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Supporting Text

Surface tension from droplet shape fluctuations

Following Henderson and Lekner 1 we assume that the energetics underlying the thermal

fluctuations in the droplet shape is dominated by the changes in surface area. The potential

energy U of such surface-shape fluctuations is dominated by the surface tension γ:

U = γ δA (S1)

where δA is a small change in surface area relative to the sphere. The fluctuations in

the shape of the droplet at lowest order in a spherical harmonics expansion give us two

independent estimates of the surface tension, The surface of the droplet can be described as

a sum of spherical harmonics Y m
l :

r(θ, φ) = R + ζ(θ, φ) (S2)

with r the radius as a function of the polar and azimuthal angles θ and φ, and

ζ(θ, φ) =
∑
l,m

l≥2, |m|≤l

ζlmY
m
l (θ, φ) (S3)
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R is the average radius and ζlm is the coefficient of the mode (l,m). For small amplitudes,

the potential energy U then becomes:

U =
γ

2

∑
l,m

(l − 1)(l + 2) |ζlm|2 (S4)

For small perturbations (|ζ|2 � R), each mode (l,m) is thus effectively harmonic and inde-

pendent. As a consequence, the equipartition theorem gives a relation between the surface

tension and the mean squared amplitudes of the shape fluctuations:

γ

2
(l − 1)(l + 2)

〈
|ζlm|2

〉
=
kBT

2
(S5)

Each mode (l,m) gives an independent estimate for the surface tension. Focussing on the

low-frequency modes, we approximate the instantaneous droplet shape as an ellipsoid with

axes a, b and c. If this ellipsoid is aligned with the Cartesian coordinate system, its spherical

coordinate representation is:

r2(θ, φ) = a2 sin2 θ cos2 φ+ b2 sin2 θ sin2 φ+ c2 cos2 θ (S6)

We expand r(θ, φ) to second order in a = R + δa, b = R + δb, c = R + δc. By projecting

onto spherical harmonics, we find:

r = ζ00Y
0
0 + ζ20Y

0
2 + ζ22Y

2
2 + ζ2,−2Y

−2
2 (S7)

where Y m
l = Y m

l (θ, φ) and r = r(θ, φ). The expansion coefficients are:

ζ00 =
√

4π

(
R +

δa+ δb+ δc

3

)
(S8)

ζ20 =

√
4π

45
(2δc− δa− δb) (S9)
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ζ2,±2 =

√
2π

15
(δa− δb) (S10)

The condition of constant volume requires that:

V =
4π

3
abc =

4π

3
R3 (S11)

To lowest order, we have

V =
4π

3
[R3 +R2(δa+ δb+ δc)] (S12)

and thus

δa+ δb+ δc = 0 (S13)

By imposing this condition on the amplitudes of the modes, we find

ζ00 =
√

4πR (S14)

ζ20 = −
√

4π

5
(δa+ δb) (S15)

ζ2,±2 =

√
2π

15
(δa− δb) (S16)

We thus arrive at an expression for the potential energy associated with surface area changes

U = γ δA to second order in a spherical harmonics expansion:

δU =
γ

2

∑
l≥2

∑
m

(l − 1)(l + 2)|ζlm|2

≈ 2γ
[
|ζ20|2 + |ζ2,−2|2 + |ζ2,2|2

]
=

γ

2

16π

15

[
3
〈
(δa+ δb)2

〉
+
〈
(δa− δb)2

〉]
(S17)

This expression for the potential energy combined with the equipartition theorem for the

two independent modes, δa + δb and δa − δb, gives us the two independent expressions for

the surface tension, eqs 3 and 4 of the main text.
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Alternative derivation of relation between surface tension and shape fluctuations.

The preceding expression for the surface tension can also be derived directly from eq S1. We

again describe the instantaneous droplet shape by an ellipsoid with axes a, b, and c. We

expand the surface area of the ellipsoid to second order in δa, δb and δc. In terms of spherical

polar angles θ and φ, the first fundamental form defining the surface area element can be

written as

dA = sin θ
(
a2 b2 cos2 θ + b2 c2 sin2 θ cos2 φ

+a2 c2 sin2 θ sin2 φ
)1/2

(S18)

The area of the ellipsoid then becomes

A =

∫ π

0

dθ

∫ 2π

0

dφ dA (S19)

In our statistical mechanical model of droplet shape fluctuations, we (1) impose droplet

volume conservation by setting c = R3/(ab), (2) introduce new variables a = R+(δu+δv)/2

and b = R+ (δu− δv)/2, (3) expand the area element dA to second order in δu and δv, and

(4) integrate over the polar angles to obtain an expression for the area of the ellipsoid to

second order in δu and δv. In this way, we arrive at

A = 4πR2 +
8π

5
δu2 +

8π

15
δv2 (S20)

Substituting the area change δA = A − 4πR2 into eq S1 for the corresponding potential

energy, we find that the fluctuations in δu = δa+ δb and δv = δa− δb are thus harmonic and

uncoupled. The equipartition theorem combined with the surface energy eq S1 then gives

us the expressions for the surface tension in eqs 3 and 4 of the main text.
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Droplet shape

We described the droplet shape in terms of a general ellipsoid with axis lengths a, b, c. We

estimated a, b and c from principal component analysis (PCA) of the mass distribution. Let

rCMS be the center of mass of the atoms i with positions ri and masses mi in the droplet

(excluding water, ions and other small molecules in the solvent):

rCMS =

∑
i rimi∑
imi

(S21)

For simplicity, we gave all protein beads in MARTINI an equal mass weight mi = 1. We then

calculated a 3×3 mass-weighted covariance matrix of the Cartesian positions ri = (r1i , r
2
i , r

3
i )
T

with elements

Cα,β =
mi(r

α
i − rαCMS)(rβi − r

β
CMS)∑

imi

(S22)

The eigenvalues λ1, λ2, and λ3 of the matrix C are proportional to the squared ellipsoidal

axes: λ1 = νa2, λ2 = νb2, λ3 = νc2. By imposing the condition of constant volume R3 = abc,

we eliminate ν:

a =
Rλ

1/3
1

(λ2λ3)1/6
(S23)

b =
Rλ

1/3
2

(λ1λ3)1/6
(S24)

c =
Rλ

1/3
3

(λ1λ2)1/6
(S25)

where R is the average radius of the droplet, obtained from a sigmoidal fit of the density

profiles (eq 2 of the main text). If the instantaneous droplet shape has ellipsoidal axes a1(t),

a2(t), a3(t) at time t along an MD trajectory, the instantaneous axis fluctuations are then

δai(t) = ai(t) − R. From the deviations of the instantaneous axes from the mean droplet
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radius averaged over the three independent combinations of axes, we estimate the variances

〈
(δa± δb)2

〉
=

1

3

2∑
i=1

3∑
j=i+1

〈
(δai ± δaj)2

〉
(S26)

Substituting these averages into eqs 3 and of the main text, we arrive at the following two

independent estimates of the surface tension

γ20 =
15kBT

16π
∑2

i=1

∑3
j=i+1 〈(δai + δaj)2〉

(S27)

γ22 =
45kBT

16π
∑2

i=1

∑3
j=i+1 〈(δai − δaj)2〉

(S28)

We expect that the surface-tension estimates are consistent, γ = γ20 = γ22.
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Supporting Tables

Table S1: Amino-acid sequence of the 163-residue FUS low complexity domain.

1-MASNDYTQQA TQSYGAYPTQ PGQGYSQQSS QPYGQQSYSG YSQSTDTSGY-50

51-GQSSYSSYGQ SQNTGYGTQS TPQGYGSTGG YGSSQSSQSS YGQQSSYPGY-100

101-GQQPAPSSTS GSYGSSSQSS SYGQPQSGSY SQQPSYGGQQ QSYGQQQSYN-150

151-PPQGYGQQNQ YNS-163

Table S2: Simulation characteristics. Listed are the starting configuration, the width of the
cubic box, the number of FUS-LCD chains, their overall concentration, and the α interaction
rescaling parameters. Slab box size “*” corresponds to 90× 20× 20 nm3. A prime in the α
column indicates a run length of 12 µs instead of 24 µs.

Starting Box Number Concentration Time α
configuration width of (mg/mL) (µs)

(nm) proteins

Homogeneous 40

134 60 12
0.1, 0.2, 0.3, 0.5, 0.55,

0.6, 0.65, 0.7

336 150 12
0.1, 0.2, 0.3, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 1

672 300 12
0.1, 0.2, 0.3, 0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 1

Preformed droplet

40 134 60 12
0.5, 0.55, 0.65, 0.7,

0.75, 0.8, 0.85

50
50 11 24 0.6′, 0.625′, 0.65′, 0.7, 0.75′

100 23 24 0.625, 0.65′, 0.7, 0.75′

134 31 24 0.6′, 0.625, 0.65, 0.7, 0.75′

60 200 26 24 0.625, 0.65, 0.7, 0.75
Single FUS chain 20 1 3.6 6×5 0.6, 0.625, 0.65, 0.7, 0.75

Slab * 100 79 36 0.6, 0.625, 0.65, 0.7
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Table S3: Trajectory segments used for the surface tension calculation (in µs) for simulations
with different numbers N of FUS-LCD proteins and different scaling factors α. In these
segments, the droplet had relaxed and, at α = 0.625, was clearly discernible.

Shape fluctuations Interfacial width
α N = 50 100 134 200 N = 50 100 134 200

0.625 – – – – 6-12 6-12, 22-24 6-24 6-24
0.65 10-12 10-12 6-24 6-24 6-12 10.5-12 16-24 18-24
0.7 16-24 16-24 15-24 6-24 16-24 15-24 6-24 6-24
0.75 4-12 7-12 6-12 11-12 8.7-12 10-12 8.7-12 6-12

Supporting movies

Movie S1: Phase separation of FUS at α = 0.7 leading to the formation of a spherical

droplet starting from a homogeneous solution of N = 134 proteins in a 40× 40× 40 nm3

box. The system adopts different structures, being first a ”tube” spanning the box that then

ruptures to form a sphere. Shown are the FUS-LCD chains in different colors, with water

and ions omitted for clarity. The length of the shown trajectory is 12 µs.

Movie S2: Water inside phase-separated FUS droplet for α = 0.7 with N = 134 proteins.

In this MD simulation snapshot, FUS-LCD proteins are shown in red, and water beads in

light blue. A clip plane for the protein is moved through the droplet, leaving behind the

exposed water beads to reveal the hydration gradually, ending with a ”droplet of water”.
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Supporting Figures
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Figure S1: Distribution of end-to-end distances at various values of α in MD simulations
with N = 134 proteins.
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Figure S2: Cluster formation. The number of FUS-LCD clusters is plotted as function of
time for different α. The simulations started from a homogeneous solution of 134 proteins in
a 40× 40× 40 nm3 box, equilibrated with α = 0. During the first 2 µs, following the increase
of α from zero to the desired value at time zero, larger clusters formed and, as a result, the
overall number of clusters decreased.
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A B C

t = 0 t = 12µs

Figure S3: Reversibility of the FUS-LCD phase separation. (A) Fraction of proteins in
the largest cluster as a function of time for α = 0.5 (magenta) and α = 0.55 (light blue).
The MD simulations started with a droplet preformed at α = 0.7 with N = 134 proteins.
This droplet dissolved after α was lowered to 0.55 or 0.5. (B) Starting configuration with a
preformed droplet. (C) Final configuration at α = 0.5 with dispersed FUS LCD.

A B

Figure S4: Protein concentration inhomogeneities in FUS-LCD droplets for α > 0.75. (A)
Radial protein density profiles for α between 0.65 and 0.85. (B) Corresponding water density
profiles.
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α = 0.625 α = 0.65

α = 0.75α = 0.7

Figure S5: Radial protein concentration profiles as function of distance from droplet cen-
ter (symbols: simulation results; lines: fit to error function density profile). Results are
shown for MD simulations with different total numbers N of proteins in a box of volume
50× 50× 50 nm3 for N = 50, 100, 134 proteins and 60× 60× 60 nm3 for N = 200 proteins,
and for different values of α.

α = 0.65 α = 0.7 α = 0.75

Figure S6: Droplet shape fluctuations. Shown are the normalized histograms of the scaled
ellipsoidal mode amplitudes, |ζ20|2 and |ζ22|2 + |ζ2,−2|2, for a droplet made of 134 proteins
at different values of α. The lines are predictions from the capillary wave models, using the
different estimates of the surface tension as input, as indicated. Deviations at high values
of α (right) are likely the result of slow shape relaxations of the viscous drops on the MD
timescale.
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α = 0.65 α = 0.7 α = 0.75

Figure S7: Cumulative distributions of the scaled ellipsoidal modes amplitude |ζ20|2 and
|ζ22|2 + |ζ2,−2|2, for a droplet made of 134 proteins at different α. The lines are predictions
from the capillary wave models. See Figure S6 for the corresponding histograms.

α = 0.625 α = 0.65

α = 0.7 α = 0.75

Figure S8: Autocorrelation functions of the FUS-LCD end-to-end distance at different values
of α. Thin turquoise lines are the results for individual FUS-LCD chains. The average of
the autocorrelation functions across the ensemble of 134 protein chains is shown in black.
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α = 0.625 α = 0.65

α = 0.7 α = 0.75

Figure S9: Average of the FUS-LCD end-to-end distance autocorrelation function across the
ensemble of chains at various values of α and for different numbers of proteins.

A B

Figure S10: Determination of effective diffusion coefficient for end-to-end distance of isolated
FUS-LCD chains. (A) Normalized distributions of the end-to-end distances of an isolated
chain free in solution at different values of α. Note that chain compaction sets in for α ≥ 0.7.
(B) Autocorrelation functions of the end-to-end distances of isolated chains, averaged over
five independent runs of 6 µs each. The inset shows the biexponential fits from which the
relaxation times were computed (crosses in Figure 8 of the main text).
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Figure S11: Slab concentration profiles. The dashed lines show the dilute-phase concentra-
tions obtained from clustering. Results are shown for MD simulations with 100 proteins in
a box of volume 20× 20× 90 nm3 and for different values of α, as indicated.
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Figure S12: Connection between surface tension and hydration. Results are shown for
α = 0.8, 0.75, 0.7 and 0.65, which appear as distinct groups of points from left to right. The
black dashed lines are exponential fits to γ20 and γ22, and to γ0, in an effort to extrapolate
the surface tension to zero water content (i.e., a dry droplet).
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