref. [139] that any cen-

trality selection in nucleus-nucleus collisions is equivalent to the geometrical one

via impact parameter b. This result was obtained in Ref. [139] by neglecting

the fluctuations at a given value of b. Thus, different centrality selection criteri-

ons give indeed the same average values of physical observables. However, they

may lead to rather different fluctuations of these observables in the corresponding

centrality bins, cf. equal values of 〈NP 〉 and different values of ωP for different

centrality selections presented in Fig. 8.4.

When considering smaller centrality bins (2% in Fig. 8.4, right) the fluctua-

tions in the participant number become smaller and more strongly dependent on

the definition of the binning.

Fig. 8.5 summarizes the dependence of forward-backward correlation coeffi-

cient ρ as a function of ηgap on the bin size and centrality definition within the

HSD model. The dependence of ρ on ηgap is almost flat, reflecting a boost-

invariant distribution of particles created by string breaking in the HSD. The

right top panel of Fig. 8.5 demonstrates also a comparison of the HSD results

with the STAR data [170, 171]. One observes that the HSD results exceed sys-

tematically the STAR data. However, the main qualitative features of the STAR

data – an approximate independence of the width of the pseudo-rapidity gap ηgap

and a strong increase of ρ with centrality – are fully reproduced by the HSD

simulations.

The correlation coefficient ρ largely follows the trend of the participant number

fluctuations ωP as a function of centrality. The actual results, however, strongly

depend on the way of defining the centrality bins. For instance, choosing smaller

centrality bins leads to weaker forward-backward correlations, a less pronounced

centrality dependence, and a stronger dependence on the bin definition. The

physical origin for this is demonstrated in Fig. 8.6. As the bin size becomes

comparable to the width of the correlation band between NP and N ref
ch , the

systematic deviations of different centrality selections become dominant: the same

centrality bins defined by NP and by N ref
ch contain different events and may give
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Figure 8.5: The HSD results for the forward-backward correlation coefficient
ρ for 10% (top) and 2% (bottom) centrality classes defined via NP (left), via
impact parameter b (center), and via the reference multiplicity N ref

ch (right). The
symbols in the top right panel present the STAR data in Au+Au collisions at√
s = 200 GeV [170, 171].

rather different values for the forward-backward correlation coefficient ρ.

It should be underlined that these properties are specific to the geometric

nature of the correlations analyzed here. If the observed fluctuations are of dy-

namical origin (for example, arising from the quantum fluctuations of coherent

fields created in the first fm/c of the system’s lifetime as in Refs. [168, 169]),

there are no evident reasons why they should strongly depend on the centrality

bin definitions and bin sizes. Thus, the experimental analysis for different bin

sizes and centrality definitions – as performed here – may serve as a diagnostic

tool for an origin of the observed correlations. A strong specific dependence of the

correlations on bin size and centrality definition would signify their geometrical

origin!
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8.4 Summary of Chapter 8

In conclusion this Chapter presents a study of the system size event-by-event

fluctuations causing the rapidity forward-backward correlations in relativistic

heavy-ion collisions. The analysis has been based on two independent models

– the microscopic HSD transport approach and a ‘toy’ wounded nucleon model

realized as a Glauber Monte Carlo event generator. It has been shown that

strong forward-backward correlations arise due to an averaging over many differ-

ent events that belong to one 10% centrality bin. In contrast to average multiplic-

ities, the resulting fluctuations and correlations depend strongly on the specific

centrality trigger. For example, the centrality selection via impact parameter b

used in most theoretical calculations and via N ref
ch used experimentally lead to

rather different values of ωP and ρ and their dependence on centrality.

In the HSD model the NP distribution is similar to that in the GMC. It

includes also the fluctuations in the number of strings and the fluctuations in the

number of hadrons from individual string fragmentation. The HSD simulations

reveal strong forward-backward correlations and reproduce the main qualitative

features of the STAR data in A+A collisions at RHIC energies [168, 169].

The forward-backward correlations can be studied experimentally for smaller

size centrality bins defined by N ref
ch . When the size of the bins decreases, the
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contribution of ‘geometrical’ fluctuations should lead to weaker forward-backward

correlations and to a less pronounced centrality dependence. Note, that the ‘geo-

metrical’ fluctuations discussed here are in fact present in all dynamical models

of nucleus-nucleus collisions. Thus, they should be carefully accounted before any

discussion of new physical effects is addressed. A future experimental analysis –

in the direction examined here – should clarify whether the observed correlations

by the STAR Collaboration at RHIC contain really additional contributions from

‘new physics’.
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Chapter 9

Summary and Discussion

It has been argued in the introduction (Chapter 1) that fluctuations may

be considered as a probe for the phase transition and the critical point in the

phase diagram. The current thesis has been devoted to a systematic study of

fluctuations and correlations in heavy-ion collisions within the HSD transport

approach reviewed in Chapter 2. This is a powerful tool to study nucleus-nucleus

collisions and allows to completely simulate experimental collisions on an event-

by-event basis. Thus, the transport model has been used to study fluctuations

and correlations including the influence of experimental acceptance as well as

centrality, system size and collision energy. The comparison to experimental

data can separate the effects induced by a phase transition since there is no

phase transition in the HSD version used here.

The centrality dependence of multiplicity fluctuations has been studied in

Chapter 3. Different centrality selections have been performed in the analysis

in correspondence to the experimental situation. For the fix-target experiment

NA49 events with fixed numbers of the projectile participants, Nproj
P , have been

studied while in the collider experiment PHENIX centrality classes of events

have been defined by the multiplicity in certain phase space region. A decrease of

participant fluctuations (and thus volume fluctuations) in more central collisions

for both experiments has been obtained.

The HSD transport model results for the scaled variances of negative, posi-

tive, and all charged hadrons in Pb+Pb minimum bias simulations at 158 AGeV

have been presented in Chapter 4. Large fluctuations of the target participants

(obtained in HSD for semi-peripheral collisions) may lead to the nontrivial be-
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havior in the multiplicity fluctuations seen in the data. As it has been shown in

Chapter 4 the fluctuations in the number of target participants also strongly in-

fluence the baryon number and charged multiplicity fluctuations. The asymmetry

between the projectile and target participants – introduced in the data samples

by the trigger condition – can be used to explore different dynamics of nucleus-

nucleus collisions by measuring the final multiplicity fluctuations as a function

of rapidity. This analysis reveals that the NA49 data indicate a rather strong

mixing of the longitudinal flows of the projectile and target hadron production

sources. The HSD model shows only a small mixing in the initial baryon flow.

The higher level of mixing – seen in the data – may be explained by additional

strong parton-parton interactions.

The results for multiplicity fluctuations in Au+Au collisions at
√
s = 200 GeV

– based on the wounded nucleon model – have been also presented and compared

to the preliminary PHENIX data. The HSD transport model has been used to

calculate the scaled variance of participant number fluctuations and the number

of hadrons per nucleon in different centrality classes. This combined picture –

both qualitative and quantitative – reproduces the experimental results. One can

conclude that the centrality dependence of the fluctuations seen in the present

PHENIX data are the consequences of participant number fluctuations. To avoid

a dominance of the participant number fluctuations one needs to analyze most

central collisions with a much more rigid centrality selection!

The HSD model calculations for the charge fluctuations ∆Φq show a good

agreement with the NA49 data at SPS energies. Thus, this observable is domi-

nated by the final stage dynamics, i.e. the hadronization phase and the resonance

decays, and rather insensitive to the initial QGP dynamics.

The excitation function of multiplicity fluctuations in central A+A collisions

has been studied in Chapter 5. HSD predicts an increase of the scaled variances

of multiplicities with collision energy. The scaled variances – calculated within

the statistical HG model along the chemical freeze-out line – approach finite val-

ues at high collision energy. At the top RHIC energy
√
sNN = 200 GeV the

HSD values for the multiplicity fluctuations are already about 10 times larger

than the corresponding values from the statistical model. However, a comparison

with preliminary NA49 data of very central, ≤ 1%, Pb+Pb collisions in the SPS

energy range does not distinguish between the HSD and statistical HG results

because both results are not too much different from each other and because the
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small experimental acceptance makes the difference almost invisible. New mea-

surements of multiplicity fluctuations for samples of very central A+A collisions

with large acceptance at both SPS and RHIC energies are needed to allow for a

proper determination of the underlying dynamics.

Chapter 6 has been devoted to transport model calculations of multiplicity

fluctuations in nucleus-nucleus collisions as a function of colliding energy and

system size. This study is in full correspondence to the experimental program

of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb

nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated.

The influence of participant number fluctuations on hadron multiplicity fluctua-

tions has been emphasized and studied in detail. It has been argued again that

to make these ‘trivial’ fluctuations smaller, one has to consider the most cen-

tral collisions. It has been also determined that different centrality selections are

not equivalent to each other. This statement has been illustrated by the b = 0

selection criterium. For light nuclei even these ‘absolutely central’ geometrical

collisions lead to rather large fluctuations in the number of participants, essen-

tially larger than in the 1% most central collisions selected by the largest values

of the projectile participants Nproj
P .

It has to be stressed again, that the HSD (as well as the UrQMD) transport

approach do not include explicitly a phase transition to the QGP. The expected

enhanced fluctuations - attributed to the critical point and phase transition -

can be observed experimentally on top of a monotonic and smooth ‘hadronic

background’. These findings should be helpful for the optimal choice of collision

systems and collision energies for the experimental search of the QCD critical

point.

The event-by-event multiplicity fluctuations of pions, kaons, protons and their

ratio fluctuations in central Pb+Pb (Au+Au) collisions from low SPS up to top

RHIC energies have been studied within the HSD transport approach and within

the statistical hadron-resonance gas model in Chapter 7. The grand canonical en-

semble (GCE), canonical ensemble (CE), and micro-canonical ensemble (MCE)

have been used to quantify the effects of conservation laws in the statistical model.

Substantial differences in the HSD and statistical model results for the scaled

variances ωA and the correlation parameters ρAB have been obtained. The HSD

results at SPS energies are close to those in the CE and MCE statistical model.

This indicates a dominant role of resonance decays and global conservation laws at
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low energy nucleus-nucleus collisions. On the other hand, substantial differences

in the HSD and statistical model results have been observed at RHIC energies

which can be attributed to non-equilibrium dynamical effects in the HSD sim-

ulations. These quantities may serve as good observables to probe the amount

of equilibration achieved in central nucleus-nucleus collisions! On the other hand

the observable σdyn, which is used for ratio fluctuations, appears to be rather

sensitive to the details of the model at low collision energies.

The HSD model can qualitatively reproduce the measured excitation function

for the K/π ratio fluctuations σKπ
dyn in central A+A collisions from low SPS up to

top RHIC energies. Accounting for the experimental acceptance as well as the

centrality selection has a relatively small influence on σKπ
dyn and does not change

the shape of the excitation function.

The HSD results for σpπ
dyn appear to be close to the NA49 data but overesti-

mate the STAR results. On the other hand σKp
dyn from HSD calculations are in

agreement with STAR data and, furthermore, show an essential sensitivity to the

experimental acceptance. New data on event-by-event fluctuations will help to

clarify the situation and allow for further insight.

Chapter 8 has presented a study of the system size event-by-event fluctuations

causing rapidity forward-backward correlations in relativistic heavy-ion collisions.

The HSD simulations reveal strong forward-backward correlations and reproduce

the main qualitative features of the STAR data in A+A collisions at RHIC en-

ergies. It has been shown that strong forward-backward correlations arise due to

an averaging over many different events that belong to one 10% centrality bin.

In contrast to average multiplicities, the resulting fluctuations and correlations

depend strongly on the specific centrality trigger. For example, the centrality

selection via impact parameter b and via the reference multiplicity N ref
ch lead

to rather different participant fluctuations and forward-backward correlations as

well as their dependence on centrality.

The forward-backward correlations can be studied experimentally for smaller

size centrality bins. With decreasing the size of the bins, the contribution of

‘geometrical’ fluctuations should lead to weaker forward-backward correlations

and to a less pronounced centrality dependence.

A strong influence of geometrical fluctuations on fluctuations and correlations

of observed quantities has been found in this work. The HSD transport approach

has been used to quantify these influences. It has been found that in order to
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decrease volume fluctuations – which is connected to participant number fluctua-

tions – one should consider most central collisions or very narrow centrality bins.

Note, that the ‘geometrical’ fluctuations discussed here are in fact present in all

dynamical models of nucleus-nucleus collisions.

This study is expected to be helpful for both experimentalists and theorists

to understand the importance of volume fluctuations which should be carefully

accounted before any discussion of new physical effects is addressed.
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Appendix A:

String Model

The Monte Carlo simulation program FRITIOF [174, 175, 82] which determine

the outcome of high-energy photon-nucleon and hadron-hadron interactions in our

model uses the Lund formalism to describe the breakup of the strings into hadrons

in form of the JETSET package. This Appendix serves as a brief introduction

into the basic ideas of the Lund model [174, 176]. The description of the Lund

string model follows in part [177] using its illustrations.

Since the mediators of the color force, i.e. the gluons, themselves carry color

charges they are subject to strong self interactions. If the sources are separated

more than ≈ 0.3 fm these strong color interactions confine the field lines to a

narrow flux tube with constant energy density k per unit length. This leads to

the linear increase of the quark potential at large distances which is seen for

example in charmonium and bottonium spectroscopy, i.e. the energy levels of

bound cc pairs.

 

 

Figure 9.1: Simple string model for hadron. Neglecting the masses of the quarks
the angular momentum of the hadron is given by the orbital angular momentum
of the flux tube.

If one considers a hadron as two massless quarks which are connected by a

string as in Fig. 9.1 the angular momentum of this object is equal to the total
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orbital momentum of the flux tube. Assume that the ends of the tube rotate with

the velocity of light. Then the local velocity at radius r will be

β(r) =
r

r0
(9.1)

where r0 is half the length of the string. The total mass is then

M =

∫ r0

0

k dr
√

1 − β(r)2
= kr0π , (9.2)

and the orbital momentum of the hadron is given as

J = 2

∫ r0

0

krβ dr
√

1 − β(r)2
=

kr2
0π

2
. (9.3)

Eliminating r0 between these equations yields the linear relation between the

angular momentum and mass of a hadron:

J = α′M2 + const (9.4)

with α′ = (2πk)−1.The string tension k can be estimated via the typical hadronic

mass 1 GeV and the hadronic diameter which is known from electron scattering

to be about 1 fm. The linear energy density then yields k = 1 GeV fm−1 and

α′ ≈ 0.8 GeV −2 which has to be compared to α′
R ≈ 0.9 GeV −2 of the Regge

trajectories. Despite of its simplicity the string model yields an astonishing good

estimate for the Regge slope α′
R.

Thus, the Regge spectrum of hadrons can be explained by assuming that

the quark and antiquark (diquark) are connected by a color field which is com-

pressed into a flux tube that contains a constant amount of energy per unit length.

This constant force field leads to a linearly rising potential which is also seen in

charmonium and bottonium spectroscopy as well as lattice QCD results. Phe-

nomenologically, the string tension is known to be k ≈ 1 GeV/fm ≈ 0.2 GeV 2.

A simple model which describes hadrons as a charge and an anticharge con-

nected by a massless relativistic string that plays the role of the constant force

field may be introduced. The momentum of the state is located in the endpoint

particles and its total energy can be decomposed into the potential energy in the

force field and the kinetic energy of the endpoint particles.
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Then the equation of motion of a relativistic particle under the influence of a

constant force −k is

dp

dt
= − k (9.5)

and gives us

p(t) = k(t0 − t) (9.6)

E(x) = k(x0 − x)

Thus, the equation for the trajectory of a free particle with mass m and energy

E is

m2 = E2 − p2 = k2[(x0 − x)2 − (t0 − t)2] (9.7)

One sees that the particle moves on a hyperbola in space time which is centered

at (t0, x0) and has the size parameter m/k. A massless particle (m = 0) would

move on the lightcones. At the turning point (t0, x0) it would have vanishing

momentum and energy and would change its velocity immediately from +c to −c.

Figure 9.2: Space-time diagram of a yoyo hadron with mass m at rest.

A meson is treated as a system of two massless particles, a quark and an

antiquark, which interact with each other by an attractive constant force. Re-

placing the antiquark by a diquark one ends up with a model for a baryon. The

space-time picture of such a yoyo hadron at rest is depicted in Fig. 9.2. If the two
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constituents of the hadron move apart with the same energy E0 from a common

origin but in opposite direction, the total momentum of the system vanishes and

its total energy

Etot = 2E0 (9.8)

equals the hadron mass m. The two particles then move along the two different

lightcones and loose energy and momentum per unit length and time to the force

field according to Eq. 9.6. At time t0 = E0/k they turn around and after that

they head towards each other and now gain energy and momentum from the force

field. The period of the motion is T = 4t0.

Another general property of the massless relativistic string model is the so-

called area law: The total area A spanned by the force field in space-time during

one period is related to the squared mass of the system. For the yoyo hadron at

rest this area is given by the sum of the two squares with diagonal 2t0 = Etot/k

(cf. Fig. 9.2):

k2A = k22
t20
2

= E2
tot = m2 . (9.9)

Figure 9.3: Yoyo hadron that moves with rapidity y along the negative x-
direction.

Fig. 9.3 now shows a yoyo hadron that moves with rapidity y along the nega-

tive x-direction. Boosting from the rest frame of the yoyo hadron to the moving
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system one gets the new meeting time 2t0 cosh(y). The period of the moving

hadron is therefore time dilated T ′ = 4t0 cosh(y) > T .

The space-time area covered by the force field is two times the size of the

shown rectangle (cf. Fig. 9.3), i.e.

A′ = 4t20 =
m2

k2
= A . (9.10)

The strings that are formed after a high-energy collision have an invariant

mass that is in general larger than that of stable hadrons or low lying excited

states. Therefore, they decay into lower mass fragments due to the creation of new

quark-antiquark pairs out of the vacuum along the force field (see Fig. 9.4). At

each vertex where a new qq pair is produced one has to require local conservation

of energy, momentum and internal quantum numbers, e.g. charge, strangeness,

etc. As a consequence the newly created q and q have zero momenta and start to

separate because of the two attached string pieces. During the separation they

gain energy and momentum by eating up the force field between them and the

other string end.

Figure 9.4: Fragmentation of a string into several hadrons.

The fragmentation process is uniquely determined by the set of Lorentz-

invariant scaling variables {zi} and therefore only depends on the fragmentation

function f(z). The requirement that taking the fragmentation steps along the

negative and positive lightcone should lead to the same result in the limit n→ ∞
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restricts the fragmentation function to the following functional form

f(z) = N
(1 − z)a

z
exp(−bm

2

z
) (9.11)

which is called Lund fragmentation function. Here a and b are parameters which

have to be fitted to experiment while N is a normalization constant andm denotes

the mass of the produced hadron. The parameters determine the behavior of

f(z) as z approaches 0 or 1. The factor (1/z) exp(−bm2/z) peaks at z = bm2

(for bm2 < 1) and rapidly vanishes for smaller z. The factor (1 − z)a vanishes

as z → 1. One sees that as long as the mass m of the produced hadron is small

compared to 1/
√
b ≈ 1.0 − 1.7 GeV it is very unlikely that the fragment carries

a large fraction of the available string energy. The average fraction

〈z〉 =

∫ 1

0

dz z f(z) (9.12)

that the hadron takes from the (positive) lightcone momentum of the (remainder)

string lies between 0.18 (for m = 0.14 GeV ≈ mπ) and 0.5 (for m = 1 GeV ≈
mN ). The ultimate number of string fragments depends on the invariant mass of

the initial string.

A set of independently chosen random numbers {zi} can solve the problem of

fragmenting a high energetic string. However, it is very unlikely that the iteration

process ends at the turning point of the q0 which is required by energy and mo-

mentum conservation. There are some ways to cure this problem [178] but which

show up to be unsuitable for Monte Carlo implementation. In the JETSET pack-

age the following way was chosen: Fragmentation happens randomly at both ends

of the string, until the remaining invariant mass drops below a certain threshold.

In the final step the kinematics of two hadrons are chosen simultaneously and

energy and momentum conservation is guaranteed. The choice of some parame-

ters, e.g. the threshold invariant mass, ensure that the z distribution of the final

particles agrees with the default distribution (Eq. 9.11).

The fact that the string nevertheless fragments into onshell hadrons cannot be

understood in purely classical terms. It can be argued on a quantum mechanical

level that all breakup configurations that give unphysical masses simply cannot be

projected onto a physical state. Note that in the nuclear medium the interactions

with the surrounding nucleons may modify the masses of the fragments compared
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to the situation in vacuum.

Up to now we have neglected the transverse momenta pT and the masses µ

of the quarks. The q and the q that are created in the string fragmentation have

transverse momentum pT (q) = −pT (q) and instead of the hadron mass m the

transverse mass

mT =
√

m2 + p2
T (9.13)

enters Eq. 9.11. Furthermore, if the quarks have a finite mass they do not move on

the lightcones anymore but their trajectories in space-time will be the hyperbolae.

The asymptotes of such a yoyo mode are again rectangles, cf. left-hand side of

Fig. 9.5, but in contrast to the situation of massless constituents the oscillation

time now also depends on the constituent mass µ. However, this only influences

the internal motion of the hadron after the production and is of no importance

for the fragmentation process itself. Note, however, that the constituent masses µ

might influence the hadron-formation times, i.e. the times when the world lines of

the quark and antiquark of a yoyo hadron cross. By interpreting the straight lines

of the previous fragmentation diagrams as the asymptotes for the hyperbolic world

lines of massive quarks, the fragmentation model can be developed in exactly the

same way as before [176].

There is nevertheless a physical difference between the production of massless

and massive quarks (see right-hand side of Fig. 9.5). Because of local energy

conservation a real massive qq pair cannot be created at one single space-time

point. This is only possible for virtual quark pairs which then tunnel to real

quark pairs. The connected tunneling probability has been calculated in Ref. [179]

and leads to an additional suppression of heavy quark production in the string

fragmentation. Consider a newly created virtual qq pair at time t = 0. Due to

local energy conservation the energy of the quark (or antiquark) must be zero:

t = 0 : E2
q = E2

q = 0 = p2
L + p2

T + µ2 , (9.14)

where pT denotes the transverse momentum of the quark (pT (q) = −pT (q)) and

µ its constituent mass. They therefore both have (imaginary) longitudinal mo-
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Figure 9.5: Left: Motion of a massive q and q in a yoyo hadron. Right: A pair of
massive quarks is created in the force field and moves apart on different branches
of the same hyperbola.

menta:

t = 0 : pL = ±iµT = ±i
√

p2
T + µ2 . (9.15)

At time t > 0 the quark and antiquark have separated a distance 2r and thereby

gained the energy 2kr from the flux tube:

t > 0 : Eq + Eq = 2
√

p2
L(r) + µ2

T = 2Kr

⇒ pL(r) = ±i
√

µ2
T − (kr)2 . (9.16)

The quarks have tunneled to real quarks when pL(r) = 0, i.e. when r = µT/k.

Hence, the tunneling probability is given as:

P =
∣
∣e−S

∣
∣
2

with S = 2

∫ µT/k

0

|pL(r)|dr =
πµ2

T

2k
. (9.17)

Eq. 9.17 leads to a Gaussian distribution of transverse momentum and suppresses

high pT . Furthermore, the production of quarks with large constituent mass µ
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is strongly reduced by the tunneling probability. This leads to a suppression of

strange and charm particle production in the string fragmentation. Since the

tunneling amplitude is very sensitive to the size of the constituent quark masses

which are not well-defined quantities, one usually extracts the suppression factors

from experiment. As it has been mentioned before, one experimentally observes

that strangeness production in pp collisions is suppressed by about a factor of

0.3. If one inserts the constituent mass [180] of the light quark flavors u and d

(µu ≈ µd ≈ 0.325 GeV ) into Eq. 9.17, one ends up with a realistic value for the

constituent strange quark mass of µs ≈ 0.425 GeV for this suppression factor.

Furthermore, a constituent charm quark mass µc ≈ 1.3 GeV leads to a relative

suppression

P (uu, dd) : P (ss) : P (cc) ≈ 1 : 0.3 : 10−11 . (9.18)

This means that cc pair creation essentially never occurs during a soft hadroniza-

tion process but only in hard processes like qq → cc or gg → cc. The tunneling

probability also suppresses the production of antibaryons via diquark-antidiquark

creation in the string fragmentation. Assuming a mass of about 0.5 GeV for the

diquark leads to a suppression factor of about 0.1 compared to uu or dd creation.

However, there are other possibilities for baryon creation in a fragmentation pro-

cess as it has been mentioned before. Note that the above suppression factors are

extracted from experiments using elementary targets and projectiles, i.e. they

correspond to the string tension and quark masses in vacuum. If the string frag-

mentation takes place inside (a dense) nuclear medium, the quark masses as well

as the value of k might change and could lead to different tunneling amplitudes.
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