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ABSTRACT 30 

 31 

The tracking of pathogen burden and host responses with minimal-invasive methods during 32 

respiratory infections is central for monitoring disease development and guiding treatment 33 

decisions. Utilizing a standardized murine model of respiratory Influenza A virus (IAV) infection, 34 

we developed and tested different supervised machine learning models to predict viral burden and 35 

immune response markers, i.e. cytokines and leukocytes in the lung, from hematological data. We 36 

performed independently in vivo infection experiments to acquire extensive data for training and 37 

testing purposes of the models. We show here that lung viral load, neutrophil counts, cytokines 38 

like IFN-γ and IL-6, and other lung infection markers can be predicted from hematological data. 39 

Furthermore, feature analysis of the models shows that blood granulocytes and platelets play a 40 

crucial role in prediction and are highly involved in the immune response against IAV. The 41 

proposed in silico tools pave the path towards improved tracking and monitoring of influenza 42 

infections and possibly other respiratory infections based on minimal-invasively obtained 43 

hematological parameters. 44 
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INTRODUCTION 53 

Respiratory infections by influenza (flu) viruses cause 3 to 5 million cases of severe illness every 54 

year1. Influenza A virus (IAV) is especially severe among high-risk groups like the elderly, infants, 55 

pregnant women, and immunocompromised people2. Next to its high prevalence in annual 56 

epidemics, IAV has led to high mortality during several pandemics including the Spanish flu in 57 

1918 and more recently the swine flu in 20093,4. Generally, the outcome of flu disease highly 58 

depends on viral factors as well as host immunity. Accordingly, a fatal course of infection can 59 

result from either insufficient control of viral spread, hyperinflammation, and/or a secondary 60 

bacterial infection5. Thus, tracking of viral burden as well as host responses in the lungs is 61 

important for monitoring IAV pathogenesis and tailoring targeted therapies. 62 

Methodologically, diagnosis and tracking of acute IAV infection can be performed by assessing 63 

viral antigen, nucleic acid, or infectious particles from upper or lower airway lavages, aspirates, or 64 

swabs. Likewise, monitoring of lower airway immune responses is accomplished by e.g. 65 

quantification of inflammatory cytokines or leukocytes in bronchoalveolar lavage fluid (BALF). 66 

Next to several obvious disadvantages of these methods (low sensitivity, costly and time-67 

consuming analyses, and/or high technical requirements), the biggest hurdle lies in the invasive 68 

sampling procedure that poses a risk to the acutely infected patient6. Accordingly, the development 69 

of non- or minimally invasive approaches that allow observation of the disease status during IAV 70 

infection remains an unmet medical need.   71 

Besides inducing acute inflammatory responses in the airways, influenza infection results in 72 

peripheral immune activation manifesting in altered blood cell composition7, transcriptional 73 

signatures, and cytokine and chemokine levels in mice and humans8–10. While the severity and 74 

longitudinal analyses revealed distinct molecular and/or cellular characteristics in peripheral blood 75 
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of IAV infected hosts, the suitability of each of these markers (and blood parameters in general) 76 

for predicting the disease status is still unknown. 77 

Here, we propose for the first time a framework intertwining in vivo experiments and machine 78 

learning methods to forecast IAV infection parameters in the lung from blood sample data that can 79 

be accessed minimal-invasively. To this end, we employed different machine-learning models for 80 

blood-lung mapping. Experimentally, we utilized an established mouse model of sublethal 81 

respiratory IAV infection11,12 and simultaneously assessed the kinetics of pathogen burden, lung 82 

inflammation, as well as systemic cellular changes following infection. Ultimately, several 83 

independent in vivo experiments were used to validate the applicability of the proposed framework.  84 

Our primary computational approach was deep learning, which represents a class of machine 85 

learning algorithms that uses multiple layers of information processing for feature extraction and 86 

pattern analysis13,14. These methods have already been successfully applied in several biological 87 

fields including the prediction of transcriptional enhancers15, protein secondary structure14, and the 88 

pathogenicity of genetic variants17. The image recognition abilities of machine learning algorithms 89 

have already been tested for their diagnostic value and show promising results18,19. 90 

 91 
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RESULTS  97 

Our methodology consisted of three consecutive stages: in vivo experimental data acquisition, 98 

model training, and independent experimental model validation (Figure 1). For the acquisition of 99 

experimental data, mice were infected with a sublethal dose of PR8 (H1N1) followed by the 100 

quantification of lung viral load, pulmonary innate and adaptive leukocyte subsets, pulmonary 101 

cytokine levels, and hematological parameters over a total period of 11 days. Blood and lung 102 

parameters were measured (Figure 1) in two independent experiments, mice (n = 4-6 per time 103 

point) were sacrificed on days 1, 2, 3, 4, 5, 7, 9, and 11 post-infection (pi). These experimental 104 

data built the basis for model training using different machine learning approaches to identify the 105 

relationship between hematological and pulmonary parameters and to train and optimize the model 106 

accordingly. To validate the predictive value of our model, we performed two additional 107 

independent infection experiments with mice sacrificed on days 2, 4, 6, 9, and 11 pi and used the 108 

mathematical models to predict the lung viral burden, leukocyte composition, and cytokine levels, 109 

respectively, based on experimental hematological parameters.  110 

Blood and Lung Data Analysis. In a first step, we conducted a correlation analysis to uncover 111 

potential linear relationships between selected hematological and pulmonary parameters (Figure 2 112 

and Supplementary Figures S10-12). We found a very strong correlation (Pearson correlation 113 

coefficient > 0.9) between blood leukocytes and lymphocytes, which can be attributed to the fact 114 

that lymphocytes constitute the largest leukocyte fraction in mice20. Likewise, a strong correlation 115 

observed between hematocrit as well as hemoglobin and erythrocyte numbers (Pearson correlation 116 

coefficient > 0.8) can be attributed to the fact that hematocrit, as well as hemoglobin, are red blood 117 

cell-associated parameters21. 118 
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 Strikingly, we did not observe any strong correlation between blood and lung compartment 119 

variables. However, there were strong correlations within cells of the lung compartment, such as  120 

CD4+ T cells and CD8+ T cells as well as neutrophils and natural killer (NK) cells. As a linear 121 

correlation does not include higher-order nonlinear temporal relations, we next employed machine 122 

learning algorithms and compared the obtained results with the linear regression model. 123 

Tracking IAV Infection in the Lungs from Blood-Derived Parameters. To predict influenza 124 

virus levels and immunological markers in the lungs from hematological parameters, we employed 125 

feedforward neural networks, gradient boosted regression trees, and a linear regression model. 126 

These algorithms considered 14 hematological parameters (see Table 1) as features to predict the 127 

respective target lung variable. The main scores used for comparing and evaluating different 128 

machine learning algorithms were based on the average squared difference between the estimated 129 

values and the actual value (mean squared error). The proportion of the variance in the dependent 130 

variable that is predictable from the independent variables was based on the R2 score. Overfitting 131 

was reduced with regularization techniques presented in methods. 132 

Figure 3A illustrates the best model prediction of viral levels in the lung, i.e. the feedforward 133 

neural network, based on experimental haematological data. We observed that the model had a 134 

good qualitative behavior of the lung viral load (measured as copy numbers of NP transcripts) over 135 

the experimental time-frame of eleven days. Day 0 represents the control group. The prediction 136 

seemed to be most accurate around the peak of viral replication, i.e. days 4 and 5 pi. Quantitatively, 137 

there was a high variation in the predictions. This was attributed to the variation found in our 138 

infection experiments (Figure S1-S9), which is a common observation in vitro and in vivo viral 139 

infection experiments22–27. While for some animals there was a large difference between the actual 140 
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experimental data and the respective predictions in the testing experiments, overall, the qualitative 141 

performance on the testing set was good (Figure 3B). 142 

In addition to predicting the lung viral load, we tested several machine learning algorithms to 143 

predict target lung leukocytes and cytokines from the hematological parameters (Table 2). The 144 

comparison in Figure 4A shows how the respective best model performed for different targets (for 145 

all results please refer to the supplemental material, Supplementary Figures S13-15). As a 146 

benchmark, we used the mean for each target variable calculated from the training data. In almost 147 

all cases, the best model performed better than the benchmark. A positive R2 score demonstrates 148 

the explanatory power of the model. Predictions for lung IFN-γ, viral load, IL-6, and neutrophils 149 

were able to outperform the benchmark (Figure 4). Predictions for other lung target parameters are 150 

presented in Supplementary Figure S13-S15. Notably, the accuracy of the model predictions was 151 

dependent on the stage of the infection. For example, neutrophil numbers in the lungs were better 152 

predicted in the later days of infection, while IL-6 and IFN-γ levels were more accurately predicted 153 

at the peak of infection (Figure 4B-D). This was also observed for other immune cells such as 154 

CD4+ and CD8+ T cells (Figure S13). Table 2 presents a summary of the best models for predicting 155 

the different lung target parameters.  156 

To determine the role of each feature from the hematological data for the prediction of lung 157 

outcomes, we performed a feature importance analysis. For this, we calculated the permutation 158 

importance by swapping out features and evaluating the performance of our testing data. The 159 

results of the feature importance analysis are organized from top to bottom in the level of 160 

importance in Figure 5. For example, from all hematological parameters, granulocytes showed the 161 

greatest impact on the performance of the machine learning models for predicting the viral load, 162 
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neutrophils, IFN-γ, and IL-6. Interestingly our analyses revealed a pivotal role of blood platelets 163 

for predicting both pathogen burden and lung inflammatory milieu (Figure 5). Granulocytes and 164 

erythrocytes ranked second and third place, respectively. The feature importance plots of the 165 

additional lung target immune cells and cytokines can be found in the supplemental material 166 

(Figure S16).   167 
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DISCUSSION  179 

Mathematical modeling of host immune responses has largely contributed to improving our 180 

understanding of the overall course of influenza infection28–37 as well as the personalization of 181 

therapies and vaccines38–40. Mathematical models consist of systems of ordinary differential 182 

equations describing the viral dynamics within the host. However, computational tools for the 183 

diagnosis and tracking of respiratory diseases remain a public health challenge.  184 

Here, we progress from the state of the art showing for the first time that minimal-invasively 185 

acquired haematological parameters can be used to infer lung viral burden, leukocytes, and 186 

cytokines following IAV infection in mice. Nevertheless, despite standardized experimental 187 

procedures, our analysis showed a large variance in the computational predictions. These can be 188 

attributed to the relatively high variances of our experimental data due to biological or 189 

experimental variations. For instance, we found differences in some hematological parameters 190 

between the training and the testing experiments, which possibly explain the differences in 191 

performance between training and testing prediction of the lung viral load for day 2 post-infection. 192 

The clinical potential of the framework proposed here consists of a new qualitative vision of the 193 

disease processes in the lung compartment. We show that the accumulation and decline of multiple 194 

cell types involved in the anti-viral immune response in the lung can successfully be predicted 195 

with data derived from peripheral blood analyses. The boosted regression tree, with some 196 

modifications, provided the best results for many of the lung immune target cells. On the other 197 

hand, some target variables proved to be difficult to predict from hematological data. For instance, 198 

alveolar macrophage (AM) numbers could not be predicted with any of the tested algorithms and 199 

showed the worst score. This is likely the result of the weak correlations of AMs with the different 200 
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blood cells analyzed. AMs also demonstrate a quite different behavior than the other cells in terms 201 

of their abundance over the course of infection as their number peaked rather late during the 202 

infection, i.e. when the virus was mostly cleared41. This phenomenon is most likely the result of 203 

inflation of the alveolar macrophage pool by self-renewal42 and/or monocyte recruitment 204 

processes43.   Regarding the less accurate predictions of cytokines within the airways from blood 205 

parameters (Supplementary Figure S13), a possible explanation is that a large portion of these 206 

cytokines (especially during the early infection stage) originated from lung-resident leukocytes as 207 

well as non-leukocytes. Therefore, their temporal quantity and composition are largely determined 208 

by local constituents of the lung´s immune cell response.  209 

Our results show an active reaction chain between peripheral blood parameters and immune cells 210 

in the lungs of the mice following IAV infection. Interestingly, we found that peripheral blood 211 

platelets play an important role in predicting lung immune cell numbers in IAV infection. In line 212 

with our finding of increased numbers of platelets in the blood during the acute phase of IAV 213 

infection (see Supplementary Figure S1), platelet accumulation in the pulmonary capillaries is a 214 

hallmark of murine IAV H1N1 infection44 and contributes to pathogenesis45. Importantly, platelet-215 

derived cytokines such as IL-1β can directly increase endothelial permeability and the expression 216 

of important vascular adhesion molecules46,47. In line with this, airway IL-1β levels were elevated 217 

during acute IAV infection (see Figures S8-9). Increased platelet-mediated transendothelial 218 

migration of CD4+ T cells, CD8+ T cells, NK cells, and neutrophils could thus be one conceivable 219 

mechanism contributing to the observed strong positive correlation between peripheral blood 220 

platelets and the aforementioned lung leukocyte subsets. This is relevant to the anti-viral host 221 

response, as the CD4+ T cells are central in the activation and maturation of virus-specific CD8+ 222 

T cells48, while neutrophils are required for proper NK cell maturation49.  223 
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It should be noted, that although the estimation is called “prediction” in the machine learning 224 

domain, and blood-derived data can here be used in a practical way to "predict" the viral load or 225 

the number of certain lung immune cells or cytokines in IAV infection, we cannot establish a 226 

direction of causality in this case. In other words, we cannot state e.g. that platelets are involved 227 

in raising the total amount of CD8+ T cells or if CD8+ T cells drive the increase in platelets. What 228 

we can learn from the correlations between variables is that CD8+ T cells, CD4+ T cells, NK cells, 229 

and neutrophils have their strongest positive correlation with platelets between the blood cells 230 

analyzed (see Figure 2). The feature importance analysis confirms that platelets play the most 231 

important part in the estimation of lung CD4+ T and CD8+ T cells, followed by erythrocytes. 232 

However, the viral load inside the lungs has also a strong correlation with platelets but an even 233 

stronger one with granulocytes. The variable importance analysis suggests that platelets and 234 

granulocytes do not strongly contribute to the prediction as can be seen in Figure 5. 235 

The weak predictive results obtained with the linear regression model signifies that these relations 236 

have a high order of complexity. While contributing to the viral clearance, the innate immune 237 

system can also exacerbate the lung injury50,51. In this context, tissue injury can be a cause of 238 

platelet activation during influenza infection. The role of platelets in human influenza infection 239 

has been stressed in recent years45,52,53. Thrombosis, controlled by the innate immune system has 240 

been suggested to support immune defense54. 241 

Hematological parameters such as neutrophil, lymphocyte, and platelet counts, as well as the 242 

neutrophil-to-lymphocyte ratio (NLR) have contributed to diagnosing influenza virus infections52. 243 

Thus, we also addressed if the use of the granulocyte-lymphocyte ratio (GLR) or the platelet-244 

granulocyte ratio (PGR) improves importance in our model predictions (Table S2). We compared 245 

the use of only GLR or PGR with the only use of lymphocytes and granulocytes, as well using 246 
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additional important IAV infection-associated peripheral blood parameters like erythrocytes and 247 

hemoglobin. Performances were evaluated with the MSE and R2 scores on the testing data set. We 248 

also calculated the corrected Akaike Information Criterion (AICc) during the training to take the 249 

complexity of the models into account. Supplementary Table S2 shows that the model performance 250 

increased using GLR, while the use of PGR had only a minor effect. Also, adding erythrocytes and 251 

hemoglobin did not improve predictions. 252 

In summary, blood platelets, granulocytes, and erythrocytes play an important role in 253 

understanding the immune response to influenza infection and can be used in conjunction with 254 

other blood components for monitoring the lung viral load and lung immune cells in mice. 255 

Importantly, our results indicate that a reduced number of variables does not affect 256 

model/prediction accuracy. This can help to further reduce the hematology data needed for 257 

successful prediction. While recent efforts show evidence for the diagnosis of COVID-19 from 258 

blood compartment56, further clinical evidence will be needed to show the potential of how our 259 

procedure could be generalized to advance medical care.  260 

 261 

 262 

 263 

 264 
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METHODS  267 

Experimental Design. Mice were intranasally infected with a sublethal dose of the mouse-268 

adapted, strictly pneumotropic H1N1 IAV strain PR/8/34 and the lung viral burden, pulmonary 269 

innate and adaptive leukocyte subsets, pulmonary cytokine levels, and peripheral blood cell 270 

parameters were assessed for 11 days pi (Figure 1).      271 

Initial generation, training, and optimization of the computational algorithms were conducted 272 

using data from two independent in vivo infection experiments. Here, mice were randomly 273 

assigned to the respective experimental groups and were either intranasally inoculated with a 274 

sublethal dose of IAV or saline (control groups). Mice (n = 4-6/experimental group) were 275 

sacrificed on days 1, 2, 3, 4, 5, 7, 9 and 11 post-infection. Experimental readouts for the first 276 

experiment were: hematological parameters and lung tissue viral load. In the second experiment, 277 

experimental readouts were: hematological parameters, leukocytes in lung tissue, and airway 278 

cytokines.  279 

For subsequent model validation, two additional, independent in vivo infection experiments were 280 

performed using the above-mentioned readouts. In these experiments, mice (n = 3/experimental 281 

group) were sacrificed at days 2, 4, 6, 9, and 11 post-infection. Hematological parameters used for 282 

model generation and evaluation are listed in Table 1. 283 

Mice. For all experiments, female C57BL/6JOlaHsd mice (age 10-12 weeks) from Envigo were 284 

used. All mice were housed in the animal facility at the Helmholtz Centre for Infection Research 285 

under specific-pathogen-free (SPF) conditions and in accordance with national and institutional 286 

guidelines.  287 

Viral preparation and infection. For viral infections, a mouse-adapted influenza A virus strain 288 

(A/Puerto Rico/8/34, H1N1) was utilized. The virus was produced in Madin-Darby Canine Kidney 289 
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(MDCK) cells57 and quantified by calculating the tissue culture infectious dose (TCID50) as 290 

previously described58. Mice were anesthetized by intraperitoneal injection of ketamine/xylazine 291 

and were infected with viral inoculum (0.31 TCID50 in 25µL PBS). Control animals received PBS 292 

only. 293 

Quantification of the lung viral load. Lungs were perfused using PBS. RNA was extracted from 294 

whole lung tissue homogenates using the RNeasy Plus Mini Kit (Qiagen). The absence of genomic 295 

DNA in RNA samples was initially confirmed by PCR using a Taq DNA-polymerase and primers 296 

for the housekeeping gene Rps9. Quantitative real-time RT-PCR (qPCR) for detection of viral 297 

burden was performed using the SensiFASTTM SYBR® No-ROX One-Step Kit and an influenza 298 

nucpleoprotein (NP) plasmid standard. The sequences of the used primers were: 5 ′299 

CTGGACGAGGGCAAGATGAAGC, 3′TGACGTTGGCGGATGAGCACA (Rps9) and 5′300 

GAGGGGTGAGAATGGACGAAAAAC, 3′CAGGCAGGCAGGCAGGACTT (Np). 301 

Hematology analysis. Blood samples were obtained from the retrobulbar plexus and EDTA was 302 

added to prevent coagulation. Samples were analyzed using a VetScan® HM5 machine (Abaxis). 303 

Cytokine detection. Bronchoalveolar lavage (BAL) was performed with 1mL PBS, samples were 304 

spun down (420 x g, 10 min) and BAL fluid (BALF) supernatants were stored at -70°C until further 305 

analyses. Cytokine levels in BALF samples were quantified using the LEGENDplexTM Mouse 306 

Inflammation Panel (BioLegend) according to the manufacturer’s protocol. 307 

Isolation of leukocytes from lung tissue. Lungs were perfused using PBS, excised, mechanically 308 

homogenized, and enzymatic digestion was performed in Iscove’s modified Dulbecco’s medium 309 

(IMDM) supplemented with 0.2mg/mL collagenase D (Roche), 0.01mg/mL DNase I (Sigma-310 
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Aldrich), and 5% fetal bovine serum at 37°C for 45min. Digestion was stopped by the addition of 311 

EDTA, the cell suspension was filtered through a 100µm cell strainer and spun down (420 x g, 312 

10min). Erythrocyte lysis was performed using ammonium-chloride-potassium (ACK) buffer and 313 

leukocytes were isolated by gradient centrifugation using Percoll solution (GE Healthcare). Lung 314 

tissue leukocytes were filtered again and antibody staining for flow cytometry was performed.  315 

Flow cytometry. Lung tissue leukocyte samples were subjected to viability staining and blocking 316 

of Fc-receptors using LIVE/DEADTM Fixable Blue Dead cell stain kit (life technologies) and an 317 

anti-CD16/32 antibody (clone 93, BioLegend). Cells were then washed and incubated with a 318 

staining mix containing antibodies against the following murine antigens: Siglec-F (PE, clone E50-319 

2440, BD), Ly6G (AlexaFluor700, clone 1A8, BD), CD11c (APC, clone N 418, BioLegend), 320 

CD11b (BV421, clone M1/70, BD), CD4 (APC-Fire750, clone GK1.5, BioLegend), CD8a 321 

(CyChrome, clone 53-6.7, BD), CD3ε (Biotin, clone 145-2C11, BioLegend), NK1.1 (FITC, clone 322 

PK136, BioLegend). Secondary staining was performed using streptavidin-BV605 and 323 

streptavidin-BV650, respectively (BioLegend). All reagents and antibodies had been titrated 324 

before the experiments for optimal staining results. Flow cytometry data were acquired using 325 

LSRII and LSR Fortessa instruments (BD). Data were analyzed using FlowJo software (BD). 326 

Data Processing. The data obtained from the hematological analysis constitutes of 20 different 327 

parameters. Some parameters are given in absolute values and percentages. We considered from 328 

these parameters only the absolute values, resulting in 14 different parameters (see Table 1). For 329 

some mice, it was not possible to extract hematological data and/or according to target infection 330 

marker. These mice were removed for the mapping, although their data was used in the correlation 331 

analysis. Furthermore, if some values were lower than the measurable threshold, we used the 332 

threshold value. Computational algorithms were implemented in python using the Keras and 333 
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sklearn libraries. Our study design yielded separate training and testing data sets. The testing data 334 

was obtained approximately one year after the training data. All laboratory conditions were kept 335 

as similar as possible. 336 

Using the data directly for training the algorithms led to poor results and therefore we used data 337 

pre-processing techniques. To conserve the nature of hematological parameter distributions, we 338 

used the min-max scaling from the sklearn.preprocessing. MinMaxScaler class: 339 

𝑧 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 340 

For the target infection markers like viral load, any logarithmic function worked well. For 341 

simplicity, we used log10. 342 

Machine Learning Models. Different machine learning models were tested for the mapping 343 

including feedforward neural networks (FNN), gradient boosted regression trees (GBRT), linear 344 

regression (LR), support vector machines (SVM), and random forest regression (RFR). The 345 

hyperparameters of the models were estimated via grid-search and adjusted via trial and error. 346 

FNN and GBRT showed to superior in most cases and RFR was outperformed in every instance 347 

with one of the other algorithms. 348 

In many cases using PCA before the mapping yielded improved performance. It was found that a 349 

dimensionality reduction to six input blood variables was often best. We used the class 350 

sklearn.decomposition.PCA for implementation. For the feedforward neural network, the keras 351 

library was used with a TensorFlow backend. We found that one hidden layer was sufficient most 352 

of the time and additional layers were not needed. The number of weights varied from 10 to 50. 353 

For regularization, the addition of dropout layers with a rate of 0.2 was helpful to prevent 354 
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overfitting. As an activation function, we used a rectified linear unit (ReLU). We had one output 355 

that uses a linear activation function. This was necessary to map the whole range of possible 356 

outcome values. We used the Adam optimizer and minimized the mean squared error to find the 357 

optimal fit. The weights were initialized according to a He-uniform distribution.59 Following 358 

common practice in literature we used for the training of the neural network a validation set of 359 

10% of the whole training data. 360 

The GBRT, LR, SVM, and RFR algorithms are taken from the python library sklearn. The 361 

hyperparameters of GBRT and RFR models were searched over a grid from 10 to 2000 estimators, 362 

a learning rate from 0.001 to 0.09, and a max depth of 2 to 14. The least-square regression was 363 

used for optimization. The kernels used for SVM were 'linear', 'poly', 'rbf ', 'sigmoid' and 364 

'precomputed'. 365 

To determine which variables were the most important in our model predictions, we calculated the 366 

permutation importance using the sklearn.inspection.permutation_importance implementation. 367 

For this, we took our best model, respectively, and trained it on the training data set. After the 368 

trained model was evaluated on the hold-out testing data set with the mean squared error as metric, 369 

a feature column was permuted and the metric was evaluated again. This procedure was repeated 370 

100 times and the permutation importance was given by the difference between the baseline metric 371 

and the metric from permutated feature columns. 372 

DATA AND CODE AVAILABILITY 373 

The datasets generated and analyzed during the current study are available: 374 

https://github.com/Jhutty/Tracking_IAV_from_Blood  375 

  376 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.23.481638doi: bioRxiv preprint 

https://github.com/Jhutty/Tracking_IAV_from_Blood
https://doi.org/10.1101/2022.02.23.481638
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

REFERENCES 377 

 378 
1. World Health Organization. Influenza (Seasonal) fact sheet. 379 

2. WHO Recommended Surveillance Standards. Second edition. 380 

3. Kilbourne, E. D. Influenza Pandemics of the 20th Century. Emerging Infectious Diseases 12, 9 381 

(2006). 382 

4. World Health Organization. Writing Committee of the WHO Consultation on Clinical aspects of 383 

pandemic 2009 influenza A (H1N1) virus infection. New England Journal of Medicine 1708–1719 384 

(2010). 385 

5. Sharma-Chawla, N. et al. In vivo neutralization of pro-inflammatory cytokines during secondary 386 

streptococcus pneumoniae infection post influenza a virus infection. Frontiers in Immunology 10, 387 

(2019). 388 

6. Allwinn, R. et al. Laboratory diagnosis of influenza – virology or serology? Medical Microbiology 389 

and Immunology 2002 191:3 191, 157–160 (2002). 390 

7. L, D. et al. Cellular changes in blood indicate severe respiratory disease during influenza infections 391 

in mice. PloS one 9, (2014). 392 

8. IE, G. et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon 393 

patterns and flu comparison. Nature immunology 22, 32–40 (2021). 394 

9. Y, Z. et al. Pathway mapping of leukocyte transcriptome in influenza patients reveals distinct 395 

pathogenic mechanisms associated with progression to severe infection. BMC medical genomics 396 

13, (2020). 397 

10. BM, C. et al. Inflammatory Monocytes Drive Influenza A Virus-Mediated Lung Injury in Juvenile 398 

Mice. Journal of immunology (Baltimore, Md. : 1950) 200, 2391–2404 (2018). 399 

11. N, S.-C. et al. Influenza A Virus Infection Predisposes Hosts to Secondary Infection with Different 400 

Streptococcus pneumoniae Serotypes with Similar Outcome but Serotype-Specific Manifestation. 401 

Infection and immunity 84, 3445–3457 (2016). 402 

12. Duvigneau, S. et al. Hierarchical effects of pro-inflammatory cytokines on the post-influenza 403 

susceptibility to pneumococcal coinfection. Scientific Reports 6, 1–11 (2016). 404 

13. Ian Goodfellow, Yoshua Bengio & Aaron Courville. Deep learning. MIT press (2016) 405 

doi:10.1007/S10710-017-9314-Z. 406 

14. DengLi & YuDong. Deep Learning. Foundations and Trends in Signal Processing 7, 197–387 (2014). 407 

15. Liu, F., Li, H., Ren, C., Bo, X. & Shu, W. PEDLA: predicting enhancers with a deep learning-based 408 

algorithmic framework. Scientific Reports 2016 6:1 6, 1–14 (2016). 409 

16. Wang, S., Peng, J., Ma, J. & Xu, J. Protein Secondary Structure Prediction Using Deep Convolutional 410 

Neural Fields. Scientific Reports 2016 6:1 6, 1–11 (2016). 411 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.23.481638doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.23.481638
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

17. Quang, D., Chen, Y. & Xie, X. DANN: a deep learning approach for annotating the pathogenicity of 412 

genetic variants. Bioinformatics 31, 761–763 (2015). 413 

18. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. 414 

Nature 2017 542:7639 542, 115–118 (2017). 415 

19. Huang, Q., Zhang, F. & Li, X. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: 416 

A Survey. BioMed Research International 2018, (2018). 417 

20. Kabak, M., Çil, B. & Hocanlı, I. Relationship between leukocyte, neutrophil, lymphocyte, platelet 418 

counts, and neutrophil to lymphocyte ratio and polymerase chain reaction positivity. International 419 

Immunopharmacology 93, 107390 (2021). 420 

21. Han, Q. et al. Role of hematological parameters in the diagnosis of influenza virus infection in 421 

patients with respiratory tract infection symptoms. Journal of Clinical Laboratory Analysis 34, 422 

e23191 (2020). 423 

22. Hernandez-Vargas, E. A. et al. Effects of Aging on Influenza Virus Infection Dynamics. Journal of 424 

Virology 88, 4123–4131 (2014). 425 

23. Hernandez-Vargas, E. A. & Velasco-Hernandez, J. X. In-host Mathematical Modelling of COVID-19 426 

in Humans. Annual Reviews in Control 50, 448–456 (2020). 427 

24. Pawelek, K. A. et al. Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune 428 

Responses. PLOS Computational Biology 8, e1002588 (2012). 429 

25. Dobrovolny, H. M., Gieschke, R., Davies, B. E., Jumbe, N. L. & Beauchemin, C. A. A. Neuraminidase 430 

inhibitors for treatment of human and avian strain influenza: A comparative modeling study. 431 

Journal of Theoretical Biology 269, 234–244 (2011). 432 

26. Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G. & Perelson, A. S. Kinetics of Influenza A 433 

Virus Infection in Humans. Journal of Virology 80, 7590–7599 (2006). 434 

27. Smith, A. M. et al. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae. 435 

PLOS Pathogens 9, e1003238 (2013). 436 

28. Miao, H., Xia, X., Perelson, A. S. & Wu, H. On Identifiability of Nonlinear ODE Models and 437 

Applications in Viral Dynamics. SIAM Review 53, 3–39 (2011). 438 

29. Canini, L. & Perelson, A. S. Viral kinetic modeling: state of the art. Journal of Pharmacokinetics and 439 

Pharmacodynamics 41, 431–443 (2014). 440 

30. Canini, L. & Carrat, F. Population modeling of influenza A/H1N1 virus kinetics and symptom 441 

dynamics. Journal of Virology 85, 2764–2770 (2011). 442 

31. Handel, A. & Antia, R. A simple mathematical model helps to explain the immunodominance of 443 

CD8 T cells in influenza A virus infections. Journal of virology 82, 7768–72 (2008). 444 

32. Beauchemin, C. & Handel, A. A review of mathematical models of influenza A infections within a 445 

host or cell culture: lessons learned and challenges ahead. BMC public health 11, S7 (2011). 446 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.23.481638doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.23.481638
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

33. Hancioglu, B., Swigon, D. & Clermont, G. A dynamical model of human immune response to 447 

influenza A virus infection. Journal of Theoretical Biology 246, 70–86 (2007). 448 

34. Smith, A. M. Host-pathogen kinetics during influenza infection and coinfection: insights from 449 

predictive modeling. Immunological Reviews vol. 285 97–112 (2018). 450 

35. Smith, A. M. & Perelson, A. S. Influenza A virus infection kinetics: quantitative data and models. 451 

Wiley interdisciplinary reviews. Systems biology and medicine 3, 429–445 (2011). 452 

36. Baccam, P., Beauchemin, C., Macken, C. a, Hayden, F. G. & Perelson, A. S. Kinetics of influenza A 453 

virus infection in humans. Journal of virology 80, 7590–9 (2006). 454 

37. Harper, S. A. et al. Seasonal Influenza in Adults and Children—Diagnosis, Treatment, 455 

Chemoprophylaxis, and Institutional Outbreak Management: Clinical Practice Guidelines of the 456 

Infectious Diseases Society of America. Clinical Infectious Diseases 48, 1003–1032 (2009). 457 

38. Hernandez-Mejia, G. & Hernandez-Vargas, E. A. Uncovering antibody cross-reaction dynamics in 458 

influenza A infections. bioRxiv 2020.01.06.896274 (2020) doi:10.1101/2020.01.06.896274. 459 

39. Hernandez-Mejia, G., Alanis, A. Y. & Hernandez-Vargas, E. A. Inverse Optimal Impulsive Control 460 

Based Treatment of Influenza Infection. in IFAC World Congress 2017 vol. 50 12696–12701 (2017). 461 

40. Parra-Rojas, C., Messling, V. & Hernandez-Vargas, E. A. Adjuvanted influenza vaccine dynamics. 462 

Scientific Reports 9, (2019). 463 

41. Toapanta, F. R. & Ross, T. M. Impaired immune responses in the lungs of aged mice following 464 

influenza infection. Respiratory Research 10, 1–19 (2009). 465 

42. Yao, Y. et al. Induction of Autonomous Memory Alveolar Macrophages Requires T Cell Help and Is 466 

Critical to Trained Immunity. Cell 175, 1634-1650.e17 (2018). 467 

43. Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged 468 

antibacterial protection. Nature immunology 21, 145–157 (2020). 469 

44. Rommel, M. G. E., Milde, C., Eberle, R., Schulze, H. & Modlich, U. Endothelial–platelet interactions 470 

in influenza-induced pneumonia: A potential therapeutic target. Anatomia, Histologia, 471 

Embryologia 49, 606–619 (2020). 472 

45. Lê, V. B. et al. Platelet Activation and Aggregation Promote Lung Inflammation and Influenza Virus 473 

Pathogenesis. https://doi.org/10.1164/rccm.201406-1031OC 191, 804–819 (2015). 474 

46. Rossaint, J., Margraf, A. & Zarbock, A. Role of Platelets in Leukocyte Recruitment and Resolution 475 

of Inflammation. Frontiers in Immunology 0, 2712 (2018). 476 

47. Hawrylowicz, C. M., Howells, G. L. & Feldmann, M. Platelet-derived interleukin 1 induces human 477 

endothelial adhesion molecule expression and cytokine production. Journal of Experimental 478 

Medicine 174, 785–790 (1991). 479 

48. Zens, K. D. & Farber, D. L. Memory CD4 T Cells in Influenza. Current Topics in Microbiology and 480 

Immunology 386, 399–421 (2014). 481 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.23.481638doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.23.481638
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

49. Jaeger, B. N. et al. Neutrophil depletion impairs natural killer cell maturation, function, and 482 

homeostasis. Journal of Experimental Medicine 209, 565–580 (2012). 483 

50. Herold, S., Becker, C., Ridge, K. M. & Budinger, G. R. S. Influenza virus-induced lung injury: 484 

pathogenesis and implications for treatment. European Respiratory Journal 45, 1463–1478 (2015). 485 

51. Kuiken, T., Riteau, B., Fouchier, R. A. M. & Rimmelzwaan, G. F. Pathogenesis of influenza virus 486 

infections: the good, the bad and the ugly. Current Opinion in Virology 2, 276–286 (2012). 487 

52. Koupenova, M. et al. The role of platelets in mediating a response to human influenza infection. 488 

Nature Communications 2019 10:1 10, 1–18 (2019). 489 

53. Assinger, A. Platelets and Infection – An Emerging Role of Platelets in Viral Infection. Frontiers in 490 

Immunology 0, 649 (2014). 491 

54. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nature 492 

Reviews Immunology 2012 13:1 13, 34–45 (2012). 493 

55. Han, Q. et al. Role of hematological parameters in the diagnosis of influenza virus infection in 494 

patients with respiratory tract infection symptoms. Journal of Clinical Laboratory Analysis 34, 495 

e23191 (2020). 496 

56. Kukar, M. et al. COVID-19 diagnosis by routine blood tests using machine learning. Scientific 497 

Reports 2021 11:1 11, 1–9 (2021). 498 

57. Stegemann, S. et al. Increased Susceptibility for Superinfection with Streptococcus pneumoniae 499 

during Influenza Virus Infection Is Not Caused by TLR7-Mediated Lymphopenia. (2009) 500 

doi:10.1371/journal.pone.0004840. 501 

58. REED, L. J. & MUENCH, H. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS. 502 

American Journal of Epidemiology 27, 493–497 (1938). 503 

59. He, K., Zhang, X., Ren, S. & Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level 504 

Performance on ImageNet Classification. 505 

  506 

 507 

 508 

 509 

 510 

 511 

 512 

                                     513 

 514 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.23.481638doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.23.481638
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

ACKNOWLEDGEMENTS 515 

We thank Tatjana Hirsch, Hanna Shkarlet and Karin Lammert for expert technical assistance in 516 

infection experiments. This work was supported by the Deutsche Forschungsgemeinschaft with 517 

the project HE7707/5-1 and BR2221/6-1; the Universidad Nacional Autonoma de Mexico 518 

(UNAM) – PAPIIT with the number IA102521; and the Alfons und Gertrud Kassel-Stiftung. 519 

 520 

ETHICS DECLARATIONS 521 

All the experiments were approved and conducted in accordance with the guidelines set by the 522 

local animal welfare and ethics committee (Niedersächsisches Landesamt für Verbraucherschutz 523 

und Lebensmittelsicherheit). 524 

 525 

COMPETING INTERESTS 526 

The authors declare no competing interests. 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.23.481638doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.23.481638
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

FIGURES 540 

 541 

 542 

 543 

Figure 1: Experimental scheme for the machine learning approaches of the respiratory IAV infection. 544 

Mice were intranasally infected with a sublethal dose of IAV PR/8/34 on day 0 and sacrificed on the 545 

indicated days. Blood was collected for hematology analyses (Supplementary Figures S1-2), 546 

bronchoalveolar lavage was performed to analyze lung cytokines and lung tissue samples were used to 547 

monitor either viral load (experiment 1, Supplementary Figure S5) or pulmonary leukocyte subsets 548 

(experiment 2, Supplementary Figures S6, S8) (A). The hematological data from this initial set of 549 

experiments were used to build and train different machine learning models (B). Data from a separate 550 

experiment (Supplementary Figures S3-5, S7, S9) were used for testing and evaluation of machine learning 551 

algorithms (C). 552 

 553 

 554 

 555 

 556 

 557 
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A)                                                             B)     558 

 559 

Figure 2. Selected correlations of blood cells, lung leukocytes, and lung viral load for influenza infection. 560 

(A) shows the correlation of blood cells with lung viral load. (B) shows the correlation of blood cells with 561 

lung leukocytes. The matrices depict the respective Pearson correlation coefficients from the initial 562 

experiments used as training data for the machine learning models. We observed some strongly related 563 

clusters like erythrocytes, haemoglobin, and hematocrit or NK, CD4+ T, and CD8+ T cells. IAV-associated 564 

lung markers that were later predicted are shown in bold letters. All other parameters were provided to 565 

the algorithm to make the estimation. Here, only a small subset of the data and its correlations are shown. 566 

To view all the data with its correlations, please refer to the supplemental material (Supplementary 567 

Figures S10-12). 568 

 569 

 570 

 571 
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 575 
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A)           B)       577 

           578 

Figure 3. Mapping of the lung viral load from blood data. The plots show the training and testing 579 

performance of the neural network model. (A) shows the performance of the model on the training data. 580 

(B) shows the performance of the testing data obtained from a second experiment. Each circle represents 581 

one mouse, with its matching individual prediction indicated by a connected (blue dashed line) diamond. 582 

The vertical lines divide experimental days. Day 0 marks the control group (viral load below measurable 583 

threshold) and is highlighted in grey.  584 

 585 
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   A)                                                                                              B)             596 

                        597 

C)                                                               D)    598 

       599 

Figure 4. Summary of model predictions for various lung leukocytes and cytokines from hematological 600 

data. (A) R2 score for different target variables. Blue diamonds show the R2 score of the best-performing 601 

model. Black diamonds indicate the mean of the target variable obtained from the training data set and 602 

serve as a benchmark. Models that perform better than the benchmark and have a positive R2 score 603 

indicate the model can make successful predictions. Mapping of (B) neutrophils, (C) IL-6, and (D) IFN-γ 604 

from blood data. Each blue-light circle represents one mouse, with its matching individual prediction 605 

indicated by a connected (blue dashed line) diamond. Gradient boosted regression trees and linear 606 

regression with the aid of PCA worked best for these mappings. We observed that the quality of the 607 

predictions was dependent on the stage of the infection. Neutrophils were estimated more precisely in 608 

the advanced stage of infection, while for IL-6 more accurate estimations were yielded at the peak of the 609 

infection. For complete results, please refer to the supplemental material (Supplementary Figures S13-610 

15). 611 
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 612 

             A)                                                                                       B) 613 

                                                                                              614 

            C)                                                                                     D) 615 

                                  616 

Figure 5. Permutation importance. The permutation importance for the mapping of (A) the viral load, (B) 617 

neutrophils, (C) IFN-γ, and (D) IL-6 is indicated. We calculated the permutation importance using the 618 

testing data.  619 
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TABLES 620 

Table 1: Hematological parameters used to estimate the viral load in the lungs of mice. Blood variables 621 

are listed in order of their Pearson correlation with viral load (lowest coefficient: MCH, highest coefficient: 622 

granulocytes).  623 

 624 

Blood variable Interpretation 

MCH (mean corpuscular hemoglobin) average amount of hemoglobin per red blood cell 

RDWs (red cell distribution width) degree of variation in size and shape of red blood cells 

Leukocytes (white blood cells) protect against infectious diseases and foreign bodies 

MPV (mean platelet volume) average size of platelets in blood 

MCV (mean corpuscular volume) average volume of red cells 

Hemoglobin oxygen carrier in red blood cells 

Erythrocytes (red blood cells) oxygen transportation to the tissue 

MCHC (MCH concentration) concentration of hemoglobin in red blood cells per volume 

Monocytes subtype of white blood cells 

PDWs (platelet distribution width) indicates variation in platelet size 

Hematocrit volume percentage of red blood cells in blood 

Lymphocytes subtype of white blood cells 

Platelets blood component that helps stopping bleeding 

Granulocytes subtype of white blood cells 

 625 

Table 2. Best performing model and respective scores for different targets from the lung milieu. 626 

Hematological data was used in all cases as input to the algorithms. For each target variable to estimate, 627 

different machine learning models were tested. 628 

Target Variable Model  MSE R2 

Viral Load Feedforward NN 7.53 0.18 

Neutrophils LR with PCA 0.98 0.25 

IFN-γ Feedforward NN 7.18 0.15 

Interleukin-6 GBRT 4.55 0.21 
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