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Abstract 

 

Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes 

permanently due to brain injury. The development of an index to quantify the level of consciousness 

across these different states is regarded as a key problem both in basic and clinical neuroscience. We 

argue that this problem is ill-defined since such an index would not exhaust all the relevant information 

about a given state of consciousness. While the level of consciousness can be taken to describe the actual 

brain state, a complete characterization should also include its potential behavior against external 

perturbations. We developed and analyzed whole-brain computational models to show that the stability of 

conscious states provides information complementary to their similarity to conscious wakefulness. Our 

work leads to a novel methodological framework to sort out different brain states by their stability and 

reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-

injured patients), and pharmacologically-induced (anesthesia) loss of consciousness. 

 

Keywords: Consciousness, sleep, anesthesia, computational modeling, disorders of consciousness, 

machine learning. 
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Introduction 

 

Human consciousness can be understood in terms of its contents, but also as a state extended in time. The 

contents of consciousness are frequently investigated from a functional perspective, combining task-based 

paradigms from cognitive neuroscience with different neuroimaging methods to reveal the brain 

mechanisms associated with explicit or implicit reports of conscious awareness (1). The study of 

temporally extended conscious states is more elusive, with different authors agreeing more often on 

specific examples than on broad and clear definitions (2-5). Some examples include the different stages of 

the human wake-sleep cycle (6), the acute effects of anesthesia (7), and post-comatose disorders of 

consciousness (8). These states cannot be defined by the specific nature of their content; instead, our 

intuition suggests that they involve overall reductions in the intensity or level of consciousness, perhaps 

up to the point of becoming completely void of subjective experiences. A natural question emerges from 

these considerations: how can the level of consciousness be estimated from third-person measurements, 

and what is the validity of this estimation? 

 

Several unidimensional scales have been developed and implemented for the purpose of measuring the 

level of consciousness. Some are based on the observation and quantification of behaviour, such as the 

scales used during surgery to determine the depth of anesthesia, or those employed by neurologists to 

diagnose the severity of disorders of consciousness in brain-injured patients (9). Others are obtained from 

recordings of spontaneous or evoked brain activity, either by following a data-driven approach or by 

computations informed by theoretical developments (10-15). For instance, information integration theory 

(IIT) posits that the level of consciousness corresponds to the amount of integrated information (ɸ) in the 

brain (16), which can be approximated by different metrics of complexity and data compressibility (17). 

These and other examples present the common feature of collapsing whole-brain activity data into a 

single numerical index that is expected to correlate with the outcome of behavioral scales, akin to a 

“thermometer” capable of objectively measuring the level of consciousness taking a state of healthy 

wakefulness as a reference point (18). 

 

Leaving issues of practicality aside, it seems questionable that a single number can adequately describe 

the global state of human consciousness. The brain is a highly complex system composed of 1010 

nonlinear units (neurons) interacting in 1015 sites (synapses) (19). Considering this astonishing level of 

complexity, it is surprising that the brain self-organizes into a discrete and reduced number of 

behaviorally distinct states (20), let alone that these states can be placed along a unidimensional 

continuum parametrized by the level of consciousness (5). In reality, most numerical constructs 

associated with human brain and behaviour present multiple independent factors - consider, for example, 

the leading models of personality, intelligence, and mental disorders, all of which are multidimensional 

(21-23). Analogously, states of consciousness can be described by factors related to content (e.g. the level 

of sensory gating) and function (e.g. the degree of global availability of information for cognitive 

processing), a view that can be extended to states observed during certain psychiatric conditions, or 

arising as a consequence of pharmacological stimulation (24). In turn, each of these dimensions 

implicates specific brain functional systems, as opposed to the global and emergent character of metrics 

related to complexity and information integration. Still, numerical metrics for consciousness could be 

valid as first approximations useful to assist clinicians in the diagnosis and prognosis of difficult cases 

(8). 
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In contrast to this view, we propose that numerical metrics are essentially insufficient - even when 

considered as approximations. A way of framing this insufficiency is noting that consciousness can be 

characterized by descriptive and perturbational dimensions or, equivalently, by the actual and potential 

state of the brain. The first dimension is related to the question “how does this state feel like and what sort 

of behavior does it entail?”, while the second addresses the stability of the state, thus answering the 

question: “how will this state behave if perturbed?”. The perturbational dimension is uncorrelated with 

complexity-based metrics, since both deep sleep and general anesthesia present marked reductions in 

complexity and information integration (15,25), yet the first can spontaneously revert to wakefulness 

upon sensory stimulation, while the second is associated with a more persistent state of unresponsiveness. 

An analogy with the mechanical systems studied in physics can be useful to consolidate the difference 

between both ways of describing a global brain state. Following this analogy, states of consciousness are 

identified with equilibrium points, and the level of consciousness corresponds to the mechanical energy 

associated with those points (26). As in the physical analogy, however, the level of consciousness fails to 

completely characterize present and future behavior. For this purpose, the stability must also be taken into 

account; for instance, by investigating how the system reacts to different external perturbations. 

 

We pursued this line of inquiry by investigating functional magnetic resonance imaging (fMRI) data 

corresponding to three different states of reduced consciousness: sleep, propofol anesthesia, and post-

comatose disorders of consciousness in brain injured patients. First, we compared the similarity between 

these states using machine learning classifiers, thus constructing metrics that reflect the level of conscious 

awareness relative to reference states of healthy wakefulness. Next, we assessed whether transitions 

between these states could be induced by external stimulation in whole-brain dynamical system models of 

fMRI data (27), leading to a perturbation similarity metrics. 

 

 

Results 

 

Analysis overview 

 

We explored the similarities and differences between brain states associated with varying levels of 

consciousness, including wakefulness (W), three progressively deeper sleep stages (N1, N2, N3), 

propofol-induced sedation (S) and anesthesia (LoC), and in patients suffering from disorders of 

consciousness (DoC), all diagnosed as unresponsive wakefulness syndrome (UWS) or in the minimally 

conscious state (MCS). These states were compared using four different distance metrics. The 

“classification distance” between two states was obtained by training a random forest classifier to 

distinguish the first state from wakefulness, and assessing its generalization accuracy (i.e. transfer 

learning) when distinguishing the second state from wakefulness,  using whole-brain functional 

connectivity  (FC) between blood-oxygen-level-dependent (BOLD) signals as input (Pallavicini et al., 

2019). The “connectivity correlation distance” between two states was based on computing the linear 

correlation coefficient between regional FC profiles from both states after subtraction of wakefulness FC 

as a baseline. A high correlation implied that the FC profile of the region changed similarly between both 

states relative to wakefulness. This distance was then defined as the proportion of regions in the whole-

brain parcellation presenting a significant (p<0.05, Bonferroni corrected) correlation with R ≥ 0.5.  
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The remaining two definitions were based on the results of a whole-brain computational model of brain 

activity, constructed by coupling regional dynamics with structural connectivity estimated from DTI data 

(Fig. 1) (28). The dynamics of each region were given by the normal mode of a Hopf bifurcation (also 

known as a Stuart-Landau nonlinear oscillator), presenting three qualitatively different regimes depending 

on a single bifurcation parameter: steady dynamics governed by noise (a<0), self-sustained oscillations at 

the fundamental frequency of the regional empirical BOLD time series (a>0), and unstable behavior 

switching back and forth between these two regimes (a≈0) (29). Local bifurcation parameters were 

optimised to reproduce the empirical FC of each state, with the constraint that regions located within 

different resting state networks (RSNs) (30) contributed as independent anatomical priors to parameter 

variation (28). Afterwards, the “model parameter distance” between two states was computed as the 

euclidean distance between the associated set of optimal bifurcation parameters obtained after fitting the 

model to the empirical FC using genetic algorithms (i.e. one local parameter per region in the whole-brain 

parcellation). Finally, the “perturbational distance” was determined from the behavior of the whole-brain 

model against simulated external oscillatory perturbations. This framework consists of fitting the whole-

brain model to the empirical FC of each brain state and then applying an in silico stimulation protocol to 

assess the likelihood of inducing transitions between pairs of states (27,31). The procedure followed to 

construct the model and its sources of empirical information are described in Fig. 1. We then simulated 

external perturbations using an additive periodic forcing term of variable amplitude incorporated to the 

dynamical equations of each pair of homotopic regions, and evaluated whether the perturbation increased 

the similarity between the simulated FC and the empirical FC of another target state (27,28). For example, 

we evaluated whether external stimulation applied to the model fitted to wakefulness FC could displace 

the simulated FC towards that of sleep, anesthesia or brain injured patients, and vice-versa. If affirmative, 

we interpreted that a transition could be induced between both states, leading to a low “perturbational 

distance” value. 

 

The first three metrics are data-driven and can be computed directly from the empirical fMRI data, or 

from the inferred model parameters without addition of external stimulation, hence they can be 

considered descriptive metrics. The fourth metric is perturbational, since it measures whether external 

stimulation can drive simulated whole-brain FC between patterns typical of different states of 

consciousness. 

 

Classification distance between N3, LoC and UWS 

 

We started by studying the similarity between states associated with deepest unconsciousness in our 

dataset: N3 sleep, LoC and the UWS group of patients. As an exploratory first step, we calculated the 

average difference in FC for each state vs. wakefulness. These differences are shown in Fig. 2A, both in 

matrix form and as anatomical renderings of the functional connections associated with the top and 

bottom 5% differences. A similar pattern of FC changes is evident for N3 and LoC (correlation between 

FC difference matrices: R=0.65), consisting of reduced FC in occipital and parietal regions, and increased 

FC in frontal regions. On the other hand, UWS patients did not present such clear patterns, with high 

magnitude FC differences scattered throughout the whole brain (UWS vs. LoC: R=-0.1; UWS vs. N3: R = 

-0.1). This suggests that FC changes relative to conscious wakefulness during N3 sleep and LoC present 

substantial similarities, but are generally different from those seen in UWS patients.  
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Next, we used individual subject FC data to train and evaluate three random forest classifiers to 

distinguish W from N3, LoC and UWS. After training and testing by cross-validation, each classifier was 

applied to recognize the other two brain states from the corresponding W data (i.e. transfer learning was 

assessed).  Arrows in Fig. 2B indicate significant transfer learning classification accuracy; for example, 

an arrow from LoC to N3 indicates that a random forest classifier trained to distinguish LoC from W 

presented significant accuracy when applied to distinguish N3 from W. The three classifiers presented 

high and significant (p<0.001) performance when distinguishing W from the brain states used for their 

training (indicated as self arrows in Fig. 2B): N3 vs.W, <AUC> = 0.948 ± 0.005; LoC vs. W, <AUC> = 

0.949 ± 0.004; UWS vs. W, <AUC> = 0.973 ± 0.001 (mean ± std). Next, we used the trained classifiers to 

sort datasets different from the ones they were originally trained to distinguish. We found that algorithms 

trained using N3 sleep generalized well to the classification of LoC from W and vice-versa, yielding 

significant transfer learning (p<0.05) for the classifier trained using N3 sleep and evaluated on LoC 

(<AUC> = 0.92 ± 0.02), and for the classifier trained using LoC and evaluated on N3 sleep ( <AUC> = 

0.91 ± 0.01). However, significant transfer learning was not obtained for classifiers trained or evaluated 

using the UWS dataset, thus establishing that the descriptive classifier distance metric dissociated 

physiological and pharmacologically-induced states of unconsciousness from the group of patients with 

most severe disorders of consciousness. This could reflect the different patterns of FC changes that are 

associated with transient (N3 sleep, LoC) and persistent (UWS) states of unconsciousness (Fig. 2A). 

 

 

Regional FC similarity between states of consciousness 

 

Next, we investigated local similarities between states of unconsciousness by means of the connectivity 

correlation distance. Fig. 3 shows anatomical renderings of the regions presenting a significant correlation 

of their profiles of FC changes relative to wakefulness between the states indicated in each inset text. For 

instance, the top left panel highlights the regions whose local FC profile changed similarly during N1 and 

N2 sleep, in both cases relative to wakefulness. We first observe that most regions in the frontal lobe 

changed their FC profile similarly during N1 and N2 sleep and that this also happened for most brain 

regions in the comparison between N2 and N3 sleep, but for fewer regions in the comparison between N1 

and N3 sleep. The changes in FC brought upon by N3 sleep were also very similar to those seen in LoC, 

but their similarity to S was less marked. FC changes during N2 sleep were less similar to LoC than those 

observed during N3 sleep. Finally, regional FC changes during DoC states (MCS and UWS) were not 

significantly correlated with those observed during other states of reduced consciousness, and only 

presented widespread positive correlations between them. Taken together, these results show that states of 

deeper unconsciousness are more similar between them than compared to transitional states for which 

consciousness could be partially preserved, such as N1 sleep and S. An exception was found in the 

comparison between S and LoC, where most brain regions presented similar FC changes, possibly 

stemming from a similar neurochemical mechanism activated by propofol at different doses. Correlations 

were more widespread between the states belonging to each different route towards unconsciousness, i.e. 

between states corresponding to different sleep stages, propofol doses, and DoC severity. As in the results 

obtained using the classification distance (Fig. 2), DoC behaved very differently from the other states: no 

significant correlations (|R|>0.5) in regional FC changes were observed between these states and the 

others. 
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Descriptive distance metrics between states of consciousness 

 

We extended the results shown in Figs. 2 and 3 to include all the possible comparisons between brain 

states, as well as the comparison based on the similarity of the optimal model parameters (“model 

parameter distance”, based on the computational model described in Fig. 1). Fig. 4A presents matrices 

containing z-scores of the aforementioned distance metrics between all pairs of states (note that the 

classification distance was defined as 1-<AUC>). The matrix elements are presented in graph form in 

Fig.4B, with only the top 25% matrix elements being shown. 

 

The first matrix is based on the proportion of significant regions shown in Fig. 3, i.e., the ratio between 

the number of significant regions and the 90 regions in the brain atlas (“connectivity correlation 

distance”). As shown in Fig. 3, contiguous sleep stages presented the lowest distances, while the distance 

between S/LoC and sleep stages gradually increased from N3 to N1 sleep. As also expected from the 

previous figures, MCS and UWS patients were highly similar between them but not when compared to 

the other states. Similar results were obtained for the classification distance (Fig. 4A, second matrix), 

which is already evident by inspection of the matrix and its associated graph. The results obtained 

comparing the optimal model parameters (Fig. 4A, third matrix) appear slightly different, but still 

preserve the three main findings observed for the other metrics: sleep stages of similar depth tended to 

present the highest similarities, S and LoC were more similar between them than to sleep stages, and DoC 

patients presented idiosyncratic changes that set them apart from the other states of consciousness. 

 

Fig. 4C shows a quantitative evaluation of the similarity between the three matrices, establishing that each 

descriptive distance metric can be used to predict all others. In these figures, each point corresponds to a 

pair of brain states, with X and Y coordinates based on the different combinations of distance metrics. As 

shown in the last panel, for example, pairs of brain states presenting high machine learning transfer 

learning accuracy also yielded similar model parameters, and vice-versa. In particular, all three metrics 

converge in the dissociation between sleep and propofol-induced unconsciousness from DoC patients.  

 

Perturbational distance between states of consciousness 

 

After optimizing the computational model to reproduce the empirical FC of initial and target states, we 

systematically simulated the effects of an external periodic perturbation introduced at all pairs of 

homotopic regions. The perturbation was applied in the model optimized to reproduce the FC of the initial 

state, and we evaluated how increasing perturbation amplitudes impacted on the model goodness of fit 

computed relative to the target state. The perturbational distance was computed as the best goodness of fit 

relative to the target state across amplitudes. According to this definition, a low distance indicates that a 

suitable combination of perturbation amplitude and stimulation site is capable of displacing the initial FC 

towards that of the target state, i.e. a transition between initial and target state can be induced by external 

stimulation in the model.  

 

The perturbational distances between all pairs of physiological, pharmacologically-induced and 

pathological states of consciousness are summarized in matrix representation in Fig. 5A. A directed graph 

constructed from these matrix elements is presented in Fig. 5B, where each arrow indicates that certain 

stimulation parameters induce a transition from the initial to the target state with 𝛥𝐺𝑜𝐹 ≤0.3. We observe 
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that certain states receive several directed connections (e.g. W) while others present the opposite 

behaviour (e.g. N1 sleep). States receiving several connections can be considered stable, since external 

stimulation easily transitions other states of consciousness towards them, but they generally remain the 

same when stimulated; conversely, states sending out several connections easily transition into other 

states when stimulated, and hence can be considered unstable. 

 

In Fig. 5C we place all states of consciousness into a bi-dimensional diagram according to their similarity 

to wakefulness (“level of consciousness”, Y-axis) and their instability, defined as the number of outbound 

connections in Fig. 5B (“instability against perturbations”, X-axis). In this diagram, DoC and LoC appear 

as stable states of reduced consciousness, while W is both conscious and stable. All sleep stages are 

comparatively less stable, with N1 sleep being the most fragile against perturbations, consistent with its 

role as a transitional stage between early and deep sleep. Finally, propofol sedation (S) was intermediate 

both in conscious level and stability. 

 

We classified transitions in two groups, depending on the initial and target state. One group corresponded 

to perturbations that increased the level of consciousness (i.e. all states to W, N2/N3 to N1, N3 to N2, 

LoC to S, MCS to UWS), and another corresponded to perturbations that decreased the level of 

consciousness (i.e. all reverse transitions). For each pair of states we ranked homotopic regions in terms 

of their associated optimal ∆𝐺𝑜𝐹, and computed the average regional ranking separately across all 

transitions in the “increase level” and “decrease level” groups. Thus, a high value for a region in the 

“increase level” group indicates that perturbations applied to that region consistently tended to increase 

the level of consciousness, and vice-versa for the “decrease level” group. Fig. 5D presents a rendering of 

the top 50% homotopic regions in each group. Simulated perturbations applied at the bilateral 

hippocampus, inferior frontal cortex, anterior cingulate cortex and primary visual cortex (calcarine sulcus) 

systematically resulted in the best ∆𝐺𝑜𝐹 changes towards states of reduced consciousness. Conversely, 

perturbations applied at the temporo-parietal junction (bilateral angular gyrus), precuneus, precentral 

gyrus and middle frontal cortex resulted in the best ∆𝐺𝑜𝐹 changes towards states of increased 

consciousness. 

 

In contrast to the results shown in Fig. 4C, the perturbational distance metric provided information 

complementary to that obtained from the descriptive distance metrics. Fig. 5E shows that the descriptive 

metrics were not significantly correlated with the perturbational metric; in other words, even though some 

pairs of states presented similar patterns of FC changes relative to wakefulness, externally-induced 

transitions between them were forbidden in our computational model. 
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Discussion 

 

There are two different but related problems in the study of states of reduced consciousness. The first 

concerns the identification of such states from a limited amount of behavioral information and non-

invasive brain activity recordings. This is the challenge faced by clinicians in the identification of DoC, a 

difficult task with up to 40% consensus-based misdiagnosis rate (32), as well as by anesthesiologists in 

the detection and prevention of intraoperative awareness (33). The second problem concerns the 

manipulation of conscious states by means of externally induced perturbations, either to induce 

unconsciousness (i.e. anesthesia) or to restore conscious wakefulness in patients (34-3) These two 

problems map onto the dimensions we explored in the present work and are summarized in Fig. 5C. 

Previous data-driven and theoretical developments for the detection of consciousness from neuroimaging 

data (10-13,15) represent partial solutions: what is also needed is an exhaustive and systematic method to 

investigate the potential behaviour of global brain states under external stimulations. We pursued this 

approach by combining different sources of empirical information with simple but conceptually rich 

models of whole-brain activity, which allowed us to explore the stability of different states of 

consciousness from passive recordings of fMRI data. Importantly, we showed that the perturbational 

analysis provided information complementary to the results of statistical and machine learning techniques 

applied directly to the data.  

 

The representation of whole-brain activity by coupled dynamical systems was a crucial step in our 

analysis. While previous experimental studies investigated the effects of localized external perturbations 

during states of reduced awareness in humans (34-36,39,40), the systematic exploration of targeted 

stimulation is possible by the freedom granted by computational models. We opted to allow regional 

variability in the bifurcation parameters of the model, since different brain regions could be more or less 

relevant to induce transitions between certain states of consciousness, and this variability could depend 

upon the proximity of regional dynamics to the bifurcation point (28,29). The use of RSNs to constrain 

this regional variability, combined with other sources of empirical data, increased the conceptual 

interpretability of our computational model. Due to the semi-empirical nature of the model, we were able 

to show that the inferred parameters reflected the similarities between states of consciousness observed in 

FC patterns; for instance, the distance metric based on random forest transfer learning accuracy was 

significantly correlated with the metric obtained from the comparison of the optimal model parameters 

(Fig. 4C). However, the addition of external stimulation to the model resulted in a distance metric that 

was independent from those obtained without perturbational analysis (Fig. 5E). In particular, this distance 

metric could not be predicted by the similarity of the underlying model parameters, suggesting that 

perturbations are amplified by the system nonlinearities, a behaviour characteristic of systems posed at or 

near a dynamical instability (26,29,41). 

 

States of consciousness can be analyzed in functional terms (i.e. behavior and cognition) as well as by 

quantitative metrics derived from brain activity measurements. It is becoming increasingly clear that 

functional analysis framed in terms of unidimensional “levels of consciousness” could be insufficient to 

capture the richness and heterogeneity of conscious states (5). A conceptually similar unidimensional 

characterization is also pursued by different quantitative indices computed from neural activity 

recordings, such as information integration (42), compressibility (15,25), causal density (18), the 

perturbational complexity index (PCI) (12), and other data-driven metrics. Some of the most 
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commercially successful markers of conscious awareness, such as the bispectral index for anesthesia 

monitoring (10), are based on this approach. Our work questions whether markers of this kind can be 

sufficient, since they do not address the potential behavior of the system against perturbations. Here, it is 

important to draw a distinction between the stability of ongoing neural dynamics and the stability of 

global brain states. PCI (12) and other related data-driven techniques (43) estimate the response of within-

state activity to perturbations, but it is assumed that the applied perturbation does not result in a transition 

between brain states. In contrast, our interest lies precisely in determining the likelihood of observing 

such a transition upon external stimulation. Clearly, these different approaches can yield independent and 

complementary information, since our perturbational distance metric showed a dissociation between 

general anesthesia and deep sleep, while both states present comparable PCI values (12). Finally,  the 

results  obtained from our perturbational analysis are fully consistent with well-understood differences in 

responsiveness between sleep and propofol-induced anesthesia; for example, with the observation that 

arousals are more easily elicited during sleep than under the effects of anesthesia (equivalently, surgeons 

cannot wait for the onset of sleep to start operating). While responsiveness can be probed by direct 

sensory stimulation, our model was capable of reproducing the same result through the exhaustive 

exploration of all pairs of homotopic regions, i.e. not restricted to sensory regions. 

 

Deep sleep and propofol-induced anesthesia present similarities in terms of brain activity and their 

associated neurochemical pathways. Both states are associated with slow (44) and regular activity of 

cortical origin (15,25), breakdown of large-scale FC (45,46), and increased inhibitory neurotransmission 

(47); furthermore, propofol anesthesia may result in sleep-like homeostatic regulation (48). The results we 

presented in Fig. 2 are in line with these observations and also point towards marked differences between 

these states and the conditions of MCS and UWS patients, which have been previously shown to present 

distinct changes in EEG dynamics (49). A recent article demonstrated significant transfer learning 

between datasets comprising propofol anesthesia and DoC patients, which is at odds with the results of 

our analysis (50). We believe this contradiction could arise due to the large variability that exists between 

cohorts of brain-injured patients (51). Future studies should attempt to settle this issue by investigating 

larger and more homogenous patient populations. 

 

Within the different stages of human sleep, we showed that N1 sleep (a transitional stage between 

wakefulness and deep sleep) presented the highest instability against perturbations. N1 sleep is 

characterized by diminished thalamo-cortical coupling with preserved cortical activation, a condition 

compatible with conscious mentation and imagery during the onset of sleep (52). From an evolutionary 

perspective, it is reasonable that N1 sleep is susceptible to transitioning towards wakefulness upon 

external stimulation, since during this stage the individual is vulnerable to environmental threats, while 

offline information processing associated with learning and memory consolidation is not yet taking place 

(53). On the other hand, propofol-induced unconsciousness and DoC are either artificially induced or 

arise as a consequence of brain injury, and thus do not reflect the adaptive pressures that constrain the 

stability of human sleep. These constraints are also reflected in the sequence of states that comprise 

human sleep: the orderly progression from wakefulness to N3 sleep (54) is disrupted when sudden 

awakenings occur. The output of our model was consistent with these dynamics, since external 

perturbation could only induce transitions from N3 sleep to wakefulness, but failed to elicit similar 

transitions towards intermediate sleep stages. 
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The non-reversible nature of severe DoC could be linked to alterations in the underlying structural 

connectivity of the brain,      as a consequence of injury (55,56). While whole-brain functional 

connectivity is known to be preserved even during states of deep unconsciousness (57,58), it tends to 

reduce towards the structural connectivity backbone (20,59,60), suggesting that this backbone imposes a 

limit to the functional disintegration that is possible in healthy brains. However, the analysis of the 

changes reported in Fig. 2 reveals that patients present a substantially different functional architecture 

compared to that seen during sleep and propofol-induced loss of consciousness, which could stem from a 

fundamentally different (and more variable) organization of anatomical connections. We note that our 

analysis does not preclude the possibility of inducing transitions towards conscious wakefulness in 

patients, but individually chosen targets might be necessary due to the aforementioned variability.  Also, 

it could be possible that the recovery of consciousness can be accelerated by neurochemical and 

pharmacological means (61), which cannot be easily accommodated within the proposed modeling 

framework. 

 

The choice of periodic stimulation was determined mainly by the local dynamics, which consisted of 

nonlinear oscillators with a single natural frequency. However, future modeling efforts incorporating 

more complex dynamics could allow in silico rehearsal of interventions with ampler neurobiological 

interpretation; for instance, a dynamic mean-field model informed by empirical receptor density maps 

could be used to explore the result of activating specific neurotransmitter systems (e.g. serotonin, 

dopamine) (62,63).This flexibility could be used to extend our analysis to other conscious states, such as 

those seen in certain psychiatric patients. That different psychiatric conditions can present distinct levels 

of stability is known to clinical practitioners who have encountered patients suffering from bipolar 

disorder on one extreme, and catatonic patients on the other. Also, the application of machine learning 

classifiers combined with computational models could inform the hypothesis that certain pharmacological 

interventions mimic the symptomatology of certain psychiatric syndromes, such as in the 

psychotomimetic hypothesis of serotonin 2A receptor agonists (also known as “psychedelics”) (64). 

 

Our results should not only be discussed in terms of the allowed transitions between states, but also in 

terms of which regions are associated with those transitions, and how those transitions depend on the 

external forcing amplitude. In  Fig. 5D we showed that transitions towards states of heightened 

consciousness were systematically linked to perturbations located in the precuneus, temporo-parietal 

junction and the middle frontal cortex, regions presenting a significant overlap with the default mode 

network (65) and in line with electrical stimulation targets shown to improve behavioural signatures of 

consciousness in DoC patients (38). These regions have also been shown to robustly reflect the level of 

consciousness (46,55,66,67) and conscious information access in cognitive neuroscience paradigms (1). 

Consistently with previous work (28), the effect of perturbing these regions also depended on the 

amplitude of the periodic forcing term; for instance, perturbations applied to the temporo-parietal junction 

asymptotically increased the similarity to wakefulness, while a small perturbation located at the prefrontal 

cortex sufficed to reproduce an arousal. The qualitatively different behavior upon simulated perturbations 

represents a set of rich predictions to be addressed by future experiments. 

 

While each independent source of empirical information incorporated into our model increased its 

interpretability, it also imposed specific limitations to our analysis. For instance, functional connectivity 

was estimated from recordings acquired in different centers, which could represent a potential source of 
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confounds. However, since our approach focused on transfer learning accuracy and each machine 

learning classifier was trained using a control group acquired using a matched scanner and data 

acquisition protocol, we believe it was less vulnerable to classification biases related to different 

experimental conditions. Also, the use of anatomical connectivity estimated in a group of healthy 

participants could represent a limitation for the modeling of patient data. Nevertheless, since brain-injured 

patients may present heterogeneous lesion locations (51) it could be that the average healthy connectivity 

constitutes a reasonable first estimate. Also, since the perturbations failed to induce widespread 

transitions between LoC/sleep and DoC (even when considering the same anatomical connectivity) we 

can expect that this result will be furthered when incorporating more accurate group-specific connectivity. 

 

In conclusion, the investigation of dynamical stability can be informative for the characterization of 

different brain states, allowing the dissociation between reversible vs. non-reversible and pharmacological 

vs. physiological states, with potential applications to neurologic and psychiatric conditions associated 

with persistent states of abnormal consciousness and cognition. We expect that future metrics to monitor 

levels of sleep, anesthesia and residual consciousness in brain injured patients are expanded to represent 

this additional dimension, with positive consequences in clinical practice and in the neuroscientific 

investigation of human consciousness and its disorders.  

 

Materials and Methods 

Experimental data 

We analyzed fMRI recordings from 81 participants scanned at two independent research sites: Frankfurt: 

15 subjects during wakefulness and sleep; Liège: 14 healthy subjects during wakefulness and under 

propofol sedation and anesthesia; 16 patients diagnosed as MCS, 15 patients diagnosed as UWS, and 21 

healthy and awake controls. 

Sleep dataset. Simultaneous fMRI and EEG  was measured for a total of 73 subjects (written informed 

consent, approval by the local ethics committee) in Frankfurt (Germany). EEG via a cap (modified 

BrainCapMR, Easycap, Herrsching, Germany) was recorded continuously during fMRI acquisition (1505 

volumes of T2*-weighted echo planar images, TR/TE = 2080 ms/30 ms, matrix 64 × 64, voxel size 

3 × 3 × 2 mm3, distance factor 50%; FOV 192 mm2) with a 3 T Siemens Trio (Erlangen, Germany). An 

optimized polysomnographic setting was employed (chin and tibial EMG, ECG, EOG recorded bipolarly 

[sampling rate 5 kHz, low pass filter 1 kHz] with 30 EEG channels recorded with FCz as the reference 

[sampling rate 5 kHz, low pass filter 250 Hz].  Scalp potentials measured with EEG allow the classification 

of sleep into 4 stages (wakefulness, N1, N2 and N3 sleep) according to the American Academy of Sleep 

Medicine (AASM) rules (54). Pulse oximetry and respiration were recorded via sensors from the Trio 

[sampling rate 50 Hz]) and MR scanner compatible devices (BrainAmp MR+, BrainAmpExG; Brain 

Products, Gilching, Germany), facilitating sleep scoring during fMRI acquisition. We selected 15 subjects 

who reached stage N3 sleep (deep sleep) and contiguous time series of least 200 volumes for all sleep 

stages. Previous publications based on this dataset can be consulted for further details (see,e.g., ref. 68). 

Propofol sedation and anesthesia.  Resting-state fMRI volumes from 18 healthy subjects were acquired 

in four different states following propofol injection: wakefulness, sedation, unconsciousness, and recovery. 
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Data acquisition was performed in Liège (Belgium) (written informed consent, approval by the Ethics 

Committee of the Medical School of the University of Liège). Subjects fasted for at least 6 h from solids 

and 2 h from liquids before sedation. During the study and the recovery period, electrocardiogram, blood 

pressure, pulse oximetry (SpO2), and breathing frequency were continuously monitored (Magnitude 

3150M; Invivo Research, Inc., Orlando,FL). Propofol was infused through an intravenous catheter placed 

into a vein of the right hand or forearm. An arterial catheter was placed into the left radial artery. Throughout 

the study, the subjects breathed spontaneously, and additional oxygen (5 l/min) was given through a loosely 

fitting plastic facemask. The level of consciousness was evaluated clinically throughout the study with the 

scale used in ref. 69. The subject was asked to strongly squeeze the hand of the investigator. She/he was 

considered fully awake or to have recovered consciousness if the response to verbal command (“squeeze 

my hand”) was clear and strong (Ramsay 2), as sedated if the response to verbal command was clear but 

slow (Ramsay 3), and as unconscious, if there was no response to verbal command (Ramsay 5–6). Ramsay 

scale verbal commands were repeated twice for each consciousness level assessment.  Functional MRI 

acquisition consisted of resting-state functional MRI volumes repeated in the four states: normal 

wakefulness (Ramsay 2), sedation (Ramsay 3), unconsciousness (Ramsay 5), and recovery of consciousness 

(Ramsay 2). The typical scan duration was half an hour for each condition, and the number of scans per 

session (200 functional volumes) was matched across subjects to obtain a similar number of scans in all 

states. Functional images were acquired on a 3 Tesla Siemens Allegra scanner (Siemens AG, Munich, 

Germany; Echo Planar Imaging sequence using 32 slices; repetition time = 2460 ms, echo time = 40 ms, field 

of view = 220 mm, voxel size = 3.45×3.45×3 mm3, and matrix size = 64×64×32). Previous publications based 

on this dataset can be consulted for further details (see, e.g., ref. 46). 

Disorders of consciousness. The dataset comprised resting-state fMRI volumes on healthy controls (>18 

years old and free of psychiatric and neurological history) and unsedated patients presenting disorders of 

consciousness (Department of Radiology, Centre Hospitalier Universitaire (CHU), Liège) (written 

informed consent to participate in the study was obtained directly from healthy control participants and the 

legal surrogates of the patients, approval by the Ethics Committee of the Medical School of the University 

of Liège).  The cohort included 21 healthy controls (8 females; mean age, 45 ± 17 years), 43 patients (25 in 

MCS, 18 in UWS, 12 females; mean age, 47 ± 18 years. See Supplementary Information with single subject 

demographic information). UWS patients show signs of preserved vigilance, but do not exhibit non-reflex 

voluntary movements, and are incapable of establishing functional communication (70). Patients in MCS 

show more complex behavior indicative of awareness, such as visual pursuit, orientation response to pain, 

and nonsystematic command following; nevertheless, these signs are consistent but may be manifested 

sporadically (71). The inclusion criteria for patients were brain damage at least 7 days after the acute brain 

insult and behavioral diagnosis of MCS or UWS performed with the Coma Recovery Scale–Revised (CRS-

R) (9). The CRS-R is currently the most sensitive scale to characterize disorders of consciousness and 

evaluates and includes 23 arranged items organized on subscales for auditory, visual, motor, oromotor, 

communication, and arousal function. Each item assesses the presence or absence of specific physical signs, 

which represent the integrity of brain function as presence or absence of cognitively mediated 

responsiveness.  

Data were acquired on a 3T Siemens TIM Trio MRI scanner (Siemens Medical Solutions, Erlangen, 

Germany): 300 T2*-weighted images were acquired with a gradient-echo echo-planar imaging (EPI) 

sequence using axial slice orientation and covering the whole brain (32 slices; slice thickness, 3 mm; 

repetition time, 2000 ms; echo time, 30 ms; voxel size, 3 × 3 × 3 mm; flip angle, 78°; field of view, 192 
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mm by 192 mm). A structural T1 magnetization-prepared rapid gradient echo (MPRAGE) sequence (120 

slices; repetition time, 2300 ms; echo time, 2.47 ms; voxel size, 1.0 × 1.0 × 1.2 mm; flip angle, 9°)      

(Demertzi et al., 2019) 

fMRI preprocessing. For each participant and for each brain state, we used FSL tools to extract and 

average the BOLD signals from all voxels. The FSL preprocessing included a 5mm spatial smoothing 

(FWHM), bandpass filtering between 0.01-0.1 Hz, and brain extraction (BET), followed by a 

transformation to a standard space (2mm MNI brain) and down sampling for a final representation in a 

45x54x45, 2mm voxel space.  

The following preprocessing steps were performed using specially developed Matlab scripts. First, we 

correct the data by performing regressions between the displacement parameters and the average signal and 

its first derivative, and eliminate these correlations, since they mainly inform movement. Continuing, we 

perform a scrubbing process by which we eliminate subjects that present significant movements in more 

than 20% of the temporal frames recorded, with a criterion for movement significance set as an absolute 

displacement between consecutive frames larger than 0.5 mm. For the remaining subjects, we removed the 

first 3 frames and those which exceed the aforementioned threshold. Finally, we averaged all voxels within 

each ROI defined in the automated anatomical labeling (AAL) atlas, considering only the 90 cortical and 

subcortical non-cerebellar brain regions (72) to obtain one BOLD signal per ROIs. 

This way, we obtain datasets with comparable smoothness and stability that can be compared across 

conditions. 

During preprocessing, 4 subjects were removed from the anesthesia data set, as well as 9 MCS patients and 

3 UWS patients. (See Supplementary Information) 

Structural Connectivity: The structural connectome was obtained applying diffusion tensor imaging (DTI) 

to diffusion weighted imaging (DWI) recordings from 16 healthy right-handed participants (11 men and 5 

women, mean age: 24.75 ± 2.54 years) recruited online at Aarhus University, Denmark. For each participant 

a 90x90 SC matrix was obtained that represents the connectivity between ROIs. Data preprocessing was 

performed using FSL diffusion toolbox (Fdt) with default parameters. The probtrackx tool in Fdt was used 

to provide automatic estimation of crossing fibers within each voxel, which has been shown to significantly 

improve the tracking sensitivity of non-dominant fiber populations in the human brain. The connectivity 

probability from a seed voxel i to another voxel j was defined as the proportion of fibers passing through 

voxel i that reached voxel j (sampling of 5000 streamlines per voxel [73]). All the voxels in each AAL 

parcel were seeded (i.e. grey and white matter voxels were considered). The connectivity probability 𝑃𝑖𝑗 

from region i to region j was calculated as the number of sampled fibers in region i that connected the two 

regions, divided by 5000 × n, where n represents the number of voxels in region i. The resulting SC matrices 

were computed as the average across voxels within each ROI in the AAL thresholded at 0.1% (i.e. a 

minimum of five streamlines) and normalized by the number of voxels in each ROI. Finally, the data were 

averaged across participants.  
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Multivariate machine learning classifiers 

We trained random forest classifiers (74) to distinguish reduced states of consciousness from wakefulness 

based on empirical individual FC matrices (fully connected weighted matrices computed using Pearson’s 

linear correlation coefficient between BOLD time series from each subject), using a five-fold cross-

validation procedure to estimate classifier accuracy. Classifiers were first trained to distinguish between 

wakefulness and a state of reduced consciousness, and their accuracy was then tested in the classification 

between wakefulness and all other states of consciousness (i.e. transfer learning accuracy was assessed). 

Random forest classifiers were trained using scikit-learn (https://scikit-learn.org/) (75). We trained random 

forest classifiers with 1000 decision trees and a random subset of features of size equal to the (rounded) 

square root of the total number of features. The quality of each split in the decision trees was measured 

using Gini impurity, and the individual trees were expanded until all leaves were pure (i.e. no maximum 

depth was introduced). No minimum impurity decrease was enforced at each split, and no minimum number 

of samples was required at the leaf nodes of the decision trees (the classifier hyperparameters can be found 

in https://scikit-learn.org/).  

To assess the statistical significance of the classifier accuracy values, we trained and evaluated a total of 

1000 random forest classifiers using the same features (i.e. FC matrices) as inputs, but scrambling the class 

labels. We then constructed an empirical p-value by counting how many times the accuracy of the classifier 

with scrambled class labels was greater than that of the original classifier All accuracies were computed as 

the area under the receiver operating characteristic curve (AUC) and considered significant at p<0.05. 

Subsequently, the generalizability of the classifiers to distinguish other sleep states from wakefulness was 

evaluated by applying both the original and scrambled classifiers, and constructing p-values analogously. 

 

Regional FC similarity 

For all states of consciousness, we computed the average functional connectivity (FC) of each AAL region 

and subtracted the average FC computed from the wakefulness data, thus yielding a regional profile of FC 

changes for each state. We then computed the connectivity correlation distance between pairs of states S1, 

S2 with FC matrices C1, C2 as follows, 

 

𝑑(𝑆1, 𝑆2) = 1 −
1

90
∑ 𝐼(𝑗)90

𝑗  (1) 

Where I(j) is defined as, 

𝐼(𝑗) = 1, 𝑖𝑓 |𝑅(𝐶1(𝑖, 𝑗), 𝐶2(𝑖, 𝑗))| > 0.5, 𝑖 = 1 𝑡𝑜 90;  𝑖 ≠ 𝑗   

𝐼(𝑗) = 0, 𝑖𝑓 |𝑅(𝐶1(𝑖, 𝑗), 𝐶2(𝑖, 𝑗))| < 0.5, 𝑖 = 1 𝑡𝑜 90;  𝑖 ≠ 𝑗   

Here, the FC of state 1 is obtained as the average across subjects with wakefulness subtracted, and 

analogously for state 2. 
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Whole-brain model 

We implemented a whole-brain model consisting of a network of nonlinear oscillators coupled by the 

structural connectome (SC). Each oscillator was modeled by a normal form of a Hopf bifurcation and 

represented the dynamics of one of the 90 brain regions in the AAL template. The key neurobiological 

assumption is that dynamics of macroscopic neural masses can range from fully synchronous (i.e. activated 

state with self-sustained oscillations) to a stable asynchronous state governed by random fluctuations, with 

an intermediate state presenting complex temporal features linked to noise-induced transitions through the 

bifurcation point (28,29). A secondary assumption is that fMRI can capture the dynamics from both regimes 

with sufficient fidelity to be modeled by the equations.  

Without coupling, the local dynamics of brain region j are modeled by the complex-valued equation, 

  𝑑𝑧𝑗 /𝑑𝑡 = (𝑎 + 𝑖𝜔𝑗 )𝑧𝑗 − 𝑧𝑗 |𝑧𝑗|2 (2) 

In this equation 𝑧𝑗is a complex-valued variable (𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 ), and 𝜔𝑗is the intrinsic oscillation 

frequency of node j. The intrinsic frequencies ranged from 0.04-0.07 Hz and were determined by the 

averaged peak frequency of the bandpass-filtered fMRI signals of each individual brain region. The 

parameter a is known as the bifurcation parameter and controls the dynamical behavior of the system. For 

a<0 the phase space presents a unique stable fixed point at 𝑧𝑗 = 0, thus the system asymptotically decays 

towards this point. For a>0 the stable fixed point changes its stability, giving rise to a limit cycle and to 

self-sustained oscillations with frequency 𝑓𝑗 = 𝜔𝑗 /2𝜋 and amplitude proportional to the square root of a 

(see Fig. 1).  

The coordinated dynamics of the resting state activity are modeled by introducing coupling determined by 

the SC. Nodes i and j are coupled by 𝐶𝑖𝑗 (the i,j entry of the SC matrix). To ensure oscillatory dynamics for 

a>0, the SC matrix was scaled to a maximum of 0.2 (weak coupling condition) (29). In full form, the 

coupled differential equations of the model are the following, 

  
𝑑𝑥𝑗

𝑑𝑡
= (𝑎 − 𝑥2

𝑗 − 𝑦𝑗
2)𝑥𝑗 − 𝜔𝑗 𝑦𝑗 + 𝐺𝛴𝑖 𝐶𝑖𝑗(𝑥𝑖 − 𝑥𝑗 ) + 𝛽𝜂𝑗 (𝑡) (3)         

  
𝑑𝑦𝑗

𝑑𝑡
= (𝑎 − 𝑥2

𝑗 − 𝑦𝑗
2)𝑦𝑗 + 𝜔𝑗 𝑥𝑗 + 𝐺𝛴𝑖 𝐶𝑖𝑗(𝑦𝑖 − 𝑦𝑗 ) + 𝛽𝜂𝑗(𝑡)       (4) 

The parameter G represents a global coupling factor that scales SC equally for all the nodes. These equations 

were integrated to simulate empirical fMRI signals using the Euler-Maruyama algorithm with a time step 

of 0.1 seconds. 𝜂j  represents additive Gaussian noise in each node and scaled by  factor β  fixed at 0.04. 

When a is close to the bifurcation (a~0) the additive Gaussian noise gives rise to complex dynamics as the 

system continuously switches between both sides of the bifurcation. 
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Fitting to empirical data 

We selected the group-averaged static functional connectivity of each state of consciousness as the 

empirical observable to be fitted by the model. The BOLD signals corresponding to each ROI in the AAL 

template were filtered in the frequency range of 0.04–0.07 Hz , since this frequency band has been shown 

to contain more reliable and functionally relevant information compared to other frequency bands, and also 

to be less affected by noise (76-79). Subsequently, the filtered time series were transformed into z-scores. 

For each state of consciousness, the amount of participants was selected based on the presence of 

uninterrupted epochs of that state lasting more than 194 samples (Wsleep= 15; N1=15; N2=15; N3=15; 

Wprop=14; S=14; LoC=14;Wcon=21; MCS:16; UWS:15). Afterwards, the FC matrix was computed as the 

matrix of Pearson’s correlation coefficients between the BOLD signals of all pairs of regions of interest 

(ROIs) in the AAL template. Fixed-effect analysis was used to obtain group-level FC matrices, meaning 

that Fisher’s R-to-z transform z=atanh(R) was applied to the correlation values before averaging over 

participants within each state of consciousness. 

We applied the model described by Eqs. 3 and 4 to simulate BOLD signals for each ROI. We used an 

anatomical prior based on six RSNs to constrain how different groups of nodes could contribute 

independently to the final bifurcation parameters. Each local bifurcation parameter was obtained as the 

linear combination of the contribution of the RSNs spanning that ROI. In this way, we embedded the 

parameters governing the dynamics of the 90 ROIs into a six-dimensional parameter space defined by the 

independent contributions of the RSNs (28). We simulated the same number of samples for each subject 

and the same number of subjects per state, and then we followed a procedure to compute the simulated FC 

identical to the one used for the empirical data. We used the structure similarity index (SSIM) (Wang et al., 

2004) as a metric to compare the simulated and empirical FC, thus defining the goodness of fit (GoF) for 

parameter optimization (the target fitting function was defined as 1-GoF). We implemented a genetic 

algorithm to optimize the six parameters and maximize the GoF of the model. For each state of 

consciousness, we simulated an initial population of 10 elements, 200 generations of offspring and then we 

performed 100 independent runs of the genetic algorithm. Previous work implementing the same 

optimization procedure can be consulted for further details (28). Finally, we selected the combination of 

parameters yielding the simulated FC with the lowest GoF among the 100 runs of the algorithm. 

 

Perturbational distance 

The external perturbation was represented as an additive periodic forcing term incorporated to the equation 

of each node, given by 𝐹𝑗 = 𝐹0𝑗
𝑐𝑜𝑠(𝜔𝑗𝑡), where 𝐹0𝑗

 is the perturbation amplitude and 𝜔𝑗 is the natural 

frequency of node j, computed directly from the BOLD time series. The effects of the perturbation were 

investigated systematically for all 45 pairs of homotopic regions in the AAL atlas, with the purpose of 

providing a conceptual model of the effects of transcranial alternating current stimulation (tACS). This 

perturbation was initially applied in the model with parameters chosen to reproduce an initial state, and the 

amplitude ( 𝐹0𝑗
) of node j and its homotopic pair was parametrically increased from 0 to 2 in steps of 0.1 

(averaging 100 independent simulations for each node pair and 𝐹0𝑗
value). For each value of  𝐹0𝑗

 the 

resulting FC matrix was computed, and its similarity to the FC of the target state was determined as follows, 
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𝛥𝐺𝑜𝐹 =
𝐺𝑜𝐹 (𝐹𝐶𝑠𝑖𝑚𝑡𝑎𝑟𝑔𝑒𝑡 ,𝐹𝐶𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡 )−𝐺𝑜𝐹(𝐹𝐶𝑠𝑖𝑚𝐹

,𝐹𝐶𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡 )

𝐺𝑜𝐹(𝐹𝐶𝑠𝑖𝑚𝑡𝑎𝑟𝑔𝑒𝑡
,𝐹𝐶𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡

)−𝐺𝑜𝐹(𝐹𝐶𝑠𝑖𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙
,𝐹𝐶𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡

)
  (5) 

 

In this equation, 𝐹𝐶𝑠𝑖𝑚𝐹
 is the FC matrix obtained with the perturbation, 𝐹𝐶𝑒𝑚𝑝𝑡𝑎𝑟𝑔𝑒𝑡

 represents the 

empirical FC matrix of the target state, 𝐹𝐶𝑠𝑖𝑚𝑡𝑎𝑟𝑔𝑒𝑡
is the simulated FC matrix of the target state, and 

𝐹𝐶𝑠𝑖𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙
is the simulated matrix of the initial state. According to this normalization, as ∆𝐺𝑜𝐹approaches 

0 the simulation with optimal bifurcation parameters for the initial state plus the perturbation approaches 

the best empirical fit of the model to the target FC. Conversely, as ∆𝐺𝑜𝐹 increases the perturbation fails to 

change the FC in the direction of the optimal FC of the target state (28). 
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Figure 1. Procedure followed to construct the whole-brain computational model. The dynamics of each 

node in the structural connectivity matrix are represented by a Hopf bifurcation with three possible 

dynamical regimes depending on the value of the bifurcation parameter: stable fixed-point (a<0), stable 

limit cycle (a>0) and a bifurcation between both regimes (a≈0). The local bifurcation parameters are 

optimized to reproduce the empirical FC matrix computed from fMRI data acquired during different 

states of consciousness, and constrained in their variation by the six RSNs (anatomical priors) reported in 

Beckmann et al. (2006): Vis M (medial visual), Vis L (lateral visual), Aud (auditory), SM (sensorimotor), 

DM (default mode), EC (executive control). 
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Figure 2. Significant transfer learning accuracy between physiological and pharmacologically-induced 

states of unconsciousness (N3 sleep and LoC), but not between them and pathological states of 

unconsciousness (UWS). (A) Average FC differences for N3 vs. wake (left), LoC vs. wake (center), and 

UWS vs. wake (right), together with anatomical renderings of the top (red) and bottom (blue) 5% 

functional connections associated with the largest difference between states in absolute value. (B) Nodes 

in the diagram represent different brain states (N3, LoC, and UWS) and the arrows between them indicate 

that a machine learning classifier trained to distinguish the source state from W presented significant 

transfer learning accuracy when distinguishing the target state from W (p<0.05, random label shuffling 

with 1000 iterations, Bonferroni corrected). 
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Figure 3. Shared patterns of regional FC changes reflect the progression towards unconsciousness during 

sleep and propofol-induced anesthesia, but these similarities do not extend to DoC patients. Each panel 

contains an anatomical rendering of the regions presenting significantly correlated FC changes between 

the states indicated in the insets. Red indicates a significant positive correlation in regional FC changes 

(R>0.5), while blue indicates a significant negative correlation (R<-0.5). 
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Figure 4. Significant positive correlations between all descriptive distance metrics computed for all pairs 

of states. (A) Matrices containing z-scores of the correlation, classification and model parameter distances 

between all pairs of states of consciousness (B) Graph representation of the matrices in panel A, showing 

only the top 25% matrix elements. (C) Scatterplots establishing the positive and significant correlation 

between all descriptive distance metrics. Each point represents a pair of states, and the shade of purple 

indicates one of the following combinations of states: sleep-sleep, LoC-LoC, DoC-DoC, sleep-LoC, 

sleep-DoC, LoC-DoC. Since variables were converted to ranks prior to the visualization, R and p 

represent the Spearman’s rank correlation coefficient and its associated p-value, respectively.  
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Figure 5. A perturbational metric for the distance between states of consciousness. (A) Matrix 

representation of the the perturbational distance between all pairs of brain states. (B) Directed graph 

representation of the matrix in Panel A, showing the possible externally-induced transitions between pairs 

of states of consciousness (thresholded at ∆𝐺𝑜𝐹 ≤0.3). (C)  Two-dimensional diagram of all states of 

consciousness according to their level of consciousness (i.e. similarity to wakefulness) and their 

instability against external perturbations (sleep states are indicated in blue, S and LoC in purple, and DoC 

in red). (D) Homotopic regions associated with the best ∆𝐺𝑜𝐹 changes in transitions towards states of 

reduced consciousness (blue) and increased consciousness (red). (E) Scatter plots illustrating the non-

significant correlation between perturbational and descriptive distance metrics. Each point represents a 

pair of states, and the shade of purple indicates one of the following combinations of states: sleep-sleep, 

LoC-LoC, DoC-DoC, sleep-LoC, sleep-DoC, LoC-DoC. Since variables were converted to ranks prior to 

the visualization, R and p represent the Spearman’s rank correlation coefficient and its associated p-value, 

respectively. 
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Supplementary Information for: “Perturbations in dynamical models of 

whole-brain activity dissociate between the level and stability of 

consciousness” 
 

 

          Comma Recovery Scale-Revised    

Diagnosis Gender Age at Scan 
Etiolo
gy 

Days 
since 
Injury 

Aud. 
Functi
on 

Vis. 
Functi
on 

Mot. 
Functio
n 

Oro./V
er 
Functio
n 

Commu
nication 

Aurosa
l 

#CRS-R 
assess
ment Included  

MCS F 34 1 3034 3 3 2 2 0 2 5  yes 

MCS M 62 2 13 0 3 2 1 0 1 6  yes 

MCS F 59 3 21 1 3 2 0 0 2 7  yes 

MCS M 30 1 246 3 2 2 2 0 1 3  yes 

MCS M 83 3 13 3 0 2 1 0 0 5  yes 

MCS M 34 3 1077 3 5 2 0 1 1 4  yes 

MCS M 52 3 20 3 3 2 2 1 2 4  no 

MCS M 47 1 533 3 5 2 1 0 2 13  yes 

MCS M 38 3 1854 1 3 2 2 0 1 4  yes 

MCS M 29 3 64 1 3 2 1 0 2 2  yes 

MCS M 41 2 9900 3 3 2 2 0 2 8  no 

MCS M 23 1 301 1 3 2 1 0 2 6  yes 

MCS M 53 2 1241 0 3 2 2 0 2 5  no 

MCS F 46 3 242 1 3 2 1 0 1 7  yes 

MCS M 60 1 15 3 5 5 3 1 1 1  no 

MCS M 25 1 1157 3 5 5 1 0 2 5  no 

MCS M 61 1 135 3 4 2 1 0 2 7  yes 

MCS M 68 1 360 0 3 2 0 0 2 3  yes 

MCS M 35 1 1331 3 0 2 1 0 2 10  no 

MCS F 48 1 291 2 1 2 2 0 1 8  no 

MCS M 73 3 35 0 2 0 1 0 1 3  yes 

MCS M 23 1 645 3 3 0 1 0 2 8  yes 

MCS M 11 2 1482 3 4 2 2 1 2 9  yes 

MCS F 48 2 215 3 0 5 2 3 0 9  no 

MCS M 66 1 674 3 0 1 2 3 0 5  no 

UWS F 52 3 283 1 0 2 2 0 1 8  yes 

UWS M 36 2 6709 1 0 2 1 0 2 6  yes 

UWS M 30 2 743 1 0 2 1 0 2 7  yes 

UWS M 74 2 92 1 0 1 1 0 1 9  yes 

UWS F 44 2 8 0 0 1 0 0 1 2  yes 

UWS M 67 3 43 1 0 2 1 0 1 5  yes 

UWS M 63 2 30 1 1 2 2 0 2 1  yes 

UWS M 31 1 849 1 1 2 1 0 2 11  yes 
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UWS M 65 2 26 0 0 1 0 0 1 2  yes 

UWS M 87 3 7 0 0 2 1 0 1 1  no 

UWS F 41 2 1572 1 0 1 1 0 2 8  yes 

UWS F 50 2 38 0 0 0 2 0 1 3  yes 

UWS M 44 2 27 1 0 1 0 0 2 1  yes 

UWS F 16 2 27 1 0 1 1 0 1 6  no 

UWS F 49 2 129 1 0 0 1 0 2 5  yes 

UWS M 36 2 2031 1 0 1 2 0 2 6  yes 

UWS M 34 2 7814 1 0 1 1 0 2 5  no 

UWS F 49 2 277 1 0 2 2 0 1 5  yes 

 

Table S1. Patients’ demographic and clinical characteristics. 

Diagnosis: MCS: minimally conscious state, UWS: vegetative state/ unresponsive wakefulness 
syndrome. Etiology: 1: traumatic brain injury, 2: anoxia, 3: other 

Coma Recovery Scale-Revised subscales:Auditory function 4: Consistent Movement to Command, 3: 

Reproducible Movement to Command, 2: Localization to Sound, 1: Auditory 

Startle, 0: None. Visual function 5: Object Recognition, 4: Object Localization: Reaching, 3: Visual 

Pursuit, 2: Fixation, 1: Visual Startle, 0: None. Motor function 6: Functional Object Use, 5: Automatic 

Motor Response, 4: Object Manipulation, 3: Localization to Noxious 

Stimulation, 2: Flexion Withdrawal, 1: Abnormal Posturing, 0: None/Flaccid. Oromotor/Verbal 

function 3: Intelligible Verbalization, 2: Vocalization/Oral Movement, 1: Oral Reflexive Movement, 0: 

None. Communication scale 2: Functional: Accurate, 1: Non-Functional: Intentional, 0: None. Arousal 

scale 3: Attention, 2: Eye Opening without stimulation, 1: Eye Opening with stimulation 0: Unarousable. 

Inclusion field stands for the subject that were included in the full analysis after fMRI pre-processing. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.02.185157doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185157
http://creativecommons.org/licenses/by-nc-nd/4.0/

