Supplementary material for

Longitudinal Developmental Trajectories Do Not Follow Cross-Sectional Age Associations in Hippocampal Subfield and Memory Development

Attila Keresztes^{a,b,c}, Laurel Raffington^{d,c}, Andrew R. Bender^{e,c}, Katharina Bögl^f, Christine

Heim^{g,h,†}, Yee Lee Shing^{i,†}

^aBrain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary

^bFaculty of Education and Psychology, Eötvös Loránd University, Budapest, Hungary

^c Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
^dDepartment of Psychology, University of Texas at Austin, Texas, USA

^eDepartments of Epidemiology and Biostatistics & Neurology and Ophthalmology, Michigan State University,

Michigan, USA

^fFaculty of Life Sciences, Berlin School of Mind and Brain and Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany

^gCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Insitute of Medical Psychology, Berlin, Germany

^hDepartment of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA

ⁱDepartment of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany

† Shared last authorship

Corresponding Authors: Attila Keresztes, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117,

Budapest, Hungary

E-mail: keresztes.attila.akk@ttk.hu

S1.1 Sex and Age differences between dropouts and non-dropouts per variable

Here, differences were calculated separately for each variable of interest on a subsample having available data for that variable in at least one wave (see Table S1). Forward dropouts included a significantly higher proportion of boys compared to non-dropouts for lure discrimination, $\chi^2(1) = 4.13$, p =.042, and hippocampal subfield volumes (for DG-CA3, CA1-2, SUB, $\chi^2(1) = 13.24$, p < .001 and for EC, $\chi^2(1) = 11.35$, p < .001; note that values differ for EC because data was available for one participant who had no data for the other three hippocampal subfields. No sex differences were observed between backward dropouts and non-dropouts in any variable of interest. Forward dropouts were also significantly older than non-dropouts for associative memory and spatial memory, t(9.5) = 4.07, p = .003, and hippocampal subfield volumes (for DG-CA3, CA1-2, SUB, t(40.6)=2.80, p = .007, and for EC, t(45.3)=2.97, p = .004.). Finally, compared to non-dropouts, backward dropouts were significantly older for associative memory, t(8.8) = 3.88, p = .004, and significantly younger for lure discrimination, t(46.1) = 2.14, p = .038.

Figure S1. Power curves for longitudinal change detection in latent change score (LCS) models for CA1-2 volume. Each line plots power against sample size at a given level of expected longitudinal slope estimate, given an $\alpha = 0.05$. (Note that the smallest cross-sectional slope for CA1-2 across the two waves was 0.34). The dashed vertical line represents the size of our longitudinal sample with complete hippocampal subfield data. The horizontal vertical line points to the last line – representing an expected longitudinal slope of 0.19 –above the conventionally accepted power of 0.8. Power calculations made using RAMpath R package (Zhang et al., 2015; Zhang & Liu, 2018). All parameter values from the actual LCS model were reused as input for the power calculations.

	Wave 1					Wave 2				Wave 1 & Wave 2												
	n		Age (years)		n		Age (years)		n		Age at Wave 1 (years)			Age at Wave 2 (years								
	Total	Girls	М	SD	Min.	Max.	Total	Girls	М	SD	Min.	Max.	Total	Girls	М	SD	Min.	Max.	М	SD	Min.	Max.
CA1-2Left	83	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
CA1-2Right	84	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
CA1-2Total	83	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
DG-CA3Left	83	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
DG-CA3Right	84	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
DG-CA3Total	83	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
SUBLeft	83	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
SUBRight	84	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
SUBTotal	83	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
ECLeft	84	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
ECRight	84	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
ECTotal	84	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
TotalHC	83	40	7.32	0.41	6.08	8	85	33	9.24	0.44	8.34	10.12	65	24	7.26	0.42	6.08	8	9.27	0.42	8.38	10.12
HairCortisol	89	46	7.25	0.44	6.07	8	96	45	9.27	0.44	8.34	10.16	80	41	7.24	0.45	6.07	8	9.28	0.43	8.34	10.16
LDI	73	31	7.36	0.35	6.53	8	96	44	9.29	0.44	8.34	10.16	66	25	7.37	0.37	6.53	8	9.36	0.4	8.46	10.16
Grid	109	52	7.25	0.43	6.07	8	104	48	9.27	0.44	8.34	10.16	104	48	7.24	0.44	6.07	8	9.27	0.44	8.34	10.16
AMcued	100	47	7.24	0.44	6.07	8	103	48	9.28	0.44	8.34	10.16	95	43	7.23	0.45	6.07	8	9.24	0.42	8.34	10.06

Table S1. Sample size, sex and age descriptives by data collection wave.

Note. DG: Dentate gyrus, SUB: Subiculum, EC: Entorhinal cortex, HC: Hippocampus, LDI: Lure Discrimination Index, Grid: performance on the Spatial Memory Task, AMcued: cued recall performance on the Associative Memory task. At Wave 1, altogether 88 children had gone through a high-resolution hippocampal scan. Of these due to motion, for four children the images were not usable for segmenting hippocampal subfields on either, and for one child on the left hemisphere. At Wave 2, altogether 94 children had gone through a high-resolution hippocampal scan. Of these, due to motion, for nine children the images were not usable for segmenting hippocampal subfields on either hemisphere. Larger dropout due to motion at Wave 2 compared to Wave 1 was probably due to the fact that the high-resolution scan was performed at the end of each session at Wave 2 whereas it was performed in the first half of the scanning session at Wave 1. Hair cortisol data is only available for children who consented hair collection. In addition, in Wave 1, one data point was excluded as an apparent measurement error (>10 SD above mean), and data was below detection limit for another four children. Reasons for missingness for tasks included fatigue and technical errors. LDI has a larger number of missing cases because it was only performed with children attending the MR session, and it was the last task on Day 3.

Cue word	Target word
Topf (Pot)	Esel (Ass)
Ofen (Oven)	Heft (Notebook)
Mund (Mouth)	Automat (Machine)
Tüte (Bag)	Mühlrad (Mill wheel)
Bett (Bed)	Trompete (Trumpet)
Schublade (Drawer)	Nachbar (Neighbor)
Sarg (Coffin)	Bier (Beer)
Mantel (Jacket)	Ohr (Ear)
Seifenblase (Soap Bubble)	Daumen (Fingers)
Burg (Castle)	Maske (Mask)
Kiste (Box)	Zauberer (Wizard)
Laterne (Lantern)	Roller (Scooter)
Boot (Boat)	Schaukel (Swing)
Zimmer (Room)	Fischer (Fisher)
Schiff (Ship)	Handball (Handball)
Helm (Hat)	Bäcker (Baker)
Vase (Vase)	Polizist (Policeman)
Badewanne (Bathtub)	Giraffe (Giraffe)
Mütze (Cap)	Fußboden (Floor)
Umhang (Cape)	Wiese (Meadow)
Kühlschrank (Fridge)	Schwan (Swan)
Flugzeug (Airplane)	Wurm (Worm)
Korb (Basket)	Hose (Trousers)
Keller (Cellar)	Stein (Stone)
Blumentopf (Plant pot)	Sofa (Sofa)
Schüssel (Key)	Münze (Coin)
Paket (Package)	Eisdiele (Ice cream parlor)
Kinderwagen (Stroller)	Wecker (Alarm clock)
Auto (Car)	Kreide (Chalk)
Käfig (Cage)	Gitarre (Guitar)
Mülltonne (Garbage can)	Brücke (Bridge)
Schuh (Shoe)	Murmel (Marble)
Honigglas (Honey jar)	Brett (Board)
Dose (Can)	Pferd (Horse)

Table S2. Word pairs used in the associative memory task.

Note. For task design and procedure see section 2.4 in the main text. English translations (not used in the experiment) are provided in parantheses.

				Parameter estimates						
Variable	iable Model fit		Ν	Achange	Va	archange	BAge-at-Wave1->>Wave1			
	χ2	RMSEA	CFI	PE (SE)	$\Delta\chi 2(1)$	PE (SE)	$\Delta \chi 2(1)$	PE (SE)	$\Delta\chi 2(1)$	
CA1-2	5.07	0	1	-0.035 (0.020)	2.833'	0.010 (0.007)	2.511	0.132 (0.064)	4.258*	
DG-CA3	5.525	0	1	0.015 (0.032)	0.226	0.027 (0.015)	4.051*	0.130 (0.109)	1.399	
SUB	6.78	0.034	0.994	0.12 (0.039)	8.616**	0.030 (0.022)	1.984	0.010 (0.12)	0.008	
EC	6.877	0.081	0.980	0.098 (0.025)	14.12***	0.022 (0.014)	3.256'	-0.063 (0.082)	0.585	
Total HC	2.216	0	1	0.086 (0.085)	1.024	0.188 (0.109)	3.518'	0.273 (0.257)	1.112	

Table S3. Key parameter estimates in bilateral indicator univariate latent change score models of the hippocampal subfield volumes.

Note. M: Mean, PE (SE): parameter estimate (standard error), DG: dentate gyrus, SUB: subiculum, EC: entorhinal cortex. Parameters for variances of errors, of change, for covariances between change and Wave 1 values, as well as estimated means of indicator variables are not presented. ': p < 0.1, *:p < 0.05, **:p < 0.01, ***:p < 0.001, uncorrected for multiple comparisons. Confidence intervals calculated from bootstrapped samples provided support for the robustness of all associations significant at p < .05. For EC letting variances of left and right indicators differ across waves improved model fit, therefore we lifted these constraints in that model. For model specifications, see Figure 2B.

	Bootstrapped PE	95% CI
Hippocampal subfields		
Means of change		
SUB	0.252	[0.091,0.414]
EC	0.137	[0.047,0.227]
Variance of change		
CA1-2	0.171	[0.119,0.224]
DG-CA3	0.287	[0.193,0.381]
SUB	0.556	[0.327,0.786]
EC	0.155	[0.103,0.206]
HC	2.567	[1.673,3.462]
Regression of Wave 1 on Age at Wave 1		
CA1-2	0.345	[0.028,0.662]
Covariance between change and Wave 1		
CA1-2	-0.093	[-0.158,-0.029]
DG-CA3	-0.199	[-0.341,-0.058]
SUB	-0.428	[-0.672,-0.185]
HC	-1.92	[-2.95,-0.89]
Memory measures		
Means of change		
Cued recall	0.14	[0.101,0.179]
Spatial memory	0.082	[0.049,0.116]
LDI	0.107	[0.067,0.147]
Variance of change		
Cued recall	0.037	[0.026, 0.047]
Spatial memory	0.03	[0.022,0.037]
LDI	0.025	[0.017,0.034]
Regression of Wave 1 on Age at Wave 1		
Cued recall	0.115	[0.041,0.19]
Covariance between change and Wave 1		
Cued recall	-0.014	[-0.021,-0.007]
Spatial memory	-0.013	[-0.018,-0.008]
	-0.017	

Table S4. Mean and confidence intervals of bootstrapped parameter estimates that significantly differed from zero in univariate latent change score models

LDI -0.017 [-0.023,-0.01] *Note*. See Figure 2a and Table 1 in the main text for model specification, and all parameter estimates of interest, respectively. PE: Parameter estimate, CI: Confidence interval, HC: Hippocampus, LDI: Lure discrimination index.

Table S5. Model fit and parameter estimates for	longitudinal parameter	rs of interest in biva	riate latent change
score models that included bilateral indicator un	ivariate LCS models for	or hippocampal subf	ield volumes.

	Model fit			Covchange-change	(COV change – wave 1 sub	field	CoVchange – wave 1 memory		
-	χ2	RMSEA	CFI	PE (SE)	Δχ2(1)	PE (SE)	Δχ2(1)	PE (SE)	Δχ2(1)	
CA1-2										
- LDI	9.047	0	1	-0.002 (0.004)	0.015	-0.001 (0.005)	0.015	0.003 (0.004)	9.752	
- Spatial memory	12.403	0.047	0.986	0.002 (0.003)	0.388	0.001 (0.004)	0.089	0.004 (0.003)	1.67	
- Cued recall	10.863	0.028	0.995	0.002 (0.004)	0.104	0.002 (0.005)	0.104	-0.001 (0.004)	0.056	
DG-CA3										
- LDI	10.058	0.007	1	0 (0.006)	0.005	-0.005 (0.008)	0.412	0.004 (0.006)	0.421	
- Spatial memory	15.884	0.073	0.972	0.008 (0.006)	2.067	0.001 (0.008)	0.037	0.006 (0.005)	1.344	
– Cued recall	13.913	0.06	0.982	-0.003 (0.007)	0.237	-0.002 (0.009)	0.058	0.004 (0.006)	0.571	
SUB –										
– LDI	11.178	0.033	0.991	0 (0.003)	0.003	-0.006 (0.009)	0.481	0.006 (0.007)	0.85	
- Spatial memory	12.763	0.05	0.981	0.013 (0.007)	4.135*	-0.005 (0.008)	0.334	0.005 (0.006)	0.615	
- Cued recall	10.202	0.014	0.999	0.005 (0.008)	0.327	-0.002 (0.01)	0.054	0.001 (0.007)	0.033	
EC										
- LDI	17.437	0.083	0.952	-0.004 (0.005)	0.614	-0.003 (0.006)	0.229	0.006 (0.005)	1.318	
- Spatial memory	17.96	0.085	0.952	-0.002 (0.004)	0.37	0.002 (0.006)	0.156	0.008 (0.004)	4.713*	
- Cued recall	19.043	0.091	0.948	-0.001 (0.005)	0.082	0.007 (0.007)	1.142	0.001 (0.004)	0.091	
НС										
– LDI	6.67	0	1	-0.003 (0.015)	0.037	-0.013 (0.019)	0.46	0.015 (0.015)	0.989	
- Spatial memory	11.475	0.037	0.99	0.022 (0.015)	2.241	0.000 (0.018)	0.001	0.016 (0.014)	1.347	
– Cued recall	8.629	0	1	0.006 (0.018)	0.106	-0.004 (0.021)	0.042	0.003 (0.015)	0.043	

Note. M: mean, Var: variance, PE (SE): parameter estimate (standard error), DG: dentate gyrus, SUB: subiculum, EC: entorhinal cortex, HC: hippocampus. LDI: Lure discrimination index. $COV_{change-change}$: covariance between change in both variables, $COV_{change-wave 1 subfield}$: covariance between change in memory and hippocampal subfield volume at wave 1, $COV_{change-wave 1 memory}$: covariance between change in hippocampal subfield volume and memory at wave 1, *:p < 0.05, uncorrected for multiple comparisons.