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Abstract

Precisely estimating event timing is essential for survival, yet temporal distortions are ubiquitous
in our daily sensory experience. Here, we tested whether the relative position, relative duration and
relative distance in time of two sequentially-organized events —standard S, with constant duration, and
comparison C, varying trial-by-trial— are causal factors in generating temporal distortions. We found
that temporal distortions emerge when the first event is shorter than the second event. Importantly, a
significant interaction suggests that a longer ISI helps counteracting such serial distortion effect only the
constant S is in first position, but not if the unpredictable C is in first position. These results suggest the
existence of a perceptual bias in perceiving ordered event durations, mechanistically contributing to dis-
tortion in time perception. We simulated our behavioral results with a Bayesian model and replicated the
finding that participants disproportionately expand first-position dynamic (unpredictable) short events.
Our results clarify the mechanics generating time distortions by identifying a hitherto unknown duration-
dependent encoding inefficiency in human serial temporal perception, akin to a strong prior that can be

overridden for highly predictable sensory events but unfolds for unpredictable ones.

1 Introduction

Precisely estimating event timing is essential for a range of perceptual and cognitive tasks, yet temporal
distortions are ubiquitous in our daily sensory experience [I} 2 B]. A specific kind of time distortion is the
presentation-order error [4]. In 1860, Fechner observed that when comparing the weight of two elements,
the order in which they were lifted mattered [5]. This led to a systematic error on subjects’ judgments

of sequentially presented stimuli, which was termed time-order error (TOE) [4]. TOEs have been found
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in different stimulus modalities such as audition, vision and taste, as well as different stimulus dimensions
such as loudness, heaviness, and brightness[4]. Understanding their mechanics is fundamental since humans
normally perceive events in a series, not in isolation.

TOEs in temporal judgment can be experimentally tested by implementing a two-interval forced choice
(2IFC) discrimination task, where participants compare the duration of two successive time intervals (events)
per trial, a Standard and a Comparison (S vs C), separated by an inter-stimulus interval (ISI) [6l [7]. When
combined with the method of constant stimuli, the duration of S remains fixed across the experimental
session, whereas the duration of C changes from trial to trial and it can take one of six to nine durations
distributed around the S duration [§].

In a 2IFC task, temporal performance is modelled by fitting a psychometric function. From this fitting,
two main dependent variables are obtained: the point 1 where the curve cuts the 50% line (that is, the point
of subjective equality, PSE) and the slope of the resulting curve. While the PSE estimates the accuracy
of the comparison judgment —and provides a marker for temporal distortions—, the slope estimates their
temporal precision [9, [10]. TOE effects have been recently classified in two types: effects of the stimulus
order on the PSE are called Type A effect, whereas the effects on temporal precision are called Type B
effect [I1], 12]. Importantly, note that there exists another type of mistake called the contraction bias: when
the first stimulus is small, participants then to overestimate it, whereas when it is large, they to tend to
underestimate it [13] [14].

Traditionally, TOEs have been variously attributed to sensory desensitization [I5, [7], poor sensory weight-
ing of C relative to S [16], [I7], or idiosyncratic response bias [I5]. More recently, two additional models have
attempted to explain TOE: 1) the internal reference model (IRM) [I8] —an updated version of the sensory
desensitization model, and 2) Bayesian observer models [19] 20} 21].

The idea behind IRM is that in comparing S and C, participants maintain an internal representation that
is the average duration of previous trials. The key idea is that this internal representation is updated by
taking into consideration only the first presented duration. Because the S stimulus has a constant duration
and the C stimulus varies unpredictably, more errors will be made when the order of presentation is <CS>
than when it is <SC>. Raviv et al., [14] proposed a model similar to the IRM that used a Bayesian inference.
Such a model assumed that the brain uses an heuristic strategy to discriminate auditory temporal intervals.
When a human participant compares two stimuli, the second auditory interval is compared against the
decaying average of the first one. Raviv et al., suggested that errors in temporal discrimination arise during
memory retrieval/decision making and not during memory encoding. A prediction of this model is that
participants will have a better performance with a short ISI than with a long one.

Bayesian models offer a dynamical approach and take into consideration the representation of the two
stimuli. The result of perceiving a duration, (the posterior distribution) is the product of the representation
of the previous trial —and all the information collected about the underlying statistics until that point—

(the prior distribution) and the current sensory input (the likelihood). Thus, in this model the prior is
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updated from trial to trial, whereas the posterior is modulated by the perception of both S and C. De Jong
and colleagues [12] found that in comparing the duration of visual stimuli the influence of statistical context
on time estimation is best explained by a Bayesian model using a Kalman filter, and thus discarded the IRM
model. They found that the Type A effect is influenced by a dynamic prior that is sequentially updated by
both stimuli: S and C.

In our own work, we showed that in discriminating two empty visual events with S < 200 ms, time
distortions appear only if the IST is shorter than about one second [22]. Here, we focused on the type A
effect and tested how the factor that determine serial dynamics of relative event duration —relative position,
relative distance in time and relative duration of S and C— contribute to generating temporal distortions.
We used an S of 120 ms, and varied the ISI over four different intervals (400, 800, 1600, and 2000 ms).

Firstly, we swapped the order of presentation of S and C (Relative position factor). Secondly, we tested
whether a long IST increases the temporal accuracy (Relative distance factor). Finally, we tested whether the
position of the longer stimulus modulates temporal accuracy (Relative duration factor), under the assump-
tion that the contraction bias, which for short first stimuli should lead to a subjective expansion, applies
independently of event type (S or C). We thus hypothesized that: 1) with an ever-changing C in first position,
temporal accuracy and the magnitude of time distortions would increase, and participants would benefit to
a markedly lesser extend from increased attention orienting for long ISIs, as the second event (S) would be
already fully predictable. Hence, we expected an interaction between the two factors: stimulus presentation
order and ISI; 2) if distortions in duration comparisons are mainly due the predictability features of S and C
(trial-by-trial predictable vs. unpredictable), then the position of the longer stimulus should not modulate
temporal perception.

Results verify hypothesis 1: the best Generalized Linear Mixed Model (GLMM) included an interaction
between stimulus presentation order(<SC> or <CS>) and ISI. Increasing ISI reduces temporal distortions,
more so for the <SC> group. Surprisingly, however, and contrary to our hypothesis 2, the relative position
of the longer stimulus has important modulatory effects on temporal perception. Not all first-position
events are subjectively expanded to the extent that they produce distortions in temporal judgment. Instead.
time distortions tend to be generated when the first event in a series is shorter than the second event,
independently of event type (S or C). Notably though, when the dynamic stimulus (C) is in first position,
the ensuing distortion effect cannot be compensated by increasing ISI.

To dig deeper into the mechanics of TOEs and show the computational plausibility of the highlighted per-
ceptual bias, we considered the fixed factors of the best GLMM and simulated our findings by implementing
a Bayesian model using a Kalman filter [23] 24] [12]. Model results confirm the findings on human partic-
ipants: first-position shorter events are disproportionately expanded. Our results contribute to clarifying
the mechanics generating perceptual time distortions, by identifying a novel duration-dependent encoding

inefficiency in human serial time perception.
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2 Results

Two separate groups of human participants performed a 2IFC discrimination task comparing the duration
of an S event against that of a C event (or vice versa), and deciding which stimulus was longer. To signal
the onset and offset of each event, we used a short-duration blue disk (hence, S and C were empty visual
stimuli, see Material and Methods section). For the <SC> experimental group, the S stimulus was displayed
in the first position, and was shifted to the second position for the <CS> experimental group (Fig. 1a). The
duration of the S event was kept constant (120 ms), whereas the duration of the C event varied, providing
participants with three degrees of sensory evidence(weak £A 20, medium +A60, and strong +A100 ms; Fig.

1b). We parametrically manipulated the ISI by using four durations: 400, 800, 1600, and 2000 ms.

2.1 Temporal accuracy

Mean temporal accuracy was 84.39% (SD = 7.16) and 79.75% (SD = 9.79) for the <SC> and <CS> groups,
respectively. Mean accuracy improved across the board for ISI conditions > 400 ms, however accuracy values
were always lower for the <CS> than for the <SC> group (Fig 1lc; Table 1). Raw accuracy was analyzed
with GLMMs using a binomial parameter with a logit link function [25] [T0]. We opted for a forward
selection approach, and first used the magnitude of the difference between S and C as predictor, that is the
A, which encodes three levels of sensory evidence, 20, 60, and 100 ms. We then added random intercepts
for each participant. The model improved, indicating significant individual variability among participants
(BFg1 = 0). For the remaining models we always included random intercepts for each participant. To avoid
convergence issues we refrained from adding more random effects.

After, we added the ISI as an interaction with the A. The model again improved suggesting that the
ISI factor modulates temporal accuracy differently depending on the amount of evidence for a difference
between S and C: weak, medium, or strong (BFp; < 0.001). To assess whether the ordinal position of the
longer stimulus modulates accuracy, we added this factor as an interaction. The model further improved,
as the relative duration of first and second events, regardless of their experimental function (Standard or
Comparison), significantly modulates temporal accuracy (BFo; < 0.001).

Finally, to test whether the order of S and C presentation has modulatory effects on accuracy (Fig 1d),
we added Group as a fixed factor. The model improved significantly when the Group factor was added in
interaction with the ISI factor, suggesting that temporal accuracy depends on the serial order of presentation
of S and C (BFg; < 0.001). Thus, the best model for explaining the raw accuracy included the interaction
of the A, ISI, Group, and “Ordinal position of the longer stimulus” as predictors.

To examine the effects of relative stimulus duration, we deployed pairwise comparisons on the estimated
marginal means (EMMs) of the best GLMM. Contrast analyses at each ISI level showed that for both
groups <SC> and <CS> the ordinal position of the longer stimulus has modulatory effects on the accuracy

(p = 0.0254; p < .0001; respectively). However, for the <SC> group post hoc analyses revealed statistically
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significant differences between EMMs only at the ISI4og level, whereas for the <CS> group we found sta-
tistically significant differences at each ISI level (all ps < .0001; Table 2), suggesting that an increasing IST
does not help suppressing distortions.

Results of contrast analyses at the A levels showed that for the <CS> group all pairwise comparisons
were statistically significant (all ps < .0001; Table 3). However, for the <SC> group results revealed a
significant differences only at the A20 level (p < .0002; Table 3). These results suggest the existence of a
perceptual bias that can be minimized by both an increase of the ISI or providing more sensory evidence

(that is, A), but only if the first event has a constant duration.

2.2 Constant error (CE)

To obtain the temporal sensitivity and the magnitude of the time distortions (indexed via the PSE) of each
group, we fitted GLMMSs using the percentage of responses “C longer than S”. We used as predictors the
fixed factors of the previous model, with the exception of the “ordinal position of the longer stimulus” factor.
Here again, we used a binomial parameter. However, this time using a probit link function.

We first used the C stimulus as predictor, which encodes three degrees of sensory evidence: weak +A 20,
medium +A60, and strong +A100 ms. We then added random intercepts for each participant and each C
stimuli (BFg; < 0.001; BFg; < 0.001, respectively). As the model improved, we included random intercepts
for each participant. After this we added the ISI as a fixed factor. The model improved when we added an
interaction between C stimulus and the ISI (BFg; < 0.001). Then, we added Group as a fixed factor (Fig.
2a). The model improved significantly when we added it as an in interaction with the ISI (BFg; < 0.001),
suggesting that the probability of responding “C longer than S” depends on the ISI but also on the serial
order of presentation of S and C. Thus, the best model included the interaction of the C stimulus, the ISI,
and Group.

To obtain the individual temporal sensitivity and the PSE, we fitted a GLM for each participant by using
as predictors the fixed effects of the best GLMM. To obtain the exact magnitude of the time distortions we
derived the CE from the PSE (see Material and Methods section). Results showed that, group-wise, CE
values decrease with increasing ISI regardless of the group. However, CE values are higher for the <CS>
than for the <SC> group (Fig. 2b, Table 4). Indeed, a repeated-measures Bayesian ANOVA revealed that

best model for explaining these data was the model including the factors ISI and Group (BFyg = 5.7 % 107).

2.3 Bayesian model

We implemented a Bayesian model to replicate our results by using a Kalman filter Petzschner & Glasauer,
Glasauer & Shi, and de Jong et al., [23] 24} 12]. For each group we simulated data of 100 subjects using
120 trials at each ISI level (see Material and Methods section). We applied the best GLMM of the human
observers to the simulated data. As with the human participants, we applied a GLM to each subject to obtain

the individual temporal sensitivity and the PSE. To compare the responses of the human observers against
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the Bayesian observer’s responses, we obtained the root mean squared error (RMSEs). Results showed that
the Bayesian observer’s responses successfully simulated the trend of results of the human observers: 1) the
CEs decrease with an increase of the ISI; 2) CEs values are higher for the <CS> than for the <SC> group
(Fig. 3a-b).

<SC> <CS>

3 Discussion

The duration of an event can be distorted when the event is inserted in a series. Such effects, termed
Time Order Error (TOE), constitutes one of the oldest and most investigated phenomena of subjective time
perception [5, 26 [I7]. Yet, the mechanics of TOE generation are still unknown. Since TOEs occur during
serial discrimination tasks, we tested how event duration dynamics — relative position, distance in time and
duration of two successive events — contributes to time distortions by flipping the positions of S and C events
in two separate behavioral experiments.

We obtained three main findings. First, the interaction between stimulus order presentation and ISI
verifies that, with an ever-changing and therefore unpredictable stimulus in first position, temporal accuracy
decreases. These differences in accuracy lead to the Type A effect: short CEs for the <SC> group and
large CEs for the <CS> group. Despite these differences, we replicated our finding that, by increasing the
ISI between the first and second event, CEs decrease, although significantly less frequently for the <CS>
group [22]. Dyjas et al., [18] found no significant statistical differences for the Type A effect between <SC>
and <CS> presentation orders, as far as both visual and auditory modalities are concerned. Our findings
contradict these results and show that at least when using empty visual events, the serial order of presentation
<SC> and <CS> modulates temporal accuracy and CE.

Classical TOE studies suggest that the level of noise in the internal representation of the 1%¢ stimulus
is larger than the 2"¢ stimulus’ noise due to the encoding process and the maintenance of the 1%¢ stimulus
in memory [27), 28]. Likewise, recent results in the auditory system propose a Bayesian model where the
discrimination of two stimuli is done by comparing the second tone versus the decaying average of the first
tone [I4]. Thus, errors in temporal discrimination should be occur during memory retrieval and decision-
making processes. Such a Bayesian model predicts that participants will have a better performance with a
short ISI. However, our results show that increasing maintenance in memory does not have a detrimental
effect on accuracy, on the contrary it has beneficial effects, possibly by reducing attentional blink effects.
Indeed, our results are consistent with Grondin’s findings showing that the CE is reduced when the duration
of the ISI is 1.5 seconds [9]. Grondin found that this benefit occurs when using both single and multiple
visual standard stimuli. We suggest that these results can be explained by the beneficial effects of allocating
attention in time, oriented to the encoding of unpredictable events [29, 30} [3T]. Attention helps when S is in

the first position, as it enhances the encoding of the C stimulus whose duration is unpredictable. We used
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this assumption to build our Bayesian model: allocating attention in time was modeled by decreasing the
noise of the sensory input when the ISI increased.

The second finding concerns the preeminence of the ordinal position of the longer stimulus —indepen-
dently of event type (S or C)— in driving accuracy. This prefigures a novel serial order bias in serial
perception based on duration-dependent relative positions of stimuli. When the first stimulus in a series is
shorter than the second stimulus, regardless of whether it is S or C, participants were biased to say that
the first event was longer, consistently making mistakes. We found this effect in all experimental conditions
of the <CS> group, but for the <SC> group it was only present at the shortest ISI (400 ms). We also
showed that the serial order bias or perceptual glitch arises at all sensory levels of the <CS> group but
only at the weak sensory level of the <SC> . These patterns of results explain why the magnitude of the
time distortions (indexed via the CE) are larger for the <CS> than for the <SC> group. The serial order
bias can be minimized by an increase of the ISI or an increase in the level of the sensory evidence if the
first stimulus is predictable (<SC> group). However, when a dynamic stimulus is displayed in first position
(<CS> group) such a bias is at ceiling and leading to temporal errors that will increase the magnitude of
the time distortions across the board.

Third, our Bayesian model successfully simulated our human behavioral findings and showed that the
Type A effect arises under sensory uncertainty because of the highlighted serial perceptual encoding inef-
ficiency. Our modelling captures the idea that the temporal stimulus’s perception in the visual system is
shaped not only by sensory noise but also by a perceptual bias that systematically makes participants expand
the first stimulus in a series if unpredictable. Naturally, if such stimulus is already longer than the second, the
bias would not be visible as it would not lead to perceptual mistakes. By simulating our behavioral results
with a Bayesian model, we provide more evidence to show that time estimation and duration discrimination
are a dynamic process that not only take in consideration the current sensory information of the two stimuli
but also the information of previous trials. Our findings align with recent results showing that the type A
effect is best modeled with a Bayesian model using a Kalman filter [12].

The replication of our behavioral results with a Bayesian model offers an insight on the computations
that the human brain might use as a strategy for temporal discrimination. At the same time, it shows how
this computation is affected by sensory noise, the allocation of attention in time, and a hitherto unknown
perceptual bias. On a final note, our behavioral results and simulations highlight the importance of the
IST on a 2IFC paradigm. De Jong et al., [I2] and Raviv et al., [I4], proposed powerful models for tempo-
ral discrimination on the visual and the auditory system, respectively, but implicit in their experimental
paradigms and models is the employment of a long ISI. De Jong and colleagues implemented and ISI of 1000
ms, whereas Raviv et al., used and ISI of 950 ms. Here, in order to take in consideration, the effects of ISI,
we modeled the ISI’s effects by decreasing the noise of the sensory input when the ISI increased. To do that,
we implemented different distributions for the internal representation’s noise.

As our stimuli used visual intervals at the bottom of the sub-second scale (120 ms), the question remains
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as to whether the perceptual serial order glitch would disappear for stimulus intervals in the supra-second
range, and also whether it is present in other sensory modalities, besides vision. Future research is needed
to uncover the physiological basis of such a strong, implicit expectation about the temporal statistics of

incoming stimuli which can drive humans to distort time perception under uncertainty.

4 Materials and Methods

4.1 Participants

The experiment was organized as a between-subject design, with separate groups for the position of the
stimuli: S in first position (<SC>) and C in first position (<CS>). Part of the results of the <SC> group
were previously published [22]. This data-set has a sample of 52 participants (34 female; ages: 18-33; mean
age: 24.42). One participant was removed due to chance level accuracy (< 55%). Therefore, the final sample
included the data from 51 participants (33 female; ages: 18-33; mean age: 24.45). For the <CS> group
we had an initial sample of 58 participants (45 female; ages: 18-37; mean age: 25.41). Four participants
were removed due to chance level accuracy (< 55%). Therefore, the final analysis included the data from
54 participants (41 female; ages: 18-33; mean age: 25.31). In total, we report on the behavior of 105
participants. For the analyses of the slope and constant error (CE), participants were excluded when one of
the dependent variables had a value with three standard deviations above (or below) the mean. Thus, for
the analyses of the slope and CE, nine participants were excluded following this procedure.

Individuals were recruited through online advertisements. Participants self-reported normal or corrected
vision and had no history of neurological disorders. Up to three participants were tested simultaneously at

computer workstations with identical configurations. They received 10 euros per hour for their participation.

4.2 Design

We used a classical interval discrimination task by implementing a 2IFC design, where participants were
presented with two visual durations: S and C [6], [32]. S had a magnitude of 120 ms. For the <SC> group
S was always displayed in the first position, but it was shifted to second position for the <CS> group (Fig
la). In both groups, we used three magnitudes for the step comparisons A between S and C: 20, 60, and
100 ms. We derived the magnitudes for the C stimuli as S + A, which resulted in the next C intervals: 20,
60, 100, 140, 180, and 220 ms. C stimuli were randomized on a trial-by-trial base.

We used the same four ISIs for both groups: 400, 800, 1600, and 2000 ms. For each trial, the inter-trial
interval (ITI) was randomly chosen from a uniform distribution between 1 and 3 seconds. Participants
judged whether the S or C stimulus was the longer duration. They responded by pressing one of two buttons
on an RB-740 Cedrus Response Pad (http://cedrus.com) and were provided with immediate feedback on

each trial.
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4.3 Stimuli and Apparatus

Stimulus duration was determined as a succession of two blue disks with a diameter of 1.5° presented on a
gray screen [33]. Empty stimuli were implemented to ensure that participants were focused on the stimuli’s
temporal properties [34]. All stimuli were created in MATLAB R2018b (http://mathworks.com), using
the Psychophysics Toolbox extensions [35] [36, B7]. Stimuli were displayed on an ASUS monitor (model:

VG248QE; resolution: 1,920 x 1,080; refresh rate: 144 Hz; size: 24 in) at a viewing distance of 60 cm.

4.4 Protocol (Task)

The experiment was run in a single session of 70 minutes. Participants completed a practice set of four
blocks (18 trials in each block). All sessions consisted of the presentation of one block for each IST condition.
Fach block was composed of 120 trials. For each ISI the C intervals were presented in random order. Fach
ISI block was also presented in random order, each randomization was unique.

To avoid fatigue, participants always had a break after 60 trials. Each trial began with a black fixation
cross (diameter: 0.1°) displayed in the center of a gray screen. Its duration was randomly selected from a
distribution between 400 and 800 ms. After a blank interval of 500 ms, S was displayed and followed by an
ISI. After this, C was displayed. Participants were instructed to compare the interval of the two stimuli by
pressing the key “left”, if S was perceived to have lasted longer, and the key “right” if C was perceived to
have lasted longer. After responding, they were provided with immediate feedback: the fixation cross color

changed to green when the response was correct, and to red when the response was incorrect.

4.5 Data analysis

Data cleansing was implemented with Python 3.7 (http://python.org) using the ecosystem SciPy (http:
//scipy.org). GLMMs were fitted in R [38] using the Ime4 (package version 1.1.21). Raincloud plots were
created using the raincloud function for R [39]. All data analyses and simulations, whether using Python,
were performed in Jupyter Lab (http://jupyter.org). The annotated notebooks can be consulted at Open

Sciecne Framework (OSF) (https://osf.io/qnj3t/).

4.5.1 General Linear Mixed Models (GLMMs)

We modeled our behavioral data with GLMMs to estimate a single model across all subjects, and distinguish
within- and between-subjects errors [40} 25, [10]. To fit the GLMMSs we input the responses as a whole
[10,[12]. Raw accuracy was analyzed with GLMMs using a binomial parameter with a logit link function. To
compute the temporal sensitivity and the PSE we fitted GLMMs using as dependent variable the percentage
of responses “C > S”. We used again a binomial parameter but this time using a probit function.We

calculated the expected value of the responses as follow:
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¢~ [P (Yi; = 1)) = Bo + Prwy;

Where z;; is the Comparison stimulus’ duration, Y;; the response variable for subject ¢ and trial j. If the
C stimulus is judge longer than S, then Y;; = 1; but Y;; = 0, if C is shorter than S. The probability of the
response “C longer than S” P(Y;;) = 1 is linked with the linear predictor via the probit link function ¢
The fixed-effect parameters Sy and [3; are the intercept and the slope, respectively. The 3 is an index of the
temporal precision, which is also called the Just Noticeable-Difference (JND) [I0]. The PSE is a function of
both parameters:

Bo
PSE =-—2
s

1

We derived the CE as the difference between the PSE and the magnitude ¢ of the Standard duration:
CE =PSFE — ¢ , and CE = ¢, — PSE, for the <SC> and <CS> groups, respectively.
To apply Model Comparison (BMC) to the GLMMs and decide between models, we compute the Bayes

factors using the Bayesian Information Criterion (BIC) [41]:

ABICiq

BFy = exp( 5

)

4.5.2 Bayesian modelling

We implemented a Bayesian model to replicate our results by using a Kalman filter. We based our Bayesian
model on the work of Petzschner & Glasauer, Glasauer & Shi, and de Jong et al., [23] 24} [12]. In this model
the prior represents the intervals stored in memory (that is, the internal representation of previous trials),
the likelihood is the current sensory input, and the posterior is the current estimate or percept. To run our
Bayesian model and use it for temporal discrimination, we used the duration of both stimuli —S and C—
as inputs for this model. To do that we used the representation of the stimulus’ duration on a logarithmic

scale and added some Gaussian noise:

Tm = In(d) + np,

Where d is the physical duration of the stimulus (S or C) in a linear scale and x,, is the internal noisy
representation. The random variable n,, represents the normally distributed measurement noise p (n.,) =~
N (0,01211) [42]. To run simulations for individual participants we randomly selected values for o2 from a
truncated normal distribution. Note that the magnitude of o2, is the temporal sensitivity of each participant.

The model compared on a trial basis the logarithmic representations of S and C, and yielded 0 or 1:
e if “S > (C”, the model yielded 0

e if “C > S”, the model yielded 1

10


https://doi.org/10.1101/2021.10.08.463190
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.08.463190; this version posted May 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

when a new duration —indexed by n— is perceived it is represented by the likelihood function, which is
a Gaussian distribution with p (zmn) = N (xm,n, afn). Note that S and C are the mean of the priors that
emerged from perceiving both stimuli. The prior too is modelled as a Gaussian distribution: N (,up, 0127).
To estimate a stimulus’ duration the prior is updated through a weighted average of the previous prior
distribution and the currently sensed likelihood. For each measurement the update step is modeled by the

formulation of the Kalman filter for a 1D first-order system:

_ Pn—-1 +q
Dn—1+q+T

n

pn:kn'r

Where r is the is the uncertainty of the current likehood (02) and p,,_; the uncertainty of the previous

prior (o2

»n—1). Thus, the Kalman gain (k) of a new observation is determined by both uncertainties and a

process variance ¢. The variance of the prior system p,, is updated by the product of the Kalman gain and

r, whereas the prior mean p,, ,, is updated as follow:

Hpn = (1 - kn) * Upn—1 + kn * Tm,n

To simulate our behavioral results, we used three assumptions for modelling the noise n,, associated with
the internal representation ,,. 1) We assumed that n,, decreases as the duration of the ISI increases. That
is, the noise n,, associated with the second stimulus was larger for the ISI4o¢ than for the ISIsg0o condition.
2) We assumed that independently of the group (<SC> or <CS>) or even type (S or C) the stimulus’s
noise come from two different distributions. Thus, we used a distribution for the “Longer stimulus in 1°¢
position” stimuli’ noise and a second distribution for the “longer stimulus in in 2" position” stimuli’ noise.
3) Because the perceptual bias is stronger at the weak sensory level than the other two sensory levels, we
used a truncated normal distribution for n,, at the weak sensory level (A20). For the <SC> group this bias
affected the (+A20) trails, but for the group <CS> group affected the the (-A20) trials. See the annotated
notebooks at OSF (https://osf.io/qnj3t/).

For each group we generated data for 100 participants with 120 trials for each ISI level. For both groups

we kept a constant value for ¢ (q = 1.5).

4.5.3 Root Mean Squared Error (RMSE)

To compare the performance of human participants against the Bayesian obverver’s responses, we computed
the RMSE which is given by the standard deviation (SD) and the bias: RMSE? = SD? + bias?, where the
SD is the slope and the bias is the CE [19, [43]. As the RMSE can be written as the standard equation of the

circle, it provides an effective geometric and graphical description to track changes on the CE and explore
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the trade-off between the CE and the temporal precision. RMSEs are given by the distance of the origin,

and are depicted by a quarter circle. Because we had negative values for the CE, we took -60 as the origin

point instead of 0. Thus, to find the circle’s intercept on the z-axis, that is the axis of the CE, we took the

absolute distance between -60 and the CE.

Data availability

Anonymized data are available at the Open Science Framework (https://osf.io/qnj3t/).
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Group ISI level
400 ms 800 ms 1600 ms 2000 ms

<SC> | 80.52 (8.30) % 84.59 (6.62) % 85.89 (5.80) % 86.55 (6.27) %
<CS> | 7641 (10.03) % 80.21 (9.89) % 81.18 (9.25) % 81.20 (9.45) %

Table 1: Mean accuracy. The table display the mean accuracy and the standard deviation (in parenthesis)
for each group and each ISI level. For both groups, <SC> and <CS>, participants had their worst perfor-
mance at the ISI49 condition. However, mean accuracy values are lower for the <CS> group than for the
<SC> group.

’ Group \ ISI estimate SE df z. ratio p. Value‘

400 0.29 0.07 Inf 3.87 < .0001
<SO> 800 0.18 0.09 Inf 1.91 < .0552
1600 0.07 0.10 Inf 0.72 < 4677
2000 -0.13 0.09 Inf -1.42 < .1547
400 -2.41 0.20 Inf -11.74 < .0001
<CS> 800 -2.45 0.21 Inf  -11.55 < .0001
1600 -2.16 0.21 Inf -10.23 < .0001
2000 -1.89 0.21 Inf -9.01 < .0001

Table 2: Pairwise comparisons of estimated marginal means (EMMs) for each ISI level The
table display the results of the contrasts between the position of the longer stimulus conditions: 1%¢ and
274 position, at each ISI level. For the <SC> group the only statistically significant comparison was at the
ISI400, whereas for the <SC> group all pairwise comparisons were statistically significant.

’ Group \Delta level estimate SE df z. ratio p. Value‘

20 0.18 0.04 Inf 3.74 < .0002
<SCO> 60 0.05 0.07 Inf 0.69 < .4853
100 0.07 0.10 Inf 0.69 < .4855
20 1.54 0.05 Inf -11.74 < .0001
<CS> 60 1.04 0.06 Inf -11.55 < .0001
100 -0.65 0.09 Inf -7.01 < .0001

Table 3: Pairwise comparisons of EMMs for each Delta level The table display the results of the
contrasts between the position of the longer stimulus conditions: 1% and 2"? position, at each Delta level.
For the <SC> group the only statistically significant comparison was at the ISI;00, whereas for the <SC>
group all pairwise comparisons were statistically significant.
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Group ISI level
400 ms 800 ms 1600 ms 2000 ms

<SC> | 6.78 (17.45)  4.52 (17.94) 1.27 (13.11) -4.23 (16.26)
<CS> | 25.46 (24.19) 17.86 (23.46) 13.45 (21.82) 15.35 (20.24)

Table 4: Constant errors (CEs). The table display the mean CEs and the standard deviation (in paren-
thesis) for each group and each ISI level. For both groups, <SC> and <CS>, the CE decreased with an
increase of the ISI. However, CEs were larger for the <CS> than for the <SC> group.

a) b)
S in 1% position <SC> ) . Group
P Stimulus durations (ms)
—— <SC>
Standard Comparison
stimulus (S) stimulus (C) $=120 <Cs>
> ISI = 400, 800, 1600 or 2000
P
Inter-stimulus interval
(ISly C =20, 60, 100, 140, 180 or 220
; t it q
C in 1% position <CS> Sensory evidence for C
C S 20 (Weak)
C=SzA A 4' 60 (Medium)
N 100 (Strong)
ISI
c) d)
Long stimulus 1 Short stimulus 1%
2000 2000 0 e
ERnHH RS AN
. 1600 1600 = ”‘5‘:?_?:%;“' . . _':':r é"i,ui-iﬁg e
(2]
E
)
800 800 E ‘??_ﬁ’::ab LR
400 400 R T T G ST R T T
50 60 70 80 920 100 40 60 80 100 40 60 80 100
Mean accuracy (%) Mean accuracy (%)

Figure 1: Two-interval forced choice (2IFC) task and accuracy. a) Timeline of events in the 2IFC
task. For the <SC> group the Standard stimulus (S) was displayed in the 1** position and in the 2" position
for the <CS> group. b) The S stimulus had a fixed duration of 120 ms, whereas the Comparison stimulus
varied trial-by-trail according to its level of sensory evidence: Weak, Medium, or Strong. We implemented
four Inter-stimulus intervals (ISIs: 400, 800, 1600 and 2000 ms). c¢) Mean accuracy for each group and
each ISI level. Data-points depict the mean accuracy for each participant. Box and density plots show the
distribution of the mean accuracy for both <SC> and <CS> groups. The median is represented by the
vertical line in the box plots, whereas the horizontal lines depict the interquartile range (IQR). Accuracy is
higher for the <SC> group, however for both groups accuracy increased for ISI > 400 ms. d)Mean accuracy
separated by the ordinal position of the longer stimulus. Accuracy for the <CS> group decreases when the
15t stimulus is shorter than the 27¢ stimulus.
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Figure 2: Constant error (CE) of human observers. a) Psychometric curves of human observers.
Fitted curves modeling performance on each ISI level for both groups: <SC> and <CS>. The durations
of the six C stimuli are plotted on the z-axis and the probability of responding “C longer than S” on the
y-axis. Lines depict separate fits for each ISI condition, the black dot depicts the physical magnitude ¢,
of the Standard stimulus, the rest of the dots represent the point of subjective equality (PSE) for each ISI
condition. Density plots show the subject-to-subject variability of the PSE for each ISI level. b) Data-points
depict individual CEs for both <SC> and <CS> groups at each ISI level. Box-whisker, and density plots
show the distribution of the CEs. The median is represented by the horizontal line in the box plots, whereas
the bottom and top whiskers depict the IQR. a) For both groups the CE decreases with an increase of the
ISI. However, CEs are larger for the(<CS>) than for the <SC> group.
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Figure 3: Root mean squared errors (RMSEs) of human and Bayesian observers. a) RMSEs of
human observers. RMSEs are given by the distance from the origin and are depicted by a quarter circle.
Any increase in the CE or the slope will lead to a larger radius. Big dots depict the intersection of the CE
and the slope’s mean for each group and each ISI level. Small dots depict individual CEs and slopes values.
CE mean values decrease as a function of the ISI regardless of the group (<SC> or <CS>). However, as
we can see in the quarter circles, CE mean values are higher for the <CS> than for the <SC> group. b)
RMSEs of Bayesian observers. Bayesian observer’s responses successfully simulated the main of results of
the human observers: 1) the CEs decrease with an increase of the ISI, 2) CEs values are higher for the <CS>
than for the <SC> group.
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