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Abstract 

 
Aging is associated with increased white matter hyperintensities (WMHs) and with the 
alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether 
changes in alpha oscillations relate to aging per se or whether this relationship is mediated by 
age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older 
adults (N=907, 60-80 years), we assessed relative alpha power, alpha peak frequency, and 
long-range temporal correlations (LRTC) from resting-state EEG. We further associated these 
parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of 
WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was 
related to elevated alpha power, with the strongest association in the bilateral occipital cortex. 
In contrast, we observed no significant relation of the WMHs probability with alpha peak 
frequency and LRTC. Finally, higher age was associated with elevated alpha power via total 
WMH volume. Although an increase in alpha oscillations due to WMH can have a 
compensatory nature, we rather suggest that an elevated alpha power is a consequence of 
WMH affecting a spatial organization of alpha sources. 
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1. Introduction 

White matter lesions, also known as white matter hyperintensities (WMHs), are 

highly prevalent in older adults and are of paramount clinical relevance since they are known 

to accompany cognitive decline and dementia (Birdsill et al., 2014; Debette and Markus, 

2010; Habes et al., 2016). WMHs are considered to reflect mainly small vessel disease 

(Wardlaw et al., 2015), which typically affects periventricular regions and deep white matter 

sparing U-fibers (Habes et al., 2016). Little is known, however, whether and how WMHs 

impact functional measures of brain activity. Due to their location, WMHs may cause 

disconnection of neuronal populations (O’Sullivan et al., 2001). Theoretically, such damage 

of cortico-cortical and cortico-subcortical pathways is expected to alter the synchronized 

activity of neurons measured with M/EEG (Hindriks and van Putten, 2013). 

One of the most prominent EEG rhythms are alpha oscillations (7-13 Hz), which have 

been shown to originate from thalamocortical and cortico-cortical interactions (Bazanova and 

Vernon, 2014; Lopes Da Silva et al., 1997). Importantly, measures of alpha oscillations have 

been related to many aspects of cognitive function (Klimesch, 1999) and also to 

endophenotypes of brain aging (Ishii et al., 2018; Knyazeva et al., 2018) either using alpha 

peak frequency or power. While individual alpha peak frequency has been consistently 

shown to decrease with age (Ishii et al., 2018; Knyazeva et al., 2018; Mierau et al., 2017), the 

findings on alpha power remain rather inconsistent. Previous EEG studies showed decreases 

of alpha power across the lifespan when using relatively large sample sizes (Babiloni et al., 

2006a; Lodder and van Putten, 2011; Vysata et al., 2012): Yet these age-related reductions in 

alpha power were either not strongly present within the older age groups (>60 years of age; 

Lodder and van Putten, 2011) or not replicated (Sahoo et al., 2020; Scally et al., 2018). 
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Apart from these two measures of alpha oscillations, temporal dynamics of the signals 

can be quantified with auto-correlation showing to what extent a past of the signal relates to 

its future. A very slow attenuation of the auto-correlation, which can be described with a 

power law, is also referred to as long-range temporal correlations (LRTC). The presence of 

LRTC indicates scale-free properties of the signal fluctuation pattern that look similar at 

different time scales. LRTC in the amplitude envelope of the neuronal oscillations were 

shown to extend to tens or even hundreds of seconds (Linkenkaer-Hansen et al., 2001; 

Nikulin and Brismar, 2005). Importantly, the presence of LRTC is consistent with the idea 

that neuronal networks may operate at a critical state, characterized by a balance between 

inhibition and excitation (Linkenkaer-Hansen et al., 2001; Nikulin and Brismar, 2005; Palva 

et al., 2013; Shew and Plenz, 2013). LRTC exponent that represents the decay of the 

autocorrelation has been linked to functional connectivity measures (Zhigalov et al., 2017), 

brain maturation (Smit et al., 2011), and different aspects of cognition (Mahjoory et al., 2019; 

Samek et al., 2016; Smit et al., 2011). However, the link between LRTC and structural brain 

changes has not yet been examined. 

As both static (i.e., power, individual alpha peak frequency) and dynamic (i.e., LRTC) 

measures of alpha oscillations might be affected by microstructural deteriorations, due to the 

disconnection among neural cells and damage to cortico-cortical and cortico-subcortical 

pathways (Madden et al., 2017), WMHs-associated alterations of EEG rhythms are plausible. 

However, there are only a few EEG studies that have directly investigated the relationship 

between alpha oscillations and WMHs or integrity (Babiloni et al., 2011, 2008a; Valdés-

Hernández et al., 2010; van Straaten et al., 2012). Previously, local and global disturbances of 

brain anatomy like white matter microstructure (Hinault et al., 2020; Hindriks et al., 2015; 

Minami et al., 2020; Valdés-Hernández et al., 2010) have been found to be related to alpha 

rhythm affecting its peak frequency and power. For instance, a previous study with 222 
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subjects using Cuban Human Brain Mapping Project (Valdés-Hernández et al., 2010) 

provides evidence that alpha peak frequency can be associated with both decrease and 

increase (depending on the region) in the microstructure of thalamocortical or corticothalamic 

fibers assessed by Fractional Anisotropy (FA) using diffusion tensor imaging (DTI). 

Interestingly, so far only a few studies have investigated the relationship between alpha 

power and WMHs (Babiloni et al., 2009, 2008b, 2008a). For instance, it has been observed 

that higher alpha power was associated with higher scores of the prevalence of WMHs in 

individuals with mild cognitive impairment (Babiloni et al., 2008a). Similarly, a recent study 

(Quandt et al., 2020) reported that higher WHM lesion load was related to reduced EEG 

alpha connectivity measures in healthy older adults (N=35). However, to our knowledge, no 

link between voxel-wise whole-brain WMHs and different parameters of alpha oscillations 

has been investigated using a large sample of healthy older adults. Moreover, a crucial 

question still remains unresolved, for example, whether changes in alpha oscillations relate to 

normal aging per se or rather they represent the impact of age-related neuropathology, for 

instance, WMHs. In this study, using a large population-based sample, we investigated 

neurophysiological links between age, WMHs and alpha oscillations. More precisely, we 

investigated the association between age and parameters of alpha oscillations, and whether 

this relationship was mediated by WMHs. We further explored the association of WMHs 

with parameters of alpha oscillations in a topographically specific manner taking into account 

the location of the lesioned white matter tracts.   
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2. Methods 

2.1.Participants 

Participants were drawn from the population-based Leipzig Research Center for 

Civilization Diseases LIFE-Adult study (Loeffler et al., 2015). All participants provided 

written informed consent, and the study was approved by the ethics committee of the medical 

faculty at the University of Leipzig, Germany. The study was performed in agreement with 

the Declaration of Helsinki. A subset of participants underwent a 3-Tesla MRI head scan and 

resting-state (rs)EEG recordings on two separate assessment days. We selected participants 

above 60 years of age and without additional brain pathology or history of stroke, multiple 

sclerosis, epilepsy, Parkinson’s disease, intracranial hemorrhage, or brain tumors. We further 

excluded individuals whose rsEEG recordings were not temporally close to the MRI 

acquisition time and participants for whom alpha peak could not be identified. The details 

about the time differences between EEG and MRI measurement days can be found in 

Supplementary Figure 1 (M = 23.4 in absolute days). This resulted in a final sample of 907 

participants (M=69.49 ± 4.63 years of age, 380 female) for the rsEEG sensor space analysis. 

After excluding individuals with failed T1-weighted segmentation and head-modeling, the 

final sample for the rsEEG source analysis was 855 (M=68.89 ± 4.66 years of age, 360 

female). For a detailed overview of the selection process, see Figure 1.  
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Figure 1. Flow chart visualizing the selection process of the MRI and EEG sample. 

 

2.2.MRI Acquisition and Processing 

All MRI scans were performed at 3 Tesla on a MAGNETOM Verio scanner 

(Siemens, Erlangen, Germany). The body coil was used for radiofrequency (RF) transmission 

and a 32- channel head coil was used for signal reception. T1-weighted MPRAGE and 

FLAIR images were acquired as part of a standardized protocol: MPRAGE (flip angle (FA) = 

9°, relaxation time (TR) = 2300 ms, inversion time (TI) = 900 ms, echo time (TE) = 2.98 ms, 

1-mm isotropic resolution, acquisition time (AT) = 5.10 min); FLAIR (TR = 5000 ms, TI = 

1800 ms, TE = 395 ms, 1x0.49x0.49-mm resolution, AT = 7.02 min). 
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Location of WMH. The automated assessment of WMHs was computed in a previous 

study (Lampe et al., 2019). All images were checked by a study physician for incidental 

findings. A computer-based WMHs segmentation algorithm was then used to automatically 

determine WMH volume on T1-weighted MPRAGE and FLAIR images (Shiee et al., 2010) 

and inspected visually for segmentation errors. Binary WMH maps of all participants were 

nonlinearly co-registered to a standardized MNI template (1-mm isometric) with ANTS 

(Avants et al., 2011). In standard space, binary subject-wise WMH maps were grand-

averaged to create a population WMH frequency map (Jenkinson et al., 2012) and to further 

compute the voxel-wise statistics. As previously implemented (Lampe et al., 2019), to 

segregate the periventricular (pv)WMH and deep (d)WMH, a default distance of 10 mm to 

the ventricular surface was used (DeCarli et al., 2005). Every voxel of WMH located within 

this border was classified as pvWMH; voxels outside the border were classified as dWMH. 

WMH Volume. Regional WMH volume was calculated separately for the deep and 

periventricular white matter. Following Lampe et al. (2019), we added a constant value 1 to 

every participant’s regional dWMH volume because there were participants without lesions 

in the deep WM. We then calculated the ratio of dWMH and pvWMH (dWMH/pvWMH) as 

localized WMH volume. Total, deep and periventricular WMH volumes were further 

normalized to head size by total intracranial volume. Total and localized WMH 

(dWMH/pvWMH) volume were log-transformed for further statistical analyses. 

2.3.EEG Acquisition and Preprocessing 

RsEEG activity was recorded in an electrically and acoustically shielded room using 

an EEG cap with 34 passive Ag/AgCl electrodes (EasyCap, Brain Products GmbH, 

Germany). 31 scalp electrodes were placed according to the extended international 10–20 

system. The signal was amplified using a QuickAmp amplifier, frequency range: DC-280 Hz 
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(Brain Products GmbH, Germany). Two electrodes recorded vertical and horizontal eye 

movements while one bipolar electrode was used for electrocardiography. The rsEEG activity 

was referenced against common average and sampled at 1000 Hz. Impedances were kept 

below 10 kΩ. RsEEG data were preprocessed using EEGLAB toolbox (version 14.1.1b) and 

scripts were custom written in Matlab 9.3 (Mathworks, Natick, MA, USA). We filtered data 

between 1 and 45 Hz and applied a notch filter at 50 Hz. We then down-sampled the data to 

500 Hz and ran a semi-automatic pipeline for artifact rejection: different noise threshold 

levels to mark bad time segments were used for the signal filtered in higher frequency (15–45 

Hz) and lower frequency (1–15 Hz) ranges. The noise threshold for higher frequencies was 

set to 40 µV since noise at this range (i.e., induced by muscle activity) is typically lower in 

amplitude. The noise threshold for the lower frequency range was set to + 3SD over the mean 

amplitude of a filtered signal between 1 and 15 Hz. To control for the accuracy of 

automatically marked bad segments, we compared them to the noisy segments marked by 

another research group (Jawinski et al., 2017). Whenever these segments did not overlap by 

more than 10 s or they exceeded 60 s of total bad-segment duration, we inspected those 

datasets visually (~10% of cases) to confirm whether they indeed were contaminated by 

noise. We further visually assessed power spectral densities (PSD) for data quality and used it 

to identify broken channels. Next, using independent component analysis (Infomax; Bell and 

Sejnowski, 1995), activity associated with the confounding sources — namely eye-

movements, eye-blinks, muscle activity, and residual heart-related artifacts — was removed. 

2.4.EEG Sensor Space Analysis 

2.4.1. Parameters of Alpha Oscillations 

For rsEEG analysis, we used the first 10 min of a recording to avoid the potential 

effect of participants’ drowsiness. We individually adjusted the alpha band frequency range 

by locating a major peak between 7 and 13 Hz on Welch’s PSD with 4 s Hanning windows. 
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Thus, we determined individual alpha peak frequency in every channel and defined a 

bandwidth not exceeding 3 Hz around the peak. We then calculated relative alpha power for 

the individually adjusted alpha frequency range dividing it by the broadband power 

calculated in the 3–45 Hz frequency range. LRTC were calculated using detrended 

fluctuation analysis (DFA) on the amplitude envelope (calculated with Hilbert transform) of 

alpha band oscillations in time windows ranging from 3 to 50 seconds (while respecting the 

boundaries where the bad segments had been cut) based on the previously published 

procedure (Hardstone et al., 2012). Here, we briefly repeat the main steps: (1) a cumulative 

sum of the amplitude envelope is calculated, (2) the signal is then divided into pre-defined 

window sizes (τ) (3) the linear trend is removed in a given window. Fluctuation function F(τ) 

for all time windows of a given size τ is calculated as the root-mean-square of the detrended 

signal. In the case of a power-law relationship, we have F(τ) ∝ τv, where v is a scaling 

exponent (measuring LRTC) which can be obtained as a slope of a linear fit in log-log plot 

between F(τ) and τ. An exponent of 0.5 reflects uncorrelated signals (i.e., resembling white 

noise), v<0.5 indicates anticorrelations, while an exponent between 0.5<v<1 shows persistent 

autocorrelation (LRTC) where large fluctuations are likely to be followed by large fluctuation 

(Hardstone et al., 2012). This range of 0.5<v<1 is a typical range for many EEG and MEG 

studies. 

The illustration of parameters of alpha oscillations are shown in Figure 2. 

To reduce data dimensionality of rsEEG sensor space data used for the whole-brain voxel-

wise inference analyses, we further grouped EEG channels into six coarser brain regions 

(frontal, central, temporal, parietal, and occipital) (Figure 3A).  
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Figure 2. Illustration of parameters of alpha oscillations. A) Raw resting-state EEG time series data 
(blue) consists of various frequency bands that can be defined by their power and peak frequency. B) The 
temporal dynamics of a signal filtered in the alpha frequency range (8–12 Hz) is assessed by the properties 
of its amplitude envelope (red) using long-range temporal correlations (LRTC). The scaling exponent (ν) 
quantifies the presence of LRTC. 

 

2.5.EEG Source Space Analysis 

To reconstruct sources of the rsEEG signal, we calculated leadfield matrices based on 

individual brain anatomies and standard electrode positions. The T1-weighted MPRAGE 

images were segmented using the Freesurfer v.5.3.0 software (Fischl, 2012). We constructed 

a 3-shell boundary element model which was subsequently used to compute the leadfield 

matrix using OpenMEEG (Gramfort et al., 2010). Approximately 2,000 cortical dipolar 

sources were modeled for each individual. Source reconstruction was performed using exact 

low resolution brain electromagnetic tomography (eLORETA; Pascual-Marqui, 2007) with a 
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regularization parameter of 0.05. We filtered the signal within the individually adjusted alpha 

frequency band range as well as in broadband range (3–45 Hz), squared it, and summed up 

across all three dipole directions. Relative alpha power (%) was then calculated in each voxel 

through the division of alpha power by the broadband power. The cortex surface mantle was 

divided into 68 regions of interest (ROIs) based on the Desikan-Killiany atlas (Desikan et al., 

2006). These were further combined into five coarser ROIs (frontal, parietal, temporal, 

occipital, and cingulate) for the right and left hemispheres following a standard parcellation 

atlas (Figure 3B). Relative alpha power values were averaged across each ROI. 

Figure 3 – Illustration of the regions of interest (ROIs) identified for EEG. Schematic topography for 
resting-state EEG in A) sensor space and B) source space. ROIs which form the frontal region are in 
purple, central region, and cingulate region (source) in orange, temporal region in yellow, parietal region in 
green, and occipital region in blue. 

 

2.6.Statistical Analyses 

2.6.1. Correlation of Age with total WMH Volume and Alpha Oscillations 

Pearson correlations were calculated to examine the relationship between age and i) 

total or localized WMH volume (dWMH/pvWMH) and ii) the parameters of alpha 

oscillations in six regions at sensor space. Differences between correlations were assessed 

with Fisher’s r-to-z transformation implemented in R version 3.5.2 (http://www.R-
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project.org/). To correct for multiple comparisons, p-values were then adjusted using the 

False Discovery Rate (FDR; (FDR; Benjamini and Hochberg, 1995). 

2.6.2. Topographical Relevance Analyses of WMHs for Alpha Oscillations at Sensor 

Space 

To identify regions in which WMHs robustly correlated with alpha oscillations, we 

performed whole-brain voxel-wise regressions. More precisely, we applied general linear 

models (GLMs) in which individual values of relative alpha power, alpha peak frequency, 

and LRTC were used as predictors for the topographical occurrence of WMHs, adjusting for 

effects of age, sex, and intracranial volume as covariates of no interest. 3D voxel-wise binary 

lesion maps were analyzed using randomise function, implemented in FSL (Winkler et al., 

2014). For each statistical analysis, positive and negative contrasts were computed. The 

significance of results was based on threshold-free cluster enhancement (TFCE, N=10,000 

permutations) with family-wise error (FWE) corrected p-values of 0.05. We further reported 

statistical results for the more conservative FWE threshold of p<0.005. 

 

2.6.3. Topographical Relevance Analyses of WMHs and Alpha Power at Source Space 

Since we only observed the significant results between WMHs and relative alpha 

power at sensor space, we implemented source-analyses only for the relative alpha power. 

More precisely, to assess the association between relative alpha power and whole-brain 

WMHs, we implemented GLMs separately for 10 ROIs with relative alpha power as a 

covariate of interest, and age, sex, and total intracranial volume as covariates of no interest. 

Because we found a positive correlation between the voxel-wise occurrence of WMHs and 

relative alpha power at the sensor space, we only computed a positive contrast. All statistical 

analyses were further corrected for multiple comparisons using TFCE based permutation 
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testing (N=10,000) at FWE level of p<0.05, as well as with a conservative threshold of 

p<0.005. 

 

2.7.Sensitivity Analyses 

2.7.1. Control for Confounding factors 

Given that different cardiovascular risk factors including body mass index (BMI), 

systolic blood pressure (SBP), smoking, and diabetes are associated with WMHs (Habes et 

al., 2016; Lampe et al., 2019; Ryu et al., 2014), we further considered these factors as 

potential confounders (as covariates of no interest) for the voxel-wise associations between 

parameters of alpha oscillations and probability of WMH occurrence in the overall sample 

(N=907). To assess a degree of collinearity between the regressors used in GLMs, we 

additionally computed variance inflation factor in R. All predictors had a variance inflation 

factor below 2, therefore, we concluded that models showed acceptably low multicollinearity. 

2.7.2. Medication 

We implemented the voxel-wise inference analyses between parameters of alpha 

oscillations and WMHs excluding participants taking medications affecting the central 

nervous system (opioids, hypnotics, and sedatives, anti-parkinsonian drugs, anxiolytics, anti-

psychotics, anti-epileptic drugs). The resulting sample included 801 individuals (M=68.96 ± 

4.58, 323 female). 

2.7.3. Control Analyses 

To assess the robustness of our results, we further applied voxel-wise inference 

analyses between the probability of WMH occurrence and absolute alpha power in the left 

and right occipital region at EEG source space, using age, sex, and total intracranial volume 

as covariates of no interest. Absolute power in both regions was log-transformed to normalize 

the distribution of the data for statistical analyses.  
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2.8.Mediation Analyses 

We performed mediation analyses using mediation package (Tingley et al., 2014) in R 

to test the association between a predictor (X), and an outcome (Y) which can be transmitted 

through a mediator (M) (Hayes and Rockwood, 2017). Here, we examine whether a total or 

localized WMH volume (M) mediates the relationship between age as a predictor (X) and 

parameters of alpha oscillations at sensor space as an outcome variable (Y). Bootstrapping 

(n=5000) with 99% confidence intervals (CI) was used for testing the indirect effect because 

it does not assume normality in sampling distribution (Hayes and Rockwood, 2017). While 

the indirect effect shows whether age was associated with the parameters of alpha oscillations 

through a mediator, a total effect is the sum of indirect and direct effect. The indirect effect 

was considered significant if the corresponding 99% bootstrap CIs did not include zero. 

2.9.Cognition 

The Trail Making Test (TMT) is a cognitive test measuring executive function, 

including processing speed and mental flexibility (Reitan, 1955; Reitan and Wolfson, 1995). 

In the first part of the test (TMT-A) participants are asked to connect numbers in an 

ascending order, while in the second part (TMT-B), participants need to alternate between 

numbers and letters. In both TMT-A and B, the time to complete the task quantifies the 

performance, and lower scores indicate better performance.  

We ran mediation analyses with 99% bootstrap CIs using relative alpha power in different 

regions as a predictor, total WMH volume as a mediator, and the task completion time in 

TMT-A or TMT-B as an outcome variable. The TMT data was available for 899 participants 

at the EEG sensor and 848 individuals at the EEG source space. 
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3. Results 

3.1.Sample Characteristics 

Details about the demographic, anthropometric, cardiovascular measures, as well as 

WMH volume, and alpha oscillations can be found in Table 1. Histograms of total WMH 

volume, averaged relative alpha power, its peak frequency, and LRTC across channels can be 

found in Supplementary Figure 2. 

Table 1. Sample Characteristics 

Abbreviations.: BMI = body mass index; DBP = diastolic blood pressure; dWMH/pvWMH = the ratio of 
deep/periventricular white matter hyperintensities; SD = standard deviation; SBP = systolic blood pressure; 
WMH = white matter hyperintensity, TMT= Trail Making Test 

 

3.2.Topography and Characteristics of Alpha Oscillations 

The relative alpha power at sensor space showed a maximum over the occipital 

channels, with a mean value of 0.66 ± 0.17 (%). Similarly, the relative alpha power at source 

space showed a maximum over the bilateral occipital cortex, including cuneus and lateral 

 Mean or n Min.  Max. SD 

Age (in years) 69.49 60.15 80.03 4.63 
Female / Male 380 / 527    
BMI (kg/m2) 27.59 18.68 42.26 3.97 
SBP (mmHg)  133.71 92.00 200.5 16.31 
DBP (in mmHg)  74.54 43.5 120 9.06 
Never / former / active smokers 517 / 319 / 

71 
   

Diabetes (yes / no / unknown) 143/ 748 / 16    
WMH volume (mm3)  3935 127 78509 6676.76 
Normalized total WMH Volume 0.0093 0.0003 0.170 0.015 
dWMH/pvWMH (%) 0.439 0.011 3.635 0.402 
Intracranial volume (mm3) 1729811 1297219 2466529 147492.5 
Mean relative alpha power (%) 0.55 0.21  0.88 0.15 
Mean alpha peak frequency (Hz) 9.4 7.34 12.01 0.86 
Mean Scaling Exponent (v) 0.73 0.53 1.14 0.093 
TMT A (s) 41.33 17.00 126 13.32 
TMT B (s) 89.29 25.00 300 43.49 
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occipital regions with a mean value of 0.59 ± 0.18 (%). The grand-average peak frequency 

was 9.40 ± 0.49 Hz, showing larger values at occipital regions. The average scaling exponent 

(v) was 0.72 ± 0.017. Similarly, topographies of the scaling exponent had higher values at 

occipital and parietal areas as well as frontal regions (Supplementary Figure 3). 

3.3.Association of Age with WMH Volume and Alpha Oscillations 

We found a correlation between age and total WMH volume (r=0.374, p<0.001, 

Supplementary Figure 4), but not with the dWMH/pvWMH (r=0.03, p>0.05, Supplementary 

Figure 5). Regarding parameters of alpha oscillations, we found that higher age was 

associated with decreased alpha peak frequency all EEG ROIs (r from -0.13 to -0.17, 

pFDR<0.05), while no correlations between age and relative alpha power or LRTC were found 

(all pFDR>0.05). A full report of these correlations for the entire sample and by sex are 

provided in Supplementary Figures 6–8. 

3.4.Topographical Association Between WMHs and Alpha Power  

3.4.1. Sensor Space 

The voxel-wise inference analyses revealed that higher relative alpha power (%) in the 

frontal region was associated with higher WMH probabilities in the right body of corpus 

callosum ([16, -26, 32], T=3.76, k=653). Higher relative alpha power in the central region 

was associated with higher WMH probabilities in the right anterior thalamic radiation 

extending to the posterior corona radiata ([22, -49, 37], T= 4.44, k=2744), while higher 

relative AP in the right temporal region was linked to higher WMHs in the right superior 

longitudinal fasciculus ([22, -49, 37], T=4.52, k=6893) extending to the left inferior fronto-

occipital fasciculus ([-21, -53, 32], T=4.00, k=4210). Furthermore, higher relative alpha 

power in the parietal region was associated with higher WMHs in the right superior corona 

radiata ([18, -19, 37], T=4.05, k=4474). Similarly, for relative alpha power in the occipital 

region, we observed a higher prevalence of WMHs in the bilateral superior corona radiata 
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through the body of the corpus callosum to the anterior corona radiata, including the right 

anterior thalamic radiation ([18, -19, 37], T=4.39, k=9450). Accordingly, higher voxel-wise 

WMH probabilities were associated with higher relative alpha power independent of age, sex, 

and brain size, as shown in Figure 4 (TFCE, p<0.05, FWE-corrected). Note that using a more 

stringent TFCE, FWE rate of p<0.005, the correlation between the probability of WMH 

occurrence and relative alpha power was only evident for the occipital region ([18, -19, 37], 

T=4.39, k=904). Finally, no voxel-wise associations between regional WMHs and alpha 

peak frequency or LRTC were observed (TFCE, p<0.05, FWE-corrected). 

Figure 4. Association between white matter hyperintensities (WMHs) and relative alpha power at 
EEG sensor space (N=907). A) Schematic depiction of the significant association between regional 
WMHs and relative alpha power: thicker lines indicate higher t-values. B) We implemented nonparametric 
permutation testing based on whole-brain voxel-wise analysis to investigate the association between 
WMHs and relative alpha power (%). The brain WMH clusters show significant relation with the EEG 
frontal region (purple), central region (orange), right temporal region (yellow), parietal region (green), and 
occipital region (blue), respectively (TFCE, FWE-corrected, p<0.05 corrected for age, sex and total 
intracranial volume). C) Scatter plots show the association between WMH probability (x-axis) extracted 
from clusters based on significant whole-brain voxel-wise inference analyses and elevated relative alpha 
power (y-axis) in different EEG regions. The resulting statistical images (P-map) were further thresholded 
at 0.05 and binarized. Abbreviations.: A = anterior; L = left; R = right; P = posterior 
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3.4.2. Source Space 

We found that higher relative alpha power (%) in all EEG regions except for the left 

frontal region was associated with a higher probability of WMH occurrence (Supplementary 

Table 2, TFCE, p<0.05, FWE-corrected, Figure 5). With the stricter FWE-level of p<0.005, 

the association between the occurrence of WMHs and relative alpha power was evident for 

left ([18, -19, 37], T=4.29, k=192) and right occipital regions ([18, -19, 37], T=4.45, 

k=845). 

Figure 5. Schematic depiction of the significant association between regional WMHs and relative 
alpha power in EEG source space (N=855). The circular plot indicates EEG ROIs for both hemispheres 
at source space and their relationship to WMHs where thicker lines indicate higher t-values (See: 
Supplementary Table 1.) 
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3.5.Sensitivity Analyses 

3.5.1. Control for Confounding Factors 

Voxel-wise inference analyses after controlling for age, sex, intracranial volume, 

BMI, SBP, diabetes, and smoking status yielded a similar relationship between higher WMH 

probability and elevated relative alpha power  in the following regions: central ([22, -49, 37], 

T=4.46, k=5417), right temporal ([22, -49, 37], T=4.52, k=5417), left temporal ([22, -49, 

37], T=4.59, k=4772), parietal ([18, -19, 37], T=3.68, k=231), and occipital ([18, -19, 37], 

T=4.08, k=4018) EEG regions across the overall sample. Note that with TFCE, FWE-

corrected, p<0.005, we did not find any clusters. Lastly, no WMH clusters were related to 

alpha peak frequency or LRTC (TFCE, p > 0.05, FWE-corrected). 

3.5.2. Medication 

Voxel-wise inference analyses excluding individuals taking central nervous system 

medication (N=801) still indicated the association between higher prevalence of WMHs and 

increased relative alpha power at sensor space in the following regions: frontal ([17, 9, 31], 

T=4.42, k=6880), central ([20, -30, 35], T= 4.46, k=9063), right temporal ([20, -48, 35], 

T=4.57, k=12098), left temporal ([22, -49, 37], T=4.61, k=9408), parietal ([14, -8, 31], 

T=4.61, k=9054), and occipital ([18, -19, 37], T=4.44, k=12,885) EEG regions. 

Importantly, with TFCE, FWE-corrected, p<0.005, we identified WMHs clusters (k>2000) 

for occipital, left temporal, right temporal, and a small cluster (k>200) for parietal and central 

EEG regions. Additional voxel-wise inference analyses revealed that higher WMHs resulted 

in decreased alpha peak frequency in right temporal ([17, -27, 33], T=4.00, k=138) and left 

temporal regions ([17, -27, 33], T=4.12, k=503). Lastly, no WMHs clusters in the brain 

were related to LRTC (TFCE, p > 0.05, FWE-corrected).  
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3.5.3. Control Analyses 

Voxel-wise inference analyses with absolute alpha power similarly indicated that 

higher probability of WMH occurrence was associated with elevated absolute alpha power in 

right ([-23, 0, 36], T=3.98, k=5633) and left occipital regions ([-23, 0, 36], T=4.05, 

k=5358) (TFCE, p<0.05, FWE-corrected). 

3.6.Mediation Analyses 

We examined whether total or localized (dWMH/pvWMH) WMH volume could 

mediate the relationship between age and relative alpha power in all cortical ROIs. 

Investigating the relationship between age and relative alpha power, we observed a 

significant indirect effect of total WMH volume in most of the cortical regions defined at 

sensor space (Table 2). The direct effect was not significant in any of the ROIs (99% |CI| > 

0), and only in the right temporal region at sensor space did the total effect of age on relative 

alpha power appear to be significant (Table 2). Further, we confirmed the indirect effects of 

total WMH volume for relative alpha power at EEG source space for left parietal (β=0.0012, 

CI = [0.00006-0.002]), left (β=0.0014, CI = [0.00013-0.002]) and right occipital (β=0.0014, 

CI = [0.00015-0.0028]) regions. Finally, our results revealed that neither total nor localized 

WMH volume mediated the association of age with alpha peak frequency and LRTC at 

sensor space (all p>0.05). 
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Table 2. Mediation effect of total WMH volume on the association between age and relative alpha power at EEG sensor space (N=855).  
While the indirect or mediation effect shows whether age was associated with alpha power through a mediator (total WMH), total effect is the sum of indirect and 
direct effect (age on relative alpha power). The indirect effect was considered significant if the corresponding 99% bootstrap CIs did not include zero (marked in 
bold). 
 
 

 
 
 
 

EEG Region frontal central right temporal left temporal parietal occipital 
  β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI
Total effect c  0.0004 0.742 0.0006 0.580 0.002 0.033 0.002 0.0620 0.0017 0.166 0.0006 0.584 

Mediation effect a*b  0.0009 [-0.0003, 0.0021] 0.001 [-0.00008, 0.0022] 0.0013 [0.0003, 0.024] 0.0011 [0.00002, 0.002] 0.0015 [0.0002, 0.0028] 0.0014 [0.00012, 0.00
Direct effect c’ -0.0005 0.721 -0.0004 0.730 0.0008 0.44 0.0009 0.3944 0.0002 0.894 -0.0008 0.557 
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3.7.Cognition  

Compared to population-based norms (Hobert et al., 2011; Tombaugh, 2004), our 

sample shows similar TMT scores (Table 1), indicating good to intermediate cognitive 

performance. We then investigated the question of whether the relationship between relative 

alpha power and cognition measured by task completion time in TMT-A and B is mediated 

by total WMH volume. After controlling for age and sex, we found a significant indirect 

effect of total WMH volume on the association between TMT-A and relative alpha power 

only in the right temporal region (β=1.071, CI=[0.123-2.539]). In TMT-B, we observed a 

significant indirect effect of total WMH volume for the frontal region (β=3.399, CI = [0.252-

7.896]), as shown in the Supplementary Table 2. At EEG source space, however, we did not 

confirm these findings. Further, in all analyses, the direct and total effects were not 

significant.  
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4. Discussion 

The main goal of this study was to investigate whether regional WMHs affect 

parameters of alpha oscillations independently from age. We pursued this aim using a large 

sample of cognitively healthy older individuals (e.g., also based on TMT scores; Hobert et 

al., 2011; Tombaugh, 2004) from a population-based study (Loeffler et al., 2015). We 

showed distinct regional relationships between relative alpha power and WMHs: our 

topographical analysis suggested that higher occurrence of WMHs in superior, posterior to 

anterior corona radiata, as well as thalamic radiation, was related to higher relative alpha 

power, with strongest correlations in the bilateral occipital cortex. Adjusting for potential 

confounding factors including age, cardiovascular risk factors, or controlling for the effect of 

medication did not change these results. While the direct link between age and alpha power 

assessed by correlation analyses was absent, mediation analyses supported an indirect link for 

the existence of the relation between age and alpha power through the total WMH volume. 

This finding indicates why we should consider the age-related structural changes in the brain 

(e.g., WMHs) when we investigate the aging effects on EEG neural oscillations. 

Alpha rhythm is the most salient rsEEG oscillatory phenomenon that originates from 

thalamocortical and cortico-cortical interactions (Bazanova and Vernon, 2014; Lopes Da 

Silva et al., 1997). Alterations in alpha oscillations have previously been linked to changes in 

different anatomical features including properties of WM (e.g., Valdés-Hernández et al., 

2010). Regarding WMHs, for instance, a previous EEG-MRI study showed that higher 

relative alpha power in parietal regions was associated with higher scores of the prevalence of 

WMHs in 79 individuals with mild cognitive impairment (Babiloni et al., 2008a), consistent 

with our findings in this population-based sample. Previous studies with computational 

models have given further support for the notion that resonance properties of feedforward, 

cortico-thalamocortical, and intra-cortical circuits substantially influence alpha oscillations 
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(Hindriks and van Putten, 2013). In the present study using a larger sample, we similarly 

observed that regional WMHs, detected mostly in superior corona radiata, containing 

thalamocortical fibers, affect inter-individual differences in relative alpha power. This finding 

was further reproduced when using alpha power values extracted from EEG source-based 

analysis. Although we did not observe significant association between these two measures 

after controlling for other confounding factors at stricter threshold (TFCE, FWE<0.005), the 

consistent results with regular FWE threshold at voxel-wise level suggest a possible 

neurophysiological link between WMHs and relative alpha power. 

But, how could lesions in the WM possibly affect EEG signal which mainly reflects 

neural synchrony within gray matter? While in principle a hyperintensity in T2-weighted MR 

sequences is a quite unspecific marker of various pathologies, postmortem histopathological 

studies of older adults with WMHs have mostly reported demyelination, axonal loss, and 

other consequences of ischemic small vessel disease (Smith et al., 2000; Wardlaw et al., 

2015). Myelin contributes to the speed of impulse conduction through axons, and the 

synchrony of impulses between distant cortical regions (Fields, 2015, 2008). Reductions of 

conduction velocity due to demyelination and loss of (communicating) axons are assumed to 

be responsible for cognitive dysfunctions which are known to be based on delicately 

orchestrated propagations of neuronal signals. Electrophysiologically, interactions, and 

synchrony between neuronal populations are reflected in rhythmic M/EEG signals, of which 

alpha oscillations are the most prominent ones (Bazanova and Vernon, 2014; Lopes Da Silva 

et al., 1997). Alpha power is a quantitative marker of the degree of synchrony in the neuronal 

activity of the corresponding neuronal populations (Pfurtscheller and Lopes Da Silva, 1999). 

While for a long-time alpha oscillations were regarded as idle rhythms of non-active brain 

areas, a plenitude of studies has convincingly demonstrated that alpha oscillations play an 

important role in many cognitive functions (Fox et al., 2016; Klimesch, 1999; Palva and 
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Palva, 2007). For instance, in motor and sensory domains it has been shown that amplitude 

decreases of alpha oscillations in focal areas (i.e., reflecting cortical activation) is in turn 

associated with the inhibition of neighboring cortical areas (Pfurtscheller and Lopes Da Silva, 

1999). This phenomenon is thought to include mutually inhibitory interactions between the 

chain of modules including thalamocortical and reticular nucleus neurons which are involved 

in the generation of alpha oscillations (Suffczynski et al., 2001). Importantly, the authors 

hypothesized that this surround inhibition should underlie other cognitive operations such as 

focused attention and stimulus selection. Such topographically specific relationships are 

likely to be disturbed by the alterations in conduction velocity and axonal loss in the 

thalamocortical circuitry (Pajevic et al., 2014). As a result of such WM disturbances, a 

modular organization of thalamocortical inputs and a corresponding demarcation between 

cortical patches of enhanced and attenuated alpha oscillations could be abolished, thus 

leading to a larger spread of alpha oscillations across the cortex and consequently to stronger 

and spatially less specific alpha oscillations. This in turn might explain a positive association 

between alpha power and WMHs. In addition, it is also possible to further speculate that such 

an elevated alpha power may result from the additional compensatory recruitment of neuronal 

resources to maintain an adequate brain functioning. Although we did not observe a 

convincing evidence for this statement in our mediation analyses involving cognition, 

elevated alpha power — as a consequence of WMHs — may still reflect a resilience against 

the cognitive decline given that cognitively healthy sample was used in the present study 

(e.g., Hobert et al., 2011; Tombaugh, 2004). Alternatively, the hyperactivation of alpha with 

WMH could also be ineffective in preserving cognitive performance or even reflect the 

progression of neurodegenerative alterations (Corriveau-Lecavalier et al., 2019; Pons et al., 

2010). 
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Despite a number of reports of age-related alpha power alterations (Babiloni et al., 

2006b; Lodder and van Putten, 2011; Vysata et al., 2012), in our study, we replicated other 

recent studies (Sahoo et al., 2020; Scally et al., 2018) which did not find strong evidence for 

age-related attenuations of relative alpha power. The discrepancy in findings with earlier 

reports could be due to the narrow age range of our participants, as well as the individually 

adjusted alpha frequency range based on the peak frequency. In fact, preserved peak power at 

peak frequency has recently been reported in an older sample (Scally et al., 2018), suggesting 

that any observed age-dependent power changes might be due to shifts in the frequency range 

at which alpha peak occurs. While our cross-sectional dataset cannot provide unequivocal 

evidence for a causal relationship, mediation analyses demonstrated a presence of an indirect 

relationship between age and alpha power through total WMHs. Currently, in the literature, 

there is an ongoing discussion on the interpretation and meaning of an indirect (mediation) 

effect when a total effect is not statistically significant (Hayes and Rockwood, 2017; Zhao et 

al., 2010). In our paper, following the suggestions by Hayes and Rockwood (2017), we also 

reported and interpreted the mediation effects even when a total effect was not significant. 

More precisely, the mediation via total WMH volume showed that higher age was associated 

with the elevated relative alpha power in the right temporal, parietal, and occipital regions. 

As mentioned before, age-related reductions of alpha power in occipital regions were 

previously reported in different sample populations (see detailed review: Ishii et al., 2018). 

As we show in this study, in healthy older adults the association between these two measures 

can potentially be mediated by WMH volume thus demonstrating a positive relationship 

between alpha power and age. Therefore, our result shows why one should potentially 

consider structural correlates when investigating age-related alterations in neural oscillations. 

In the literature, other commonly reported age-dependent changes in spectral 

parameters of EEG include slowing of the alpha peak (Knyazeva et al., 2018). We replicated 
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the slowing of the alpha peak frequency with increasing age despite the narrow age range. 

Alpha peak slowing has previously been suggested to be linked to a less efficient 

coordination of neuronal activity in this frequency range (Mierau et al., 2017). We further 

explored the relationship between age and LRTC in the amplitude envelope of alpha 

oscillations that capture scale-free dynamics of resting-state oscillations. LRTC has 

previously been linked to the presence of a critical state in neural networks, which is 

characterized by the balance of excitation and inhibition (Poil et al., 2012) that has been 

suggested to be optimal for the processing of information in the human brain. Regarding the 

association between age and LRTC, previous studies have shown that the observed age-

related changes might be dependent on age range — it increases from childhood to early 

adulthood, after which it stabilizes (Nikulin and Brismar, 2005; Smit et al., 2011). In 

accordance with these previous findings, in our sample of older adults, we observed no 

pronounced age-related LRTC attenuations. The fact that WMHs were correlated with alpha 

power but not with LRTC indicates that temporal dynamics have more flexibility in adjusting 

to white matter lesions since they are largely based on cortico-cortical interactions which are 

not reflected in WMH (Beggs and Plenz, 2003). 

5. Limitations 

While a strength of this study is the large population-based sample, the study design is 

cross-sectional and does not allow making inferences about the directionality of the 

association between WMHs and alpha oscillations. Longitudinal studies are required to 

further clarify these associations. Research using other advanced techniques such as 

quantitative MRI or specific assessment of tissue properties with ultra-high field MRI 

combined with intracranial EEG recording could further provide valuable insights into the 

nature of the relationship between WM properties and alpha oscillations. We performed a 

relatively coarse parcellation of the brain at EEG source space analysis due to the relatively 
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small number of electrodes (n=31). A denser spatial sampling of the EEG (not available in 

the present cohort) would allow investigation of this relationship with better spatial precision. 

Finally, while our study aimed to investigate the effect of WMHs on properties of alpha 

oscillations, future research on aging using microstructural integrity assessed by DTI would 

benefit from additional connectivity-based measures including phase synchrony (Hinault et 

al., 2020; Quandt et al., 2020). 

6. Conclusion 

Using sensitive high-resolution neuroimaging techniques in cognitively healthy older 

adults (N=907), we showed that elevated relative alpha power is related to a higher 

probability of WMHs, supporting the idea that an elevated alpha power as a consequence of 

WMHs may result from the additional recruitment of compensatory neuronal resources 

during aging. Importantly, our study provides evidence that the changes in alpha oscillations 

do not relate to aging per se but rather depend on the impact of age-related neuropathology, 

such as WMHs. Our findings thus suggest that longitudinal EEG recordings might be 

sensitive for the detection of alterations in neuronal activities due to progressive structural 

changes in WM. 
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Supplementary Material 

 
Supplementary Figure 1. Histogram of the day differences between EEG and MRI 
acquisition points. While the averaged (absolute) day difference across participants was 23.4 
days, the minimum day was 0, maximum was 175 days.  
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All variables in the supplementary Figure 2 are presented as mean (M) ± standard deviation 
(SD). Before the statistical analyses, we used the Box-Cox method (λ value) (Sakia, 1992) to 
determine the type transformation on the parameters of alpha oscillations. Since the majority 
of the variables after the necessary transformation did not pass Shapiro-Wilk normality tests 
at the 0.05 significance level, we decided to keep the original values.  

 
Supplementary Figure 2. The four histograms show the distribution of A) normalized total 
white matter hyperintensity (WMH), B) individual alpha peak frequency (IAPF), C) relative 
alpha power, and D) long-range temporal correlation (LRTC) averaged across 31 EEG 
channels. Note that total WMH volume further normalized to head size by total intracranial 
volume and log-transformed. 
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Supplementary Figure 3. Grand-average topographic maps of alpha band measures in 
EEG.  
A) Individual alpha peak frequency (Hz); B) Relative alpha power (%); C) Long-range 
temporal correlations (v). D) Grand-average of relative alpha power at EEG source space 
across 68 regions based on Desikan-Killiany Atlas. 
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Supplementary Figure 4. Association between age (x-axis) and total white matter 
hyperintensity (WMH, y-axis) in LIFE-Adult sample (N=907). There was a significant 
correlation between age and total WMH (r=0.374, p<0.001 in all; r=0.376, p<0.001 in 
females; r=0.355, p<0.001 in males). Note that Total WMH volume further normalized by 
total intracranial volume and log-transformed. 
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Supplementary Figure 5. Association between age (x-axis) and regional white matter 
hyperintensity as the ratio of deep WMH and periventricular WMH (y-axis) in LIFE-Adult 
sample (N=907) (r=0.03, p=0.354 in all; r=-0.005, p=0.912 in females; r=0.038, p =0.379 in 
males) 
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Supplementary Figure 6. Association between age (x-axis, in years) and individual alpha 
peak frequency (IAPF, y-axis, in Hz) in EEG different regions. The correlations between two 
measures were not significant after FDR correction and none of the pairwise correlations 
differed from each other. Abbr.: F- female, M-male 

• Frontal (r=-0.16, p<0.001 in all, r=-0.147, p=0.004 in females, r=-0.16, p=0.0001 in males) 
• Central (r=-0.130, p<0.001 in all, r=-0.12, p=0.01 in females, r=-0.12, p=0.004 in males) 
• Left temporal (r=-0.17, p<0.001 in all, r=-0.166, p=0.001 in females, r=-0.168, p=0.0001 in males) 
• Right Temporal (r=-0.156, p<0.001 in all, r=-0.141 p=0.006 in females; r=-0.146, p=0.0009 in males) 
• Parietal (r=-0.158, p<0.001 in all, r=-0.144 p=0.005 in females; r=-0.143, p=0.001 in males) 
• Occipital (r=-0.170, p<0.001 in all, r=-0.13, p=0.01 in females, r=-0.164, p=0.0001 in males) 
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Supplementary Figure 7. Association between age (x-axis, in years) and relative alpha 
power (y-axis, ratio expressed in %) in different EEG regions. The correlations between two 
measures were not significant after FDR correction and none of the pairwise correlations 
differed from each other. Abbr.: F- female, M-male 

• Frontal (r=0.010, p=0.742 in all, r=0.008, p=0.868 in females, r=-0.008, p=0.837 in males) 
• Central (r=0.009, p=0.850 in all, r=0.012, p=0.781 in females, r=0.019, p=0.565 in males) 
• Left temporal (r=0.0065, p=0.048 in all; r=0.098, p=0.056 in females, r=0.027, p=0.52 in males) 
• Right Temporal (r=0.071, p=0.03 in all, r=0.090, p=0.07 in females; r=0.040, p=0.355 in males) 
• Parietal (r=0.04, p=0.16 in all, r=0.033, p=0.51 in females, r=0.02, p =0.62 in males) 
• Occipital (r=0.016, p=0.61 in all, r=0.001, p=0.98 in females, r=0.016, p=0.69 in males) 
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Supplementary Figure 8. Association between age (x-axis, in years) and scaling exponent 
(v) for long-range temporal correlations LRTC, y-axis) in different EEG regions (represented 
in different colors). The correlations between two measures were not significant after FDR 
correction. 

• Frontal (r=0.02, p=0.540 in all, r=0.04, p=0.409 in females, r=-0.04, p=0.312 in males) 
• Central (r=0.04, p=0.288 in all, r=0.07, p=0.166 in females, r=0.05, p=0.192 in males) 
• Left temporal (r=0.05, p=0.109 in all; r=0.098, p=0.07 in females, r=0.07, p=0.09 in males) 
• Right Temporal (r=0.071, p=0.03 in all, r=0.08, p=0.112 in females; r=0.040, p=0.355 in males) 
• Parietal (r=0.04, p=0.248 in all, r=0.06, p=0.284 in females, r=0.06, p =0.127 in males) 
• Occipital (r=0.023, p=0.513 in all, r=0.03, p=0.558 in females, r=0.05, p=0.252 in males) 
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Supplementary Table 1. Positive correlation between the probability of white matter 
hyperintensity (WMH) occurrence and relative alpha power (%) at EEG source space. Peak 
voxel MNI coordinates (x, y, z) and cluster size (k) for the association between WMHs 
probability and relative alpha power for five regions of interest for each hemisphere at source 
space across 855 older adults (TFCE, p < 0.05, FWE-corrected).  
 

 
 
 

EEG Region  MRI Region x y z k  T-value 

Left Frontal  Right Posterior Corona Radiata / 
Right Anterior Thalamic Radiation 

21 -46 36 219 4.38 

Right Cingulate Right Anterior Thalamic Radiation / 
Right Anterior Thalamic Radiation 

22 -49 37 2310 4.33 

Left Superior Corona Radiata -22 6 31 655 4.29 

  Right Superior Corona Radiata 29 -46 26 359 3.65 

Left Cingulate Right Anterior Thalamic Radiation /  
Right superior Longitudinal Fasciculus 

22 -49 37 3280 4.44 

Left Superior Corona Radiata -22 6 31 597 4.33 

Right Temporal Right Anterior Thalamic Radiation 20 -50 36 4669 4.57 

Left Anterior Corona Radiata -18 18 27 2044 4.14 
Right Inferior Fronto-occipital Fasciculus 34 -49 0 129 3.68 

Left Temporal Right Anterior Thalamic Radiation 20 -50 36 602 4.63 

Body of Corpus Callosum 16 -5 36 279 3.63 

Right Posterior Corona Radiata 19 -30 35 132 4.13 

Right Parietal Right Anterior Thalamic Radiation 20 -50 36 3983 4.72 

Left Superior Corona Radiata -19 11 28 824 3.98 

Left Superior Longitudinal Fasciculus -24 -12 40 210 4.12 

Left Parietal Right Superior Corona Radiata/Left 
Corticospinal Tract 

19 -25 36 634 3.91 

Right Anterior Thalamic Radiation 20 -50 36 618 4.75 

Right Occipital Right Superior Corona Radiata 18 -19 37 8339 4.45 

Left Superior Corona Radiata -19 9 29 1070 4.41 

Left Posterior Corona Radiata/Anterior 
Thalamic Radiation 

-24 -27 31 100 3.94 

Left Occipital Right Superior Corona Radiata 18 -19 37 7304 4.29 
Left Superior Corona Radiata -19 9 29 450 4.19 

Right Inferior Fronto-occipital Fasciculus 34 -37 -4 175 3.94 

Left Superior Corona Radiata -20 -6 32 133 3.66 
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Supplementary Table 2. Mediation effect of total WMH volume on the association between relative alpha power at EEG sensor space and 
cognition, measured by trail making test (TMT), corrected by age and sex. While the indirect or mediation effect shows whether relative alpha 
power was associated with TMT-A or -B through a mediator (total WMH volume), total effect is the sum of indirect and direct effect (relative 
alpha power on TMT-A or TMT-B). The indirect effect was considered significant if the corresponding 99% bootstrap CIs did not include zero, 
marked in bold. 
 

 

 

 
 
 

Cognition EEG Region frontal central right temporal left temporal parietal occipital 
   β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI β p or 99.5% CI 
 Total effect c  -0.739 0.81 -1.658 0.56 0.891 0.7828 -0.669 0.85 -1.180 0.65 -3.596 0.15 
TMT-A Mediation effect a*b  0.270 [-0.333, 1.133] 0.236 [-0.362, 1.07] 1.071 [0.123, 2.539] 0.270 [-0.357, 1.24] 0.160 [-0.25, 0.76] 0.280 [-0.307, 1.111] 
 Direct effect c’  -1.009 0.74 -1.894 0.51 -0.181 0.956 -0.939 0.78 -1.020 0.70 -3.876 0.12 
 Total effect c  12.741 0.157 8.763 0.349 7.519 0.435 8.808 0.380 7.446 0.40 7.897 0.308 
TMT-B Mediation effect a*b  3.399 [0.252, 7.896] 2.978 [-0.703, 7.472] 2.879 [-0.055, 7.123] 2.206 [-0.285, 6.218] 2.064 [-0.14, 6.38] 2.072 [-0.02, 5.707] 
 Direct effect c’  9.342 0.300 5.785 0.540 4.639 0.626 6.602 0.518 5.382 0.53 5.824 0.456 
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