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Abstract 

Natural plant populations often harbour substantial heritable variation in DNA methylation. 

However, a thorough understanding of the genetic and environmental drivers of this epigenetic 

variation requires large-scale and high-resolution data, which currently exist only for a few model 

species. Here, we studied 207 lines of the annual weed Thlaspi arvense (field pennycress), collected 

across a large latitudinal gradient in Europe and propagated in a common environment. By screening 

for variation in DNA sequence and DNA methylation using whole-genome (bisulfite) sequencing, we 

found significant epigenetic population structure across Europe. Average levels of DNA methylation 

were strongly context-dependent, with highest DNA methylation in CG context, particularly in 

transposable elements and in intergenic regions. Residual DNA methylation variation within all 

contexts was associated with genetic variants, which often co-localized with annotated methylation 

machinery genes but also with new candidates. Variation in DNA methylation was also significantly 

associated with climate of origin, with methylation levels being higher in warmer regions and lower 

in more variable climates. Finally, we used variance decomposition to assess genetic versus 

environmental associations with differentially methylation regions (DMRs). We found that while 

genetic variation was generally the strongest predictor of DMRs, the strength of environmental 

associations increased from CG to CHG and CHH, with climate-of-origin as the strongest predictor in 

about one third of the CHH DMRs. In summary, our data show that natural epigenetic variation in 

Thlaspi arvense is significantly associated with both DNA sequence and environment of origin, and 

that the relative importance of the two factors strongly depends on the sequence context of DNA 

methylation. T. arvense is an emerging biofuel and winter cover crop; our results may hence be 

relevant for breeding efforts and agricultural practices in the context of rapidly changing 

environmental conditions. 
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Author Summary 

Variation within species is an important level of biodiversity, and it is key for future adaptation. 

Besides variation in DNA sequence, plants also harbour heritable variation in DNA methylation, and 

we want to understand the evolutionary significance of this epigenetic variation, in particular how 

much of it is under genetic control, and how much is associated with the environment. We addressed 

these questions in a high-resolution molecular analysis of 207 lines of the common plant field 

pennycress (Thlaspi arvense), which we collected across Europe, propagated under standardized 

conditions, and sequenced for their genetic and epigenetic variation. We found large geographic 

variation in DNA methylation, associated with both DNA sequence and climate of origin. Genetic 

variation was generally the stronger predictor of DNA methylation variation, but the strength of 

environmental association varied between different sequence contexts. Climate-of-origin was the 

strongest predictor in about one third of the differentially methylated regions in the CHH context, 

which suggests that epigenetic variation may play a role in the short-term climate adaptation of 

pennycress. As pennycress is currently being domesticated as a new biofuel and winter cover crop, 

our results may be relevant also for agriculture, particularly in changing environments.  
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Introduction 

Besides variation in DNA sequence, natural plant populations usually also harbour variation in 

epigenetic modifications of the DNA. This is particularly well documented for DNA methylation, 

usually referring to the addition of a methyl group to the 5th atom of the cytosine ring, a modification 

associated with silencing of transposable elements (TEs) and the regulation of gene expression. 

Variation in DNA methylation can arise if methylation marks are altered by chance during mitosis or 

meiosis (epimutations) (1,2), or if they are induced in response to environmental changes (3,4). Some 

DNA methylation differences are stably inherited through meiosis, which has led some to 

hypothesize that DNA methylation variation could be under natural selection and contribute to 

adaptation (5–7). These ideas are fuelled by the observation that DNA methylation variation in 

natural plant populations is often non-random and geographically structured (8–12). However, the 

DNA methylation variation observed in the field is always a combination of stable (= heritable) and 

plastic (= non-heritable) components. In order to tease these apart and describe the heritable 

component of DNA methylation variation, one must analyse the offspring of different populations 

grown in a common environment. To date, common-environment analyses of natural DNA 

methylation variation that cover many populations and broad environmental gradients are still rare. 

In plants, DNA methylation can occur in the three sequence contexts: CG, CHG and CHH (where H is 

A, T or C). Distinguishing between these contexts is sensible because they differ in the molecular 

machineries for depositing, maintaining and removing methylation (13,14), which has consequences 

for their dynamics and stability. In Arabidopsis thaliana, CG methylation (mCG) is mostly maintained 

in a copy-paste manner during replication, CHG methylation (mCHG) by DNA-histone methylation 

self-reinforcing loops and CHH methylation (mCHH) by recursive de-novo methylation deposited by 

the RNA-directed DNA methylation pathway (RdDM) (13,14). In addition, CHG and CHH methylation 

partially share maintenance pathways (15,16). Overall, there is a gradient of similarity and decreasing 

stability from CG to CHG to CHH. Although less stable, CHH is the most abundant context and often 

the most responsive to stresses (17). Besides the sequence contexts, the dynamics of DNA 

methylation also strongly depend on the genomic features in which it occurs. While heterochromatic 

regions and TEs are usually heavily methylated to repress transcription, methylation is often lower 

and more variable in genes and regulatory regions (18–20). In addition, while DNA methylation is 

almost exclusively a repressive mark on TEs and in regulatory regions, this is not as clear for gene 

body methylation (GBM), as several constitutively expressed housekeeping genes often harbour CG 

but not CHG and CHH methylation (20,21). If methylation in different genomic features has different 

functions, then also different selective pressures are to be expected (22). Finally, for both influences 
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of sequence context and genomic features on methylation variation, there appears to be high 

species-specificity in plants (20). 

To study such complex dynamics, DNA methylation can be quantified at different levels, from global 

(or genome-wide) methylation, to average methylation limited to sequence contexts or genomic 

features, to the methylation of genomic regions or individual positions. While genetic single 

nucleotide polymorphisms (SNPs) can have large effects, this does not seem to be the case for DNA 

methylation polymorphisms, which affect transcription only when accumulating over a broader 

genomic region (23–25). For this reason, the study of differentially methylated regions (DMRs) 

became very popular in high-resolution studies (11,12,18,26). 

Given the complex molecular machinery for regulation and maintenance of DNA methylation, it is 

not surprising that previous studies have demonstrated various kinds of genetic control over DNA 

methylation variation. Genetic polymorphisms can control DNA methylation in cis, for example, when 

a TE insertion next to a gene promoter induces the methylation of the latter (25), or in trans, when 

genetic mutations affect genes involved in the DNA methylation machinery (11,12,27). In the latter 

case, variation in individual DNA loci often affects methylation levels across the entire genome. In 

addition, a number of genes have been found to affect methylation levels indirectly, acting upstream 

or in aid of the methylation machinery. In particular, ubiquitination, a post-translational modification 

affecting histone tails and protein turnover, affects DNA methylation in plants and animals in several 

ways (28–33). For example, in plants ORTH/VIM E3 ubiquitin ligases recruit DMT1 for methylation 

maintenance through ubiquitination of histone tails (30,31). However, in spite of this functional 

understanding of several mechanisms of genetic control, we still lack a good understanding of the 

degree of genetic determination of DNA methylation variation in wild plant populations.  

If DNA methylation variation is under natural selection – whether independently from DNA sequence 

or linked to it – we expect this to result in patterns of association between methylation variation and 

the environment. Several previous studies indeed found correlations between methylation patterns 

and habitat or climate in different plant species (8–12,34). However, most of these studies were 

either conducted in the field, based on only few natural populations, or used low-resolution 

molecular methods, which limited their generalizability and/or their power to detect environment-

methylation associations and to separate genetically controlled from independent components of 

DNA methylation variation (5). The only available data that does not suffer from any of these 

limitations comes from Arabidopsis thaliana (11,12,18), a plant with an exceptionally small and 

simple genome, with low numbers of TEs, and low global DNA methylation (35). To advance our 

understanding of natural DNA methylation variation and its genetic and environmental drivers, we 

must expand our scope and collect large-scale, high-resolution data also for other plant species. 
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Here, we present a detailed genomic analysis of 207 lines of the plant Thlaspi arvense (field 

pennycress) that we collected across a latitudinal gradient in Europe, cultivated in a common 

environment, and profiled for genomic and epigenomic variation. Like A. thaliana, T. arvense is an 

annual and mostly selfing member of the Brassicaceae family, but it has a significantly larger genome 

of approx. 500Gb, which is richer in TEs and DNA methylation (36). The species is an interesting study 

object also because it is currently being domesticated into a new biofuel and cover crop (37–41). The 

genomic work with T. arvense is facilitated by recently published high-quality reference genomes 

(36,42). In our study, we demonstrate that European populations of T. arvense harbour substantial 

natural epigenetic variation, which is associated with DNA sequence variation as well as with climate 

of origin, but in a highly context-dependent manner. In our data, genetic variation was generally the 

stronger predictor of DNA methylation variation. Genome-wide association analyses identified 

several candidate loci, but there was a fraction of the DNA methylation variation that was most 

strongly associated with climate of origin, suggesting a link with climate adaptation. 

 

Results 

The 207 Thlaspi arvense lines we worked with came from 36 natural populations which we sampled 

across Europe in 2018, on a latitudinal gradient from Southern France to Central Sweden, with three 

populations each in Southern France and The Netherlands, seven in Southern Germany, eight in 

Central Germany and South Sweden, respectively, and another seven populations in Central Sweden 

(Fig 1A and Table S1). In each population, we collected seeds of 4-6 different lines (Table S1). We 

grew all lines under common environmental conditions, extracted their DNA and generated Whole 

Genome Sequencing (WGS) and Whole Genome Bisulfite Sequencing (WGBS) libraries, which were 

sequenced with an average coverage of 25.3x and 30.8x, respectively. Variant calling retrieved 

around nine million SNPs and short INDELs with genotypes called in >90% of the lines. The 

methylation calling retrieved about 16 million, 18.4 million and 95.3 million positions in CG, CHG and 

CHH contexts, respectively, with up to 25% missing values. The global DNA methylation, calculated by 

averaging the ratio between methylated and total reads at every analysed cytosine, was estimated at 

18.5% (average of all lines). 

We found significant genetic and epigenetic population structure across Europe. A principal 

component analysis (PCA) based on genetic variants showed two main clades: a larger one including 

almost all lines from France, Germany and the Netherlands, and a smaller one that consisted almost 

exclusively of Swedish lines (Fig 1B). The larger clade also showed a clear latitudinal gradient. PCAs 

based on DNA methylation variation generally also found two major clades, with the CG methylation-

based patterns most closely resembling the genetically-based ones, and a decreasing similarity 
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between genetic and epigenetic population structure from CG to CHG to CHH methylation (Fig 1B 

and S1). Restricting methylation to specific genomic features also revealed that mCG of genes and 

promoters has stronger geographic patterns that methylation of TEs (Fig S1). 

 

Fig 1. Geographic distribution and population structure of the 207 sampled Thlaspi arvense lines. (A) Geographic locations 

of the 36 populations, with background colours indicating mean annual temperature (T.). (B) PCA plots of all 207 lines based 

on DNA sequence (“Genetic”) and DNA methylation in different sequence contexts (“mCG”, “mCHG” and “mCHH”). 

 

Average methylation 

To understand the structure of DNA methylation variation in T. arvense, we first examined patterns 

of average methylation across all lines. We not only distinguished between the three sequence 

contexts CG, CHG and CHH, but we also assigned cytosines to different genomic features: genes, 

promoters, TEs and intergenic regions. For genes and TEs, we used available annotations (36), while 

for promoters we considered the 2 kb upstream sequences of genes (or until the boundary of the 

previous gene if closer). We considered intergenic space, anything not belonging to these categories. 

Across all genomic features, the average methylation was much higher in CG context than in CHG and 

CHH; for the latter two it was generally similar (Fig 2A). TEs were the most highly methylated 

genomic features, followed by intergenic regions, whereas promoters and especially gene bodies 

showed very low average methylation (Fig 2A). For instance, while for CG sites in TEs the average 

methylation was around 80%, it was below 2% for CHH sites in genes. Although these patterns are 

conserved in the whole collection, there is large residual variation between lines, which is particularly 

high in TEs (up to 12%) and decreases gradually moving to intergenic regions, promoters and 

particularly genes (Fig 2A). Finally, partially due to TEs covering about 60% of the T. arvense genome 
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(36), its global methylation of 18.5% (average of all lines) is much higher than that of A. thaliana 

(5.8%)(12) and many other Brassicaceae (20). 

To better understand the observed values of average methylation, and in particular the low gene 

body methylation, we further examined the distributions of methylation values of individual genes, 

TEs and promoters, averaging across all lines. Interestingly, while context-specific methylation levels 

were very consistent for TEs, almost exclusively methylated, we found bimodal distributions for 

genes and promoters, with a large majority of unmethylated and a smaller fraction of methylated 

features (Fig 2B). Intersecting genes methylated in each context (using mCG > 20% and mCHG/mCHH 

> 8% as cutoffs) we confirmed that a large portion of these is methylated in all context, showing a TE-

like methylation signature, and a much smaller portion only in CG (Fig S2A)(36). Even though many 

TE-like methylated genes might be pseudogenes, a gene ontology (GO) enrichment analysis 

surprisingly found enrichment for a variety of housekeeping-like GO terms such as photosynthesis, 

protein modification and nucleic acid processing (Fig S2B). Instead, the small portion of genes 

methylated only in CG, were enriched for pathogen defence functions (Fig S2B). 

 

Fig 2. Average methylation and distributions of methylation values for different sequence contexts and genomic features 

in T. arvense. (A) Average methylation levels of genomic features; violin plots represent variation between lines. (B) 

Distributions of individual methylation values for genes, promoters and transposable elements (TEs) obtained averaging 

across all 207 lines. 
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Genetic basis of methylation variation 

To understand the genetic basis of the observed methylation variation, we employed genome-wide 

association (GWA) analyses that tested for statistical associations between every biallelic genetic 

variant and the average methylation of every sequence context and genomic feature. We restricted 

our analyses to genetic variants with a minor allele frequency (MAF) ≥ 0.04; however, repeating all 

analyses with a MAF>0.01 did not influence the results relevantly. Since large numbers of 

unmethylated genes (Fig 2B) could potentially obscure association patterns in methylated genes, we 

re-ran these analyses for average methylation levels based only on genes with a GBM > 5%. In all 

GWA analyses, we corrected for population structure using an Isolation-By-State (IBS) distance 

matrix. Although our experimental design and number of lines hardly provided sufficient power to 

meet a full Bonferroni threshold, we found that many of the genetic variants that were most strongly 

associated with methylation levels were close to genes with predicted functions related to DNA 

methylation (Figs. 3A, 3D and S3). For instance, one strong candidate was an orthologue of 

ARGONAUTE 9 (AGO9), coding a DICER-like protein involved in RNA silencing; AGO9 natural variation 

is associated with mCHH in TEs in A. thaliana (12). Another candidate was an orthologue of DOMAINS 

REARRANGED METHYLTRANSFERASE 3 (DRM3), which is involved in RdDM and non-CG methylation 

maintenance in Arabidopsis (43–45). Reflecting the multigenic basis of methylation, even the higher -

log(p) variants had relatively small size effects of about 1.5% methylation (Fig 3C). 

To confirm the suspected enrichment of methylation-related genes among stronger associations, we 

conducted an enrichment analysis based on all genetic variants within 20kb from a priori candidate 

genes – orthologues of A. thaliana genes known to affect methylation (Table S3). For some genomic 

features and sequence contexts, we indeed found an enrichment of these a priori candidates among 

the genetic variants most strongly associated with average methylation levels (e.g. mCG in Fig 3B), 

but in many cases the top variants were not neighbouring any a priori candidates (drop of the 

enrichment for high -log(p) thresholds in mCHG and mCHH in Fig 3B; see Fig S3 for more results). 

Nevertheless, a search of the neighbouring regions of these variants identified several new 

candidates that may not affect methylation directly, but have predicted functions with a potential for 

indirect effects on DNA methylation. These include e.g. the histone deacetylase SIRTUIN 1 (SRT1), the 

DNA-damage-repair/toleration (DRT111) and several E3 ubiquitin ligases such as F-box transcription 

factors and RING-H2 finger proteins (Fig 3; see Table S4 for all genes located within 15kb from 

variants significant at -log(p) > 5). Overall, our results showed that natural DNA methylation variation 

in T. arvense was significantly associated with underlying DNA sequence variation, but only some of 

the top genetic variants were known methylation machinery genes, whereas there were many 
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additional, less well-characterized genes that appeared to play a role, possibly through indirect 

effects on methylation. 

The GWA results strongly differed between sequence contexts, with a unique profile of genetic 

variants associated with average mCG, while the results were very similar for mCHG and mCHH (Fig 

3A, 3D and S3). In mCG, some of the top candidates were AGO9, the methyltransferase DRM3, the 

RdDM polymerase subunit NRPB10L and few ubiquitination related genes such as ARABIDOPSIS 

TOXICOS EN LEVADURA (ATL) 28 and 50. In mCHG and mCHH, the strongest associations included 

SRT1, the DNA-repair related STRUCTURAL MAINTENANCE OF CHROMOSOMES 5 (SMC5), the DNA 

LIGASE 1 (LIG1), involved in DNA demethylation, and in particular ATL28, which is neighbouring the 

only variant reaching genome-wide significance for several average methylation phenotypes. 
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Fig 3. Genome-wide association analyses for genetic control of average DNA methylation. We show only the results for 

intergenic methylation; for full results see Fig S3. (A) Manhattan plots, with the top variants labelled with the neighbouring 

genes potentially affecting methylation. The genome-wide significance (horizontal red lines), was calculated based on 

unlinked variants as in Sobota et al. (2015) (46), the suggestive-line (blue) corresponds to –log(p)=5. (B) Corresponding to 

each Manhattan plot on the left, enrichment of a priori candidates and expected false discovery rates (both as in Atwell et 

al. 2010 (47)) for stepwise significance thresholds. (C) The allelic effects of the red-marked variants in the corresponding 

Manhattan plots on the left, with genotypes on the x-axes and the average methylation on the y-axes. (D) The candidate 

genes marked in panel A, their putative functions and distances to the top variant of the neighbouring peaks. Bold font 

indicates a priori candidates that were included in the enrichment analyses. 

 

Methylation relationships with climate of origin 

To test for environmental associations of methylation variation, we compiled bioclimatic data (see 

Methods section for details) for our 36 study populations and analysed the relationships between 

climatic variables and the average methylation in different sequence contexts and genomic features, 

correcting for population structure with the same IBS matrix used in the GWA analyses. We found 

that average methylation was positively correlated with several climate variables reflecting variation 

in mean temperatures, but negatively with variables related to temperature variability, such as the 

mean diurnal range and annual temperature range (Fig 4). In other words, plants originating from 

colder origins or such with more fluctuating temperature environments had lower overall 

methylation. In contrast to the temperature variables, methylation was not associated with the 

precipitation variation of the population of origin, and there was also little association with latitude 

(Fig 4). The latter at first appears counterintuitive, because latitude is usually correlated with 

temperature, but in our case latitude is confounded with altitude – more southern samples were 

collected at higher elevations (Table S1) – and therefore poorly correlated with temperature.  

The described climate-methylation associations were generally strongest in CHG and CHH contexts, 

particularly for methylation that occurred in promoters or gene bodies. Accordingly, these 

combinations of sequence contexts and genomic features clustered together based on similarity of 

climate-associations, whereas almost all mCG genomic features formed a separate cluster, and so did 

intergenic and TE-related methylation variation in CHG and CHH, respectively (Fig 4). The only 

exception from these patterns was mCG in gene bodies, which had climate associations similar to 

mCHH, and the mCG in TEs and intergenic regions, which was the only type of methylation not 

negatively associated with temperature variability (Fig 4). 
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Fig 4. Climate-methylation associations. A Heatmap of the correlations between average methylation and different climatic 

variables (rows: Precip: precipitation; Temp: temperature), separately for different sequence contexts and genomic 

features (columns: prom: promoter; GBM: gene body methylation). Both rows and columns are clustered by their 

multivariate similarity in association patterns. 

 

DMR variance decomposition 

Having established associations of methylation variation with genetic background and environment 

of origin, we sought to investigate the relative importance of these two drivers in our study system, 

and how this might vary between sequence contexts and genomic features. To address these 

questions, we analysed methylation variation at the level of DMRs. We identified around 44k DMRs 

in CG, 12k DMRs in CHG and 77k DMRs in CHH (see Methods for details on the DMR calling), and 

quantified their overlap with different genomic features. Most DMRs were located in TEs, and 

decreasing numbers in intergenic regions, promoters and gene bodies (Figure 5B). 

To quantify the degrees of genetic versus environmental determination, we then analysed three 

mixed models for each DMR that included either a distance matrix based on genetic variants in cis, 

on genetic variants in trans, or on multivariate climatic distances. Across all DMRs, genetic similarity 

based on trans-variants explained the largest proportions of methylation variance in all contexts (Fig 
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5A). Most variance was explained in CHG-DMRs, followed closely by CG-DMRs, but in CHH-DMRs the 

amounts of variance explained were generally much lower. Interestingly, the explanatory power of 

environmental variation relative to that of genetic variation gradually increased from the more stable 

mCG towards the less stable mCHG and mCHH (Fig 5A and C). 

Although genetic variation in trans was on average the strongest predictor of methylation variance, 

there were large differences between individual DMRs, and we observed that sometimes genetic 

variation in cis or climatic distance, too, could be the strongest predictor. To study this more 

systematically, we classified all DMRs based on their strongest predictor, and we found that the 

fraction of DMRs in which climate was a stronger predictor of methylation variance than any of the 

genetic distances increased from CG to CHG to CHH (Fig 5C). In CHH, 25-30% of all DMRs had climatic 

distance as their strongest predictor. To find out if cis-, trans- and climate-predicted DMRs were 

enriched close to genes responsible for different functions, we ran separate GO enrichment analyses 

for the genes neighbouring these three classes of DMRs. However, only for the trans-predicted DMRs 

we found significant enrichment of a few GO terms (Fig S4), while there were none for the other two 

DMR classes. 

 

 

Fig 5. Genetic versus environmental predictors of DMR variance. (A) The variance in DMR methylation explained by 

genetic similarity in cis, genetic similarity in trans and climatic similarity, averaged across all DMRs. (B) The numbers of DMR 

identified in different genomic features and sequence contexts, and (C) the fractions of these individual DMRs where cis-

variation, trans-variation or climatic variation are the major predictors. DMRs where none of the three predictors explained 

>10% of the variance are classified as “unexplained”. 
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Discussion 

Understanding natural epigenetic variation requires combining large-scale surveys of natural 

populations with high-resolution genomics and environmental data. Here, we studied European 

populations of T. arvense to assess how climate of origin and genetic background shaped their 

heritable DNA methylation variation. We found epigenetic population structure and confirmed the 

genomic patterns of methylation of the T. arvense genome (36) in a large natural collection. Most 

importantly, both genetic background and climate of origin were significantly associated with 

methylation variation, but their relative predictive power varied depending on DNA sequence 

context. 

Our analysis of population structure detected two main clades, one composed of lines from all 

surveyed countries and a smaller one with almost exclusively lines from Sweden. A latitudinal 

gradient was also clear within the larger clade. The epigenetic population structure generally 

resembled the genetic one, with decreasing degrees of similarity from CG to CHG and to CHH 

sequence contexts (Fig 1B). These differences between contexts might reflect their different stability, 

caused by differences in the maintenance machineries (13,14) and possibly different proportions of 

genetic versus environmental control. Moreover, mCG shows stronger geographic patterns in genes 

and promoters than in TEs, possibly indicating a higher stability or selection for this kind of 

methylation (Fig S1). 

Across all lines, we calculated a global average methylation of 18.5%, which is fairly high in the 

Brassicaceae family (20), particularly in comparison to A. thaliana (5.8%) (12). The high global 

methylation is related to the high TE content of the T. arvense genome (~60%) Nunn et al. 2021), but 

also to a higher CHH methylation (13.2% across all lines) than it is known for most other angiosperms 

(20). The levels of CG and CHG methylation (53.7% and 15.7% across all lines), in contrast, are more 

similar to other Brassicaceae (20). As expected, we found that methylation was very unevenly 

distributed not only between sequence contexts, but also between genomic features, with high 

levels of methylation particularly in CG context, and in TEs and intergenic regions (Fig 2A). Gene body 

methylation was generally very low, with some 90% of the genes nearly unmethylated in all contexts, 

and the results were similar, albeit much less extreme, for promoters (Fig 2B)(36). This uncommonly 

low GBM is present in other Brassicaceae (20), in particular in the close relative Eutrema salsugineum 

and might have evolved before speciation between Thlaspi and Eutrema (36). Moreover, genes 

methylated only in CG were enriched for defence mechanisms and not for housekeeping functions 

(Fig S2) as in many other plant species (20). On the contrary, TE-like methylated genes (methylated in 

all contexts), which are usually pseudogenes, were enriched for some constitutive functions so 
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probably include a portion of housekeeping genes (Fig S2). Overall these findings suggest that GBM in 

T. arvense differs relevantly from previously studied plant species (20).  

To understand the genetic basis of methylation variation in T. arvense, we used GWA analyses, 

testing for associations between DNA sequence variation and average methylation levels in different 

sequence contexts and genomic features. With a strict Bonferroni correction, we did not detect any 

significant genetic variants, which probably resulted from a combination of our moderate number of 

only 207 sequenced lines, the nested sampling design, and the high number of tests (compared to A. 

thaliana) in a ~500 Gb genome. However, for some methylation phenotypes, we found strong 

enrichment of a priori candidates neighbouring genes known to play a role in DNA methylation from 

A. thaliana studies, and this indicates that many of our top peaks are likely to be true positives (Fig 3 

and S3). Examples include the peaks detected next to the genes AGO9, DRM3 and LIG1, which are all 

part of the DNA methylation machinery of A. thaliana (13,14), and which were also among our a 

priori candidates (Table S3). In addition to these 'expected' candidates, we found several additional 

peaks next to genes that were indirectly linked to DNA methylation, with predicted functions such as 

histone acetylation, DNA repair and ubiquitination (Table S4). The latter in particular is a post-

translational modification which was previously shown to affect methylation in several ways (28–33). 

These new candidate genes were not in our a priori list, which explains the drop of enrichment at 

high -log(p) in several GWA analyses (Fig 3B and S3). Our results show that while there appears to be 

partial overlap in the genetic control of DNA methylation between T. arvense and A. thaliana, there 

are also important differences. Some of our strongest candidates have not been associated with DNA 

methylation before, particularly not in natural populations. Functional characterization of these 

“new” candidates will be necessary to confirm our findings and understand the mechanisms of action 

of these genes. 

Finally, some interesting associations warrant further exploration and could uncover functional 

differences with A. thaliana in the methylation machineries of different sequence contexts. For 

example we find a peak for mCG, next to a DRM3 orthologue, involved in non-CG methylation 

maintenance in Arabidopsis (43–45), and vice versa a peak for mCHH of promoters and TEs right next 

(3kb upstream) to an orthologue of the mCG maintenance methyltransferase DMT1. On the contrary, 

the high similarity between mCHG and mCHH in regard to their genetic basis, as shown by the strong 

overlap of GWA results, seems to be a common feature in the plant kingdom (13,14). 

Natural epigenetic variation was not only associated with genetic background in our study, but also 

with climate of origin. These correlations were generally much stronger than those with latitude or 

longitude, which supports the idea that the observed correlations reflect adaptive processes and not 

just the combination of epigenetic drift and isolation-by-distance. Specifically, we found average 
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methylation to be positively correlated with mean temperature but negatively with temperature 

variability (Fig 4). Our field survey particularly captured the cold end of the distribution range of T. 

arvense (Mean Annual Temp. 6.5 – 11.1 °C). Previous studies showed that cold can induce DNA 

demethylation in plants (48–50) and that demethylation in turn can be associated with expression of 

cold-resistance genes and increased freezing tolerance (51,52). The observed negative correlations 

between methylation and temperature might therefore reflect adaptation to cold and to capturing 

the cold end of the distribution. This interpretation is further supported by the fact that correlations 

with minimum temperatures were generally stronger than with bioclimatic variables capturing 

maximum temperature (Fig 4) and explains why a similar study found negative correlations between 

temperature and methylation in Arabidopsis accessions sampled on a range including many warmer 

locations (12). The negative relationship between DNA methylation and temperature variability 

(Mean Diurnal Range and Temperature Annual Range) is more challenging to interpret, as there have 

so far been no experimental tests manipulating environmental variability in temperature. However, 

lower DNA methylation is often associated with lower genome stability (53,54), and it is conceivable 

that in fluctuating and thus less predictable environmental conditions, lower genome stability and 

higher transposon activity could be adaptive. Finally, we did not find any association between DNA 

methylation and the precipitation of the population origins. However, this may largely be a result of 

our latitudinal sampling design, which maximized temperature but not precipitation variation. None 

of our sampling sites were particularly dry or particularly wet/oceanic (Annual Prec. 475 – 869 mm). 

To better understand the predictive power of climate of origin versus genetic background, we finally 

analysed the variance in methylation levels of individual DMRs. We found that, across all DMRs, 

genetic variation in trans generally explained more DMR variation than climatic variation or genetic 

variation in cis. However, there was a trend from CG to CHG to CHH that the explanatory power of 

climate increased relative to that of genetic background (Fig 5A). In CHH, climate was the strongest 

predictor of methylation variation in over one quarter of the individual DMRs; in promoters this was 

true for even 35% of the DMRs (Fig 5B). These results further support the idea that methylation 

variation, particularly in CHG and CHH, is not only involved in plant responses to short-term stress 

(17) but also in longer-term environmental adaptation. Moreover, the observation that sometimes 

climate was the strongest predictor, indicates that at least part of the climate-methylation 

associations could be independent of DNA sequence variation (5). Clearly, further work is needed to 

support these speculations, in particular high-resolution analyses that disentangle the genomic 

versus epigenomic basis of relevant phenotypes related to climatic tolerances. We attempted to get 

some hints of the functional basis of the observed genomic-methylation and climate-methylation 

relationships by analysing GO enrichment in the neighbouring genes of trans-, cis- and 
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environmentally-associated DMRs, and we found some enrichment, mostly related to housekeeping 

functions, for trans-DMRs, but none for cis- and environmentally-associated DMRs (Fig S4). However, 

the functional annotation had GO terms for only less than half of our candidate genes, so our GO 

enrichment analysis had rather limited power. 

In summary, our study is the first large-scale investigation of DNA methylation variation in natural 

plant populations beyond the Arabidopsis model. We found that T. arvense natural DNA methylation 

variation is shaped by genetic and environmental factors, and that the relative contributions of the 

two drivers vary strongly between sequence contexts. Methylation variation in CG is generally the 

most similar to, and best predicted by, genetic variation. Moving to CHG and particularly CHH, the 

genetic determination decreases making environmental determination relatively higher. Our results 

thus indicate that DNA methylation could play a role in the large-scale environmental adaptation of 

T. arvense. Further experimental research, in particular dissecting adaptive phenotypes, is necessary 

to corroborate this hypothesis. There are currently efforts underway to develop T. arvense into a 

new biofuel and winter cover crop (37–41), and any insights into the genomic basis of climate and 

other environmental adaptation will be highly relevant to these efforts, particularly to deal with 

future climates. 

 

Materials and Methods 

Sampling and plant growth 

In July 2018, we collected T. arvense seeds from 36 natural populations in six European regions, 

spanning from southern France to central Sweden, and used them to conduct a common 

environment experiment in Tübingen, Germany. The experiment started at the end of August 2019 

and lasted about two months. Upon sowing 207 lines in 9x9 cm pots filled with soil, we stratified 

them for 10 d at 4°C in the dark. We then transferred the seeds to a glasshouse and transplanted 

seedlings to individual pots upon germination. The glasshouse had a 15/9 h light/dark cycle (6 a.m. to 

9 p.m.) with temperature and humidity conditions averaging 18°C and 30% at night and 22°C and 

25% during the day. External conditions influenced these parameters, resembling natural growing 

conditions. 46 d after the end of the stratification period, we collected the 3rd or 4th true leaf and 

snap-froze it in liquid nitrogen. 

 

Library preparation and sequencing 

Using the DNeasy Plant Mini Kit (Qiagen, Hilden, DE), we extracted DNA from disrupted leaf tissue 

obtained from the 3rd or 4th true leaf. For each sample, we sonicated (Covaris) 300 ng of genomic 

DNA to a mean fragment size of ~350 bp and used the resulting DNA for both genomic and bisulfite 
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libraries. The NEBNext® Ultra™ II DNA Library Prep Kit for Illumina was used for library preparation 

and was combined with EZ-96 DNA Methylation-Gold™ MagPrep (ZYMO) for bisulfite libraries. 

Briefly, the procedure involved: i) end repair and 3’ adenylation of sonicated DNA fragments, ii) 

NEBNext adaptor ligation and U excision, iii) size selection with AMPure XP Beads (Beckman Coulter, 

Brea, CA), iv) splitting DNA for bisulfite (2/3) and genomic (1/3) libraries, v) bisulfite treatment and 

cleanup of bisulfite libraries, vi) PCR enrichment and index ligation using Kapa HiFi Hot Start Uracil+ 

Ready Mix (Agilent) for bisulfite libraries (14 cycles) and NEBNext Ultra II Q5 Master Mix for genomic 

libraries (4 cycles), vii) final size selection and cleanup. Finally, we sequenced paired-end for 150 

cycles. Genomic libraries were sequenced on Illumina NovaSeq 6000 (Illumina, San Diego, CA), while 

bisulfite libraries were sequenced on HiSeq X Ten (Illumina, San Diego, CA). 

 

Variant calling, filtering and imputation 

Base calling and demultiplexing of raw sequencing data were performed by Novogene using the 

standard Illumina pipeline. After quality and adaptor trimming using cutadapt v2.6 (M. Martin 2011), 

we aligned reads to the reference genome with BWA-MEM v0.7.17 (55). We then performed variant 

calling with GATK4 v4.1.8.1 (56,57) following the best practices for Germline short variant discovery 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-

SNPs-Indels-). Briefly, we marked duplicates with MarkDuplicatesSpark and ran HaplotypeCaller to 

obtain individual sample GVCF files. We combined individual GVCF files running GenomicsDBImport 

and GenotypeGVCFs successively and parallelizing by scaffold, obtaining single-scaffold multisample 

vcf files. We then re-joined these files with GatherVcfs. Upon assessment of quality parameters 

distributions, we removed low quality variants using VariantFiltration with different filtering 

parameters for SNPs (QD < 2.0 || SOR > 4.0 || FS > 60.0 || MQ < 20.0 || MQRankSum < -12.5 || 

ReadPosRankSum < -8.0) and other variants (QD < 2.0 || QUAL < 30.0 || FS > 200.0 || 

ReadPosRankSum < -20.0). Using vcftools v0.1.16 (58), we further filtered scaffolds with less than 

three variants and variants with multiple alleles or more than 10% missing values. Prior to 

imputation, we only applied a mild Minor Allele Frequency (MAF) > 0.01 filtering not to reduce 

imputation accuracy (59). Imputation with BEAGLE 5.1 (60) recovered the few missing genotype calls 

left, outputting a complete multisample vcf file. 

 

Methylation analysis 

The EpiDiverse WGBS pipeline is specifically designed for bisulfite reads mapping and methylation 

calling in non-model species (https://github.com/EpiDiverse/wgbs) (61). We used it to perform 

quality control (FastQC), base quality and adaptor trimming (cutadapt), bisulfite aware mapping 

(erne-bs5), duplicates detection (Picard MarkDuplicates), alignment statistics and methylation calling 
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(Methyldackel). In the mapping step, we only retained uniquely-mapping reads longer than 30bp. 

The pipeline outputs context-specific (CG, CHG and CHH) individual-sample bedGraph files, which we 

filtered for coverage and combined in multisample unionbed files using custom scripts and bedtools 

(62). We retained all cytosines with coverage > 3 in at least 75% of the samples and calculated global 

and CG, CHG and CHH average methylation. 

To extract the average methylation of genomic features, we intersected (bedtools) (62) unionbed 

files with genomic features (genes, TEs, promoters and intergenic regions) and averaged methylation 

of all intersected cytosines. We also extracted methylation of individual genes, promoters and TEs 

across all samples and plotted their distributions. We then used this information to calculate the 

average methylation of genes, excluding unmethylated ones (average mC < 5% across all lines) and 

used it for GWA. For PCA, we used the R (63) function prcomp(). Genome wide PCAs were only based 

on positions without missing values as these were already a large amount (always > 1 million). 

Instead when restricting to genomic features we allowed for 2% NAs and imputed these with the 

missMDA R package (64) to include a larger amount of positions (always > 0.8 million). Nevertheless 

comparison of PCA plots with and without imputation gave very similar results. 

 

Population genetic and GWA analysis 

For basic genetic population structure analysis, including PCA plots and generation of the IBS matrix, 

we applied a mild MAF filtering (MAF>0.01) and performed variants pruning with PLINK v1.90b6.12 

(65), using a window of 50 variants, sliding by five and a maximum LD of 0.8. Upon this filtering, we 

also used PLINK to generate the IBS matrix used in several analyses to correct for population 

structure or for DMRs variance decomposition. For PCA, we used the R (63) function prcomp(). 

We ran GWA analysis for multiple phenotypes using a custom script based on the R package rrBLUP 

(66), which allows to run mixed models correcting for population structure with the above-

mentioned IBS matrix. We used biallelic variants and applied a MAF > 0.4 cutoff.  For Manhattan and 

QQplots we used the “qqman” package (67), calculating the genome-wide significance threshold 

according to Sobota et al. (2015) (46). We run GWA analysis using each average methylation context 

(CG, CHG and CHH) feature (global, gene bodies, TEs, promoters and intergenic regions) combination 

as phenotype. For genes we also calculated average methylation of methylated genes, excluding 

unmethylated ones (average GBM across all lines > 5%), ending up with a total of 18 phenotypes 

(Table S2). We occasionally observed a positive correlation between average methylation and 

coverage across lines, probably due to library preparation bias. In these cases we fit a linear model to 

the data using the logarithm of coverage (from bam files), as this gave the best fit in all cases, and 

used the residuals for GWA analysis. Finally, we transformed the average methylation phenotypes 
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that deviated strongly from normality with the Gaussianize function from the R package "LambertW" 

(68) or by Inverse Normal Transformation when the former was not obtaining normality. A list of all 

phenotypes used and corrections and transformations applied, can be found in Table S2. 

With the double aim of validating GWA results and comparing with previous A. thaliana studies, we 

performed enrichment of variants neighbouring a priori candidate genes, according to the method 

established by Atwell et al. (2010) (47). We made a few additions to the methylation candidate gene 

list used by Kawakatsu et al. (2016) (12), kindly provided by the authors, extracted all T. arvense 

orthologues that we could retrieve from orthofinder (69) analysis and used them for our a priori 

candidate genes list (Table S3). Briefly, we attributed “a priori candidate” status to all variants within 

20kb from genes in the list and calculated enrichment for increasing -log(p) thresholds as the ratio 

between Observed frequency (sign. a priori candidates/sign. variants) and Background frequency 

(total a priori candidates/total variants). Using the same formula adopted by Atwell et al. (2010) (47), 

we additionally calculated an upper bound for the FDR among candidates. 

 

Climate-methylation correlations 

To obtain bioclimatic variables for the 25 years predating the experiment, we started by downloading 

temperature and precipitation daily gridded data from the Copernicus database (v21.0) (70). All 

downstream analysis were conducted in R (63). We subsetted our population locations with the 

“ncdf4” package (71), calculated monthly averages and extracted bioclimatic variables with “dismo” 

(72). Finally, we averaged bioclimatic variables from 1994 to 2018, the year of collection. To test for 

climatic patterns in methylation, we ran mixed models for all average methylation vs. bioclimatic 

variables combinations, using the relmatLmer() function from the R package “lme4qtl” (73) and 

correcting for population structure using the same IBS matrix used for GWA analysis. 

 

DMR calling 

The EpiDiverse toolkit (61) includes a DMR pipeline based on metilene (74), which calls DMRs 

between all possible pairwise comparisons between user-defined groups. We used this tool to call 

DMRs using the 36 populations as groups, a minimum coverage of five (cov > 4) and default values 

for all other parameters. We complemented the pipeline with a custom downstream workflow to 

obtain DMRs for the whole collection from comparison-specific DMRs. Briefly, since the pipeline 

output had an enrichment of short and close DMRs (particularly in CHH), we joined all comparison-

specific DMRs that were closer than 146bp and had the same directionality (higher methylation in 

the same group). 146bp was chosen for consistency with the pipeline fragmentation parameter. We 

then merged DMRs from all pairwise comparisons (bedtools) (62) in a unique file and re-extracted 
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average methylation of the resulting regions from all samples. Finally, we filtered DMRs with a 

minimum methylation difference of 20% (CG) or 15% (CHG and CHH) in at least 5% of the samples. 

This ensured to select DMRs with variability at the level of the whole collection. 

 

DMR variance decomposition 

To quantify the variance in methylation explained by cis-variants, trans-variants, and by the 

environment, we ran three mixed models for each individual DMR using the marker_h2() function 

from the R package “heritability” (75). Each model had one random factor matrix, capturing one of 

the three predictors. For cis we used an IBS matrix generated with PLINK v1.90b6.12 (65) from 

variants within 50kb from the DMR middle point. For trans we used the same IBS matrix used for all 

other analysis, described in the previous chapter. For the environment we calculated the Euclidean 

distance between locations, based on all Bioclimatic Variables averaged over 25 years before the 

sampling (1994-2018), and further reversed and normalized the matrix to obtain a similarity matrix in 

a 0 to 1 range. To summarize the results we: i) averaged cis, trans and environment explained 

variance across all DMRs and II) classified each DMR based on the mayor predictor. 

 

 

Supporting Information 

S1 Fig. PCA plots of all 207 lines. (A) Complement to Fig 1B with latitude-coloured PCA plots for the 

missing PC. (B) latitude-coloured PCA plots based on methylation of specific genomic features (genes, 

TEs and promoters). 

S2 Fig. Genes methylated in each context and GO enrichment analysis. Cutoffs of mCG > 20% and 

mCHG/mCHH > 8%, across all lines, were used to identify methylated genes (values chosen based on 

the distributions in Fig2B). (A) Venn diagram of number of genes methylated in each context which 

were also used for the GO enrichment. Genes methylated only in CG are ladled as “gbM”, genes 

methylated in all contexts as “TE-like”. (B) GO enrichment analysis of methylated genes. Only 

significant results for GO terms with minimum gene count of four are reported. 

S3 Fig. Complete methylation GWA results. Manhattan plots, enrichment of a priori candidate 

variants and QQplots for all average methylation phenotypes. more5met: average methylation of 

genes with GBM > 5% across all lines. . The genome-wide significance (horizontal red lines), was 

calculated based on unlinked variants as in Sobota et al. (2015) (46), the suggestive-line (blue) 

corresponds to –log(p)=5. Top variants are labelled with the neighbouring genes potentially affecting 

methylation. 
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S4 Fig. GO enrichment analysis of genes neighbouring trans-DMRs. Genes neighbouring (2kb max) 

cis, trans and env-DMRs were used for individual GO term enrichment analysis, but only the trans-

DMRs gene set was enriched for any significant term. 

S1 Table. Geographic locations of all T. arvense populations. Geographic coordinates, elevation and 

size of all populations. 

S2 Table. List of all average methylation variables, coverage corrections and transformations 

applied. Coverage correction indicates that, prior to GWA, residuals were extracted from a linear 

model with log(coverage) as predictor. INT indicates Inverse Normal Transformation. Gaussianize 

function was applied using the “LambertW” R package (68). more5met: GBM of genes with average 

methylation > 5% across all lines. 

S3 Table. List of Thlaspi arvense a priori candidate genes. T. arvense genes and the respective A. 

thaliana orthologues with known roles in methylation. We used this list for the enrichment of a priori 

candidate variants performed upon GWA. 

S4 Table. GWA candidate genes. List of all genes located within 15kb from variants significant to -

log(p) > 5, including average methylation phenotypes where the association was found, a priori 

candidate status and relevant functional putative roles. Genes with predicted function possibly 

affecting methylation are highlighted in bold. 

 

Germplasm, data and code availability 

Seed material from the sequenced lines is available at the Nottingham Arabidopsis Stock Centre 

(NASC) under stock numbers N950001 to 950204. Genomic and bisulfite sequencing raw data are 

available on the ENA Sequence Read Archive (www.ebi.ac.uk/ena/) under study accession number 

PRJEB50950. Reference genome and annotations were previously published by Nunn et al. 

(2021)(36). From the annotation, we subset confident de novo gene annotations with an annotation 

edit distance score < 1.0 (source:T_arvense_v2). Average methylation values extracted from 

sequencing data and GWA results (-log(p)>1) in a format compatible with the Integrative Genomics 

Viewer (https://software.broadinstitute.org/software/igv/) are available on Zenodo 

(10.5281/zenodo.6361978). 

All the code used in this study is available and documented on Github. Pipelines for methylation and 

DMR calling from WGBS data are on the EpiDiverse Github (https://github.com/EpiDiverse). The 

workflow for downsteam analysis of methylation data is on https://github.com/Dario-

Galanti/WGBS_downstream. Scripts for downstream processing of DMRs and DMRs variance 

decomposition are on https://github.com/Dario-Galanti/popDMRs_refine_VCA. Scripts for variant 

calling, filtering and imputation, performed on the Baden-Wurttenberg BinAC cluster, are on 
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https://github.com/Dario-Galanti/BinAC_varcalling. Finally, scripts for running GWA analysis and the 

enrichment of a priori candidates are available at https://github.com/Dario-

Galanti/multipheno_GWAS. 
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