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The brain adapts to the sensory environment. For example, sim-
ple sensory exposure can modify the response properties of early
sensory neurons. How these changes affect the overall encod-
ing and maintenance of stimulus information across neuronal
populations remains unclear. We perform parallel recordings
in the primary visual cortex of anesthetized cats and find that
brief, repetitive exposure to structured visual stimuli enhances
stimulus encoding by decreasing the selectivity and increasing
the range of the neuronal responses that persist after stimulus
presentation. Low-dimensional projection methods and sim-
ple classifiers demonstrate that visual exposure increases the
segregation of persistent neuronal population responses into
stimulus-specific clusters. These observed refinements preserve
the representational details required for stimulus reconstruc-
tion and are detectable in post-exposure spontaneous activity.
Assuming response facilitation and recurrent network interac-
tions as the core mechanisms underlying stimulus persistence,
we show that the exposure-driven segregation of stimulus re-
sponses can arise through strictly local plasticity mechanisms,
also in the absence of firing rate changes. Our findings provide
evidence for the existence of an automatic, unguided optimiza-
tion process that enhances the encoding power of neuronal pop-
ulations in early visual cortex, thus potentially benefiting simple
readouts at higher stages of visual processing.
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Introduction
A key property of cortical circuits is their capacity to reorga-
nize structurally and functionally with experience (1–3). In
primary visual cortex, adaptive reorganization is well docu-
mented during development (4–7) and growing evidence in-
dicates that sensory responses continue to adapt in adulthood
(8–13). The continual refinement of sensory neurons based
on the statistics of the sensory environment is at odds with
the traditional view of the primary visual cortex as a collec-
tion of static filters or feature detectors, passively converting
sensory input into a sparse code for further feed-forward pro-
cessing across the visual hierarchy (14). In fact, considerable
evidence suggests that primary visual cortex does not stati-
cally encode the environment but has rich spatial and tem-
poral dynamics. For example, sensory-evoked activity prop-
agates through the local network in wave-like patterns (15–

17), displays a high-degree of temporal structure (18) and
can persist long after the cessation of stimulation (19–22).
These rich dynamic properties exhibited by early visual neu-
rons suggest an active involvement of primary visual cortex
populations in the coordinated representation of visual stim-
uli. Most strikingly, repetitive visual exposure can alter the
strength and selectivity of neuronal responses in the primary
visual cortex, leaving a lasting mark on post-exposure activ-
ity in both awake and anesthetized animals (23, 24). Yet, it
remains unclear how such changes affect the joint encoding
of stimuli across neuronal populations and ultimately the in-
formation transmitted to downstream areas.
Given that primary neurons adapt their responses as a func-
tion of repeated exposure, one compelling hypothesis is
that exposure-driven changes are coordinated across neuronal
populations to collectively improve the representation and
maintenance of recently experienced stimuli. Here, we test
this hypothesis by investigating the impact of visual exposure
on the persistent population response of neurons in cat area
17 to brief, structured stimulation. We employ a large set
of abstract stimuli (letters of the Latin alphabet and Arabic
numerals) which provide a rich variety of spatial conjunc-
tions across low level features and are well suited to cap-
ture aspects of distributed coding. We find five main sig-
natures of functional reorganization. First, visual exposure
optimizes stimulus maintenance in primary visual cortex by
increasing the magnitude and decreasing the variability of
neuronal responses that persist after stimulus offset. Sec-
ond, these changes are associated with neural recruitment,
a broadening of the dynamic range neurons employ to re-
spond to stimuli, and an enhancement of stimulus-specific
tiling of neuronal responses. Third, refinement of individual
responses results in increased stimulus encoding at the pop-
ulation level, i.e. a simple hypothetical downstream decoder
increases its accuracy in identifying recent stimuli from brief
snippets of population activity. Fourth, the exposure-driven
enhancements in stimulus persistence maintain the represen-
tational structure of stimuli resulting in improved stimulus
reconstruction. Fifth, exposure strengthens patterns in post-
exposure spontaneous activity. Finally, modeling demon-
strates that exposure-driven enhancements in stimulus persis-
tence can arise from recurrent network interactions via local,
unsupervised plasticity-mechanisms.
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Fig. 1. Visual exposure protocol and simultaneous recordings of neuronal population activity from cat area 17. A) Cluster of receptive fields of simultaneously recorded
multi-units (rectangles) relative to the location of a visual stimulus. Population activity in example trials from one session. After a brief stimulus presentation (100 ms, on
and off timing marked in blue arrows), neuronal responses display a short transient followed by a persistent reverberatory component. Bottom peristimulus time histogram
shows mean population firing rates across 443 recorded units in early (black) and late trials (red). B) Exposure protocol: in each session 34 visual stimuli were presented
in random order (1700 trials in total). Sessions were split in either two or five consecutive blocks of trials and analyzed separately. C) Average stimulus discriminability (d’)
over the course of the trial (d’ calculated per unit; 443 units; 34 stimuli; shaded area indicates the standard error from the mean). The effect of visual exposure on stimulus
discriminability is significant for the persistent (300-600 ms), but not the transient(0-300 ms) part of the evoked response. D)The increase in d’ is gradual and does not saturate
for the exposure interval considered here (5 blocks; interval 300-600 ms). E) Similar firing rate levels result in higher discriminability in late trials (red) compared to early trials
(black) in a session. In all subplots *** stands for p < 0.001.

Results

We used silicon multi-electrode arrays to record the simul-
taneous activity of neuronal populations in area 17 of five
lightly anesthetized adult cats (felis catus; mean age 2.7
years; range 1-5 years; two females).We applied standard
spike-sorting techniques to isolate the action potentials of
112 single-unit and 331 multi-unit clusters (Materials and
Methods). The receptive fields (RFs) of the recorded units
(27-52 units per session, 11 recording sessions with inde-
pendent electrode positions, 443 units in total) were located
nearby in visual space and were jointly stimulated by a sin-
gle luminance stimulus, flashed for 100 milliseconds over a
black background (example trials in Figure 1A). Short stim-
ulus presentations at high contrast can produce strong per-
sistent responses in the primary visual cortex (20, 21). In
our data, the flashed stimuli evoked a biphasic population
response, composed of a transient, low-latency component
(≈ 50 ms) and a prolonged, persistent component (example
trials and average firing rates across all 443 units from 5 cats
in Figure 1A). In total, 296 out of 443 units (66.8%) fired
above the baseline for the entire duration of the trial (compar-
ison between the last 100 ms of the trial and the pre-stimulus

baseline, one-tail t-test, p<0.05).
The anesthetic protocol used here, consisting of intra-
venous suffentanil supplemented by minimal concentrations
of isoflurane, was intended to model stable cortical dynam-
ics, absent of strong fluctuations between ‘up’ and ‘down’
states. The stability and quality of the recordings was quan-
tified using the power spectrum of the local field potential
(LFP), and comparing the shapes of early and late spikes,
neither of which exhibited any systematic change over the
exposure interval (Figure S1).

Visual exposure enhances stimulus persistence. How
does brief visual exposure to structured stimuli affect the pop-
ulation response of primary neurons? To address this ques-
tion, we presented a large set of alphanumeric stimuli (34
upper-case letters and digits) in random order (1700 trials in
total, 50 trials per stimulus) and compared stimulus responses
across either two or five consecutive trial-blocks (stimulus or-
der within each block was random, consecutive trials corre-
sponded to different stimuli, schematic in Figure 1B).
We measured stimulus discriminability, also known as Co-
hen’s d’ (25), by calculating, for each individual unit and each
50 ms time window within the trial, the spread of the mean
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responses to different stimuli relative to the standard devia-
tions of those responses across trials (definition of d’ for 34
stimuli in Materials and Methods). We found that visual ex-
posure led to a substantial increase in average d’ across units
(2 blocks, 8.38% increase for the interval 100-800ms, paired
t-test, p = 6.4e-13, t = -7.43, df = 442; 10.86% increase for
the interval 300-600 ms, paired t-test p = 2.8e-12, t = -7.19,
df = 442; profile of average d’ along the trial in Figure 1C).
The increase in d’ with visual exposure was gradual and did
not reach a saturation point (5 blocks, 10.9% increase be-
tween block 1 and 5, paired t-test p = 1.3e-07, the black line
indicates the linear fit, y = 2.4x + 98.66, linear trend was
significant p = 0.009; Figure 1D), suggesting that further im-
provements may be possible with further exposure.
An improvement in stimulus discriminability is likely to be
associated with an increase in neuronal response amplitude
or a decrease in response variability. We found that visual
exposure resulted in an increase in the amplitude of neuronal
responses that persisted after stimulus presentations (6.2%
increase between early and late trials for the 300-600ms in-
terval; paired t-test, p = 2e-08, t = -5.71, df = 442; see
Figures 1A and S2). Interestingly, similar firing rate lev-
els resulted in higher d’ values for late trials in a session,
suggesting that modulations in firing rates alone cannot ex-
plain the observed improvements in stimulus discriminabil-
ity (Figure 1E). Moreover, the same conclusion was rein-
forced by the observation that, in two animals, the mean pop-
ulation firing rate was unchanged by stimulus exposure, in
spite of substantial improvements in stimulus encoding (cat
3 and 5, see related stimulus decoding performance in Figure
S5). It is known that firing variability is reduced by stimu-
lus onset (26). Here we found that visual exposure further
reduced variability throughout the trial (3.48% decrease be-
tween early and late trials for the interval 300-600 ms; paired
t-test, p = 8e-05, t = 3.98, df = 442, Figure S2). Laminar
analysis revealed that exposure driven changes in response
amplitude, variability and d’ were significant for all compart-
ments (Figure S3).

Exposure increases the dynamic range and stimulus–
clustering of neuronal responses. Given the common
assumption that higher response selectivity corresponds to
more stimulus information, we considered the possibility that
the observed exposure-driven enhancement in stimulus dis-
criminability may be associated with an increase in response
sparseness or selectivity. We assessed both the population
sparseness for each stimulus, and the stimulus selectivity of
each unit, separately for early and late trials in each session
(response period 300-600 ms, see Material and Methods).
Sparseness was estimated as one minus the fraction of simul-
taneously recorded neurons that responded to each stimulus,
and, conversely, the selectivity of each unit was estimated as
one minus the proportion of stimuli it responded to. We found
that both measures decreased with visual exposure (sparse-
ness, paired t-test across stimuli and sessions p= 6.8e-04, t =
3.4, df = 373; values z-scored per session; Figure 2A; selec-
tivity, paired t-test, p = 0.006, t = -2.7, df = 442; not shown).
When units were sorted based on their change in firing rate
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Fig. 2. Exposure-driven refinements in stimulus-encoding A) Response sparseness
decreases significantly with visual exposure, suggesting neural recruitment. Individ-
ual markers correspond to individual stimulus conditions (11 sessions, 34 stimuli).
B) Change in response selectivity as a function of change in firing rate with ex-
posure. Units are sorted by amplitude of rate change and grouped into quartiles
(marked on x-axis). Values on y-axis are z-scored per session. C) Change in d’ as
a function of change in firing rate with exposure. Units that increase their firing rates
with visual exposure also increase their d’ values, but are accompanied by a loss
in selectivity (compare to B). D) Change in response range as a function of change
in firing rate with exposure. Positive gains in response range are associated with
an increase in firing rates. All measures are calculated over the 300-600 ms time
interval in the trial. Error bars in B, C and D indicate standard errors from the mean.

amplitude and grouped into quartiles, we found that the
units that strongly decreased their firing rates with exposure,
showed increased selectivity, but decreased d’ (compare Fig-
ure 2B and C). Conversely, the units that increased their fir-
ing rates with exposure became less selective and increased
their d’ values. Interestingly, we found that exposure re-
cruited more units to stimuli (reduced sparseness) and that
recruited units increased the dynamic range of their firing
rate responses (the difference between the strongest and the
weakest response across stimuli, see Material and Methods,
Figure 2D). The increased dynamic range was highly signif-
icant across units (paired t-test, p = 7.5e-17, t = -8.6, df =
442).

Reducing the high-dimensional population response via prin-
cipal component analysis (PCA), we found that exposure
increased the segregation of responses, revealing stimulus-
specific clusters in low-dimensional projections (examples in
Figure 3A and B; multiple sessions in Figure S4). Better
segregation was quantified as reduced cluster radius and in-
creased inter-cluster distance. The cluster radius, the mean
Euclidean distance in the first two principal components of
all cluster-points (stimulus trials) to the cluster center (aver-
age response), decreased significantly with exposure (10.4%
decrease, paired t-test p= 1.25e-15, t = 8.36, df = 373; Figure
3C). In addition, the cluster distance, the mean distance be-
tween the cluster center and all other centers, increased with
exposure (15.3% increase, paired t-test p= 4.7e-25, t = -11.13,
df = 373; Figure 3D). Overall, the clustering index, calcu-

Lazar et al. | Exposure enhances stimulus encoding in primary cortex bioRχiv | 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2021. ; https://doi.org/10.1101/502328doi: bioRxiv preprint 

https://doi.org/10.1101/502328
http://creativecommons.org/licenses/by-nc-nd/4.0/


-100 ms +100 ms +300 ms +500 ms +700 ms

PC 1

P
C

 2

Early

Late

−4

0

4

B

C

+300 ms

A

BC

A

D

−4 0 4

1

0

3

0                    5
0

5

0

1

-1

1

0

-2

2

0

E

C
lu

s
te

ri
n

g
 i
n

d
e

x

Distance early

D
is

ta
n

c
e

 l
a

te

Radius early

R
a

d
iu

s
 l
a

te

Early         Late

**

***
***

−4

0

4

−4 0 4

PC 1

P
C

 2

−5

0

5

−5 0 5

0 3

A

BC

Fig. 3. Exposure increases stimulus-specific clustering and segregation of the population responses. A) Evolution of population responses to 34 visual stimuli over the course
of the trial (example session, 50 ms spike-count vectors). B) Early and late population responses (50 ms spike-count vectors) to three stimuli (letters A, B and C) in the space
defined by the first two principal components. Each marker represents a single trial. For each cluster, an ellipse circumscribes the data points within one standard deviation
from the mean. The stimulus-specific clusters segregate ≈ 300 ms after stimulus onset. The segregation is more pronounced for late trials (red) compared to early trials
(black) in a session. C) Scatter of cluster radius values in early and late trials, for all stimulus clusters in all sessions (50 ms spike-counts, 300 ms after stimulus offset). The
small inset histogram shows the distribution of differences in cluster radius between early and late trials, the mean of the distribution which is significantly different from 0 is
marked in red. D) Scatter of mean distances from each cluster center to all others, in all sessions (same time window as above). The inset histogram shows the distribution
of differences in cluster distance between early and late trails. E) The clustering index increases significantly across recording sessions with visual exposure.

lated per session as one minus the mean ratio between the
cluster radius and the cluster distance, increased with expo-
sure (paired t-test p= 0.0058, t = -3.48, df = 10; Figure 3E).

In sum, these results suggest an exposure-driven refinement
of stimulus encoding. This refinement does not occur through
increased selectivity of units, or population sparseness, but
rather through the recruitment of more responsive units into
the population response, an expansion of the dynamic range
of units, and enhanced stimulus-specific clustering of popu-
lation responses.

Exposure enhances readout performance. We next
sought to investigate the extent to which exposure-driven
changes in neuronal responses affect the capacity of a hypo-
thetical downstream decoder to identify visual stimuli based
the primary visual cortex output.
We trained independent Bayesian classifiers to perform time-
resolved decoding of stimulus identity based on the popula-
tion activity vector across the trial, i.e. the spike-count in
each time bin (instantaneous decoders, schematic in Figure
4A). Visual exposure led to increased classification perfor-

mance (time course in Figure 4B, chance level = 2.94% for
34 stimuli, 50 ms time bins, 100-fold validation procedure,
see Materials and Methods for details). The magnitude of the
increase was substantial given the modest changes in firing
rate and variability observed for individual units. Peak accu-
racy across sessions ranged from 8 to 49.5% correct for early
trials and 16.5 to 59.6% correct for late trials, and increased
significantly in every animal (average increase 27.7%, range
13-59.6% increase, t-test, all p-values<0.001). To quantify
stimulus persistence, we analyzed the time course of classi-
fication performance within the trial by calculating the area
under the curve (AUC, 100-800 ms). We found that visual
exposure led to a strong and significant increase in perfor-
mance AUC in every animal (average increase 33%, range
14-64%, t-test, all p-values<0.001, individual performance
profiles in Figure S5). Given the large number of stimuli in
our set, individual stimuli were typically repeated only 50
times. Previous studies have indicated that remarkably little
stimulus-exposure is required to modify the response proper-
ties of neurons in the primary visual cortex (24). However,
to test the effect of more repetitions, we acquired a session of
5100 trials (150 trials per stimulus). In this control session,
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the performance AUC continued to increase past 50 repeti-
tions per stimulus (Figure S6), suggesting that additional ex-
posure continues to enhance stimulus encoding.

As expected, the bin size used to integrate spike counts af-
fected the difference in decoding performance between early
and late trials (Figure 4B). Decoders that counted spikes
over intermediate integration windows (50-200 ms) had high
performance and showed significant improvements between
early and late trials (performance AUC, t-test, p<0.05), while
very short (10 ms) and very long (400 ms) integration win-
dows resulted in lower performance and reduced improve-
ment (AUC, t-test, p>0.05). Additionally, the effect of visual
exposure on decoding performance varied with the task diffi-
culty, i.e. the number of stimuli being decoded (Figure 4C).
We found that exposure improved peak performance when
classifying 8 or more stimuli (t-test, p<0.05), but not fewer
(t-test, p>0.05). This is likely due to ceiling effects as peak
performance scores for 2 class problems were beyond 90%
for early trials in 4 out of 11 sessions.

The segregation of evoked responses into stimulus-specific
clusters varied substantially over the course of the trial (Fig-
ure 3A) and peaked at different moments in time for different
animals (Figure S5). We therefore examined how stimulus-
specific information varied with trial-time by considering
three additional decoding configurations (schematic in Fig-
ure 4A). First, we trained “time-invariant” decoders on activ-
ity vectors pooled across five consecutive 50 ms time-bins.
Note that such decoders have five times more data points
for the same N-dimensional space, compared to the instan-
taneous decoders. Second, we trained “aggregate” decoders
on concatenated activity vectors corresponding to five con-
secutive temporal bins. Aggregate decoders map a five times
larger dimensional space compared to the instantaneous de-
coders. Finally, we trained “scrambled” decoders on tempo-
rally scrambled data across five temporal bins. Scrambled
decoders have the same number of points and space dimen-
sions as the aggregate decoders but map an altered space
where within-trial correlations between neurons have been
disrupted through scrambling. Interestingly, all three de-
coders showed significant changes with visual exposure. The
aggregate decoder performed significantly better than both
the invariant and temporally scrambled decoders suggesting
that information was contained not only in the instantaneous
structure of the spike-count vector but also in its trajectory
(in the sequence of state vectors during trial).

Finally, we considered the impact of visual exposure on the
portion of trial-to-trial variability shared between units. Con-
sistent with previous studies (27, 28), spike-count correla-
tions (SCCs) were highest for pairs of units with similar stim-
ulus preferences (positive signal correlations) and lowest for
pairs of units with opposing stimulus preferences (negative
signal correlations). Visual exposure reduced the strength of
SCCs (21% decrease, paired t-test, p =1e-17), and the reduc-
tion was strongest for units with opposing preferences (78%
decrease, two-tailed t-test, p = 1e-09, signal correlations<-
0.1; 9% decrease, two-tailed t-test, p = 1e-06, signal correla-
tions>0.1; Figure S7A). Ignoring SCCs can decrease decod-

ing performance (Averbeck et al., 2006; Graf et al., 2011).
We found that a support vector machine with quadratic fea-
tures trained on trial-shuffled data and tested on original data,
performed worse than a decoder trained on the original data
with intact correlation structure (two-way ANOVA; shuffling
led to a 10.42 % decrease, p = 0.0062 early trials and 13.02
% decrease, p = 3.7e-09 late trials; exposure led to a 17.96%
increase, p = 1.2e-07 for original data and 14.54% increase,
p = 0.0003 for shuffled data; Figure S7B). Shuffling reduced
performance for both the early and late trials suggesting that
while repeated exposure decreased the overall level of SCCs
in the data, a portion of SCCs present in both early and
late trials contributed positively to the population code. In-
deed, the fact that SCCs decreased most for units with oppos-
ing stimulus preferences might reflect competition between
stimulus-specific ensembles, such that correlations are sta-
ble between units of similar preference and reduced between
units of opposing ensembles.

Exposure enhances stimulus reconstruction. The al-
phanumeric stimuli are structurally more complex than ori-
ented gratings but less complex than natural scenes. Such a
large stimulus set of intermediate complexity is highly suit-
able for reconstruction, i.e. recreating the luminance pattern
of stimuli from their evoked neuronal responses. While stim-
ulus decoding techniques have been applied to many visual
cortical areas, stimulus reconstruction has been attempted
rarely and not, to our knowledge, in the context of visual ex-
posure.
We performed stimulus reconstruction separately on early
and late trials to quantify the impact that visual exposure
had on encoding. To reconstruct each stimulus, we trained
Bayesian decoders to predict the luminance of individual
stimulus patches (576 decoders corresponding to 24x24 im-
age patches) based on the population activity recorded af-
ter stimulus offset (schematic in Figure 5A; luminance val-
ues were between 0 and 1; independent train and test trials,
20-fold validation scheme; 11 sessions). The reconstructed
stimuli were noisy on single trials (examples from one ses-
sion, 50 ms spike-counts, 400 ms after stimulus offset; Fig-
ure 5B left) and became considerably more accurate when
averaged across 10 test trials (Figure 5B right). Exposure in-
creased stimulus reconstruction accuracy, calculated as one
minus the difference in pixel luminance between the recon-
structed image and the original image (scatter of 34 stimuli
from 11 sessions; paired t-test, p = 1.13e-09, t = -6.24, df
= 373; Figure 5C left). This improvement was significant
also when calculated across sessions (paired t-test, p = 8.2e-
04, t = -4.71, df = 10; Figure 5C right).These results suggest
that the exposure-driven enhancements in classification per-
formance are representational in nature and reflect improved
encoding of stimulus content. The fact that the structure of
multiple stimulus shapes (34 letters and digits) can be recon-
structed from relatively small populations of recorded units
(27-52 units per session) and improves with exposure speaks
to the impressive encoding capacity and flexibility of the pri-
mary visual cortex.
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Structured post-exposure spontaneous activity.
Exposure-driven changes in evoked activity are often asso-
ciated with accompanying changes in spontaneous activity.
The stimulus reconstruction technique described above
allowed us to probe for lasting representational changes in
the structure of spontaneous neuronal activity. To this end, in
7 exposure sessions from 3 cats, we recorded and analysed
spontaneous activity (20 blank trials) before and after visual
stimulation.
We isolated spontaneously occurring strong-activation
events, defined as periods when population activity exceeded
mean activity by more than one standard deviation (50 ms
spike-counts). In total, 961 events were detected during pre-
exposure spontaneous activity and 980 during post-exposure
(example events corresponding to pre- and post-exposure
data from one session, Figure 5D). We found that the strength
of spontaneous events increased significantly after visual ex-
posure (event strength was pooled across sessions after being
standardized for mean and variance; t-test p = 3.9e-89, t =
-21, df = 1939; Figure 5E).
To quantify structural differences in the pre- and post-
exposure events, we assigned a stimulus ‘label’ to each event
using decoders trained on evoked activity (example label as-
signments for pre- and post-exposure events from one ses-
sion in Figure 5F). The assigned labels were more uniformly
distributed across stimulus conditions post-exposure, as in-
dicated by an increase in entropy (estimated based on 1000
bootstraps of 50 events, p = 1e-172, Figure 5F right). We next
generated an image, using the same reconstruction technique
as above, for each spontaneous event. Both the reconstruc-
tion and the identity decoders were trained on evoked activ-

ity from the entire session (no separation of early and late tri-
als), as we wanted to assess exposure-driven changes in the
structure of spontaneous activity, not changes in the recon-
struction or decoding techniques. We pooled images across
events based on the assigned class label to obtain mean stim-
ulus reconstructions (reconstruction examples in Figure 5G).
The accuracy of stimulus reconstruction improved following
exposure (paired t-test, p = 5.3e-04, t = -3.52, df = 204; Fig-
ure 5H).Since the assignment of a class label and the recon-
struction of an image for the same spontaneous event, reflect
related content, it is not surprising that some degree of stim-
ulus reconstruction is possible based on spontaneous activity.
However, the improvement in post-exposure reconstruction
accuracy suggests that the changes in spontaneous events are
structured and correspond to the experienced visual content.

Self-organized recurrent networks for stimulus persis-
tence. Finally, we sought to demonstrate that a simple self-
organized recurrent network, endowed with local plasticity
mechanisms for learning and homeostasis, can qualitatively
reproduce the exposure driven enhancements in stimulus en-
coding, while maintaining stable firing rate output.
The recurrent network model consisted of 80% excitatory and
20% inhibitory binary units (250 units total). For simplicity,
the recurrent interactions were assumed to arise from a single
pool of randomly connected neurons, not a multi-layered re-
current network. The connectivity matrix between excitatory
units followed simple topological constraints, i.e. nearby ex-
citatory neurons had increased probability for a connection
(details in Materials and Methods). A subset of neurons re-
ceived luminance input from a 6x6 array of stimulus image
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Fig. 5. Improved stimulus reconstruction with visual exposure. A) Schematic representation of stimulus reconstruction technique: a 24x24 array of Bayesian classifiers are
trained to predict pixel luminance from population spike-count vectors (50 ms) recorded 400 ms after stimulus offset. Test trials are omitted from the training set. B) Single
trial examples for reconstruction of a stimulus (number “3”) and examples of average reconstructions (across 10 test trials, numbers “1” to “4” ) for early and late trials in an
example session. C) Scatter depicts the reconstruction accuracy of all stimuli from 11 sessions, early vs. late trials (left panel). Changes in reconstruction accuracy are
significant (inset histogram, paired t-test, p<0.001; mean accuracy per session in right [panel, paired t-test, p<0.001). D) Example spontaneous events detected pre and post
visual exposure in a session. E) Spontaneous events become stronger post-exposure (events detected pre and post exposure in 7 sessions). F) A Bayes classifier trained on
evoked activity assigns stimulus labels to spontaneous events. The assigned labels are more uniformly distributed post-exposure; entropy is significantly higher post exposure
(right panel; permutation test). G) Stimulus reconstruction accuracy based on spontaneous events improves post-exposure. H) Examples of single letter reconstructions
based on spontaneous events occurring pre and post stimulus exposure (24x24 luminance patches; training on evoked data).

patches (schematic Figure 6A).
Recurrent neural networks naturally exhibit a memory of re-
cent inputs, so information about brief stimuli can be re-
trieved with some delay from stimulus offset (29, 30). To
match the empirical data, we strengthened the persistent re-
current responses after stimulus offset though response facili-
tation, which has been previously implicated in both stimulus
persistence and learning (31, 32) (fixed interval for facilita-
tion marked by shaded area in Figure 6C and D).
Visual exposure consisted of 50 brief presentations of 10
stimuli (alphabet letters A-J) in random order. The network
self-organized through local, unsupervised synaptic plastic-
ity, while homeostatic plasticity maintained neuronal fir-
ing rates at a fixed level (example of connectivity changes
through plasticity in Figure 6B, details in Materials and
Methods).
We considered how exposure-driven learning may inter-
act with several implementations of response facilitation.
Facilitation was implemented by changing the excitatory-
inhibitory balance of incoming synaptic gains per neuron by
either (1) lowering inhibition or (2) increasing excitation. Al-
ternatively, the firing of excitatory units was increased by:
(3) adding a random input drive and (4) changing neuronal
excitability via intrinsic plasticity. The first two methods re-

sulted in persistent firing rate responses after stimulus off-
set. Unsupervised learning during visual exposure led to
improved stimulus encoding (data for an example run with
lowered inhibition in Figure 6C,D and E). Similar to the em-
pirical results, the enhancement in stimulus encoding could
be captured in low-dimensional projections of the data (Fig-
ure 6E). The last two methods, variable input and changes in
neuronal excitability, resulted in similar, persistent firing rate
responses after stimulus offset. However, they did not lead
to improved stimulus encoding through unsupervised learn-
ing, suggesting that the intrinsic network interactions, which
were more severely disrupted by these two methods, played
a critical role in the optimization process (Figure 6F).

Discussion

We found that repeated exposure to briefly flashed visual
shapes improves stimulus encoding in primary visual cortex.
Visual exposure altered post-stimulus population activity in a
manner that enhanced both the decoding of stimulus identity
and the reconstruction of visual stimuli.
These improvements were associated with neuronal recruit-
ment, an increase in the dynamic range of neuronal re-
sponses, and stimulus-specific clustering of population re-
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sponses. The manner in which exposure enhanced the
segregation of population responses into low-dimensional,
stimulus-specific clusters suggested two main effects. First,
stimulus responses became less variable across trials and
more stereotyped, shrinking the radius of individual clusters.
Second, responses to different stimuli became more distinct,
increasing the distance between clusters. Using decoders we
found that the information about stimulus identity was tem-
porally specific, i.e. different time bins in the trial differed
in their mapping, and visual exposure improved both variant
and invariant aspects of stimulus encoding. Interestingly, we
also observed a reduction in co-variability, similar to what
has been previously documented in the context of attention
and perceptual learning (27, 33, 34). In our data, the ef-
fect of exposure on spike-count correlations was complex:
the strength of correlations was reduced with exposure, but
knowledge about their structure remained beneficial for stim-
ulus discrimination.

The brief stimulus presentations employed here resulted in
a stereotyped, biphasic neuronal response in primary visual
cortex, consisting of a high amplitude transient followed by a
delayed persistent response. Stimulus decoding performance
diverged from the expected dependence on firing rate, with
accuracy peaking not on the response transient, but 200-
400 ms after stimulus offset. Sustained and information-rich
sensory responses, persisting beyond the period of sensory
stimulation have been reported previously, not only under
anesthesia, but in various sensory modalities and species in
awake behaving animals. In the primary auditory cortex of
awake marmosets, preceding stimuli suppressed or facilitated

responses to succeeding stimuli for more than one second
(35). In awake mice, the early sensory responses to a sin-
gle brief whisker deflection encoded stimulus information,
while the later activity appeared to drive the subjective de-
tection (36). Notably,in awake mice primary visual cortex,
an oriented flashing light induced a biphasic membrane volt-
age response that consisted of an early, transient depolariza-
tion and a delayed, slow depolarization (20). The delayed
activity exhibited high orientation selectivity and influenced
the evoked response to subsequent inputs in an orientation-
selective manner. In awake macaques, a simultaneous change
in both stimulus and background gave rise to a delayed V1
response that varied with the size of the background and cor-
related with the perception of a visual aftereffect (21). In hu-
man electroencephalography, information about a previously
presented visual stimulus persisted even in the absence of de-
layed activity (activity-silent states) and could be decoded
from an impulse response, long after stimulus presentation
(37).

The persistence of stimulus information observed in our data
and supported by the studies mentioned above, highlights a
propensity for the primary visual cortex to maintain sensory
information, far beyond the temporal intervals required by the
traditional feed-forward model of the ventral stream. Instead,
these findings are compatible with a dynamic coding frame-
work for recurrent computation (29, 30, 38). In this frame-
work, the cortical response to a stimulus emerges from an
interaction between the input signals and the internal dynami-
cal state of the network, including the ongoing activity (active
states), but also the time-dependent properties of neurons and
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synapses (hidden states). Efficient recurrent processing relies
on two simple requirements: (i) stimulus responses must per-
sist beyond the duration of the stimulus, establishing a brief
memory of recent events (fading-memory property) and (ii)
the temporal evolution of network states in response to differ-
ent stimuli must result in reproducible stimulus-specific tra-
jectories (separability property). Both the memory and sepa-
rability properties exhibited by a recurrent circuit can be op-
timized through plasticity by altering the network’s stimulus-
response mapping (38).

The self-organized recurrent network model used here, builds
on previous computational work showing that unsupervised
changes in hidden states via local experience-dependent plas-
ticity rules can increase performance on memory and predic-
tion tasks (39) while matching numerous experimental find-
ings on cortical variability (40). We employed response fa-
cilitation to boost the network’s response to brief stimuli dur-
ing learning and considered its effect on network dynamics
in several different implementations. We found that shifts in
excitatory-inhibitory synaptic gains led to strong persistent
responses after stimulus offset and over the exposure inter-
val this boost in activity allowed for an increase in stimulus
decoding performance. In contrast we found that while an
increase in excitatory drive or shifts in neuronal excitability
via intrinsic plasticity also led to strong persistent responses
after stimulus offset, this boost in activity did not reliably im-
prove stimulus decoding performance, suggesting that stable
intrinsic network interactions are essential during learning.

Notably, various other computational models have shown
that the dynamics and performance of recurrent neural net-
works can be optimized via brain-inspired plasticity mecha-
nisms. For example, spike-frequency adaptation was shown
to expand the memory exhibited by recurrent circuits (41)
and different forms of biologically plausible synaptic learn-
ing rules have been employed to enhance computational per-
formance of recurrent networks in an unsupervised fashion
(42–45). Furthermore, several studies made direct attempts
to link learning in recurrent networks to optimization of state
space dynamics (46, 47) or meta-learning (48). While neither
of these recurrent models tried to explain how persistent re-
sponses after brief stimulation can interact with learning, they
provide valuable insights into the various means by which
refinements in internal network dynamics result in improved
output performance.

The precise anatomical connectivity responsible for the ob-
served reverberation of visual responses and the functional
changes underlying exposure-driven improvements in stim-
ulus discrimination are still unknown. Given the presence
of both strong feedforward as well as, extensive feedback
thalamo-cortical interactions (49, 50), we cannot exclude the
possibility that exposure-driven changes in primary cortex
responses originate from interactions with subcortical struc-
tures. In fact, studies have shown that slowly decaying in-
hibitory postsynaptic potentials in the lateral geniculate nu-
cleus can maintain stimulus specific information for up to 300
ms and can modulate subsequent responses to reoccurring
contours (51, 52). However, these effects were short lasting,

while in our data repeated exposure to stimuli resulted in an
increase in stimulus encoding across numerous trials and was
associated with a strengthening of activation patterns in post-
exposure spontaneous activity. Interestingly, the activation of
NMDA receptors in cortical layer 4, which receives the dens-
est thalamocortical input, does not appear to be necessary for
stimulus-selective response potentiation in V1 (53). An al-
ternative is that exposure-dependent changes primarily affect
local recurrent interactions within primary cortex and/or the
long-distance recurrent interactions with higher cortical ar-
eas.

Vision depends on integrating the current sensory input in
light of previous experience (54). This integration is achieved
through the rich recurrent dynamics of the early visual sys-
tem, which arise on the backbone of structural connectivity
(55, 56). The connectivity of sensory areas is believed to cap-
ture the statistics of the environment, a process which would
improve processing for expected stimuli (4, 7, 54, 57–59).
However, exposure-driven changes in the primary sensory
cortex of adult subjects, suggest a complex, occasionally di-
vergent pattern of results. For example, adaptation classically
leads to a reduction in response amplitude (10), and famil-
iar stimuli can evoke reduced responses compared to novel
stimuli (60). However, repetitive exposure can also alter the
receptive fields and tuning of neurons in V1 (61), imprint re-
sponses to recent stimulus trajectories (24), increase the mag-
nitude of responses to familiar sequences and signal predic-
tions to missing elements (23). These intricate changes in
response amplitudes with visual exposure appear to depend
on many factors, among which, the frequency and duration
of stimulation, the structure and complexity of the image set,
the state of the animal and the precise signal measured. Re-
gardless, the core findings outlined here do not rely heavily
on changes in firing rates to familiar stimuli, but rather on
the prolonged maintenance of stimulus information and the
increase in discriminability with visual experience.

We interpret these results as an accumulation of evidence that
optimizes the encoding of a stimulus set akin to learning a
new stimulus statistics.

State changes are known to vary under anesthesia and can
change the cortical response to stimulation. For example,
deep anesthesia gives rise to alternating ‘up’ and ‘down’
states with distinct dynamic profiles that can have an impact
on sensory coding. We did not observe such strong varia-
tions in our recordings, which were performed in a modi-
fied anesthetic protocol to mimic ‘awake’ like brain dynam-
ics. Although a milder form of such variation occurs also
during wakefulness, we found no systematic change in brain
state that could trivially explain our results. Likewise, brief
stimuli are known to generate robust responses irrespective
of cortical state (62) which may explain the stability of sen-
sory responses and brain states across recording sessions.
Given that the experiments were performed under anesthe-
sia, the reported exposure-driven changes in activity must in-
volve “automatic” mechanisms, independent of attention and
conscious control. Further work is necessary to determine
to which extent these effects generalize to the waking state,

Lazar et al. | Exposure enhances stimulus encoding in primary cortex bioRχiv | 9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2021. ; https://doi.org/10.1101/502328doi: bioRxiv preprint 

https://doi.org/10.1101/502328
http://creativecommons.org/licenses/by-nc-nd/4.0/


where higher cortical areas with reciprocal connections to V1
as well as subcortical regions, such as the superior colliculus,
thalamus and cerebellum are likely to play an important role
in shaping V1 plasticity. In particular, top-down enhance-
ment of task-relevant stimulus features and suppression of
irrelevant ones, the level of attention, motivation and reward
expectation, are all likely to guide learning-induced changes
in V1.
Our study provides compelling evidence that repetitive visual
exposure optimizes sensory processing in primary visual cor-
tex, resulting in a better readout of stimulus-specific informa-
tion. These findings suggest that the reliable visual discrim-
ination of familiar stimuli can be partially achieved through
separation of neuronal representations at the earliest cortical
stage in the visual hierarchy. Future work should establish
how these changes impact the transformation of sensory sig-
nals in the visual hierarchy, manifest at higher visual areas,
and interact with behavioral states, such as attention or per-
ception.

Materials and Methods
Electrophysiological recordings and data processing.
Data was recorded from five adult cats (felis catus; mean age
2.7 years; range 1-5 years; two females) under general anes-
thesia during terminal experiments in two separate laborato-
ries. The cats were bread internally, were housed together
with other cats in small groups and experienced normal vi-
sion during development.All procedures complied with the
German law for the protection of animals and were approved
by the regional authority (Regierungspräsidium Darmstadt).
For one of the cats, anesthesia was induced by intramus-
cular injection of Ketamine (10 mg/kg) and Xylazine (2
mg/kg) followed by ventilation with N2O:O2 (70/30%) and
halothane (0.5%–1.0%). After verifying the depth of narco-
sis, pancuronium bromide (0.15 mg/ kg) was added for paral-
ysis. Stimuli were presented binocularly on a 21-inch com-
puter screen (HITACHI CM813ET) with 100 Hz refresh rate.
To obtain binocular fusion, the optical axes of the two eyes
were first determined by mapping the borders of the respec-
tive receptive fields and then aligned on the computer screen
with adjustable prisms placed in front of one eye. Data was
recorded with multiple 16-channel silicon probes from the
Center for Neural Communication Technology at the Univer-
sity of Michigan (each probe consisted of 4 shanks, 3 mm
long, 200 µm distance, 4 contact points each, 1,250 µm2 area,
0.3−0.5MΩ impedance at 1 kHz). To extract multi-unit ac-
tivity, signals were amplified 10,000 and filtered between 500
and 3500 Hz.
For four of the cats, anesthesia was induced by intramuscular
injection of Ketamine (10 mg/kg) and Medetomidine (0.02
mg/kg) followed by ventilation with N2O:O2 (60/40%) and
isoflurane (0.6%-1.0%). After verifying narcosis, Vecuro-
nium (0.25mg/kg/h i.v.) was added for paralysis. Data was
collected via multiple 32-contact probes (100 µm inter-site
spacing, ≈ 1MΩ at 1 kHz; NeuroNexus or ATLAS Neuro-
engineering) and amplified (Tucker Davis Technologies, FL).
Signals were filtered with a passband of 700 to 7000 Hz and

a threshold was set to retain multi-unit activity. Thresholds
remained fixed during data collection.

Visual stimuli. Stimuli consisted of 34 shapes: 26 letters
(A–Z) and 8 digits (0–7). They were white on black back-
ground and spanned approximately 5–7 degrees of visual an-
gle.
More than 1700 trials (50 trails per stimulus) were recorded
in every session. More than 6800 trials (200 trials per stim-
ulus) were recorded in one of the sessions to test whether
longer exposure leads to further improvements in stimulus
encoding (Supp. Fig. 6).
Stimuli were presented in random order, i.e. consecutive tri-
als corresponded to different stimulus conditions.

Data analysis. Data was processed and analysed using cus-
tom code written in MATLAB (MathWorks). The Fieldtrip
toolbox (63) was used for laminar analysis (Supp. Fig. 3).

Spike-sorting. Spike sorting of the recorded multi-units was
performed offline via custom software that computed princi-
pal components of spike waveforms in order to reduce di-
mensionality and grouped the resulting data using a density-
based clustering algorithm (DBSCAN). Only the well iso-
lated clusters were considered single units and labeled sep-
arately. Spike-sorting resulted in 112 single units and 221
remaining multi-units, in total 443 units across all datasets.

Current source density analysis. In 3 cats (7 sessions,
289 units), the recordings were performed with 32-channel
linear arrays (100 micron spacing). Local field potentials
(LFPs) to moving grating stimuli presented at maximal con-
trast were recorded either immediately before or immediately
after the sessions with letters and digits. These LFPs were
subject to current source density (CSD) analysis using a stan-
dard algorithm (64) based on the second spatial derivative es-
timate of the laminar local field potential time series. This
analysis revealed successfully the short-latency current sink
in the middle layers for each session, which has been shown
to correspond most closely to layer 4 (65).

Neuronal response properties. For every unit, the dis-
criminability index d’, also known as Cohen’s effect size
(25), for n stimuli, was calculated as:

d′ =
√∑n

1 (ri− r)2

n
/σ (1)

where ri is the mean response across trials to stimulus i, r
is the mean response across all trials and σ is the common
within population standard deviation, here σ =

∑n
1 σi/n,

where σi is the standard deviation of responses across tri-
als to stimulus i. Note that low single-unit d′ values across
many stimulus conditions (n=34) are expected, see for exam-
ple (66) for reference.
The Fano factor was computed per unit according to Fano
(67)

FF =
n∑
i=1

(σ2
i /ri)/n (2)
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where σ, ri and n are defined as above.
Response sparseness R, describes the response distribution
of a population of neurons to a single stimulus. Within each
session, the response sparseness of the recorded population
of neurons to each stimulus was calculated as:

Ri = (1−fi/m) (3)

where fi/m is the fraction of units out of the total m that
fired above the baseline in response to stimulus i.
Stimulus selectivity quantifies the responsiveness of a neuron
across a set of stimuli and was defined as in (68). For each
unit:

A= (
n∑
i=1

ri/n)2/
n∑
i=1

(r2
i )/n (4)

where ri is the unit response to stimulus i and n is the total
number of stimuli. We used this measure in its inverted form
S:

S = 1−A (5)

so that large values of S indicate high selectivity.
The response range G, was defined, for each unit, as the dif-
ference between the maximum and minimum response across
all stimuli:

G= max
i

(ri)−min
i

(ri) (6)

All of the measures defined above, were calculated for every
50 ms time-interval within the trial. When the reported values
refer to larger time-windows, they represent averages over
several 50 ms intervals.

Stimulus classification. An instantaneous Naïve Bayes de-
coder was trained and tested on individual time bins of pop-
ulation responses. The size of a bin was 50 ms, unless spec-
ified otherwise. We performed cross-validation by randomly
subsampling the data (k-1 data partitions used for training,
1 used for test, k repetitions; k=100). The task of the de-
coder was to determine the stimulus identity for each test
trial, based on the population response in a particular time
bin. Chance level was 1/number of stimuli = 1/34.
Support Vector Machines (SVMs) with quadratic kernels
were applied using a similar cross-validation procedure for
the computations shown in Supp. Fig. 7. For each data split,
we trained the SVMs on either intact or trial-shuffled data
(shuffling across trials within stimulus condition) and tested
them on intact data to test whether access to the correlation
structure present in the data leads to better performance.

Self-organizing recurrent network (SORN). The neural
network model was composed of 80% excitatory (NE = 200)
and 20% inhibitory units (NI = 50). Connectivity matrices
W IE , WEI and W II were dense, randomly drawn from the
interval [0,1] and normalized so that the incoming connec-
tions to each neuron sumed up to a constant (

∑
j
Wij = 1).

The connections between excitatory units WEE were ran-
dom and sparse and followed soft topological constrains
(pEE = 0.1 was the connection probability for neighboring

units, i.e. every 10 consecutive units were considered neigh-
bors; pEE = 0.01 was the connection probability for non-
neighbors). The threshold values for excitatory (TE) and in-
hibitory units (T I ) were drawn from a uniform distribution
in the interval [0, 0.5] and [0, 0.3]. The network state at
time t was given by two binary vectors x(t) ∈ 0,1NE, and
y(t) ∈ 0,1NI , representing activity of the excitatory and in-
hibitory units, respectively. Each timestep t corresponded to
≈ 20ms of real time.
The network evolved using the following update functions:

x(t+ 1) = θ(WEE(t)x(t)−WEIy(t) +U(t))−TE(t))
(7)

y(t+ 1) = θ(W IE(t)x(t)−W IIy(t)−T I) (8)

The Heaviside step function θ constrained the network acti-
vation at time t to a binary representation: a neuron fired if
the total drive it received was greater than its threshold.
The stimulus set was composed of 10 digits, 6x6 pixels each.
Every 5th excitatory unit received input from one correspond-
ing image pixel, i.e. 36 units were input units, 164 units were
reservoir units. The input U(t) varied as a function of time
(blue marking in Figure 6): initially it represented the lumi-
nance of the stimulus at particular pixel location (“on” re-
sponse, 2 time steps), later it represented half the luminance
of the reversed stimulus image at the same location (“off”
response, 7 time steps). For learning, we utilized a simple
additive spike-timing dependent plasticity rule that increased
(or decreases) the synaptic weight WEE by a fixed amount
ηSTDP = 0.001 whenever unit i is active in the time step fol-
lowing (or preceding) activation of unit j.

∆WEE
ij (t) = ηSTDP (xi(t)xj(t−1)−xi(t−1)xj(t)) (9)

In addition, synaptic normalization was used to proportion-
ally adjust the values of incoming connections to a neuron so
that they summed up to a constant value cE = cI = 1.

∆WEE
ij (t) = cE(WEE

ij (t)/
∑
j

WEE
ij (t)) (10)

∆WEI
ij (t) = cI(WEI

ij (t)/
∑
j

WEI
ij (t)) (11)

To stabilize learning, we used a homeostatic intrinsic plas-
ticity (IP) rule that spread the activity evenly across units,
by modulating their excitability using a learning rate ηIP =
0.001. At each timestep, an active unit increased its thresh-
old, while an inactive unit lowered its threshold by a small
amount, such that on average each excitatory neuron fired
with the target firing rate µIP = 0.1:

∆TEi = ηIP (xi(t)−µIP ) (12)

Response facilitation was applied for a fixed time interval in
each trial (20 time steps, shaded area in Figure 6). Four dif-
ferent implementations were considered: (1) the incoming
synaptic inhibition was lowered (mI = 0.5); (2) the incom-
ing synaptic excitation was increased (mE = 1.5); (3) an ad-
ditional noisy input was fed to all excitatory units (uniformly
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distributed in the interval [0, 0.01]); (4) the target firing rate
of excitatory units set via intrinsic plasticity was increased
(ηIP = 0.2).
The SORN model was implemented in MATLAB. A similar
implementation of the model in Python (with absent W II

connections) can be found at https://github.com/chrhartm
(40).
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