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1 Expanded Methods1

Network architectures2

We first consider a simple artificial neural network (ANN) with one hidden layer to demonstrate the3

utility of our approach. The size of the input layer for both the MNIST and MNIST-Fashion datasets4

is 784, as each image is a 28× 28 pixel greyscale picture. The hidden layer consists of M neurons,5

each neuron i receiving a number ni contacts from the previous layer. In Figure 1, M = 30, 100,6

and 300. In Figures 2 and 3, M = 100. Neuronal activation in the input and hidden layers as a7

function of input zi is controlled by a sigmoid function σ(zi)8

σ(zi) =
1

1 + e−zi
(1)

where zi is the weighted input to neuron i, given by9

zi = bi +
∑
ni

wk,iak (2)

Here bi is the bias of each neuron i, wk,i is the synaptic weight from neuron k in the previous layer10

to neuron i, and ak = σ(zk) is the activation of presynaptic neuron k. The set of all wk,i for a given11

postsynaptic neuron i form an afferent weight vector wi.12

Both datasets have ten classes and the output of the ANN is a probability distribution assigning13

confidence to each possible classification. Neurons in the output layer are represented by softmax14

neurons where the activation function σs(zi) is given by15

σs(zi) =
ezi∑10
i=1 e

zi
(3)

The cost function C is taken to be the log-likelihood16

C = −log(aCorrect) (4)

where aCorrect is the activation of the output neuron corresponding to the correct input.17

For Figure 3, we generalise our results to deeper architectures and threshold-linear neuronal activa-18

tions. In Figures 3a and 3c we expand the above to include 2 and 3 sparse hidden hidden layers, each19

with M = 100 sigmoid neurons. In Figures 3b and 3c we consider a simple convolutional neural20

network (LeCun et al, 2009) with 20 5× 5 features and 2× 2 maxpooling. In Figure 3d we return21

to the original architecture with M = 100, but replace the sigmoid activation function σ(z) for the22

hidden neurons with a non-saturating threshold-linear activation function τ(z) defined by23

τ(zi) = max(0, z) (5)
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In Table 1, we show the results of other architectures to match published performance benchmarks.24

We replicate the published architecture in each case: For the original MNIST dataset and CIFAR-1025

datasets, Mocanu et al (2018) used three sparsely-connected layers of 1000 neurons each and 4% of26

possible connections existing. Pieterse & Mocanu (2019) used the same architecture for the COIL-10027

dataset. For the Fashion-MNIST dataset, Pieterse & Mocanu (2019) used three sparsely-connected28

layers of 200 neurons each, with 20% of possible connections existing.29

In all cases traditional stochastic gradient descent (Robbins & Monro, 1951; LeCun et al, 1998) is30

used with a minibatch size of 10 and a learning rate η of 0.05.31

Sparse evolutionary training (SET)32

Connections between the input and hidden layers are established sparsely (Figure1a) using the sparse33

evolutionary training algorithm introduced by Mocanu et al (2018). Briefly, connections are initiated34

uniformly randomly with probability ε to form an Erdős-Rényi random graph (Erdős & Rényi, 1959).35

After each training epoch, a fraction ζ of the weakest contacts are excised and an equal number of36

new random connections are formed. New connections are distributed normally with mean 0 and37

standard deviation 1.38

Datasets39

The ANN is originally trained to classify 28 × 28 pixel greyscale images into one of ten classes.40

Two distinct datasets are initially used. The MNIST, introduced by LeCun et al (1998), consists of41

handwritten digits which must be sorted into the classes 0 to 9 (Figure 1b, left). The MNIST-Fashion42

dataset was introduced by Xiao et al (2017) as a direct alternative to the original MNIST and consists43

of images of clothing. The classes here are defined as T-shirt/top, trousers, pullover, dress, coat,44

sandal, shirt, sneaker, bag, and ankle boot (Figure 1b, right). Each dataset contains 60, 000 training45

images and 10, 000 test images. State-of-the-art classification accuracy for the original MNIST46

dataset is as high as 99.77% (Cireşan et al, 2012), which likely exceeds human-level performance47

due to ambiguity in some of the images. For the newer MNIST-Fashion dataset state-of-the art48

networks can achieve classification accuracies of 96%. Such performance is achieved with deep49

network architectures, which we do not reproduce here, rather showing an improvement in training50

between comparable, and comparatively simple, artificial neural networks.51

In Table 2, we also analyse other datasets. CIFAR-10 (Krizhevsky, 2012) contains 50, 000 training52

images and 10, 000 test images to be divided into the classes airplane, automobile, bird, cat, deer, dog,53

frog, horse, ship, and truck. Each image is 32× 32 pixels in three colour channels. The COIL-10054

dataset (?), which contains 7, 200 images in total, consists of images of 100 objects rotated in various55

ways. Each image is 128× 128 pixels in three colour channels. There is no existing training/test split,56

so we follow Pieterse & Mocanu (2019) in randomly assigning 20% of the available images to the57

test set.58

Code and data availability59

All code is written in Python 3.6 and is freely available for download (see Supplemen-60

tary File 2) alongside the MNIST and MNIST-Fashion datasets. These can also be down-61

loaded from various places, including at the time of writing yann.lecun.com/exdb/mnist/ and62

github.com/zalandoresearch/fashion− mnist respectively. The networks in Figures 1 and63

2 are coded using the standard Numpy package, and the networks in Figure 3 make use of Keras64

with a TensorFlow backend (keras.io).65

The application of dendritic normalisation in Keras with TensorFlow allows for immediate inclusion66

in Keras-based deep learning models. The normalisation requires a custom layer, constraint, and67

optimiser.68
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Symbol Interpretation

ai Activation of neuron i
bi Bias of neuron i
C Log-likelihood cost function)
gi Excitability of neuron i
ni Number of afferent contacts to neuron i (also written ‖vi‖0)
s (Uniform) Excitability of all neurons
vi Unnormalised input to neuron i
wi Normalised input to neuron i
ε SET connection probability
ζ SET excision probability
η Learning rate for stochastic gradient descent
σ Sigmoid activation function
σs Softmax activation function
τ Threshold-linear activation function

Table S1: Table summarising symbols and interpretations.
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