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In brief

We present a generative model that predicts visual map structures in the brain and a large num-

ber of their characteristic properties; a neural placement method for any given connectivity

matrix.

Highlights

• Generative model with retinotopy, orientation preference and ocular dominance.

• Prediction of constant neuronal numbers per orientation hypercolumn.

• Curated data shows constant ∼30, 000 neurons per pinwheel across species.

• Simple explanation for constant pinwheel and orientation hypercolumn ratios.

• Precise prediction of ∼80% nearest neighbour singularities with opposing polarity.

• Model asymptotically approaches realistic normalised pinwheel densities.

• Small brains with < ∼300 potential pinwheels exhibit salt-and-pepper maps.

• Different map phenotypes can exist even for similar connectivity.

2/49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.277319doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell numbers in visual cortex maps Weigand and Cuntz

Abstract 1

Orientation hypercolumns in the visual cortex are delimited by the repeating pinwheel 2

patterns of orientation selective neurons. We design a generative model for visual cortex 3

maps that reproduces such orientation hypercolumns as well as ocular dominance maps while 4

preserving retinotopy. The model uses a neural placement method based on t–distributed 5

stochastic neighbour embedding (t–SNE) to create maps that order common features in 6

the connectivity matrix of the circuit. We find that, in our model, hypercolumns generally 7

appear with fixed cell numbers independently of the overall network size. These results 8

would suggest that existing differences in absolute pinwheel densities are a consequence of 9

variations in neuronal density. Indeed, available measurements in the visual cortex indicate 10

that pinwheels consist of a constant number of ∼30, 000 neurons. Our model is able to 11

reproduce a large number of characteristic properties known for visual cortex maps. We 12

provide the corresponding software in our MAPStoolbox for Matlab. 13

Introduction 14

Cortical neurons across layers typically respond to the same representational feature, forming 15

a columnar arrangement (Mountcastle, 1997; Kaas, 2012). Since feature preferences of neurons 16

change continuously along the cortical surface rather than in discrete steps, a natural subdivi- 17

sion into discrete columns is, however, not generally obvious. On the other hand, continuously 18

repeating patterns encompassing a complete set of values in one feature dimension can more 19

easily be distinguished; these form cortical hypercolumns that divide the innately continuous 20

cortical maps into maps of discrete cortical patches (Horton and Adams, 2005). In particular, 21

orientation selectivity in the primary visual cortex has been used extensively to study cortical 22

hypercolumns (Hubel and Wiesel, 1974; Blasdel and Salama, 1986; Bonhoeffer et al., 1995; 23

Ohki et al., 2006; White and Fitzpatrick, 2007). However, the biological significance of this 24

type of anatomical blueprint remains elusive. 25

A large diversity of cortical map models has allowed for an increasingly quantitative un- 26

derstanding of the organisation of hypercolumns in visual cortex. Because of the inherent 27

dependence of hypercolumn structure on visual input (Constantine-Paton and Law, 1978; 28
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DeBruyn and Casagrande, 1981; Sengpiel et al., 1996; Sharma et al., 2000; White et al., 2001), 29

activity dependent mechanisms have been linked to their self-organised formation. Accord- 30

ingly, many existing models rely on a predefined grid of neurons that refine their feature 31

preferences iteratively based on a given input (see Erwin et al., 1995; Swindale, 1996; Goodhill, 32

2007, for review). While some models implement a nerve net with firing neurons and Hebbian 33

learning rules (von der Malsburg, 1973, 1979; Linsker, 1986a,b,c; Miller et al., 1989; Ernst et al., 34

2001; Stevens et al., 2013), others omit the biological details and predict maps for a given set 35

of feature vectors representing the retinotopic, ocular dominance, orientation and direction 36

preference of neurons in the visual cortex (Durbin and Mitchison, 1990; Obermayer et al., 37

1990; Swindale and Bauer, 1998). The more abstract models particularly based on elastic net 38

(EN) (Durbin and Willshaw, 1987) and Kohonen map algorithms (Kohonen, 1982), are able to 39

reproduce many characteristics of visual cortex maps (Erwin et al., 1995; Swindale, 1996). 40

Assuming that visual cortex maps are formed by activity-dependent principles, some of 41

these characteristics could be linked with function of the neural network or connectivity. In 42

particular, differences across species are useful to identify such functional requirements for 43

a given anatomical formation. Most strikingly, orientation selective neurons in rodents are 44

scattered in a salt-and-pepper pattern, but are organised according to their preferred orienta- 45

tion in the aforementioned pinwheel-like arrangements in other mammals forming discrete 46

orientation hypercolumns (Kaschube, 2014). Intuitively, such morphological differences could 47

be a consequence of fundamental architectural differences in the neural circuit design of these 48

animals. Tracing experiments in cats (Gilbert and Wiesel, 1989), tree shrews (Fitzpatrick, 1996; 49

Bosking et al., 1997) and macaques (Malach et al., 1993) showed that connections between 50

neurons are formed preferably between neurons of similar orientation preference which was 51

recently confirmed at the synapse level for tree shrews (Zhang et al., 2018). Based on such 52

a like-to-like connectivity, pinwheel arrangements similar as those found in these animals 53

were predicted by wiring optimisation principles whereas salt-and-pepper patterns were 54

predicted for random connectivities (Koulakov and Chklovskii, 2001). However, neurons in 55

the salt-and-pepper cortex of rodents exhibit a similar bias for connections with other neurons 56

of similar orientation preference (Ko et al., 2011, 2013, 2014; Lee et al., 2016). This would 57

exclude that the salt-and-pepper map in this case is a consequence of a random connectivity 58

between orientation selective neurons despite the distinct morphological phenotypes. 59

We have previously designed a class of novel simple models that do not depend on the activity 60
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of neurons or on a predefined grid of model neurons (Weigand et al., 2017). Instead, the 61

neuronal map layout is predicted from a given connectivity that may or may not have been 62

shaped by activity dependent principles. The model is based on dimensionality reduction 63

methods and establishes relative neuronal positions for arbitrary connectivities. This approach 64

is simple to use and helps to elucidate the links between the details of neural circuits and 65

the corresponding anatomical structures allowing for a clear functional interpretation while 66

remaining at a phenomenological non-biological level of the implementation. Using these 67

models, we have shown a phase transition from single pinwheels to seemingly unstructured 68

salt-and-pepper maps by lowering the overall number of neurons without changing the 69

specific selectivity of the connections. This could explain experimentally observed struc- 70

tured maps in larger animals such as cats and monkeys without assuming differences in the 71

underlying connectivity. 72

Here, we use our models to better understand the detailed relations between the different 73

features of visual cortex maps in the case of pinwheel arrangements. In particular, we focus 74

on the density of pinwheels and the orientation hypercolumn area that were shown to have 75

a constant relation in mammals of different orders (Kaschube et al., 2010). Interestingly, the 76

size of orientation hypercolumns and thus their absolute density both vary widely (Table S1) 77

(Yicong et al., 2012). The difference between absolute and normalised orientation hypercolumn 78

densities could therefore be explained either by variations in the absolute number of neurons 79

per orientation hypercolumn, by variations in the density of neurons with a constant number 80

of neurons per orientation hypercolumn, or by a combination of both. 81

Material and methods 82

All calculations and simulations were performed using custom code in Matlab (Mathworks) 83

and were executed using the Neuroscience Gateway (Sivagnanam et al., 2013). We will make 84

our code and data publicly available after the manuscript has been published. 85

5/49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.277319doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell numbers in visual cortex maps Weigand and Cuntz

Optimal neuronal placement 86

Based on the idea that connected neurons should be located near each other to save overall 87

wiring, we have previously introduced a model to predict some aspects of cortical maps using 88

multi-dimensional scaling (MDS) (Weigand et al., 2017). Connection dissimilarities between 89

neurons were used to predict relative neuronal positions such that the divergence between 90

spatial distances and transformed connection dissimilarities was minimal. Placing neurons 91

by using their connection dissimilarities to estimate their spatial distances is supported 92

by experimental findings that relate a higher connection dissimilarity to a lower number 93

of connections (Song et al., 2014) and a lower number of connections to a higher distance 94

between cortical areas (Ercsey-Ravasz et al., 2013). It is intuitive that such a placement 95

of neurons saves wiring length, since neurons that share a higher number of connections 96

are placed closer to one another than neurons that share fewer connections. Therefore, 97

using dimension reduction methods to place neural structures based on their connection 98

dissimilarity should lead to a global reduction of the wiring cost. Placing cortical areas with 99

MDS to reflect connection dissimilarities in the resulting spatial distances between areas 100

consequently reproduced the general functional layout of the cortex (Young, 1992; Young et 101

al., 1995; Song et al., 2014). A similar relationship may hold for individual neurons instead of 102

cortical areas. Accordingly, using ordinal MDS (oMDS) enabled us to predict single pinwheels 103

for a binary model connectivity that depended on the similarity of the orientation preference 104

between neurons (Weigand et al., 2017). Briefly, Jaccard distances (JDs) and shortest path 105

lengths (SPLs) were combined to calculate the connection dissimilarity of neurons according 106

to their connectivity in the circuit. The resulting dissimilarity matrix was then subjected to 107

oMDS to obtain the relative placement of neurons that best fit the distances in the matrix. This 108

procedure enabled us to investigate how neuronal connectivity could result in the particular 109

layouts observed in biology. In principle, the described method is compatible with any 110

developmental mechanism that minimises the wiring length. However, the movement of 111

neurons during the optimisation procedure is not corresponding to any realistic developmental 112

mechanism. 113

In the present study, we modified this neural placement method by using cosine distances 114

(CDs) instead of a combination of JD and SPL to calculate the connection dissimilarities and 115

t–Distributed Stochastic Neighbour Embedding (t–SNE) (van der Maaten and Hinton, 2008) 116

instead of oMDS to place the neurons in two-dimensional space based on the calculated 117

6/49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.277319doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell numbers in visual cortex maps Weigand and Cuntz

connection dissimilarities. Using the CD as a dissimilarity measurement, the connection 118

dissimilarities δij between neurons i and j were defined as follows: 119

δij =
ci · cj
‖ci‖ ‖cj‖

, (1)

where ci and cj were the connection vectors of neurons i and j. 120

To calculate an optimal neuronal placement, the matrix ∆ containing all pairwise connection 121

dissimilarities δij served as input for the t–SNE procedure from (van der Maaten and Hinton, 122

2008). To find the neuronal positions Y a cost function C, which was the Kullback-Leibler 123

(KL) distance between pairwise probabilities pij and qij , was minimised using t–SNE. This 124

cost function was defined as follows: 125

C(Y) =
n∑
i=1

n∑
j=1

pij log
pij
qij
, (2)

where pij was the probability that neuron i and j are neighbours based on their connection 126

dissimilarity δij and qij was the respective probability in the neuronal arrangement Y that 127

depended on the Euclidean distance dij between neuron i and j. The pairwise probabilities 128

pij =
pj|i+pi|j

2n
were defined by the symmetrised conditional probabilities 129

pj|i =
exp

(
−δ2ij/2σ2

i

)∑
k 6=i exp (−δ2ik/2σ2

i )
, pi|i = 0, (3)

where σi was the variance of a Gaussian centered at neuron i. The variance of the Gaussians 130

σi was calculated separately for every data point such that the perplexity 2−
∑
pj|i log2 pj|i was 131

constant. The probabilities qij were defined as follows 132

qij =

(
1 + d2ij

)−1∑
k 6=i (1 + d2ik)

−1 , qii = 0, (4)

The cost function C was finally minimised by using gradient descent where the gradient 133
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∇C (Yt) = [∇C (yt1) , . . . ,∇C (ytn)]
T

∇C (yi) = 4
n∑
j=1

(pij − qij) (yi − yj)
(
1 + ‖yi − yj‖2

)−1 (5)

was used in each iteration t of the algorithm (see van der Maaten and Hinton, 2008, for 134

derivation of the gradient and further details of the optimisation procedure). 135

We chose t–SNE over oMDS in this study specifically because it enabled us to calculate 136

maps for feature dependent connectivities that are based on multiple features. Although 137

oMDS leads to similar results for our simple hypercolumn model (Figure S3), it fails to 138

separate connectivities depending on multiple features for our complete visual cortex model 139

(Figure S6). A proof of concept of the method is shown in Figure S1 (see Figure 1A in 140

Weigand et al., 2017). Here, both methods are confronted with the same benchmark procedure 141

as described previously (Weigand et al., 2017). t–SNE delivered comparable results but 142

degenerate solutions appeared occasionally, which were discarded (Figure S2A). The error 143

between the alignment of recovered and original positions was slightly higher than when 144

using oMDS (4.59% compared to 2.09% positional deviation compared to the side length of the 145

unit square, mean of 51 trials). In contrast, wiring length was slightly shorter than with oMDS 146

(34.87% vs. 35.1% of the cable required for a random arrangement and 96.81% vs. 97.91% of 147

the cable required for the original arrangement, mean of 51 trials). It is worth noting that 148

these results can be explained with the tendency of the model neurons to be clustered when 149

using t–SNE leading to arrangements that match the original arrangement less well but have a 150

shorter overall wiring length (Figure S1). For all of our results we used t–SNE with the given 151

standard parameters (perplexity was set to 30 and number of iterations to 1, 000). 152

Virtual hypercolumn model (grid model) 153

To model a simplified case of a cortical map where neurons cluster into hypercolumns, we 154

assigned neurons equally to virtual hypercolumns on a quadratic grid of side lengths from 2 155

to 12 thus containing between 4 and 144 hypercolumns. Based on this arrangement we created 156

a connectivity, which we used to predict the neuronal locations by the method described 157

above. The connection between every pair of neurons was randomly determined using a 158
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connection probability that exponentially decayed with the Euclidean distance of the virtual 159

hypercolumns to which both neurons were assigned, which is in accordance with empirically 160

derived connectivity rules (Ercsey-Ravasz et al., 2013; Horvát et al., 2016). Accordingly, the 161

connection probability pij between neurons i and j was set as follows: 162

pij = pint · kdij , (6)

where pint was the connection probability for neurons i and j assigned to the same virtual 163

hypercolumn and k determined how steeply the connection probability decayed with the 164

Euclidean distance dij . We set pint = 0.25 and k = 0.5 for all calculations. 165

To measure the amount of structure in the resulting maps, we calculated the scatter s. The 166

scatter s describes the average relative number of neurons lying inside the space of any given 167

hypercolumn but being associated with another hypercolumn: 168

s =
1

|H|
∑
h∈H

f(H\{h}, h)

|h|
, (7)

where H was the set of all virtual hypercolumns, h a set of neurons assigned to one virtual 169

hypercolumn and f(A,B) was the function which returned the number of neurons of all 170

hypercolumns in A lying inside the convex hull of all neurons of B. 171

We performed neuronal placement calculations for a fixed number of neurons but different 172

map sizes (the resulting maps are partially shown in Figure 1A) and calculated the amount of 173

structure given by s (Figure S4). Some of the resulting maps of the calculations for Figure 1A 174

and Figure S4 were distorted (Figure S2B) and were left out of the analysis in Figure S4. 175

Using s as a measure for map structure, we were able to calculate maps of similar structure 176

(which were used for the fit in Figure 1C). To obtain these similarly structured maps, we 177

started using 10 neurons per virtual hypercolumn and increased the number of neurons per 178

virtual hypercolumn until s ≤ 0.5. This procedure was repeated 10 times for each map size. 179
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Visual cortex model 180

Using our placement method with a neuronal connectivity based on orientation and retino- 181

topic preferences of neurons as found in the visual cortex of mammals we were able to model 182

maps that contained structured orientation hypercolumns (Figure 2C). Since neurons in the 183

primary visual cortex are preferably connected to neurons with similar feature preferences 184

(Gilbert and Wiesel, 1989; Malach et al., 1993; Fitzpatrick, 1996; Bosking et al., 1997; Ko et al., 185

2011, 2013, 2014; Lee et al., 2016; Zhang et al., 2018), the input connectivity for the neuronal 186

placement had to be created accordingly. We obtained the corresponding connectivity by 187

first assigning to the N model neurons unique retinotopic preferences on a grid x, y ∈ [0, 1] . 188

Additionally, we randomly assigned to each neuron one out of 100 orientation preferences 189

θ ∈ Θ from 0 to π (Θ = [0, π], |Θ| = 100) with an equal spacing. We ensured that an equal num- 190

ber of neurons represented each of the 100 orientation preferences. Retinotopic preferences 191

were defined as relative sizes between 0 and 1 corresponding to the minimum and maximum 192

retinotopic coordinate of a V1 segment. Depending on the number of neurons in V1, the 193

receptive field size λ varies (Figure 2A). Accordingly, the connection probability regarding 194

the retinotopic preference between neurons i and j was made to depend on λ according to 195

pretij = e
−dij
λ , (8)

where dij was the Euclidean distance between the retinotopic preferences of neurons i and j 196

(instances of connection function shown in Figure S8A, left). Similarly as for the simple grid 197

model, we used an exponential relationship between the difference in retinotopic preference 198

and connection probability, since retinotopy is continuously mapped along the cortical surface 199

where connection probability decays exponentially with distance (Ercsey-Ravasz et al., 2013; 200

Horvát et al., 2016). 201

The connection probability between neurons in the visual cortex depends also on the OP 202

difference between neurons such that neurons with a more similar OP have a high connection 203

probability and vice versa (Ko et al., 2011, 2013; Martin and Schröder, 2013; Lee et al., 2016). 204

Accordingly, we set the connection probability popij based on the difference between the 205

orientation preferences of neurons i and j to 206
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popij = popmin + (1− popmin
)

(
cos (2θi − 2θj) + 1

2

)γ
, (9)

where popmin
was the minimum connection probability for orientation preference and γ the 207

selectivity of the orientation preference. We set popmin
= 0.3 and γ = 0.3 for all calculations (in- 208

stances of connection function shown in Figure S8A, right). The overall connection probability 209

between neuron i and j was then given by 210

pij = pretij · popij . (10)

To show that our model was also able to generate realistic maps for more than two features 211

we added the ocular dominance as a third feature to our model neurons. Ocular dominance ω 212

was randomly assigned by setting either a 0 for left or a 1 for right eye dominance (ω ∈ Ω , 213

Ω = {0, 1}). The connection probability between two neurons based on their ocular dominance 214

was then defined by 215

podij = (1− |ωi − ωj|) · 0.23 + 0.77. (11)

The overall connection probability in that case was 216

pij = pretij · popij · podij . (12)

The different feature preferences of the model neurons were visualised by the colour of the 217

dots (Figures 2C, 3A, 3C and 5). Colours for orientation preferences were periodic with the 218

hue changing according to the hsv colormap in Matlab (Figures 2C and 5). Retinotopy was 219

visualised by colours from the viridis colormap. Colours depended here on the retinotopic 220

coordinates x and y that were visualised separately in paired plots, where purple was the 221

minimum value and yellow the maximum value of the corresponding retinotopic coordinate 222

component (see legend in Figures 2C and 5). For visualising the ocular dominance of neurons 223

we indicated left eye dominance by grey and right eye dominance by black (Figure 5, top 224

right). Distorted maps were also obtained for the visual cortex model and excluded from the 225
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analysis (see representative examples in Figure S2C). 226

Detecting pinwheels 227

To detect pinwheels in our modeled visual cortex maps, we stochastically sampled a pinwheel- 228

ness score (PW-score). Based on the coverage and continuity of the OP feature space around 229

a sampled location, this score indicated how well this location represented the center of a 230

pinwheel (Figure 4A, middle). The PW-score was a composite of two separate components. 231

The first component was the correlation to the azimuth (CTA) that has previously been used 232

to quantify the map structure given by the continuity of orientation preferences in a pinwheel 233

(Ohki et al., 2006; Weigand et al., 2017). The CTA measures the Pearson correlation coefficient 234

between the OP of neurons and their angular displacement around the pinwheel center with 235

respect to a reference vector. The reference vector in this case was defined by the mean 236

direction of the neurons that are in the 10th percentile of the smallest orientation angles. To 237

quantify the structure of a pinwheel, the CTA needed to be calculated at the pinwheel center. 238

Since the pinwheel centers are per se unknown in our case, we combined the CTA with a 239

second score, which enabled us to predict the pinwheel centers. The second score quantified 240

how well the space of the different OPs was covered in the neighbourhood of each sampled 241

point. 242

The practical steps of calculating the PW-score consisted of first defining which neurons were 243

in the neighbourhood of the current sample point. In our analysis we defined 20 angle sections 244

that were equally spaced on the full circle around the sample point. For each angle section we 245

then selected the nearest 7 neurons for the further calculations. For those selected neurons, 246

we calculated the CTA as described previously (Weigand et al., 2017). The CTA was a value 247

between −1 and 1 where −1 represented a perfect counterclockwise pinwheel, 1 a perfect 248

clockwise pinwheel and 0 a perfect salt-and-pepper pattern. The CTA was used to detect 249

pinwheels (Figure 3A, left), when the values exceeded > 0.6 for counterclockwise pinwheels 250

(black stars) or went below < −0.6 for clockwise pinwheels (gray stars). Furthermore we 251

introduce a value measuring the coverage of the orientation preference space Θ. 252

For this purpose, we divided the space of possible orientation preferences into 20 bins of 253

equal sizes. We then checked how many of these bins covered the orientation preference 254

of at least one of the selected neurons. The coverage score was a value between 1
20

and 255
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1 where 1 indicated a complete coverage of all 20 bins. Both scores were multiplied to 256

obtain the PW-score, a value between −1 and 1 where 1 represents a perfect clock- and −1 257

a perfect counterclockwise pinwheel indicated as colours between magenta and cyan at the 258

sampled location (Figure 3A). We sampled the PW-score for 20, 000 points to finally detect the 259

pinwheels by two additional steps. First, we selected all sample points with a score above 260

0.6 (Figure 3A, right; yellow crosses). Second, we performed a clustering in dependence 261

of sampling point position and its PW-score using the density-based spatial clustering of 262

applications with noise (DBSCAN) algorithm (with parameters minPts = 5 and ε = 10) 263

(Figure 3A, right; black dashed lines). The pinwheel centers were defined as the center of 264

mass of the clusters (Figure 3A, right; red asterisks). 265

Calculating retinotopy score 266

In order to quantify the structure of the retinotopic arrangement in our modeled maps, we 267

considered the correlation of the neuronal coordinates in space and their retinotopic feature 268

preference. However, the correlation varied depending on which axis of the spatial and 269

retinotopic coordinates were used and how the neuronal map was rotated relative to the 270

spatial axes. Therefore, we calculated the correlation for all combinations of axes and rotated 271

the map using a local search algorithm until the best correlation value was found. We took the 272

absolute value of the correlation as the retinotopy score. 273

Measuring geometric orientation hypercolumn size and calculating nor- 274

malised pinwheel density 275

To calculate the pinwheel density normalised by the orientation hypercolumn size ρ̂ we 276

calculated the latter by first sampling the cosine of the orientation preference at 100 linearly 277

spaced points along a virtual electrode track. The electrode track was defined by a connecting 278

line between a randomly selected neuron and the farthest neuron from the selected neuron. 279

We calculated the power spectrum of the spatial frequency of the sampled values. From the 280

power spectrum we selected the three largest peaks and calculated the weighted mean of the 281

spatial frequency given by the power of the peaks and their frequency. Using the resulting 282

spatial frequency ν and the length l of the electrode track, the orientation hypercolumn size Λ 283
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was given by 284

Λ =
l

ν
. (13)

This procedure was repeated for 50 times and Λ was defined by the median of these values. 285

We then calculated the spatial pinwheel density ρ: 286

ρ =
Npw

A
, (14)

where A was the area of the modeled map and Npw the number of pinwheels. Finally, the 287

overall normalised pinwheel density was then calculated as 288

ρ̂ = ρ · Λ2. (15)

Statistics of pinwheel singularities 289

In each OP map, we calculated the bipolarity that was 1 if the number of clockwise singu- 290

larities matched the number of counterclockwise singularities and 0 if either only clock- or 291

counterclockwise singularities were present (Figure 4H): 292

bipolarity = 1− abs

(
µ+

µ+ + µ−
− µ−
µ+ + µ−

)
, (16)

where µ+ is the number of clockwise and µ− the number of counterclockwise singularities. 293

Based on this definition the bipolarity is only defined if µ+ + µ− > 0. Therefore, the mean 294

bipolarity was only calculated if pinwheels were detected in all instances of a certain parameter 295

combination of numbers of neurons N and receptive field sizes λ (Figure 4H). We further 296

calculated how likely it was for nearest neighbour singularities to be of opposite polarity in 297

percent (Figure 4I). The relative amount of nearest neighbour singularities was only defined 298

if at least two pinwheels were detected in an OP map and its mean value was only calculated 299

if this condition was fulfilled in all instances of a certain parameter combination of numbers 300
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of neurons N and receptive field sizes λ (Figure 4I). 301

Sampled visual cortex maps 302

To test our pinwheel detection method, we sampled OP maps from different mammalian 303

species that were shown in (Kaschube et al., 2010). We enhanced brightness and contrast of the 304

images since colour information was lost due to the usage of CMYK colours in the document. 305

We stochastically sampled the colour at 5, 000 points in these maps (bottom). To derive the 306

OPs that were given to the neurons in our model, we had to set the OPs for the sampled 307

points according to their colours. To accomplish this, we created a colormap of 100 equidistant 308

points in the hsv colour space in Matlab and assigned each colour one of 100 linearly spaced 309

orientations from 0 to π. The OP of each sampled point was then set according to the assigned 310

OP of the colour that had the smallest distance to the colour of the sampled point. 311

Space filling 312

To optimise the space filling of a predicted neuronal arrangement (Figure 5), we first generated 313

a 500× 500 square lattice L inside the boundaries of the minimum and maximum coordinates 314

of the positions of the model neurons Y. We further discarded the points of L that lay outside 315

of the convex hull of Y. The remaining grid points X of the square lattice L were used to 316

detect the density of model neurons in the neuronal arrangement, which allowed for the 317

optimisation of a better space filling by iteratively shifting the positions Y towards less dense 318

regions in the arrangement. In each iteration i of the algorithm, a grid point xi was randomly 319

selected by a probability p that decreased exponentially with the minimum distance of xi 320

to any position xi of the positions Y. The model neuron position yi = min
yj

(‖xi − y‖) with 321

the minimum distance to the selected grid point xi was then shifted towards xi such that 322

yi+1 = yi + 0.5 ∗ (xi − y) in iteration i+ 1 of the algorithm. Each round of this optimisation 323

procedure consisted of N iterations and in each round the grid was randomly shifted by a 324

small amount (X + ε ∈ [0, 1]) to avoid generating a completely regular arrangement. After 80 325

rounds a relatively even distribution of representative examples was reached that covered the 326

range of the different modeled map phenotypes (Figure S7). 327
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Curated visual cortex data 328

An overview of the biological data collected for Figure 1B is given in Table 1 and the sources 329

for curated pinwheel density values are given in Table S1. 330

Results 331

Optimal neural placement predicts constant neuron numbers per hypercol- 332

umn 333

In order to better understand the relationship of cortical hypercolumns in brains of varying 334

sizes or with different neuronal densities, we first designed a simple model on the premise that 335

neurons belonging to the same hypercolumn are preferentially connected to one another. We 336

used simple grid-like connectivity matrices neglecting the quality of the features represented 337

by the individual neurons. To randomly set the connection between two neurons associated 338

with their respective hypercolumns, the connection probability decayed exponentially (see 339

Equation 6) along the Euclidean distance on the grid (Figure 1A, top row). 340

Using this connectivity with our neuronal placement procedure, we obtained maps that varied 341

in the number of neurons per hypercolumn and overall grid sizes (Figure 1A, similar results 342

were obtained using oMDS, see Figure S3). Interestingly, the formation of clearly discernible 343

hypercolumns depended on the number of neurons inside a hypercolumn but not on the 344

total size of the map in terms of the number of hypercolumns. We introduced the measure 345

s (see Equation 7), the scatter of the respective maps, that quantifies the prominence of 346

individual hypercolumns based on how many of their neurons intruded other hypercolumns 347

(see Materials and Methods). The average s for 15 trials in each parameter configuration 348

varied strongly for very small map sizes and thus low overall number of neurons but rapidly 349

reached a steady state regardless of neuron numbers n per hypercolumn that we tested 350

(prominent hypercolumns at e.g. s ≤ 0.5 were only reached if n > 40, Figure S4). The 351

influence of map size on the structure was only marginal for maps that contained prominent 352

hypercolumns. Thus, our simple model would predict that similarly structured cortical 353

maps with similarly prominent hypercolumns emerge with similar numbers of neurons per 354
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hypercolumn. 355

Figure 1. Map structure depends on neuron numbers per hypercolumn but not on overall map size.
A, Individual maps of different sizes (horizontal) and different numbers of neurons per hypercolumn
(vertical). Neurons (dots in the maps) assigned to the same hypercolumn in the underlying connectivity
matrix are assigned to one random colour. B, The number of pinwheels plotted against the number of
neurons in different species (from left to right: mouse, rat, squirrel, rabbit, tree shrew, cat, galago, owl
monkey, squirrel monkey and macaque). The slope of the linear fit through the origin (black dashed line)
for the species with pinwheels indicates a constant number of approximately 26, 840 neurons per pinwheel
(95% confidence interval: 24, 800–28, 880, R2 = 0.9907). C, Number of hypercolumns and neurons at which
neuronal map structure appears in our model defined by a scatter value of 0.5 (see Materials and Methods).
Linear fit through the origin is indicated with black dashed line (R2 = 0.9975).

Pinwheels with constant neuron numbers are consistent with existing data 356

To investigate whether real cortical structures operate under similar constraints as in our 357

model we used curated data for overall neuronal numbers in visual cortex V1 (Weigand 358

et al., 2017) and newly curated data for pinwheel densities in the six different mammalian 359

species for which the corresponding measurements exist (Table S1), summarised in Table 1. 360

Analysing these data, we found that the average number of neurons inside one pinwheel is 361

relatively constant at around 27, 000 neurons per pinwheel (slope of the linear fit in Figure 1B), 362

in keeping with previous results (Srinivasan et al., 2015). This compares well with the 363

linear relationship found in our model between the number of neurons and the number of 364

hypercolumns using s ≈ 0.5 to produce maps with similar structure (Figure 1C; see Materials 365
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and Methods). 366

V1 #Neurons Size [mm2] #PWmm2 #PW #Neurons/#PW #HC

Mouse 314,983 3.879 0 (3.093) 0 (12) 0 (26,840) 0 (4)

Rat 715,808 8.5 0 (3.176) 0 (27) 0 (26,840) 0 (8)

Squirrel 2,694,816 32 0 (3.125) 0 (100) 0 (26,840) 0 (32)

Rabbit 5,920,000 74 0 (2.986) 0 (221) 0 (26,840) 0 (70)

Tree Shrew 8,097,600 42 8.375 352 23,020 96

Cat 27,061,800 345 2.816 972 27,853 321

Galago 41,910,636 200 6.639 1,328 31,563 497

Owl monkey 56,565,642 301.2 7.4 2,229 25,379 671

Squirrel monkey 174,283,200 637 11.05 7,039 24,760 2,067

Macaque 240,435,700 1072.5 7.94 8,516 28,235 2,851

Table 1. Biological data.
The number of neurons and size of V1 for macaque, owl monkey, galago, squirrel monkey, tree shrew,
cat, rabbit, squirrel, rat and mouse were taken as the rounded mean from previously curated data
(Weigand et al., 2017). The number of V1 pinwheels was calculated as the rounded values of the
multiplication of the curated mean pinwheel densities given in Table S1 and V1 size. The number of
neurons per pinwheel was calculated by dividing the number of neurons by the number of pinwheels
in V1 and rounded to the nearest integer. The number of orientation hypercolumns was calculated by
NV 1

π·26,840 , whereNV 1 is the number of neurons in V1 and π ·26, 840 the number of neurons per orientation
hypercolumn since the number of pinwheels per orientation hypercolumn has previously (Kaschube
et al., 2010) been approximated as and the number of neurons per pinwheel is approximately 26, 840
(Figure 1B). (PW = pinwheel, HC = orientation hypercolumn). The italic numbers in parentheses for
rodent species are estimates if orientation hypercolumns would hypothetically exist in these species.
They were calculated based on the determined approximate orientation hypercolumn size of 26, 840
neurons and the number of neurons and size of V1 in the respective species.

Neuron numbers in the model were restricted to < 10, 000 out of computational reasons 367

making a precise quantitative match impossible between model and biology (compare ranges 368

in Figures 1B and C). Additionally, in the biological data, of course, the salt-and-pepper 369

arrangement in small species lacks orientation hypercolumns altogether (Figure 1B). Consid- 370

ering that a pinwheel consists of about 27, 000 neurons and even the smallest measured rodent 371

species possess at least 10 times more neurons in the visual cortex, this raises the question why 372

orientation hypercolumns have not been observed in all mammals. Although not backed up 373

by empirical results, it has already been discussed that the emergence of pinwheels in smaller 374

rodents is very unlikely because pinwheels cannot exceed a certain size relative to the total 375

visual cortex (Harris and Mrsic-Flogel, 2013). In the following we demonstrate more clearly 376

why a constant orientation hypercolumn size supports this hypothesis and is accordingly not 377
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mutually exclusive with the proposed neuronal number dependent phase transition between 378

unstructured and structured visual cortex maps that we observed previously (Weigand et al., 379

2017). 380

Figure 2. Relationship between number of neurons, receptive field size and map structure.
A, Visual cortex size defined by its number of neurons influences the receptive field size λ and the proportion
of a hypercolumn in the receptive field as indicated by the size relationships of a neuron and the space
taken up by a hypercolumn (black circle) in the illustration based on Figure 4 in Kaas (2000) and Figure 1
in Elston et al. (1996). The numbers correspond to the visual angle of the dashed isoeccentricity lines and
the midline to the horizontal meridian in this schematic illustration of topographic maps. B, Orientation
hypercolumn occupancy and proportions of the visual cortex (given in percent) for respective predicted
numbers of orientation hypercolumns (see Materials and Methods). Here, this is illustrated by a Voronoi
diagram on regularly distributed points (not shown) representing the centers of orientation hypercolumns
in a schematic drawing of V1 for three different species. C, OP maps (top) and retinotopic preference
maps (bottom) produced by neuronal placement using a connectivity based on orientation preference and
retinotopy. Only the receptive field size λ of neurons was varied as indicated. The number of neurons in
all maps was kept constant at 6, 400 neurons (dots in the maps). All other parameters that determine the
connection probability between neurons were also fixed for the shown model results (see Materials and
Methods).
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Predicted visual cortex maps crucially depend on receptive field size 381

The size of the visual cortex varies over several orders of magnitudes between mammalian 382

species (Table 1) but the size of a single cortical neuron is comparably much less variable 383

(Kaas, 2000; Herculano-Houzel et al., 2014). This relationship between cortical and neuronal 384

size implies that the range of potential connections between neurons with different retinotopic 385

preferences varies considerably in the visual cortex. Correspondingly, the receptive field 386

sizes depend on the visual cortex size. With high neuron numbers in V1, the retinotopic 387

resolution is high and receptive fields are small (Figure 2A, right). Conversely, low numbers 388

of neurons lead to a lower retinotopic resolution and larger receptive fields (Figure 2A, left). 389

Assuming that small rodents would possess few orientation hypercolumns as determined 390

earlier (Figure 2B), they would be so large relative to the total V1 area that only one or 391

a few orientations could be represented in any part of the visual field (Harris and Mrsic- 392

Flogel, 2013). Alternatively, the retinotopic arrangement could be distorted in favor of a 393

structured OP map, but this has not been observed in mammals yet (Swindale, 2008). In 394

order to validate this conceptual notion numerically, we implemented a V1 model based on 395

our neuronal placement method. Here, the neuronal connectivity used for the placement 396

was modeled by virtue of specific feature preferences – retinotopy and orientation – that 397

were separately randomly assigned to each neuron. The pairwise similarity of the feature 398

preferences were combined as connection probabilities to randomly connect the modeled 399

neurons (see Equations 8, 9 and 10). Analogously to the biological case, the receptive field size 400

λ determines the connection probability between model neurons based on their retinotopic 401

preference (see Equation 8). 402

Using our model we were able to qualitatively assess the effects of receptive field sizes λ 403

and number of neurons n by varying both parameters independently. However, due to 404

computational limitations we were not able to make quantitative predictions since the number 405

of model neurons that we could use was practically bounded above 10, 000 neurons. The 406

receptive field size was varied in our model by changing the decay of connection probability 407

with the difference in retinotopic preference between neurons (see Equation 8). Increasing 408

the receptive field size without changing the number of neurons led to larger orientation 409

hypercolumns and a more structured OP map (Figure 2C, top; right to left). A similar effect 410

was found when decreasing the map size but increasing virtual hypercolumn sizes to keep 411

the total number of neurons fixed in our simple grid model (Figure S5). Cortical maps 412
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with multiple features were only found using t–SNE (compare Figure S6 with oMDS). The 413

clear OP maps come at the cost of a compromised retinotopic map that eventually collapses 414

entirely (Figure 2C, bottom; right to left). Conversely, decreasing receptive field sizes results in 415

collapsing the columnar arrangement of orientation preferences and a salt-and-pepper OP 416

map emerged (Figure 2C, top right). Thus, to maintain the retinotopic map, an upper bound 417

for receptive field sizes should exist. Such an upper bound could define a critical number of 418

neurons that is necessary for the formation of a structured OP map and could explain why 419

orientation hypercolumns are absent in all yet investigated rodent species (Kaschube, 2014). In 420

the following, the dependency between map structure, receptive field size, number of neurons 421

and pinwheels is systematically analysed. 422

Detailed model confirms constant neuron numbers per pinwheel 423

In order to systematically analyse the dependency between map structure, receptive field 424

size, number of neurons and pinwheels in our visual cortex model, we needed to detect 425

pinwheels automatically in the predicted maps. Pinwheels were detected by sampling a score 426

in the predicted maps that indicated whether a clock- or counterclockwise pinwheel was 427

more likely present at each sampled position (Figure 3A, see Materials and Methods). After 428

applying a threshold to the sampled scores, the remaining points were potential pinwheel 429

centers (yellow crosses in Figure 3A, right). Applying the DBSCAN cluster algorithm on 430

this point set delivered separate clusters of potential pinwheel centers and the center of 431

these clusters defined the detected pinwheel centers (red stars in Figure 3A, right). Using 432

the detection method with neuronal arrangements sampled from images of OP maps from 433

different mammalian species (Kaschube et al., 2010), showed that most of the pinwheels were 434

detected (56 out of 57) and that the respective relative pinwheel densities were in the expected 435

range around π (Figure 3B). 436
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Figure 3. Detecting pinwheels in visual cortex maps of mammals and in the visual cortex model sug-
gests constant orientation hypercolumn sizes.
A, Detection of pinwheels in the modeled orientation preference maps. (left) Representative example of
pinwheel detection for a map with 3, 600 neurons. Clockwise pinwheels are marked by a gray star and
counter-clockwise pinwheels by a black star. (middle) Sampling of a score quantifying the pinwheelness at
20, 000 random sampling points in the OP map. The sampled score is colour coded where magenta indicates
a perfect clockwise and cyan a perfect counter-clockwise pinwheel (see Material and Methods). (right)
Pinwheels (red stars) are the centers of clusters (black broken lines) obtained from sampled score values
over a threshold of 0.6 (yellow crosses). B, (top) Maps sampled from raster images (taken from Figure 2 in
Kaschube, 2014) of OP maps in galago, cat, ferret and tree shrew to test our pinwheel detection method
(see Material and Methods). The detected pinwheels are shown in the sampled maps as either gray or
black stars corresponding to clock- and counterclockwise pinwheels. (bottom) Sampled pinwheel scores
and pinwheel detection as in A (right). Calculated normalised pinwheel densities ρ̂ as for our model results
(Figure 4) are shown below. C, Sample instances of OP maps generated by the visual cortex model for
different representative numbers of neurons N and receptive field sizes λ. The maps were selected to have
similar PW-scores in each row. Number of pinwheels (#PW) and number of neurons per pinwheel n are
shown. Gray and black stars indicate clock- and counterclockwise pinwheels as in A.
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Based on our visual cortex model, we performed similar analyses as we did for the simple 437

grid model (Figure 3C). Similar to Figures 1 and S3 in which the grid size fixes hypercolumn 438

numbers, receptive field sizes in the V1 model determined the number of pinwheels. Using the 439

maximum of the sampled pinwheel scores as an approximation for the OP map structure (PW- 440

score, indicated by the brightest cyan or magenta coloured dot in Figures 3A, B) showed that 441

the number of neurons per pinwheel was constant for similarly structured maps irrespective 442

of receptive field size (Figure 3C). This was comparable to the results of the simple grid model 443

where regardless of map size the number of neurons was constant for similarly structured 444

maps (Figure 1A). 445

To analyse this potential constant relationship between the number of neurons and pinwheels 446

numerically, we generated a large dataset of models spanning a wide range of the parameter 447

space (Figure 4). In the parameter space combining large receptive fields (λ−1 < 2) and small 448

neuron numbers N the existence of both pinwheels (Figure 4A) and retinotopy (Figure 4B) 449

was not possible. This finding indicates that there exists an absolute upper bound for the 450

receptive field size and therefore a lower bound of neuronal numbers for the emergence of 451

structured OP maps (Figure 4A, and C). Interestingly, with a very small number of neurons, 452

even the retinotopic map did not reach the amount of structure found for higher number 453

of neurons and even vanished entirely at small receptive field sizes (Figure 4B, N = 100). 454

We further determined whether our V1 model showed a linear relationship between the 455

number of pinwheels and neurons. Since a peak of the measured PW-scores was not as clearly 456

defined (Figure 4C), we used the peak of the normalised pinwheel density (see Materials 457

and Methods) in Figure 4D as a reference point that defines a similar map structure. At this 458

point the best compromise between a clearly structured OP-map and a concurrently least 459

distorted retinotopic map is reached, because pinwheels are abundant throughout the map 460

but also as small as possible. The measured relationship between the number of neurons 461

and pinwheels in these similarly structured maps was indeed linear (Figure 4E, R2 = 0.9807). 462

Measures for very low neuron numbers (N = 100, N = 400) were excluded from the fit since 463

either no pinwheels were observed (Figure 4A, and E) or the retinotopic map was strongly 464

distorted (Figure 4B) and the Pinwheel score was too low (< 0.8) (Figure 4F). However, the 465

linear relationship was still preserved when those measurements were included (R2 = 0.9801). 466
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Figure 4. The visual cortex model also indicates a linear relationship between numbers of neurons and
pinwheels for similarly structured OP maps.
A, Number of pinwheels in dependence of receptive field size for different numbers of neurons (see legend).
Each of the curves connects 91 data points (from λ = 1 to λ = 10 in 0.1 steps) where each data point is
the mean number of detected pinwheels for 50 trials. B, Measured retinotopy scores (see Materials and
Methods) for the retinotopic maps corresponding to the instances shown in A. C, Mean of the maximum
PW-score (see Materials and Methods) to measure OP map structure for the instances shown in A. The
bend in the curve between 1 and 2 can be explained by a phase transition from a single to multiple pinwheels
in this range of receptive field sizes. For 100 and 400 neurons no more than one pinwheel is observed
in most instances as shown in A which is why there is no bend in these curves. D, Mean normalised
pinwheel densities ρ̂ (see Materials and Methods) for the instances shown in A. The bends in the curves
represent the transition from a single to multiple pinwheels as in C. E, Numbers of neurons and pinwheels
at the points of maximum pinwheel density shown in D. Linear fit is indicated by black dashed line
(R2 = 0.9807). Points shown as diamonds were excluded from the fit. F, Maximum PW-scores (Mean values
for 50 trials) for the instances in E as a proxy for the OP map structure. Diamonds indicate the instances that
were excluded from the linear fit in E. G, Maxima of the mean normalised pinwheel densities ρ̂ in D. H,
Mean bipolarity (see Materials and Methods) describing the distribution of clock- and counterclockwise
singularities. Bipolarities were calculated for every applicable parameter combination of neuronal numbers
N (indicated by different colours as shown in legend) and receptive field sizes λ. I, Percent singularities
where the nearest neighbouring singularity were of opposite polarity (see Materials and Methods) for every
applicable parameter combination of neuronal numbers (indicated by different colours as shown in legend)
and receptive field sizes λ.
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Detailed model is consistent with characteristic properties of V1 maps 467

Our V1 model is useful to study and better understand the relationships between many further 468

visual cortex map properties. We show that the normalised pinwheel density (Figure 4D) 469

converged to a constant number slightly below 3 (Figure 4G), which is in the range of the 470

values found previously in a model and in different mammalian species (Kaschube et al., 471

2010). Corresponding to other biological results (Swindale, 1996; Obermayer and Blasdel, 472

1997), clock- and counterclockwise pinwheel singularities were equally represented in our 473

maps (Figure 4H) and singularities of opposite polarities tended to be neighbours (Figure 4I) 474

because they were alternating in a quasiperiodic fashion (Figure 4A). With either very large 475

or small receptive field sizes, these relationships faded because the maps consisted of either 476

one large pinwheel or were near salt-and-pepper maps expressing only few small pinwheels 477

(compare Figure 4A and Figure 4H, I). The relative amount of singularities with nearest 478

neighbours of opposing polarity was 83.17 ± 3.74% for the instances used in Figure 4E–G 479

which closely matched the mean values of 83.17 ± 4.71% from 12 macaques and 1 squirrel 480

monkey (calculated from Table 3 in Obermayer and Blasdel, 1997). Details such as the very 481

slight increase in map structure with the overall number of neurons observed in Figure 4F, E 482

also match experimental data (reviewed in Weigand et al., 2017). As a proof of principle, we 483

show that the model can handle even more features than retinotopy and OP alone. By also 484

including ocular dominance as a feature, the resulting maps show thick ocular dominance 485

bands in the centers of which pinwheel singularities are preferentially located (Figure 5) which 486

is remarkably similar to biological observations (Swindale, 1996; Obermayer and Blasdel, 487

1997). However, in all of our predicted maps, neurons tended to be distributed irregularly. 488

While the distribution of neurons in the visual cortex is not strictly regular (Ohki et al., 2006), 489

many of our predicted arrangements were obviously much more irregular and contained 490

occasional gaps (Figures 2C and 3C). Although the general map layout was not affected 491

by this irregular distribution, we implemented an additional procedure that modified the 492

predicted arrangements for a better space filling. Applying for example this procedure to the 493

neuronal arrangement in Figure 5 (left) led to more homogeneously distributed model neurons 494

while preserving the general appearance of the maps (Figure 5, right). The corresponding 495

code is available in our model toolbox and allows post hoc modifications of any model maps. 496
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Figure 5. Adding more features to the visual cortex model and space filling.
Using a connectivity based on retinotopy, OP and additionally ocular dominance (see Materials and
Methods) with 6, 400 neurons and λ−1 = 2.2, the resulting OP maps contained pinwheels, the ocular
dominance map displayed thick stripes corresponding to either left or right eye preference and the retinotopic
preference map showed a gradual shift in the retinotopy of neurons. These maps matched the general
phenotype described for example in macaques and cats (Obermayer and Blasdel, 1993; Engelmann et al.,
2002). (left to right) Applying a procedure that promotes space filling in the arrangement leads to more
evenly distributed neurons while still preserving the general layout of the map. (right) The resulting
arrangement after 80 rounds of the space filling procedure (see Materials and Methods and Figure S7).
Feature preferences are indicated by the different colours as shown in the legend for each map.

Discussion 497

Using a novel neuronal placement model, which is loosely based on the premise that wiring 498

length has to be optimised, we showed in accordance with newly curated biological data that 499

orientation hypercolumns in the primary visual cortex appear at fixed neuronal numbers. 500

Given that the number of neurons per orientation hypercolumn is constant, the size of a 501

pinwheel can only vary with neuronal density. We propose that variations in the spatial 502

density of pinwheels between mammalian species could be a mere consequence of similar OP 503

maps that are differently scaled versions of each other. Our results are corroborated by the 504

model’s faithful replication of a multitude of characteristic properties of visual cortex maps. 505
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Scaling behaviour in OP maps 506

It is interesting to study the particular scaling behaviour of homologous biological structures 507

(Schmidt-Nielsen, 1984; Kaas, 2000) to better understand their function. The area of the 508

primary visual cortex in different mammalian species varies over several orders of magnitude 509

(Kaas, 2000), which is less a consequence of differences in neuronal density than it is a result 510

of different neuronal numbers in this area (Table 1). Depending on visual cortex size, the 511

potential difference in the retinotopic preference of a neuron to its connected neighbours varies 512

(Elston et al., 1996; Kaas, 2000) because the receptive field λ of neurons is inversely correlated 513

with the number of neurons in the visual cortex (Figure 2A). In our visual cortex model, we 514

found that for smaller numbers of neurons the range of λ where orientation hypercolumns are 515

present is smaller. At very low numbers of neurons, orientation hypercolumns do not appear 516

at all. From our curated biological data we propose a lower limit of ∼300 pinwheels in V1 517

considering that the lowest number of pinwheels is 352 in tree shrew and that rabbits could 518

hypothetically host 221 pinwheels but they do not (Table 1). This lower bound presumably 519

exists for the same reason as in our model. With low overall numbers of neurons in V1 the 520

receptive field size of neurons increases but the number of potential connections to neurons 521

of similar OP is too small for pinwheels to form without distorting the retinotopic map. 522

However, with increasing numbers of neurons in V1, pinwheels start to emerge because the 523

local change in retinotopic preference gets small enough such that sufficient connections 524

between neurons of similar OP can form which enables them to cluster and concurrently 525

maintain the retinotopic map. Accordingly, a selective patchy connectivity (Gilbert and Wiesel, 526

1989; Malach et al., 1993; Fitzpatrick, 1996; Bosking et al., 1997; Lund et al., 2003) is found 527

in species with pinwheels and a local (Van Hooser et al., 2006) but selective (Ko et al., 2011, 528

2013, 2014; Lee et al., 2016) connectivity is observed in rodents. If recruiting neurons for the 529

formation of a pinwheel was mainly limited by their retinotopic difference, the number of 530

neurons per orientation hypercolumn should steadily grow with increasingly larger visual 531

cortices. However, the number of neurons per pinwheel is constant at around 27, 000 neurons 532

for over one order of magnitude of neuronal numbers in V1. This could be caused by the 533

theoretical limit of on the order of ∼104 neurons for which a potential all-to-all connectivity 534

can exist (Wen and Chklovskii, 2005). 535

Recently, it has been proposed that different geometric orientation hypercolumn sizes in the 536

visual cortex correspond to the radii of astrocytes (Philips et al., 2017). A dependency of 537
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astrocyte radii and orientation hypercolumn size would only be compatible with our results 538

if astrocyte size inversely depended on the neuronal density. Otherwise, the number of 539

neurons per pinwheel would vary strongly between different species, which contradicts our 540

findings. However, for the data given in Philips et al. (2017), astrocyte size does not depend on 541

neuronal density. Therefore, a fixed orientation hypercolumn size could never be maintained. 542

For example the neuronal density in cats is roughly similar to or even higher than that in 543

rodent species (Table 1) but the astrocyte size is triple the size given in Philips et al. (2017). 544

In other studies, it has been suggested that the average glial cell size varies only modestly 545

and non-systematically across brain structures and species (Herculano-Houzel, 2011, 2014; 546

Herculano-Houzel et al., 2014). Hence, it remains unknown whether astrocyte size indeed has 547

an influence on orientation hypercolumn size. 548

Qualitative predictions from our neuronal placement model 549

While our models provide qualitative explanations of various biological observations in 550

visual cortex maps, they do not estimate the numbers of neurons quantitatively (Figure 4A, 551

Table 1). Given the limits of current computational resources, our models provide good 552

results for neural placements involving up to 10, 000 neurons. Here, we specifically set the 553

parameters such that orientation hypercolumns appeared with low numbers of neurons. In 554

this way, we could analyse a broad spectrum of qualitative features of the resulting maps 555

(Figures 3 and 4). Although we specifically selected a range of parameters that enabled us 556

to see salt-and-pepper maps up to maps with a multitude of pinwheels, our model was 557

not very sensitive to parameter changes that affected the connection functions of the visual 558

cortex model (Figure S8A). The model nearly always produced maps that corresponded 559

either to a salt-and-pepper or structured OP map even when the otherwise fixed parameters 560

popmin (Figure S8B) and γ (Figure S8C) were varied. Only by using very high γ values we 561

could obtain a map pattern that markedly differed from those found in the visual cortex 562

(Figure S8C, rightmost). Here, individual clusters of neurons with very similar OPs appeared. 563

In that particular case, the tight connection probability around any given orientation preference 564

seemed to force neurons with a very similar OP and retinotopic preferences to be near each 565

other (Figure S8A, right). Interestingly, some parameters in our model can counteract the 566

effect of other parameters. While high γ values tended to result in maps with larger but fewer 567

pinwheels, lowering the receptive field size of neurons led again to maps with more but smaller 568
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pinwheels (Figure S8D). This indicates that similar map phenotypes could also be produced 569

with different variations of a common connectivity based on the similarity of neuronal feature 570

preferences. It might be possible that with much larger resources, calculations with neuronal 571

numbers in the biological range would become feasible. Accordingly, it would then become 572

possible to characterise the differences in visual cortex maps of different mammalian species 573

quantitatively. 574

Comparison between oMDS and t–SNE for optimal neuronal placement 575

The neuronal arrangements predicted by oMDS and t–SNE can be very similar (compare Fig- 576

ure 1 and Figure S3), but they can also differ markedly (compare Figure 2C and Figure S6A). 577

In particular, we found that oMDS failed to reproduce visual cortex maps that were based on 578

multiple features. While we could find arrangements that either respected OP or retinotopy, 579

it was never possible to find any that respected both features in the maps obtained using 580

oMDS (Figures S6A, B). In comparison to other dimension reduction methods, t–SNE has the 581

advantage that it is able to reveal the structure of high dimensional data at many different 582

scales in the projected space (van der Maaten and Hinton, 2008). That difference to oMDS is 583

probably the reason why t–SNE is able to predict cortical maps based on multiple features. 584

In contrast, oMDS favors arrangements that respect the global rather than the local scale. 585

According to the error function of oMDS, relatively equal deviations between spatial distance 586

in the projected space and transformed connection dissimilarities have a lower impact on the 587

local scale. This is because the absolute differences between small connection dissimilarities 588

and spatial distances are smaller than for larger dissimilarities and distances. Hence, oMDS 589

tends to appropriately map the features that are dominant at the global scale while missing 590

those that could get dominant at the local scale. Since always one of the neuronal feature 591

preferences is at least slightly more dominantly encoded in the neuronal connectivity, oMDS 592

seems to always find the appropriate arrangement for that particular feature ignoring the 593

other feature preferences. It is difficult to objectively measure whether the more realistic 594

predictions by t–SNE compared to oMDS might also be the reason of a superior optimisation 595

of wiring length. Simply measuring the distances between the connected neurons in the 596

predicted arrangements is not a useful comparison because the model neurons are strongly 597

biased towards the middle when using oMDS for the same parameters as used with t–SNE 598

(Figure S6A). While such an arrangement trivially leads to a reduction of the summed wiring 599
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length by overcrowding the space, overcrowding is not a biologically realistic solution for 600

minimising the wiring length. Therefore, a fair measurement would have to take into account 601

the local densities of neurons throughout the predicted arrangements. Although t–SNE finally 602

enabled us to predict neuronal maps with multiple feature preferences, degenerate solutions 603

appeared regularly that likely corresponded to the optimisation procedure remaining stuck in 604

a local minimum (Figure S2C). In general, t–SNE is well known to introduce some structural 605

anomalies when fine-tuning the resulting visualisations, side effects that we have to accept 606

when using our model and interpreting the results (Wattenberg et al., 2016). For example, 607

neurons in our cortical map models were less evenly distributed than in biology (Ohki et al., 608

2006). Therefore, we do not claim that the precise local spatial relation between neighbouring 609

neurons is biologically realistic whereas the robust solutions obtained for the overall map 610

structures would not be affected by the irregularities occurring at a rather finer level. To 611

obtain a more regular arrangement we also implemented a procedure that increases the space 612

filling in the arrangement (Figure 5). However, this space filling procedure comes at a high 613

computational cost. Furthermore, the potential gain in the predicted map structure obtained 614

by this procedure is not obvious, since the arrangements are exclusively modified for space 615

filling without concurrently observing a constraint, which minimises wiring length. Future 616

models could bridge this gap by predicting arrangements that optimise both wiring length 617

and space filling. 618

Comparison with other visual cortex map models 619

Visual cortex models based on elastic net (EN) algorithms are related to our model, since 620

they are also based on dimension reduction. However, there are significant differences. Most 621

importantly, our model changes the positions of model neurons by minimising the Kullback- 622

Leibler divergence of conditional probabilities based on the connection dissimilarity and 623

distance of the model neurons. In contrast, EN models map a multidimensional feature space 624

onto a two dimensional sheet represented by model neurons on a grid. In this case, neuronal 625

positions are fixed while their feature preferences are changed; this happens in the higher 626

dimensional space. The 2D sheet of model neurons is folded in the multidimensional space 627

such that a given range of possible feature preferences are visited while the size of the sheet is 628

minimised (Swindale, 1992). The coordinates in the multidimensional space then define the 629

neuron’s respective feature preferences. Accordingly, the EN model effectively changes the 630
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feature preferences of model neurons but fixes their positions while in our model the positions 631

of the neurons are changed but the neuronal feature preferences remain fixed. 632

Kohonen map models also tune the preferred orientation of model neurons fixed on a two- 633

dimensional grid but are not based on a dimension reduction approach. These models instead 634

use a competitive Hebbian learning rule that changes the preferred orientation of model 635

neurons during a learning procedure to predict visual cortex maps. Interestingly, all these 636

models share similar properties with our model and with each other. We already discussed 637

previously that the phase transition in Kohonen map and EN models is reminiscent of a phase 638

transition based on the number of neurons in our model (Weigand et al., 2017). In Kohonen 639

map models a neighbourhood size (Kohonen, 1982; Obermayer et al., 1992) and in EN models 640

a receptive field size parameter (Durbin and Mitchison, 1990; Swindale, 1992; Goodhill and 641

Cimponeriu, 2000) determines the structure of the resulting map. Both, neighbourhood and 642

receptive field size determine the size of a putative area on the grid that is qualified for the 643

formation of a pinwheel, which in principle conforms to the number of neurons that can 644

take part in the formation of a pinwheel. Thus, the phase transition seen in these models is 645

indirectly related to the phase transition depending on neuron numbers. In this regard, the 646

visual cortex model presented here showed in greater detail how the phase transition depends 647

on the size relationships between the number of neurons, receptive field and orientation 648

hypercolumn size (Figures 2–4). 649

We found with our model that in the regime of low neuronal numbers, continuity of the 650

feature space could not be obtained concurrently in both the retinotopic and the OP map 651

(Figures 4A–C). Although a continuous representation of the neuronal feature preferences 652

in both feature maps might still be obtainable if the feature space would not be covered at 653

every location of the visual field, it makes no sense to be unable to see some orientations at 654

any specific point of the visual field (Harris and Mrsic-Flogel, 2013). Accordingly, coverage of 655

the feature space even seems to be optimised in the visual cortex of mammals (Swindale et 656

al., 2000). Since possessing both a high coverage and continuity of all feature dimensions is 657

impossible if neuronal numbers are too low, this relationship could explain why structured 658

visual cortex maps are not present in rodents (Weigand et al., 2017). The proposed constant 659

orientation hypercolumn size also supports this hypothesis because it would only allow for a 660

few hypercolumns in small rodents that would inevitably distort the retinotopic map strongly 661

due to their large size relative to the total visual cortex (Figure 2B). 662
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Optimising coverage and continuity is also a unifying characteristic of the different models of 663

visual cortex maps (Swindale, 1996; Goodhill and Sejnowski, 1997). While in most models these 664

constraints are a consequence of how the feature preferences of neurons are optimised, our 665

model implements coverage of the feature space by explicitly setting the feature preferences of 666

model neurons such that uniform coverage is ensured (see Materials and Methods). However, 667

some studies argue against visual cortex maps being a result of optimising coverage and 668

continuity (Carreira-Perpiñán and Goodhill, 2002; Keil and Wolf, 2011). For example, maps 669

produced by EN models appear to be realistic only if the optimisation procedure is stopped 670

after a certain number of iterations (Keil and Wolf, 2011). This means that results of these 671

models did not correspond to minima in the optimisation procedure. For optimal solutions, 672

realistic pinwheel densities appeared only in extreme ranges of the EN model parameters (Keil 673

and Wolf, 2011). In contrast to this, the maps produced by our model correspond to stable 674

solutions that do not change with a higher amount of iterations (Figure S9A). Furthermore, 675

much of the observed variation in the results of our model can be attributed to the variability 676

of the randomly determined connectivities, indicating that our model indeed finds specific 677

solutions for specific connectivities (Figure S9B). Accordingly, our model seems to conform 678

to the hypothesis that visual cortex maps optimise coverage and continuity. Future studies 679

could analyse how important a uniform coverage of the feature space is for the formation of a 680

structured visual cortex map and how a biased distribution of preferred features might affect 681

visual cortex maps in general. This is particularly interesting, since our model enables the 682

prediction of maps for arbitrary distributions of neuronal feature preferences. 683

Conclusions 684

For all of our visual cortex model instances we used the same relative connectivity and only 685

varied the receptive field size and the number of neurons (see Materials and Methods). Still 686

we were able to see different map phenotypes in our visual cortex model, namely salt-and- 687

pepper and pinwheel patterns (Figure 2C), and a linear dependence between the number 688

of neurons and the number of pinwheels, indicating a constant number of neurons per 689

orientation hypercolumn (Figure 4E). Hereby our results render these different aspects of 690

OP maps compatible within a single architectural framework using a unified connectivity. 691

We therefore conclude that visual cortex maps and orientation hypercolumns may be rather 692

homologous structures based on a common design principle despite their different phenotypes 693
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across mammalian species. 694
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Martin KAC, Schröder S (2013) Functional heterogeneity in neighboring neurons of cat 804

primary visual cortex in response to both artificial and natural stimuli. Journal of Neuro- 805

science 33:7325–7344. 806

Miller K, Keller J, Stryker MP (1989) Ocular dominance column development: analysis and 807

simulation. 808

Mountcastle V (1997) The columnar organization of the neocortex. Brain 120:701–722. 809
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Ohki K, Chung S, Kara P, Hübener M, Bonhoeffer T, Reid RC (2006) Highly ordered arrange- 822

ment of single neurons in orientation pinwheels. Nature 442:925–928. 823

Philips RT, Sur M, Chakravarthy VS (2017) The influence of astrocytes on the width of 824

orientation hypercolumns in visual cortex: A computational perspective. PLoS Computational 825

Biology 13:e1005785. 826

Rao SC, Toth LJ, Sur M (1997) Optically imaged maps of orientation preference in primary 827

visual cortex of cats and ferrets. Journal of Comparative Neurology 387:358–370. 828

Schmidt-Nielsen K (1984) Scaling: why is animal size so important?, Vol. 8 Cambridge University 829

Press. 830

Sengpiel F, Troilo D, Kind PC, Graham B, Blakemore C (1996) Functional architecture of 831

area 17 in normal and monocularly deprived marmosets (Callithrix jacchus). Visual Neuro- 832

science 13:145–160. 833

Sharma J, Angelucci A, Sur M (2000) Induction of visual orientation modules in auditory 834

cortex. Nature 404:841–847. 835

Sivagnanam S, Majumdar A, Yoshimoto K, Astakhov V, Bandrowski A, Martone M, Carnevale 836

NT (2013) Introducing the Neuroscience Gateway. CEUR Workshop Proceedings 993. 837

Song HF, Kennedy H, Wang XJ (2014) Spatial embedding of structural similarity in the cerebral 838

cortex. Proceedings of the National Academy of Sciences 111:16580–16585. 839

Srinivasan S, Carlo CN, Stevens CF (2015) Predicting visual acuity from the structure of visual 840

cortex. Proceedings of the National Academy of Sciences 112:7815–7820. 841

Stevens JLR, Law JS, Antolik J, Bednar JA (2013) Mechanisms for Stable, Robust, and Adap- 842

tive Development of Orientation Maps in the Primary Visual Cortex. Journal of Neuro- 843

science 33:15747–15766. 844

Swindale NV (1996) The development of topography in the visual cortex: a review of models. 845

Network: Computation in Neural Systems 7:161–247. 846

Swindale NV (2008) Visual map. Scholarpedia 3:4607. 847

38/49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.277319doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell numbers in visual cortex maps Weigand and Cuntz

Swindale NV, Bauer HU (1998) Application of Kohonen’s self-organizing feature map algo- 848

rithm to cortical maps of orientation and direction preference. Proceedings of the Royal Society 849

B: Biological Sciences 265:827–838. 850

Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hübener M (2000) Visual cortex maps are 851
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Supporting information 887

Figure S1. Comparison of oMDS and t–SNE.
Recovering random positions divided into six layers (left) of equal size by using oMDS with connection
dissimilarities obtained by a combination of Jaccard distance (JD) and shortest path length (SPL, top, as done
in Weigand et al., 2017) and by using t–SNE with connection dissimilarities obtained by cosine distance
(CD) (bottom). The neuronal connections (middle right) are set randomly by the given connection probabilities
(middle left) which depend on the pairwise distances between points. The recovered positions are shown on
the right.
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Figure S2. Sample degenerate maps.
Representative examples of degenerate maps for A, the test setting in Figure S1, B, the virtual hypercolumn
model in Figures 1 and S3 and C, the visual cortex model in Figures 2–4. These degenerate solutions
appeared regularly when using t–SNE and were excluded from the analysis. Although distorted maps
could be observed for relatively small maps containing fewer amounts of model neurons, the emergence
of distorted maps was greatly increased for larger maps containing a relatively high number of neurons
likely because increasing the input size led to more local minima in the cost function where the optimisation
procedure was trapped.
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Figure S3. Virtual hypercolumn model results with oMDS as dimension reduction method.
As in Figure 1A, individual maps of different sizes (horizontal) and different numbers n of neurons per
hypercolumn (vertical) are shown. Neurons (dots in the maps) assigned to the same hypercolumn in the
underlying connectivity matrix are assigned to one random colour.

Figure S4. Quantified map structure of virtual hypercolumn model results.
Average map structure for different hypercolumn (n) and map sizes (15 trials for each parameter combina-
tion) quantified by the scatter value s (see Material and Methods). Dashed line indicates representative
threshold value used in Figure 1C to define clearly structured hypercolumns.
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Figure S5. Clamping total neuronal numbers in the grid model.
Four maps generated using the same total number of neurons but varying map sizes. To obtain equal total
number of neurons we used n = 256 for a grid size of 2× 2, n = 72 for 4× 4, n = 32 for 6× 6, and n = 8 for
12× 12. Increasing the number of neurons per hypercolumn n by reducing the number of hypercolumns led
to more structured maps.
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Figure S6. Visual cortex model results using oMDS as dimension reduction method.
A, As in Figure 2C, OP maps (top) and retinotopic preference maps (bottom) were predicted but oMDS was
used instead of t–SNE. Pinwheels did not emerge in this case. B, (right) Ordered OP map arrangements
consisting of one pinwheel can still be obtained when an even lower receptive field size (compared to A))
is used. However, this comes at the cost of a structured retinotopic map. (left) Concurrently obtaining
structured arrangements of the OP and retinotopic map seems to be impossible judging by the sharp
transition (when changing λ) from a structured retinotopic map to a structured OP map. The number of
neurons in all maps was 6, 400 and only the receptive field size λ of neurons was varied as indicated. See
Figure 2C for a legend of the neuronal feature preferences.
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Figure S7. Generating more uniform neuronal arrangements by using the space-filling algorithm.
A, Progress of the space-filling procedure after different numbers of rounds (see Materials and Methods) of
the final space-filling result (80 rounds) shown in Figure 5. B, Space-filling applied to neuronal arrangements
from Figure 2C for different values of λ. A relatively uniform distribution of neurons is reached after 80
iterations for a wide range of different map layouts with varying λ. See Figure 2C for a legend of the
neuronal feature preferences.
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Figure S8. Dependency of visual cortex model on non-varied parameters.
A, Functions that determine the connection probability based on the pairwise retinotopic and orientation
preference difference of neurons. Different connection functions for the varied parameters used in B, C and
D are shown in different shades of grey (see legends). B, Different maps for a varied minimum connection
probability popmin and C, a varied orientation selectivity γ using a receptive field size λ−1 = 2.5, number of
neurons N = 3, 600 and otherwise fixed parameters as we used in all other shown results. D, Parameters
can counteract each other which is shown as an example for the high connection selectivity γ = 4 from
C. Lowering the receptive field size leads again to the formation of multiple pinwheels as for a lower γ
values in C. When using this high connection selectivity, pinwheels can be observed for receptive field sizes
that would otherwise be clearly in the salt-and-pepper range (compare with Figure 3B). Stars indicate the
parameter values that were generally used to obtain all other results. See Figure 2C for a legend of the
neuronal feature preferences.
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Figure S9. Dependency of visual cortex model on the number of iterations and randomness of the
optimisation procedure t–SNE.
A, Resulting maps for the same random seed but using a different number of iterations during the t–SNE
optimisation procedure. After 200 iterations the solution already roughly corresponds to the solution
after 1, 000 iterations. Even after 50, 000 iterations no differences to the solution at 1, 000 iterations are
recognisable. B, Map results for different random seed but the same connection matrix. Recognisable
differences between the maps calculated with different seeds exist but the general layout of the map is
conserved. Stars indicate the parameter values that were generally used to obtain all other results. See
Figure 2C for a legend of the neuronal feature preferences.
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Species Mean PW density PW density Source

Macaque 7.94 8.02 (Obermayer and Blasdel, 1993)

7.86 (Blasdel et al., 1995)

Owl monkey 7.4 7.4 (Xu et al., 2004)

Galago 6.64 6.64 (Keil et al., 2012)

Squirrel monkey 11.05 11.1 (Obermayer and Blasdel, 1997)

11 (Xu et al., 2004)

Tree shrew 8.375 8.09 (Keil et al., 2012)

8.66 (Wolf and Geisel, 1998)

Cat 2.82 3.4 (Müller et al., 2000)

2.1 (Bonhoeffer et al., 1995)

2.4 (Rao et al., 1997)

3.4 (Engelmann et al., 2002)

2.57 (Löwel et al., 1998)

3.03 (Keil et al., 2012)

Table S1. Curated data and sources for pinwheel density values.
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