Structural insights into plasticity and discovery of remdesivir metabolite GS-441524 binding in SARS-CoV-2 macrodomain

Xiaomin $\mathrm{Ni}^{1,2 \#}$, Martin Schröder ${ }^{1,2 \#}$, Vincent Olieric ${ }^{3}$, May E. Sharpe ${ }^{3}$, Victor Olmos ${ }^{2,4}$, Ewgenij Proschak ${ }^{2,4}$, Daniel Merk ${ }^{2}$, Stefan Knapp ${ }^{1,2^{*}}$, Apirat Chaikuad ${ }^{1,2^{*}}$
${ }^{1}$ Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, 60438 Frankfurt am Main, Germany
${ }^{2}$ Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
${ }^{3}$ Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland.
${ }^{4}$ Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
\# These authors contributed equally.
* Correspondence: Stefan Knapp: knapp@pharmchem.uni-frankfurt.de; Apirat Chaikuad:
chaikuad@pharmchem.uni-frankfurt.de

Supplementary information

	Page
Supplementary figure s1. $\left\|F_{\mathrm{O}}\right\|-\left\|F_{\mathrm{C}}\right\|$ omitted electron density map contoured at 3 for the bound ligands.	S 2
Supplementary table s1. Details of recombinant SARS-CoV-2 macrodomain.	S 3
Supplementary Table s2. Data collection and refinement statistics.	S 4
Supplementary method. Synthesis of GS-441524 monophosphate	S 6

ADP-ribose-2-phosphate
GS-441524 (ADPRP)

Supplementary Figure s1. $\left|F_{0}\right|-\left|F_{C}\right|$ omitted electron density map contoured at 3σ for the bound ligands.

Supplementary table s1. Details of recombinant SARS-CoV-2 macrodomain.

	Vector	Recombinant protein sequence
SAR-CoV-2 macrodomain	pET-28a(+)	MGSSHHHHHSSGENLYFQGHMVNSFSGYLKLTDNVYIKNADIVEEAK KVKPTVVVNAANVYLKHGGGVAGALNKATNNAMQVESDDYIATNGP LKVGGSCVLSGHNLAKHCLHVVGPNVNKGEDIQLLKSAYENFNQHEVLL APLLSAGIFGADPIHSLRVCVDTVRTNVYLAVFDKNLYDKLVSSFLEMK

Supplementary Table s2. Data collection and refinement statistics.

Complex	apo/HEPES	apo/MES	ADP-ribose
PDB codes	6ywk	6ywm	6ywl
Beamline	SLS X06SA	SLS X06SA	SLS X06SA
Data Collection			
Resolution ${ }^{\text {a }}$ (\AA)	49.09-2.20 (2.28-2.20)	49.22-2.16 (2.24-2.16)	48.83-2.50 (2.64-2.50)
Space group	$P 212121$	P 212121	P 212121
Cell dimensions	$\begin{gathered} \mathrm{a}=39.2, \mathrm{~b}=111.8, \mathrm{c}=196.4 \AA \\ \alpha=\beta=\gamma=90.0 \end{gathered}$	$\begin{gathered} \mathrm{a}=37.8, \mathrm{~b}=109.1, \mathrm{c}=114.4 \AA \\ \alpha=\beta=\gamma=90.0 \end{gathered}$	$\begin{gathered} \mathrm{a}=38.4, \mathrm{~b}=111.9, \mathrm{c}=195.3 \AA \\ \alpha=\beta=\gamma=90.0^{\circ} \end{gathered}$
Number of unique reflections ${ }^{\text {a }}$	45,087 (4,348)	26,281 (2,558)	30,002 $(4,288)$
Completeness ${ }^{\text {a }}$ (\%)	100.0 (99.9)	100.0 (100.0)	99.4 (99.3)
$\mathrm{I} / \sigma^{\text {a }}$	10.7 (2.0)	8.3 (2.0)	6.9 (1.9)
$\mathrm{Rmerge}^{\text {a }}$ (\%)	0.138 (0.925)	0.162 (0.873)	0.199 (0.930)
CC (1/2) ${ }^{\text {a }}$	0.998 (0.762)	0.995 (0.787)	0.990 (0.736)
Redundancy ${ }^{\text {a }}$	8.5 (7.9)	6.7 (6.9)	5.6 (5.9)
Refinement			
Number atoms in refinement $(\mathrm{P} / \mathrm{L} / \mathrm{O})^{\mathrm{b}}$	6,496/15/ 424	3,885/24/287	6,472/180/248
B factor ($\mathrm{P} / \mathrm{L} / \mathrm{O})^{\mathrm{b}}\left(\AA^{2}\right)$	39/76/48	34/57/39	40/31/38
$\mathrm{R}_{\text {fact }}$ (\%)	17.6	17.5	18.9
Rfree (\%)	21.4	22.9	22.3
rmsd bondc (\AA)	0.013	0.013	0.010
rmsd angle ${ }^{\text {c }}{ }^{\circ}$)	1.4	1.3	1.1
Molprobity Ramachandran			
Favor (\%)	99.65	99.01	98.11
Outlier (\%)	0	0	0
Crystallization condition	33\% broad-molecularweight PEG smears, 0.1 $\mathrm{M} \mathrm{MgCl}, ~ 0.1 \mathrm{M}$ HEPES, pH 7.0	23\% PEG 6000, 0.1 M $\mathrm{MgCl}_{2}, 5 \%$ ethylene glycol, 0.1 M MES, pH 6.0	27\% PEG 4000, 0.2 M sodium acetate, 0.05 M $\mathrm{MgCl}_{2}, 0.1 \mathrm{M}$ tris, pH 8.0

[^0]Supplementary Table s2. (continued) Data collection and refinement statistics.

Complex	Adenosine	GMP	ADPRP	GS-441524
PDB codes	7bf3	7bf4	7bf5	7bf6
Beamline	SLS X06SA	SLS X06DA	SLS X06SA	SLS X06SA
Data Collection				
Resolution ${ }^{\text {a }}$ (\AA)	$\begin{aligned} & 48.99-2.00 \\ & (2.07-2.00) \end{aligned}$	$\begin{aligned} & 36.26-1.55 \\ & (1.60-1.55) \end{aligned}$	$\begin{aligned} & 48.80-2.05 \\ & (2.12-2.05) \end{aligned}$	$\begin{aligned} & 48.43-2.15 \\ & (2.23-2.15) \end{aligned}$
Space group	P 212121	P 41	P 212121	C 2
Cell dimensions	$\begin{gathered} \mathrm{a}=39.2, \mathrm{~b}=111.4, \\ \mathrm{c}=196.0 \AA \\ \alpha=\beta=\gamma=90.0 \end{gathered}$	$\begin{gathered} \mathrm{a}=\mathrm{b}=72.5, \mathrm{c}=33.4 \AA \\ \alpha=\beta=\gamma=90.0 \end{gathered}$	$\begin{gathered} \mathrm{a}=38.6, \mathrm{~b}=111.3, \\ \mathrm{c}=195,2 \AA \\ \alpha=\beta=\gamma=90.0^{\circ} \end{gathered}$	$\begin{gathered} a=157.2, b=30.5, \\ c=111,7 \AA \\ \alpha=\gamma=90.0^{\circ}, \beta=119.9^{\circ} \end{gathered}$
Number of unique reflections ${ }^{\text {a }}$	59,412 (5,774)	25,315 (2,287)	53,878 (5,196)	25,440 (2,459)
Completeness ${ }^{\text {a }}$ (\%)	100.0 (100.0)	99.2 (92.8)	99.7 (99.8)	99.1 (99.2)
$\mathrm{I} / \mathrm{\sigma I}^{\text {a }}$	10.9 (2.0)	13.8 (2.6)	8.3 (1.9)	10.7 (1.9)
$\mathrm{R}_{\text {merge }}{ }^{\text {a }}$ (\%)	0.127 (0.885)	0.064 (0.349)	0.141 (0.839)	0.090 (0.755)
CC (1/2) ${ }^{\text {a }}$	0.998 (0.735)	0.998 (0.807)	0.995 (0.695)	0.998 (0.677)
Redundancy ${ }^{\text {a }}$	7.5 (7.5)	6.1 (3.3)	6.2 (6.3)	5.3 (5.2)
Refinement				
Number atoms in refinement $(\mathrm{P} / \mathrm{L} / \mathrm{O})^{\mathrm{b}}$	6,538/38/628	1,329/48/241	6,500/160/569	3,838/63/168
B factor ($\mathrm{P} / \mathrm{L} / \mathrm{O})^{b}$ (\AA^{2})	29/60/37	14/13/30	28/41/35	49/39/43
$\mathrm{R}_{\text {fact }}$ (\%)	17.5	13.8	17.7	18.0
Rfree (\%)	21.7	17.4	21.7	22.6
rmsd bondc (\AA)	0.013	0.018	0.014	0.012
rmsd anglec ${ }^{(}{ }^{\circ}$)	1.4	1.7	1.4	1.4
Molprobity				
Favor (\%)	98.94	99.40	97.64	99.00
Outlier (\%)	0	0	0	0
Crystallization condition	33% broad-molecular-weight PEG smears, 0.1 M $\mathrm{MgCl}_{2}, 0.1 \mathrm{M}$ tris, pH 7.0	30% PEG 4000, 0.2 M sodium acetate, $0.1 \mathrm{MgCl}_{2}, 0.1 \mathrm{M}$ tris, pH 8.3	30% broad-molecular-weight PEG smears, 0.1 M $\mathrm{MgCl}_{2}, 0.1 \mathrm{M}$ tris, pH 7.0	30\% PEG 4000, 0.2 M sodium acetate, 0.1 M tris, pH 8.3

[^1]Supplementary method. Synthesis of GS-441524 monophosphate

GS-441524 monophosphate

A solution of GS-441524 ($43.7 \mathrm{mg}, 0.15 \mathrm{mmol}$) in trimethyl phosphate (1.5 mL) was stirred in a sealed tube under Ar at rt for 15 min . The solution was then cooled to $0^{\circ} \mathrm{C}$ and freshly distilled phosphorous oxychloride ($21.2 \mu \mathrm{~L}, 0.225 \mathrm{mmol}$) was added dropwise. The resulting solution was stirred at rt for 1 h . Further $100 \mu \mathrm{~L}$ of phosphorous oxychloride were added at rt and the resulting solution was stirred at rt for 1 h (full conversion by HPLC). The reaction mixture was quenched with water at $0^{\circ} \mathrm{C}$ and directly purified by preparative HPLC to obtain $43.6 \mathrm{mg}(78 \%)$ of the expected product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}$, 1 H), 4.43-4.39 (m, 1H), $4.31(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 2 \mathrm{H})$; $\mathrm{R}_{\mathrm{f}} \mathrm{HPLC}: 3.4 \mathrm{Min}$ (13 Min from 10 to 95% MeCN in water (0.1% formic acid), then $7 \mathrm{~min} 95 \% \mathrm{MeCN}$). 95.7% purity; HRMS (MALDI): m/z found. $372.0705[\mathrm{M}+\mathrm{H}]^{+}$(cal. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{P}$ 372.0704).

To record NMR-spectra, the compound was dissolved in $\mathrm{D}_{2} \mathrm{O}$ and measured on Avance 300 from Bruker Corporation (Massachusetts, USA). All chemical shift values are reported in ppm, the multiplicity of the signals assigned as follows: s (singlet), d (duplet), t (triplet) and m (multiplet). Mass spectrometry analysis was performed in positive ion mode by electrospray-ionization (ESI) on a LCMS2020 single quadrupole MS from Shimadzu (Duisburg, Deutschland). Precision mass was measured using MALDI Orbitrap XL from Life Technologies GmbH (Darmstadt, Germany). For purity estimation of the synthesized compounds, a reverse phase high-performance liquid chromatography (RP-HPLC) was performed using the Luna $10 \mu \mathrm{~m}$ C18(2) $100 \AA$ A , LC Column $250 \times 4.6 \mathrm{~mm}$ from Phenomenex LTD (Aschaffenburg, Germany) and the analysis was conducted using the Shimadzu prominence module from Shimadzu. Acetonitrile and aqueous formic acid 0.1% were used as eluents. The established method for purity determination was initiated with 90% water (0.1% formic acid), then a linear gradient from 90% to 5% water (0.1% formic acid) for 13 min was chosen, finally additional $7 \mathrm{~min} 5 \%$ water (0.1% formic acid). The flow rate was adjusted to $1.0 \mathrm{~mL} / \mathrm{min}$ and the UV-vis detection occurred at 254 nm and 280 nm , respectively.

[^0]: ${ }^{\text {a }}$ Value in brackets indicates high-resolution shell statistics.
 ${ }^{\mathrm{b}} \mathrm{P} / \mathrm{L} / \mathrm{O}$ indicates protein, ligands and others.
 ${ }^{c}$ rmsd indicates root-mean-squre deviation.

[^1]: ${ }^{\text {a }}$ Value in brackets indicates high-resolution shell statistics.
 ${ }^{\mathrm{b}} \mathrm{P} / \mathrm{L} / \mathrm{O}$ indicates protein, ligands and others.
 ${ }^{\text {c }}$ rmsd indicates root-mean-squre deviation.

