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Abstract 20 

Background: Driven by globalization, urbanization and climate change, the distribution range of 21 

invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening 22 

impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic 23 

basis of adaptation and help to identify emerging trends of vector expansion. 24 

Results: By applying whole genome analyses and genotype-environment associations to populations of 25 

the main dengue vector Ae. aegypti, sampled along an altitudinal temperature gradient in Nepal (200-26 

1300m), we identify adaptive traits and describe the species’ genomic footprint of climate adaptation to 27 

colder ecoregions. We found two clusters of differentiation with significantly different allele frequencies 28 

in genes associated to climate adaptation between the highland population (1300m) and all other lowland 29 

populations (≤ 800 m). We revealed non-synonymous mutations in 13 of the candidate genes associated 30 

to either altitude, precipitation or cold tolerance and identified an isolation-by-environment 31 

differentiation pattern.  32 

Conclusion: Other than the expected gradual differentiation along the altitudinal gradient, our results 33 

reveal a distinct genomic differentiation of the highland population. This finding either indicates a 34 

differential invasion history to Nepal or local high-altitude adaptation explaining the population’s 35 

phenotypic cold tolerance. In any case, this highland population can be assumed to carry pre-adapted 36 

alleles relevant for the species’ invasion into colder ecoregions worldwide that way expanding their 37 

climate niche. 38 

Keywords: PoolSeq, Latent Factor Mixed Model, genotype-environment association, yellow fever 39 

mosquito, Kathmandu, range expansion, climate change genomics, whole genome sequencing 40 
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Background 45 

Biodiversity, incorporating the diversity, abundance and identity of species, their genes and ecosystems, 46 

is the foundation of human health and well-being by providing essential ecosystem services. However, 47 

vector-borne diseases (VBDs), arising from inter-relationships between pathogens, invertebrate vectors 48 

and host species, also make up a part of biodiversity (1). Being detrimental to human health, one might 49 

describe VBDs and especially vector species as the dark side of biodiversity, even though vectors play 50 

also an important role in pollination (2). Annually, VBDs account for 17% of all infectious diseases 51 

worldwide (3), among those more than 390 million people are at a risk of a dengue infection (4). 52 

Worldwide, the biggest dengue virus (DENV) outbreak so far with more than 4.2 million infections was 53 

registered in 2019 (5). The current expansion of dengue fever intensified over the last decades and is 54 

predicted to further increase (6,7). The spread of the disease via its main vector species Aedes aegypti 55 

(Linnaeus, 1762) was facilitated through globalisation, urbanisation and climate change (8–10). Climate 56 

warming is expected to greatly impact on the expansion processes of ectothermic insects to cooler 57 

ecoregions (9,11–13). This is not only explained by the simple fact that rising temperatures will decrease 58 

temperature barriers currently shielding cooler ecoregions thus allowing species invasion as a result of 59 

climate niche tracking (14,15). But climate warming will furthermore rapidly move the frontier of range-60 

edge populations thus continuously priming adaptive changes along environmental gradients (16,17). 61 

For Ae. aegypti it has already been documented that populations can invade novel habitats by following 62 

their climate niches as a consequence of global warming (11,18), moreover their expansion to new 63 

regions in the future is likely (19,20). Further expansion to cooler ecoregions such as Europe will 64 

additionally require the adaptation to cooler temperatures (21,22). It is, however, less clear whether 65 

range-edge populations carry sufficient adaptive potential for further acceleration of their expansion 66 

process. 67 

 68 

Climatic clines influence population divergence as shown in Anopheles gambiae (23), Drosophila 69 

melanogaster (24–26) and recently for the first time in Ae. aegypti (27). Invasive species that experience 70 

range expansion along such clines are expected to locally adapt (28). Genetic admixture can benefit 71 

invaders by either mitigating the negative effects of bottlenecks during their introduction by masking 72 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488929doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488929
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

deleterious alleles and/or by generating new allelic combinations causing many phenotypes, which 73 

provides raw material for selection and rapid adaptation (29). For instance, Ae. albopictus adapted 74 

genetically and morphometrically to Northern latitudes prior to its successful worldwide expansion (22) 75 

and Drosophila melanogaster preadapted to the temperate and tropical conditions that they then 76 

encountered in North America and/or Australia prior to their invasion (24). Thus, genomic signatures of 77 

‘climate adaptation’ are a special case of classical local adaptation, since environmental heterogeneity 78 

or ideally the gradual variation of climate along environmental gradients will result in gradual or at least 79 

environmentally correlated signatures of selection (30). Climate and local adaptation of Ae. aegypti to 80 

colder climates is scarcely investigated, consequently Schmidt and colleagues (31) recently identified 81 

the need to better investigate adaptive traits and associated gene sets in mosquito species. Population 82 

genomics is thus a straightforward approach to examine the influence of climate on adaptation in various 83 

organisms (15).  84 

To recognize emerging trends in adaptive traits of Ae. aegypti to cooler ecoregions driven by climate 85 

warming, the study of Ae. aegypti currently spreading along climatic transects with ongoing disease 86 

expansion (e.g. Dengue) in the Hindu Kush Himalayan (HKH) country Nepal could provide useful 87 

insights (32–41).  After an introduction into a new environment, populations are unlikely at their fitness 88 

optimum at first and, therefore, adapt to new conditions through environmental selection (27).  89 

According to this theory, the initial overwintering potential in a highland population (1300m) can be 90 

lower compared to the lowlands (≤ 800 m; 21,42). However, Nepal is suffering under climate warming 91 

that influences the climate along altitudinal gradients extremely (41,43; unpublished data- Phuyal, 92 

Kramer et al. 2021), not only with regard to temperature but likely also humidity (44). Maldaptation of 93 

the mosquitos to higher altitudes might thus be facilitated by climate change. We thus tested if gradual 94 

climate heterogeneity along an altitudinal gradient in Central Nepal is reflected in patterns of genomic 95 

differentiation of natural Ae. aegypti populations sampled along the gradient, henceforth referred to as 96 

pattern of ‘climate adaptation’. Here, climate adaptation is studied in Ae. aegypti field populations 97 

sampled along a prominent climate gradient of Nepal in the mountain region, using the currently most 98 

commonly applied genotype-environment association (GEA) tool (LFMM, Figure 1; 45).  99 

 100 
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 101 

Figure 1. Study design to analyze climate adaptation of natural Ae. aegypti populations along 102 

an altitudinal gradient. CDS= Coding region, CT= cold  tolerance data normalized to controls; 103 

(42),  ENV= environmental variable,  EAP= significant ENV associated positions, OW= 104 

significant 1kb FST  outlier windows. 105 

 106 

Results 107 

In total, we collected 1) four Ae. aegypti populations from Chitwan (CH200, 200 m above sea level), 108 

Dhading (DH600, 600 m asl), Dharke (DK800, 800 m asl) and Kathmandu (KT1300, 1300 m asl; 109 

(42,46),  and 2) high-resolution microclimate data, open access weather data (CHELSA) and phenotypic 110 

expression of study populations (experimental cold tolerance data, Figure 1; (42). We first confirmed 111 

that all Nepalese populations belong to one Ae. aegypti subspecies using a µsats analysis and second by 112 

means of a population genomic approach (Pool-Seq) and subsequent GEA analysis (LFMM), we 113 

identify 33 candidate genes for climate adaptation containing non-synonymous or synonymous 114 

mutations, and discuss their functional basis by conducting a literature survey. In addition, 1200 115 

candidate genes for local adaptation were identified, among them known loci involved in insecticide 116 

resistance (knockdown resistance (kdr) mutations (V1016G, F1534C, and S989P)) and metabolic 117 

resistance (47) and vector competence.  118 

 119 

 120 
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Subspecies analysis 121 

The STRUCTURE analysis based on µsats extracted from our Nepalese Pool-Seq data confirms that our 122 

genomic data sets only consist of one Ae. aegypti subspecies. All of the ten runs with STRUCTURE 123 

using K = 2 with six µsats in a comparison to other populations worldwide (West Africa, Costa Rica, 124 

Australia- Innisfail; (48)) indicate that the African population is different from the Nepalese populations, 125 

the Costa Rica population is similar to the Nepalese populations and the Australian is similar to the 126 

African population (Figure 2a, Additional file 1 Figure 1). Due to lower coverage of the population from 127 

KT1300 of Nepal, only five µsats were included (AC1 excluded) and the Australian population was 128 

restricted to three µsats (A9, AC1 and B3 were excluded). When comparing Nepalese populations 129 

amongst each other (10/10 runs with K2-11 µsats), low similarities between the CH200 and KT1300 130 

population and higher similarities between the CH200, DH600 and DK800 populations are present 131 

(Figure 2b, Additional file 1 Figure 1). K = 3 displays that the lowest sampling sites (CH200 and DH600) 132 

show similarities in comparison to the populations from higher altitude and K = 4 shows a distinct 133 

structural difference between the four populations (Figure 2b, Additional file 1 Figure 1). 134 

 135 
Figure 2. Global (A) and local (B) genetic structure of Aedes aegypti populations. Comparison 136 

of four populations from Nepal A) with populations from Africa, Costa Rica and Australia (48) 137 

using 6 microsatellite regions (K=2) and B) with each other using 11 microsatellite regions 138 

(K=2-4; Additional file 1 Figure 1). Altitude of sampling sites of Ae. aegypti populations in 139 

Central Nepal: CH200 = 200 m asl (Chitwan), DH600 = 600 m asl (Dhading), DK800 = 800 m 140 

asl (Dharke), KT1300 = 1300 m asl (Kathmandu). 141 
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Population differentiation 142 

Nucleotide diversity (π) is smaller in exonic regions compared to the genome-wide average (per site) 143 

and all populations show a similarly low π with an average of 0.0127 in 1kb windows. The low-altitude 144 

population CH200 has the highest population mutation rate (θ), however, there is no increasing trend 145 

towards higher altitude. Concerning the effective population size (Ne), there is a trend towards 146 

decreasing values along the altitudinal gradient, however smallest Ne is found in DH600 (Table 1). 147 

 148 

Table 1. Mapping and coverage statistics of four Ae. aegypti populations sampled along an 149 

altitudinal gradient. Population genomic parameters estimated per site (1b) or in non-150 

overlapping 1kb-windows: nucleotide diversity (π), population mutation parameter theta (θ) 151 

and effective population size (Ne) calculated as Ne= θ/4µ with µ= 2.1 × 10−9 (108). Altitude 152 

of sampling sites of Ae. aegypti populations in Central Nepal: CH200 = 200 m asl (Chitwan), 153 

DH600 = 600 m asl (Dhading), DK800 = 800 m asl (Dharke), KT1300 = 1300 m asl 154 

(Kathmandu). 155 

Parameter region window CH200 DH600 DK800 KT1300 

mapped reads (%) genome- wide - 66.07 66.79 64.27 65.99 

mean coverage genome- wide - 22.46 17.86 21.1 19.02 

genome coverage (%) genome- wide - 72.66 63.87 70.64 66.55 

PoPoolation analysis 

π 

genome- wide 1kb 0.0130 0.0125 0.0129 0.0126 

genome- wide 1b 0.0135 0.0132 0.0135 0.0133 

exon 1b 0.0079 0.0077 0.0080 0.0077 

θ genome- wide 1kb 0.0130 0.0125 0.0129 0.0127 

Ne genome-wide 1kb 1,548,452.4 1,485,238.1 1,536,904.8 1,507,976.2 

 156 

 Mean pairwise FST range between 0.05-0.067 (Table 2) indicating low levels of genomic differentiation 157 

and high relatedness among the four Nepalese populations (Figure 3, Additional file 1 Figure 2), in line 158 

with the results from the µsats analysis (Figure 2). Moreover, the Mantel test revealed no signs of 159 

isolation by distance (p=0.67, r=-0.27). 160 

  161 
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Table 2. Mean FST value and number of candidate SNPs/genes for climate and local adaptation. 162 

Altitude of sampling sites of Ae. aegypti populations: CH200 = 200 m asl, DH600 = 600 m asl, 163 

DK800 = 800 m asl, KT1300 = 1300 m asl. Climate adaption: Outline of stringent signatures 164 

of climate selection (ENV1 ~ altitude, ENV2 ~ precipitation, ENV4 = cold tolerance) by 165 

overlapping outlier windows of highly significant population differentiation (OW; 1kb-166 

window) with EAPs (GEA gene list) for each population comparison. Local adaptation: overlap 167 

between FST 1kb-window outlier analysis (OW) and the FST 1b-window outlier analysis (OP) 168 

excluding SNPs and genes from the EAP-OW analysis (OW-OP). Numbers given per position 169 

and per gene hit: integrated-hits/unique-hits/non-synonymous. If not marked otherwise, all 170 

unique-hits are also present in the upper 1% tail of the site-specific FST distribution (OP).   171 

 
CH200-

DH600 

CH200-

DK800 

CH200-

KT1300 

DH600-

DK800 

DH200-

KT1300 

DK800-

KT1300 
Total 

mean FST 0.05784 0.04996 0.05567 0.06251 0.06676 0.05822 - 

OW-OP 

Highly significant site-specific 

positions 
1251 1171 1250 1331 1400 1189 6303 

Number of genes (without duplicate) 277 280 284 269 286 263 1200 

                    OW  

Highly significant 1kb-windows 2919 2911 2928 2940 2931 2922 - 

Number of genes (without duplicates) 535 576 579 501 551 550 - 

Overlap of OW and EAP- number of positions 

ENV1 0 0 4 1 4 2 11/9/2 

ENV2 2 2 19 1 15 20 59/40*/12 

ENV4 0 0 8 1 7 4 20/14/3 

Overlap of OW and EAP- number of genes 

ENV1 0 0 5 1 3 1 10/8 

ENV2 2 2 15 1 13 14 47/31 

ENV4 0 0 8 1 6 3 18/13 

*9 positions are not present in the upper 1% tail of the site-specific FST distribution, including five non-synonymous SNPs   

 172 
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 173 

Figure 3. Genome wide pairwise FST distribution per 1kb-windows (OW) of Nepalese Ae. 174 

aegypti populations. The three chromosomes of the Ae. aegypti genome are represented in the 175 

outermost circle. From innermost to outermost circle: (A) the innermost circle shows the 176 

pairwise FST distribution (range:0-0.7) in 1kb windows between the lowland populations 177 

(purple: CH200 vs. DH600; green: CH200 vs. DK800; light-blue: DH600 vs. DK800), (B) the 178 

middle circle shows the comparison between the lowland populations and the KT1300 (red: 179 

CH200 vs. KT1300; black: DH600 vs. KT1300; grey: DK800 vs. KT1300), (C) The white circle 180 

gives the position of all EAP-OW genes (black), the candidate genes containing non-181 

synonymous mutations (red), the detoxification genes containing significant positions (blue), 182 

the voltage-gated sodium channel (green and a green star) and the vector competence genes 183 

(grey). Altitude of sampling sites of Ae. aegypti populations: CH200 = 200 m asl, DH600 = 600 184 

m asl, DK800 = 800 m asl, KT1300 = 1300 m asl. 185 

 186 

 187 

 188 
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Environmental data 189 

The annual and seasonal CHELSA data shows a gradual decrease of mean, minimum and maximum 190 

temperature along the altitudinal gradient (Additional file 1 Figure 3). The microclimate data shows 191 

higher variability throughout the seasons with a decreasing trend of mean and minimum temperature 192 

with increasing altitude but higher variability in the maximum temperature, especially at DH600 193 

(Additional file 1 Figure 4). CHELSA data reveals a precipitation pattern similar for all sampling sites 194 

(Additional file 1 Figure 5). To reduce confounding covariation in the environmental data set a principal 195 

component analysis (PCA) was run. The first three components of the PCA are mainly related to the 196 

following environmental factors: PCA1 – altitude (70.86%; ENV1), PCA2 – precipitation (27.45%; 197 

ENV2) and PCA3 – seasonality (1.69%; ENV3; Additional file 1 Table 5, Additional file 1 Figure 6-9).   198 

Genotype-environment association  199 

The LFMM analysis reveal 47 single nucleotide polymorphisms (SNPs) within 46 genes associated to 200 

ENV1 (associated with altitude), 216 SNPs within 172 genes associated to ENV2 (associated with 201 

precipitation), zero SNPs associated to ENV3 (associated with seasonality) and 69 SNPs within 64 genes 202 

associated to ENV4 (cold tolerance) (Table 2; Additional file 1 Figure 10). After our stringent filtering 203 

when overlapping significant ENV associated positions (EAPs) with highly significant FST outlier 204 

windows (OW; 1 kb-window; Figure 1) 9 SNPs within 8 genes associated to altitude (ENV1) are present. 205 

We accordingly retain 40 SNPs within 31 genes associated to precipitation (ENV2) and 14 SNPs within 206 

13 genes associated to cold tolerance (ENV4; Table 2, Additional file 1 Figure 2, Figure 3). All EAP-207 

OW (overlap of EAP with OW) SNPs are also present in highly significant outlier positions per site 208 

(OP) except 9 SNPs associated with precipitation (Table 2; Additional file 2 Table 2- Table 4). Observed 209 

allele frequencies plotted against the altitudinal gradient of population origins do not support the 210 

expected gradual variation of allele frequencies at candidate positions (EAP-OW). Instead of a pattern 211 

of gradual variation, our results reveal a major difference in allele frequency of candidate loci in KT1300 212 

compared to all other lowland populations (CH200, DH600, DK800; Figure 4). 213 
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 214 

 215 

Figure 4. Allele frequencies of candidate loci (EAP-OW) plotted against the altitudinal gradient 216 

of their population origin. Candidate loci associated with A) ENV1 ~ altitude, B) ENV2 ~ 217 

precipitation, C) ENV4 = cold tolerance. Details on non-synoynomous SNPs in Table 3.  218 

 219 

Functional enrichment associated to climate adaptation  220 

The investigated populations of Ae. aegypti across the Nepalese altitudinal gradient reveal 33 candidate 221 

genes with signatures of climate selection (temperature (ENV1): 8, precipitation (ENV2): 31, cold 222 

tolerance (ENV4): 13), which equals to ~0.2% of protein-coding genes with signatures of climate 223 

selection. Functional analysis of the eight genes that are associated with altitude (ENV1) yielded the 224 

following five GO terms to be significantly enriched: 1) ‘small GTPase mediated signal transduction’, 225 

2) ‘protein phosphorylation’, 3) ‘transmembrane receptor protein tyrosine kinase signaling pathway’, 4) 226 

‘ubiquitin-dependent protein catabolic process’, 5) ‘translational termination’ (Figure 5). The 13 genes 227 

that correlate with cold tolerance (ENV4) show the same set of significantly enriched GO terms and in 228 

addition the GO-term ‘proteolysis’ is significantly enriched. The most significantly enriched GO-terms 229 

of the 31 genes that are associated with precipitation (ENV2) are 1) ‘regulation of pH’ and 2) ‘sodium 230 

ion transport’, followed by 3) ‘small GTPase mediated signal transduction’, 4) ‘transmembrane receptor 231 
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protein tyrosine kinase signaling pathway’, 5) ‘protein phosphorylation’, and 6) ‘proteolysis’. The first 232 

two GO-terms are only associated with precipitation, while all other GO-terms are associated with at 233 

least two environmental variables (Figure 5).  234 

 235 

Figure 5. Significantly enriched GO terms for each environmental variable and candidate genes 236 

sorted by functional groups (see Table 4). Candidate genes only carrying non-synonymous 237 

mutations are given. Genes written in bold are associated with all three environmental variables 238 

(ENV), whereas all the others are only associated with precipitation. Three uncharacterized 239 

genes given in Table 3 are not shown.  240 

 241 

 242 

Two SNPs located in EAP-OW genes associated with altitude, twelve SNPs in EAP-OW genes 243 

associated with precipitation and three SNPs in EAP-OW associated with cold tolerance are non-244 

synonymous (Additional file 1 Figure 11) and thus we further assessed their functions (Table 3).  245 

 246 

 247 

 248 
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Table 3. Non-synonymous substitutions of EAP-OWs that indicate significant involvement of genes in 249 
climate adaptation. The genomic position, base, alternative base, amino acid (AA) exchange, association 250 
to respective environmental variables (ENV1 ~ altitude, ENV2 ~ precipitation, ENV4 = cold tolerance) 251 
and the annotated candidate gene are given. Significantly enriched GO-terms (Figure 5) are mentioned 252 
if they can be linked to the candidate gene using uniprot.  253 

Chromosome Position Base 
Alternative 

base 
AA 

exchange 
Triplet 

position 
ENV1 ENV2 ENV4 Gene Enriched GO-terms 

NC_035107.1 59746123 G T PH 2  X  adenylate cyclase type 9*  

NC_035107.1 70557897 T C IV 1 X X X 
proto-oncogene tyrosine-

protein kinase ROS 

transmembrane receptor 

protein tyrosine kinase 

signaling pathway & 

protein phosphorylation 

NC_035108.1 223930033 G A AV 2  X  homeobox protein araucan  

NC_035108.1 295810879 G A EK 1  X  uncharacterized protein 

LOC5566519* 

 

NC_035108.1 370218447 G A VI 1 X X X 
breast cancer anti-estrogen 

resistance protein 3 

small GTPase mediated 

signal transduction 

NC_035108.1 402025916 T A HQ 3  X  toll-like receptor Tollo*  

NC_035109.1 278880294 G T ED 3  X  
zinc finger CCCH 

domain-containing protein 

13* 

 

NC_035109.1 300326627 T A IK 2  X X 
uncharacterized protein 

LOC5574261 

 

NC_035109.1 307981403 A T FI 1  X  
probable peptide chain 

release factor C12orf65, 

mitochondrial* 

 

NC_035109.1 308648742 G A VI 1  X  tubulin-specific chaperone 

D 

 

NC_035109.1 314722675 G A AT 1  X  coatomer subunit beta'  

NC_035109.1 319909869 C G LV 1  X  uncharacterized protein 

LOC5578603 

 

*not present in the upper 1% tail of the site-specific FST distribution 

 254 
 255 

Amongst those EAP-OW SNPs, twelve genes are associated to different ENVs including three 256 

uncharacterized genes. The ‘proto-oncogene tyrosine-protein kinase ROS’ and the ‘breast cancer anti-257 

estrogen resistance protein 3’ are associated to all ENVs. Both of these two genes are linked to 258 

significantly enriched GO-terms, which are enriched in the same ENVs. All other EAP-OW genes are 259 

associated to precipitation (ENV2), and one uncharacterized gene (LOC5574261) is additionally 260 

associated with cold tolerance (ENV4; Table 3). The functions of the nine characterized genes 261 

containing an EAP-OW SNP can be separated into 1) immune response, 2) life-cycle (development, 262 

reproduction, blood feeding), 3) insecticide resistance and 4) protein regulation (all details: Table 4, 263 

Figure 5).  264 

 265 

 266 

 267 
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Table 4. Details on gene function of the nine characterized candidate genes associated to environmental variables. ENV1 ~ altitude. ENV2 ~ 268 

precipitation, ENV4 = cold tolerance. Three other uncharacterized genes are not included in this list. 269 

ENV1 ENV2 ENV4 
Gene 

description 
Isoform Function 

Overall functional 

description 
Species analysed Reference 

 X  
adenylate cyclase 

type 9 
X1, X2 

 insecticide resistance - regulating 

resistance-related P450 gene expression 

Insecticide resistance 
 

Culex quinquefasciatus, 

Drosophila 

melanogaster 

(125)  

 insecticide resistance - regulating 

resistance-related P450 gene expression 

 highly expressed in the brain of mosquitoes 

 signalling transduction, and regulation 

 expressed in the different life stages of 

mosquitoes 

 functional importance in response to 
exposure to insecticides during 

mosquito life stages 

Cx. quinquefasciatus (126) 

X X X 

proto-oncogene 

tyrosine-protein 

kinase ROS 

X1-X4 

 ROS is mainly related to the ATP binding 

pathway 

 energy metabolism 

 ROS were up-regulated - response of 

haemolymph to 1-deoxynojirimycin 

Lifecycle: development 

Samia cynthia ricini 

(butterfly)  
(127) 

 suggested: development Drosophila (128) 

 X  homeobox 

protein araucan 
 

 larval development and metamorphosis 

 formation of sense organs (including 

the eyes), in the specification of the 

dorsal part of the adult thorax and in 

the patterning of the wing veins, as 
well as in the segmentation of the 

body during embryonic development 
Lifecycle: development 

Drosophila (129) 

 homeobox proteins Araucan (Ara) mediates 

the activation of the ac (proneural genes 

achaete) and sc promoters 

 in relation to embryonic development 
and wing growth 

Dr. melanogaster (130) 

X X X 

breast cancer 

anti-estrogen 
resistance protein 

3 

X1-X5 
 dengue infection- different expression 

up/down regulated BCAR3 
Immune response cells (131) 

 

 

 
 

 

X 

 
 

 

 
 

 

 

 
 

 

toll-like receptor 
Tollo 

 

 
 

 

 

 

 

 
 

 

 suggested: mosquito immunity 

Immune response 

Ae. aegypti (132) 

 antifungal and antibacterial responses and 

implications in cellular antiviral responses 

 expanded Toll-1/Toll-5 clade in 
mosquitoes is related to their 

interactions with viruses merits 

detailed functional investigation 

Ae. aegypti (133) 
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 embryogenesis  and post-embryonic 

development 

 immune responses 

Drosophila (134) 

 anti-dengue defence Ae. aegypti  (77) 

 anti-dengue defence Ae. aegypti (135) 

 anti-dengue defence Ae. aegypti (136) 

      immunity gene  Ae. albopictus (137) 

 X  

zinc finger 

CCCH domain-
containing 

protein 13 

 

 m(6)A writer- m(6)A (N6-

methyladenosine) the most prevalent 

internal modification in mRNA is induced 
by writers 

 m(6)A epi-transcriptome impacts on 

immune response and function 

Immune response & 

lifecycle: development 

and reproduction 

review (138) 

 Examined the biogenesis of mRNA-derived 

endogenous short interfering RNAs with 
and without infection of the Sindbis virus. 

If infected overexpression of this gene 

occurred.  

Ae. aegypti (139) 

 interactor of m(6)A methyltransferase 

complex components 

 sex determination 
 miss regulation of m6A by ZC3H13 

lead to disease like glioblastoma 

progression and schizophrenia 

Drosophila (140) 

 associated with several m(6)A writer 

factors 

 xio/ZC3H13: encodes a member of the 

m6A methyl transferase complex involved 

in mRNA modification 

 loss of xio/ZC3H13: asexual 
transformations, Sxl splicing defect, 

held-out wings, flight-less flies, and 

reduction of m6A levels 
 development, disease, stem cell 

differentiation, immunity, and 

behavior, by controlling various 
aspects of RNA metabolism, such as 

splicing, stability, folding, export, and 

translation 

Drosophila (141) 

 X  

probable peptide 
chain release 

factor C12orf65, 

mitochondrial 

 

 mitochondrial RF family (mitochondrial 

release factor) 

 mitochondrial protein synthesis 

 loss of C12orf65: mitochondrial 

dysfunction 

Protein regulation & 

immune response 

Homo sapiens  (142) 

 dengue infection- different expression 

up/down regulated 
cells (131) 
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 Suggestion: a role in recycling abortive 

peptidyl-tRNAs that are released from the 
ribosome during translational elongation 

Homo sapiens (143) 

 Suggestion: likely to function on stalled 

ribosomes or large subunits with peptidyl-
tRNA still anchored within, allowing them 

to be recycled for a new round of 

translation 

Homo sapiens (144) 

 X  tubulin-specific 

chaperone D 
 

 tubulin heterodimer consists of one alpha- 

and one beta-tubulin polypeptide. Tubulin-

specific chaperones are essential for bring 
the alpha- and beta-tubulin subunits 

together into a tightly associated 

heterodimer 
 related functions to mating- sperm 

microtubule morphogenesis and 
function 

Lifecycle: reproduction 

Anopheles coluzzii, 

Anopheles 

quadriannulatus 

(145) 

 X  
coatomer subunit 

beta' 

 

X1, X2 

 coatomer subunits are needed for vesicle 

coat and induce membrane budding, loss of 
one of the subunits disrupt the entire 

complex 

 β′COPI subunit facilitates the underlying 

triskelion structure within the lattice of the 

vesicle coat 

 mosquito blood digestion and egg 
maturation 

Lifecycle: blood 
feeding and 

reproduction 

Ae. aegypti (146) 

 in general: COPI-mediated (coatomer 

proteins) blood meal digestion 

 Blood feeding 

Anopheles stephensi (147) 

  270 
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The characteristics (such as: polar, non-polar, basic, acidic) of the amino acids before and after the base 271 

exchange demonstrate differences in the: ‘adenylate cyclase type 9’, ‘toll-like receptor Tollo’, ‘coatomer 272 

subunit beta'’ and also in two uncharacterized proteins (LOC5566519 and LOC5574261; Additional file 273 

1 Table 7. These changes more likely can lead to a change in the protein structure or function. For all 274 

other amino acid exchanges in candidate genes, the characteristic of the amino acid stays the same. 275 

The functional analysis of EAP-OW genes containing synonymous mutations reveals one EAP-OW 276 

gene that is associated with altitude (ENV1) playing a role in the immune response, five EAP-OW genes 277 

that are associated with precipitation (ENV2) playing a role in life-cycle (3x development, 1x blood 278 

feeding, 1x reproduction) in Ae. aegypti and three EAP-OW genes that are associated with cold tolerance 279 

(ENV4) involved in life-cycle (1x development, 1x reproduction) and immune response (Table 4, 280 

Additional file 2 Table 5-7). The gene ‘coatomer subunit beta’ contains two SNPs, of which one is 281 

associated with cold tolerance (ENV4) and constitutes a synonymous mutation. The other SNP 282 

constitutes a non-synonymous mutation and is associated with precipitation (ENV2). 283 

Genomic signatures of local adaptation  284 

By overlapping the OW and OP window (OW-OP), 1171-1400 SNPs in 263-286 candidate genes as 285 

signatures of local adaptation are identified per population comparison (Table 2). There is no overlap 286 

between candidate genes for ´local environmental adaptation´ identified by Bennett (27) and candidate 287 

genes for climate adaptation (EAP-OW or EAP), Bennett (27) investigated local adaptation of Ae. 288 

aegypti in Panama using amongst others meteorological data of weather stations respectively. However, 289 

two candidate genes for local adaptation (OW-OP) show an overlap with the candidate genes of Bennett 290 

(27) which, however, were identified with different methods (Additional file 2 Table 8). The first gene 291 

(AAEL007657 – ‘putative vitellogenin receptor’) significantly differs between the DH600 populations 292 

and all other populations, whereas the second (AAEL002683 – ‘xanthine dehydrogenase’) significantly 293 

differs only between the CH200 and DH600 populations.   294 

Along the altitudinal temperature gradient, knockdown resistance (kdr) mutations slighlty differ 295 

between populations. CH200 and KT1300 are the biggest urban sites, while CH200 and DH600  were 296 

highly effected by DENV in the last years. Thus, insecticide resistance due to a regularly insecticide use 297 

at this sites could potentially be expected.  Aedes aegypti populations carry kdr mutations majorly in the 298 
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biggest urban sites, respectively KT1300 followed by CH200. The V1016G mutations differ the most 299 

between populations with the wildtype (GGA) most prominently in CH200 (0.32) and KT1300 (0.44). 300 

The F1534C mutation (TGC) is major in KT1300 (0.31) compared to all other populations and no 301 

difference between populations is present in the S989P mutation (Table 5, Figure 3). None of the kdr 302 

mutations overlap with a significant OW/OP. Accordingly, they do not contribute to patterns of 303 

population differentiation. For the Bayesian approach, we excluded the S989P mutation, since no 304 

difference between populations was present. The Bayesian approach for comparison of the allelic 305 

combinations F1534C and V1016G points out that there is no effect of altitude on the respective allele 306 

frequencies (Additional file 1 Figure 12).  307 

Table 5. Allele frequency and allelic variant of kdr mutations with exact genome position. 308 

Altitude of sampling sites of Ae. aegypti populations: CH200 = 200 m asl, DH600 = 600 m asl, 309 

DK800 = 800 m asl, KT1300 = 1300 m asl. 310 
Allele frequency  

Mutation ID Chromosome Position Amino acid code CH200 DH600 DK800 KT1300 

S989P NC_035109.1 315984077 
TCC – wildtype 1 1 1 1 

CCC – mutant 0 0 0 0 

V1016G NC_035109.1 315983762 
GTA – wildtype 0.68 0.93 0.78 0.56 

GGA – mutant 0.32 0.07 0.22 0.44 

F1534C NC_035109.1 315939224 
TTC – wildtype 0.94 0.88 0.91 0.69 

TGC – mutant 0.06 0.12 0.09 0.31 

Allelic variant (total count) 

S989P NC_035109.1 315984077 
TCC – wildtype 26 22 23 26 

CCC – mutant 0 0 0 0 

V1016G NC_035109.1 315983762 
GTA –wildtype 15 14 14 10 

GGA – mutant 7 1 4 8 

F1534C NC_035109.1 315939224 
TTC – wildtype 17 15 10 9 

TGC – mutant 1 2 1 4 

 311 

In total, 200 significant SNPs in 53 detoxification genes are associated to local adaptation, which equals 312 

to ~0.36% of all protein-coding genes and ~4.4% of protein coding genes involved in local adaptation 313 

(Figure 3, Figure 6, Additional File 2 Table 9). These SNPs significantly differ between populations 314 

within the OP as well as the OW (Figure 3). Out of the 200 SNPs, 113 SNPs in 30 genes are a non-315 

synonymous mutation. The allele frequency distribution at these candidate loci were compared in a heat 316 

map revealing a slightly different pattern of frequency distribution in the KT1300 population (Figure 6). 317 

An opposite trend of allele frequency distributions is present between the KT1300 population and 318 

CH200 population as well as DK800. 319 
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 320 

Figure 6. Heat map of allele frequency distribution at candidate loci containing non-321 

synonymous mutations. In total 113 detoxification genes of Ae. Aegypti are given. Allele 322 

frequencies were sorted after KT1300. Altitude of sampling sites of Ae. aegypti populations: 323 

CH200 = 200 m asl, DH600 = 600 m asl, DK800 = 800 m asl, KT1300 = 1300 m asl. 324 
 325 

In total, five SNPs in four genes are involved in vector competence, signify local adaptation, which 326 

equals to ~ 0.03% of all protein coding genes and ~0.3% of protein coding genes involved in local 327 

adaptation (Figure 7). Three SNPs in two genes (‘protein scarlet’, ‘leucine-rich repeat-containing protein 328 

40’) overlap with OW-OP and have been earlier associated with DENV-1 infection by Dickson (49). 329 

Two of these three SNPs are non-synonymous SNPs. The OW-OP overlapping SNPs that are associated 330 

with DENV-3 infection in the two genes ‘cadherin-86C’ and ‘integrin alpha-PS1’ are synonymous SNPs 331 

(Figure 7, Figure 3).  332 
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 333 

Figure 7. Heat map of allele frequency distribution at candidate loci associated with DENV 334 

infection.  Non-synonymous (marked with a *) and synonymous mutations associated with A) 335 

DENV-1 infection or B) DENV-3 infection of Ae. aegypti. Altitude of sampling sites of Ae. 336 

aegypti populations: CH200 = 200 m asl, DH600 = 600 m asl, DK800 = 800 m asl, KT1300 = 337 

1300 m asl. 338 
 339 

Discussion 340 

The present study disentangles the genomic signature of local and climate adaption in Ae. aegypti 341 

populations that have been collected from an altitudinal gradient with ongoing mosquito and disease 342 

expansion to higher altitudes in the Hindukush Himalayan region (33,35,36,39,50). The observed pattern 343 

of genomic differentiation of Ae. aegypti populations is strongly associated to climatic differences 344 

between sampling sites. Major differences in allele frequencies uncovered 33 candidate genes for 345 

climate adaptation as well as 1200 candidate genes for local adaption. Our results specifically highlight 346 

the differing climate adaptation in the Ae. aegypti population sampled from the highest altitude (1300 347 

m asl, Kathmandu) compared to the lowland populations (≤ 800 m asl) in Central Nepal. This genomic 348 

profiling of climate adaptation in Ae. aegypti along an altitudinal gradient contradicts our original 349 

hypothesis of a gradual expansion process of the disease vector. 350 

Nepalese Ae. aegypti populations belong to one subspecies 351 

In comparison to worldwide Ae. aegypti populations, we show that all examined Nepalese populations 352 

belong to one subspecies which is most probably Ae. aegypti aegypti (Figure 2). This distinction was 353 

mandatory to verify that allele frequency differences were analyzed on the population but not the 354 

interspecific level. In general, it is important to distinguish the subspecies due to their likely difference 355 
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in vector competence (51), even though these interspecific effects seem to depend on virus genotypes 356 

(52) and environmental factors (53,54). Additionally, it is important to differentiate between the 357 

subspecies because of their different host preference for humans or animals (55).  358 

Patterns of genomic differentiation imply isolation of populations by environment  359 

Other than the expected pattern of gradual variation along the altitudinal temperature gradient, we found 360 

significant allele frequency differences at candidate loci for climate adaptation only between the 361 

Kathmandu (KT1300) population and all other lowland populations (≤ 800 m; Figure 4). Thus, lowland 362 

populations versus the highland population form two differentiated clusters. This non-gradual pattern of 363 

genomic differentiation along the altitudinal gradient can have alternative, though not necessarily 364 

mutually exclusive, reasons. Since, the capital of Nepal (Kathmandu), is the central trading point of the 365 

country, population differentiation might derive from differences in population history such as a 366 

differential invasion history of the Kathmandu population. Alternatively, with regard to the 367 

environmental conditions along the altitudinal gradient assessed in this study, the significant 368 

differentiation in climate-associated outlier loci might be indicative for local high-altitude adaptation.  369 

Genetic differences between Kathmandu and the lowlands might be indicative for a differential invasion 370 

history of Ae. aegypti in Central Nepal. To better understand the invasion process, it is important to 371 

understand how the vectors get dispersed throughout the country. The active dispersal capacity of Ae. 372 

aegypti is low and was reported as up to 730 m in the field (56–59). Thus, the vector expands its 373 

distribution range passively. Aedes mosquitoes eggs get dispersed either by the transportation of eggs in 374 

used vehicle tires (60) or through hitch-hiking of adult mosquitoes via human transportation such as 375 

aircrafts and vehicles (61,62). Ae. aegypti was first recorded in Southern Nepal in 2006 (37) and since 376 

then spread rapidly throughout the country following different introduction routes along the gradient 377 

(33,35,43,46). In Kathmandu, Ae. aegypti was recorded for the first time in 2009 (63). The sampling 378 

sites from Chitwan (CH200) to Kathmandu (KT1300) are connected via multiple introduction roads 379 

from India (or Asia). However, since Kathmandu is the capital of Nepal and the only international airport 380 

is located there, it is thus the primary destination for any long-distance transport. This might have 381 

resulted in repeated invasion events of Ae. aegypti from outside of Nepal into Kathmandu. Given the 382 
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clustered pattern of population differentiation between lowlands and highland populations, multiple 383 

differential or repeated invasion events across the gradient are likely. However, it has to be noted that 384 

travel and transportation routes are not unidirectional in Nepal and that invasion from Kathmandu to the 385 

lowlands is also possible. A final conclusion would, however, require a genome-wide individual-based 386 

analysis of the population structure and admixture, which cannot be performed with the given dataset. 387 

Next to invasion history, local high-altitude adaptation exclusively in the highland population without a 388 

gradual pattern along the altitudinal gradient could imply distinct differences in environmental and 389 

climate conditions in Kathmandu when compared to the lowland population sites. This can be 390 

confirmed, since the Kathmandu climate is the coldest along the gradient, but also experiencing the 391 

harshest increase in temperature due to urbanisation, a so-called heat island effect ((41,43,64–66); 392 

Additional file 1 Figure 3+4). Nevertheless, Kathmandu represents the coldest climate where sub-zero 393 

temperatures as cold as - 2°C were present during the last years ((43); unpublished data; Phuyal, Kramer 394 

et al. 2021). We can thus conclude, that the Kathmandu climate is extreme, under strongest change, and 395 

different from the climate conditions in the lowlands, thus setting differential conditions eventually 396 

driving the isolation by environment pattern (IBE) between Kathmandu and the lowlands. Since genetic 397 

differentiation of the investigated Ae. aegypti populations is independent of geographic distance (see 398 

Mantel’s test) but increases with environmental differences (Figure 4), we conclude IBE over isolation 399 

by distance (IBD; (67)). Moreover, of all EAP-OWs significant SNPs were the lowest for ENV1 ~ 400 

altitude, indicating that differences between populations is not majorly described by altitudinal 401 

geographic differences. Thus, these are optimum conditions for the identification of signatures of local 402 

adaptation without confounding demographic effects (68,69). While the evolution of IBD is related to 403 

the interplay of genetic drift and movement, IBE is usually related to the adaptability to environmental 404 

selection pressures (70,71). Extreme and distinct environmental and climate conditions in Kathmandu, 405 

thus, are likely to exert strong selection pressure on the highland population. The ecologically driven 406 

high-altitude adaptation is likely priming the Kathmandu population for further successful expansion 407 

into cooler habitats. After the successful establishment of populations, populations promote the speed 408 

up of the invasion by generating new introduction routes into the invaded range, the so-called bridgehead 409 

effect (summarized by (29)). In Nepal, Ae. aegypti is present up to 2100m altitude above mean sea level 410 
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but far less abundant at altitudes above 1300m (33,35,43,46). It is unclear, if individuals present above 411 

1300m are newly introduced each year or permanently established within the region. Thus, the 412 

established Kathmandu population can be defined as range-edge population along the investigated 413 

gradient.  414 

The non-gradual pattern of genomic differentiation across Nepal reveals that Ae. aegypti bears high 415 

potential for the invasion of cooler habitats for different, mutually not exclusive reasons. Strong 416 

environmental filtering and selection is promoting high-altitude adaptation (see next section) in a 417 

population that has either been carrying a pre-adaptation due to the introduction via alternative invasion 418 

events compared to populations in the lowlands or been reaching the range-edge. The observed genomic 419 

differentiation may eventually lead to the formation of two Ae. aegypti lineages in Nepal, with temperate 420 

Ae. aegypti populations evolving along the altitudinal, as well as latitudinal gradient and a highland 421 

population with further cold tolerance adaptation. Thus, the cold tolerance and hence the fitness 422 

advantage of the high altitude population in Nepal (details on the cold tolerance potential of the Nepalese 423 

populations: (42)) may further increase (27), as also indicated by the establishment of a more cold 424 

resistant population of Ae. aegypti in a temperate region in Argentina (Buenos Aires; (18,72,73)). Such 425 

a phenotype would increase the introduction risk of Ae. aegypti into new, previously too cold ecoregions 426 

with dengue naïve human population as a process fueled by climate warming. Follow-up studies will be 427 

needed to disentangle the effects of the alternative hypotheses, ideally also investigating if individuals 428 

present at altitudes higher than Kathmandu already established and adapted to the colder climate.  429 

Signatures of climate adaptation in Ae. aegypti are genomically wide-spread and involve few genes  430 

Here, the genomic footprint of climate adaptation could be uncovered in Ae. aegypti. Similar 431 

investigations were performed in different insect species, e.g. the harlequin fly (30) and two cryptic ant 432 

species (69). The investigated Ae. aegypti populations across the Nepalese altitudinal gradient reveal 33 433 

candidate genes that are genomically wide-spread with signatures of climate selection, which equals to 434 

~0.2% of protein-coding genes. The genomic footprint of climate adaptation (i.e. adaptation to 435 

temperature and precipitation) in the harlequin fly Chironomus riparius involves 1.2% of protein-coding 436 

genes (30). This variation might be explained by differences in sampling design, as the altitudinal 437 
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sampling gradient in Central Nepal comprised small to intermediate geographic distance, whereas 438 

Waldvogel and colleagues (30) sampled the fly populations at larger (>200 km) distances across a 439 

continental climate gradient. The here presented short-distance sampling design along a well-defined 440 

climate gradient reduces the likelihood of false-positive signals of undetected environmental variables 441 

if compared to larger scale designs incorporating higher cross-correlating heterogeneity.  442 

Among the candidate genes of climate adaptation, significantly enriched biological processes (GO 443 

terms) either encompass general functions that are enriched to more than one environmental variables 444 

(e.g. ‘protein phosphorylation’, see Additional file 1 Table 8 for comprehensive results) or are either 445 

function specific and associated with precipitation only. As an example, the GO term ‘regulation of pH’, 446 

is associated with precipitation and is known to play a role in the hatching of larvae (74). Since for the 447 

hatching of eggs pools of rainwater are needed, the association with precipitation adds up (75). 448 

For some of candidate genes (EAP-OW), it was possible to identify non-synonymous SNPs. Non-449 

synonymous mutations may be associated with functional protein differences of phenotypic effect (76). 450 

We identify twelve candidate genes (EAP-OW) for climate adaptation containing non-synonymous 451 

mutations (Table 3, Table 4, Figure 5; Additional file 1 Information 1), such as the ‘toll-like receptor 452 

Tollo’. This gene was already studied in Ae. aegypti and plays a role in the immune response, and 453 

particularly in the anti-dengue defense (e.g. (77); details in Table 4). In addition, the non-synonymous 454 

mutations within this candidate gene lead to an amino acid with different characteristics (Additional file 455 

1 Table 7). Since synonymous mutations may influence splicing, RNA stability, RNA folding, 456 

translation or co-translational protein folding, candidate genes (EAP-OW) containing synonymous 457 

mutations were also checked for their biological function ((78); for details Additional file 2 Table 5-7). 458 

The ‘segmentation protein Fushi tarazu’ and ‘Nasrat’ are important genes in the egg stage. The first one 459 

is involved in the segmentation in the early embryo of Drosophila and expresses lethal effects in Ae. 460 

aegypti when overexpressed, whereas the second is involved in eggshell melanization and egg viability 461 

(79,80). These genes are 1) involved in the survival and later successful hatching of eggs and 2) 462 

associated with precipitation. The association with precipitation adds up since precipitation has an 463 

impact on survival and later successful hatching of eggs. Noteworthy, the ‘segmentation protein Fushi 464 

tarazu’ is also associated with the cold tolerance of the egg stage, indicating that cold temperature 465 
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potentially affects segmentation in the embryo of Ae. aegypti (79). For verification, knock-out studies 466 

testing the molecular function of the Ae. aegypti candidate genes containing different SNPs at given 467 

positions are highly recommended. 468 

Signatures of local adaptation reveal a broad functional basis in Ae. aegypti 469 

Other than gradual climate selection regimes, local selection pressures act on populations only in their 470 

specific habitat. Accordingly, there are SNPs that are not associated to the climatic gradients but still 471 

highly divergent between some or all Ae. aegypti populations (OW-OP). These SNPs are candidates for 472 

local adaptation. Approximately 8.2% of protein-coding genes, i.e. 1200 genes, show signatures of local 473 

selection. Similarly, 7.6% of genes were found to be locally adapted in C. riparius (30). Two of the 474 

identified candidate genes for local adaptation were already found to play a role in local adaptation of 475 

Ae. aegypti in Panama (27). Due to the identification of these two genes in Ae. aegypti populations from 476 

different countries, the two genes seem to play an important role in local adaptation of this species. The 477 

first gene ‘putative vitellogenin receptor’ significantly differs between the DH600 population versus the 478 

other populations and the second ’xanthine dehydrogenase’ only significantly differs between the 479 

CH200 and DH600 population. The tropical climate at the respective lowland populations (CH200, 480 

DH600) and the populations from Panama support the indication that the genes could be important in 481 

coping with tropical climate variables such as high humidity or high temperature. In general, it is known 482 

that the ‘putative vitellogenin receptor’ plays a role in the vitellogenesis (yolk formation) of Ae. aegypti 483 

females and is increasingly upregulated post-emergence prior to the first gonotrophic cycle (81) while 484 

the ‘xanthine dehydrogenase’ is involved in survival of blood-fed Ae. aegypti mosquitoes. Silencing of 485 

this gene influences digestion, excretion and reproduction. Due to the lethal effect in blood-fed 486 

mosquitoes, this gene could be targeted to control vector populations (82). 487 

Amongst all candidate genes for local adaptation, we spotlight two traits that are important from a 488 

medical vector-borne disease perspective, namely insecticide resistance and vector competence. The 489 

insecticide resistance of Ae. aegypti determines the success of vector control programs (47). Most 490 

variations with the detoxification enzymes are probably not functionally associated with insecticide 491 

resistance. Instead some are the consequence of strong selection pressure, hence only some reflect 492 
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selection of a variant showing an increased metabolic activity against insecticides (47). However, kdr 493 

mutations such as V1016G, F1534C and S989P are known to lead to pyrethroid insecticide resistance 494 

in Ae. aegypti (summary in (47)). In accordance with Kawada (82), in Nepal the kdr mutations F1534C 495 

and V1016G are present with varying frequencies and the S989P mutation was not present in all study 496 

populations (Table 5, Figure 3). Within the CH200 and KT1300 population, there is a trend of increased 497 

kdr mutations. It can be hypothesized that this trend is present since fogging of insecticides 498 

(deltamethrin) mainly occurs in urban areas. Thus kdr mutations may be more present in urban areas 499 

such as CH200 and KT1300 compared to less urban regions such as DK800 and DH600 (82). Kawada 500 

(82) showed at least for CH200 and KT1300 their susceptibility to pyrethroids. However, none of the 501 

kdr mutations are found to overlap with a significant OW/OP and accordingly they did not contribute to 502 

patterns of population differentiation. Given that the Nepalese populations showed an intermediate to 503 

high resistance to pyrethroids, but only small amounts of insecticides are used in Nepal compared to 504 

other Asian countries (82), this indicates a reduced selection pressure on kdr mutations in Nepal. The 505 

genetic presence of kdr mutations might derive from the introduction of Ae. aegypti populations from 506 

neighboring countries (82), most likely from India.  507 

The vector competence of Ae. aegypti determines the efficiency of dengue transmission to humans and 508 

thus it is important to understand this trait at a local level. SNPs associated with DENV-1 and/or DENV-509 

3 infection were found in all populations and likely play a role in dengue resistance of Ae. aegypti in 510 

Central Nepal. This assumption is supported by reported DENV type-specific resistance of a population 511 

from Gabon (49). Interestingly, the candidate gene ‘integrin alpha-PS1’ has already been proven to play 512 

a role in infection of bluetongue virus in Ae. albopictus  (83). The synonymous mutation in this candidate 513 

genes ‘integrin alpha-PS1’ (EAP-OW) may influence splicing, RNA stability, RNA folding, translation 514 

or co-translational protein folding (78), since in infected Ae. albopictus cells, mRNA of the candidate 515 

gene was upregulated. One may speculate, that the candidate gene ‘integrin alpha-PS1’ influences the 516 

dengue virus dissemination, replication and transmission efficiency in Ae. aegypti.  517 

However, the verification of SNPs and their functional meaning in the identified candidate genes for 518 

insecticide resistance and dengue vector competence merits definitely further research. 519 
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Conclusion and implications for climate adaptation  520 

In a worldwide comparison with other Ae. aegypti populations we showed that Nepalese mosquitoes 521 

belong to a single subspecies. Patterns of genomic differentiation between the 1300 m population in 522 

comparison to all other lowland populations (≤ 800 m) imply isolation by environment (IBE). By 523 

demonstrating a distinct genomic footprint of climate adaptation in Ae. aegypti, our study assists to close 524 

the knowledge gap on adaptive traits and associated gene sets on climate adaptation of Ae. aegypti (31), 525 

while signatures of local adaptation reveal a broad functional basis of the species. In total, twelve 526 

candidate genes (EAP-OW) for climate adaptation containing non-synonymous mutations were 527 

identified. Amongst all candidate genes for local adaptation, we spotlight two traits important from a 528 

medical VBDs perspective, namely insecticide resistance and vector competence.  529 

Genomic differentiation of the 1300 m population compared to the lowland populations either indicate 530 

invasion of a pre-adapted population due to an alternative invasion route compared to the lowland 531 

populations or local adaptation of the 1300 m range-edge population. In any case, the identified alleles 532 

of the highland population are likely relevant for their invasion to colder regions. In general, it is of 533 

major importance to track the trends of climate adaptation not only in emerging viruses (84), but also in 534 

the respective vector populations especially. On the most basic level, differentially adapted populations, 535 

be it to climate or local conditions, could have different abilities to transmit arbovirus diseases (27). 536 

With our study we demonstrate that effective monitoring of vector populations using NGS strategies 537 

allows to interpret emerging expansion trends, and especially population samples proved to be a 538 

powerful and cost-effective methodology to assist the comprehensive monitoring and mapping of the 539 

vector species Ae. aegypti (85). Patterns of population differentiation, genomically as well as 540 

physiologically, deliver important evolutionary and ecological information to be integrated into vector 541 

distribution models or VBDs risk assessments under climate change scenarios, especially in cooler 542 

ecoregions (44). Thus, current distribution models predicting the future distribution of vector 543 

populations should incorporate the adaptive response of species for more precise predictions (27). 544 

Genomic diversity and thus biodiversity by means of adaptation and simultaneously climate warming is 545 

likely to increase the risk of expansion of Ae. aegypti worldwide to colder ecoregions. With the 546 

increasing distribution range of the vectors worldwide as well as in Nepal and the HKH region in 547 
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particular (9,19,20) also the spread of VBDs will increase (worldwide: e.g. dengue: (6); Nepal: (86)), 548 

underlining that parts of biodiversity can be detrimental to human health. For efficient vector control, it 549 

is important to consider that locally adapted populations could impact control efforts that are based on 550 

gene drive system, but adaptive genes could also be targets for population control using gene editing 551 

strategies (87–89). 552 

Results obtained in this study could potentially be used for the inference of the adaptive response of Ae. 553 

aegypti to colder ecoregions worldwide. The health systems in cooler ecoregions need to prepare for 554 

future VBD outbreaks and develop surveillance strategies to prevent the establishment of dengue 555 

vectors. To identify emerging trends within the adaptation of Ae. aegypti to new environments, we 556 

recommend to investigate populations in Nepal from higher altitude as well as populations along 557 

altitudinal and latitudinal clines worldwide. Moreover, next to reciprocal transplant experiments (27,87), 558 

molecular investigations of the function of the candidate genes, the verification of the association of 559 

candidate genes with different environmental variables and differences in vector competence between 560 

the KT1300 populations and lowland populations should be verified.  561 

Methods 562 

Collection of mosquitos  563 

We sampled Ae. aegypti populations, each with a minimum of 100 individuals, from four sampling sites: 564 

Chitwan (CH200, 200 m above sea level), Dhading (DH600, 600 m asl), Dharke (DK800, 800 m asl) 565 

and Kathmandu (KT1300, 1300 m asl). The sampling sites are distributed along an altitudinal and 566 

temperature gradient in Central Nepal ((42,46); Figure 1) and connected via a motorway (Chitwan  567 

Dhading (side valley; road distance:~97 km)  Dharke (~57 km)  Kathmandu (~31 km)). Aedes 568 

larvae, pupae and adults that were available in/near temporary water reservoirs, such as containers or 569 

tires, were collected during the high mosquito season (late monsoon and early post-monsoon; September 570 

till October 2018; (46). Immature stages were reared to adults using paper cups covered with a net and 571 

water from their respective sampling site. If less than 100 Ae. aegypti individuals (larvae, pupae, adults) 572 

were sampled in the field, eggs from the same sampling campaign were reared to adulthood at the 573 

Department of Environmental Toxicology & Medical Entomology, Institute of Occupational, Social and 574 

Environmental Medicine; Goethe University Frankfurt, Germany (more details in Additional file 1 575 
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Table 1 and (42,46). either sampled or emerged from rearing were conserved in 100% ethanol. Dead 576 

mosquitoes were identified by a local taxonomist following the guidelines described in (32). This 577 

combination ensured that all individuals of the pool represented true field samples, only differing in the 578 

developmental stages at the time point of sampling. For DNA isolation (Qiagen DNeasy Blood and 579 

Tissue kit, Hilden, Germany), two legs of each adult mosquito were pooled per population. To control 580 

the quantity of DNA, Qubit® Fluorometer (Invitrogen, Massachusetts- USA) measurements were 581 

performed. 582 

Pool-Seq genome scans 583 

Four pooled DNA samples were sequenced on an Illumina HiSeq to yield 150 bp paired-end pooled 584 

sequencing (Pool-Seq) whole genome data (Figure 1). The ratio of ≥96 individuals per population and 585 

targeted coverage of ~20-30X per pool was chosen to allow an accurate estimation of genome-wide 586 

allele frequencies (90,91). Pool-Seq genome data were quality trimmed and separately pre-processed 587 

using the wrapper script autotrim.pl ((30), available at https://github.com/schellt/autotrim), which 588 

integrates Trimmomatic (92) and fastqc (93). 589 

Analysis of subspecies: Microsatellite analysis 590 

To link our population genomic analyses to prior microsatellite work and to identify potential subspecies 591 

as they are described for Ae. aegypti (94), we developed a workflow to assess microsatellite (µsats) 592 

diversity from genome-wide Pool-Seq data. For this analysis explicitly, the trimmed files were mapped 593 

to the unmasked reference genome of Ae. aegypti (48) using NextGenMap (ngm, (95)). Accounting for 594 

the possible presence of subspecies of Ae. aegypti (dominant African subspecies: Ae. aegypti formosus; 595 

outside of Africa: Ae. aegypti aegypti (94)) in the samples, ngm was used since this mapper is 596 

independent of the amount of genomic polymorphism present in reads (95). Each read of genome-wide 597 

Pool-Seq data belonging to one individual chromosome (diploid individuals), provides the required 598 

haplotype-specific data to analyse population structure using µsats. First, 12 µsats were identified (A1, 599 

A9, AC1, AC2, AC4, AC5, AG2, AG4, B2, B3, CT2, AG1; (94)), located and extracted along the 600 

reference genome via the  in_silico_PCR.pl script (https://github.com/egonozer/in_silico_pcr) and 601 

making use of primers from Brown and Slotman (96,97). AG1 could not be identified along the reference 602 

genome and was therefore excluded from the analysis. Following the identified coordinates of the 603 
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reference genome, µsats alignments were extracted from mapped bam files using samtools (98). Each 604 

µsat alignment was re-aligned to the extracted µsat reference sequence and, if available, to the Slotman 605 

(97) reference sequences of the respective µsats. Alignments were manually edited using Geneious 606 

Prime® 2019.2.1. Repeated elements were identified either using the µsats reference (97) or the MISA-607 

web tool (99). As a measure of quality filtering, re-aligned sequences (single sequences = haplotypes) 608 

were included only if each µsat covered at least 2 bp before the start and behind the end of satellite 609 

region. Gaps and duplicates were removed and start and end positions of sequences were set to Ns to fix 610 

the alignment structure when saving the data in fasta format. Counting repeated elements (in bp) per 611 

µsats and individual, their frequencies per population were calculated. Using this population frequency 612 

data, 50 individuals were simulated with a custom Python script under the assumption of Hardy-613 

Weinberg equilibrium in order to make our data comparable to individual frequency data. Individuals 614 

were only simulated if a minimum amount of four reads was present at a µsat.  615 

To compare this data with a world-wide set of populations and to test for the presence/absence of 616 

subspecies in Nepal, the same workflow was followed using publically available genome-wide data of 617 

four laboratory populations (West Africa – likely from Freetown-Sierra Leone belonging likely to Ae. 618 

aegypti formosus, likely Ae. aegypti aegypti: Australia – Innisfail, USA – Clovis, Costa Rica – 619 

Puntarenas) comprising each 30 females (individual sequencing; (48,101); Accession number: 620 

SRX3413563-SRX3413566). Only µsats with a coverage higher than or equal to four individuals were 621 

used for the analysis of population structure (used µsats: A9, AC1, AC4, AG2, B2, B3; Additional file 622 

1 Table 2). The population from the USA was excluded due to low individual coverage of this specific 623 

data set (Additional file 1 Table 2). Using the Bayesian clustering method implemented in the software 624 

STRUCTURE v. 2.3.4 (101), the population structure as described in (94) was assessed. Each conducted 625 

run assumed an admixture model and correlated allele frequencies with a burn-in of 250,000 iterations 626 

with in addition 750,000 repetitions. To specifically test for differences between all populations and the 627 

African population, the structure analysis was performed with K=2 (compare with (94)) with ten 628 

iterations. To summarize STRUCTURE results of the ten iterations per K and plot consistent cluster 629 

coloring CLUMPAK was used (102). In order to exclusively assess differences among the populations 630 

of Nepal the population structure with K=1-4 was calculated. 631 
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Genome wide population differentiation 632 

Estimation of population differentiation using the genome wide SNP data followed the pipeline of 633 

PoPoolation2 (103) and (30). Before mapping, overlapping read pairs were assembled using PEAR 634 

(104). This was necessary in order to make use of the full data set, though only a small proportion of 635 

reads were found to overlap, while avoiding erroneous allele frequency estimates in overlapping regions. 636 

Assembled and unassembled reads were mapped to the available reference genome (masked version) of 637 

Ae. aegypti (48) sing  bwa mem (105). Duplicates were removed using picard tools (106) and all bases 638 

below a minimum mapping quality of 10 were discarded (samtools; (98)). PoPoolation (107) was used 639 

to estimate population specific parameters such as the nucleotide diversity (π; genome-wide per site and 640 

in 1kb window, exon-wide per site) and the population mutation parameter (θ; genome-wide in 1kb 641 

window). The effective population size (Ne) was calculated using genome-wide θ estimates as follows: 642 

𝑁𝑒 =
𝜃

4𝜇
 . The genome wide mutation rate (μ) of Chironomus riparius was used for the Ne calculation 643 

(108).  644 

For comparative analyses between populations, the pipeline PoPoolation2 was followed (103). In brief, 645 

pairwise FST values (fst-sliding.pl) of all population pairs in a sliding window of 1kb along the 646 

subsampled sync-file were calculated. The upper 1% tail of the FST distribution was defined as threshold 647 

for non-neutral differentiation, as this has been shown to provide a conservative threshold for a robust 648 

drift expectation (30). In addition, for each 1 kb-window Fisher’s p-values (fisher-test.pl) were 649 

calculated and the Benjamini-Hochberg correction against multiple testing to all p-values was 650 

performed. We defined highly significant outlier windows (OW) to be those windows that remained 651 

significant after FDR correction (q < 0.01). Circos tool was used to graphically illustrate the distribution 652 

of OWs along the genome (109). As described for the OW estimation we additionally calculated highly 653 

significant outlier positions for each population (OP) per site. In addition, to test for genome-wide 654 

isolation by distance patterns, a Mantel test with 23 permutations (complete enumeration) in R/VEGAN 655 

(110) between the genome-wide mean FST values and the geographical distance was calculated. 656 

Environmental data 657 

The following environmental data of Aedes sampling sites were analysed to provide the environmental 658 

data for the GEA: i) microclimate data/logger data (temperature data; Additional file 1 Table 3 and 4), 659 
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ii) high-resolution data from CHELSA of 1979–2013 (Additional file 1 Table 3), and iii) Bioclim 660 

variables ((111); data source: (112); 30 arcsec, ~1 km from CHELSA version 1.2; Additional file 1 661 

Table 3). HOBO data loggers (type UX100-011A, ONSET®) were installed indoors in houses with no 662 

heating or air condition and bad isolation (I) and outdoors at shaded artificial places (SH; e.g. near 663 

households) at sampling sites from November 2017 to March 2019. Loggers were additionally installed 664 

at 1800 and 2050 m asl (Ranipauwa =RP1800, 1800 m asl; Dhunche= DU2050, 2050 m asl). In Dharke 665 

(800 m), HOBO loggers were missing and thus the data of the 800 m sampling site were interpolated 666 

from logger data obtained along the altitudinal gradient of 200 m to 2050 m asl using linear regression 667 

(Prism®, Version 7, GraphPad Software Inc., USA). By means of a principal component analysis 668 

(PCA), confounding covariation in the environmental data set was reduced.  669 

GEA 670 

To analyse how the genomic differentiation is potentially correlated with environmental variation across 671 

sampling sites, a genotype-environment association analysis was performed using LFMM (Latent Factor 672 

Mixed Model) in the frame of the ‘LEA’ R-package (113), which is amongst the most commonly applied 673 

tools in GEA studies (45). The Pool-Seq approach does not account for pool size (30) and thus 20 674 

pseudo-individual allele frequency spectra were inferred by simulating observed allele frequencies at 675 

each locus referring to the BAYENV approach (114). In accordance, for each locus environmental 676 

factors were replicated 20 times. Considering the large genome size of Ae. aegypti as well as the main 677 

target to identify candidate genes in downstream analysis only the coding regions (CDS) were included. 678 

Three PCA components and the cold tolerance (normalized mean survivorship after cold exposure to -679 

2°C for 8 days to controls; CT; ENV4; (42)) were used as environmental input variables (ENV) for the 680 

GEA (Additional file 1 Table 6). We ran the LFMM function “lfmm_ridge” with a latent factor of K = 681 

4 (reflecting number of populations; algorithm = analytical). p-values were calibrated by computing the 682 

median and MAD (Median Absolute Deviation) of the z scores using the “lfmm_test” function 683 

(Additional file 1 Figure 8, Additional file 1 Table 6). We ran LFMM twice for different combinations 684 

of environmental input variables: 1) PCA1 – altitude, 2) PCA2 – precipitation, PCA3 – seasonality plus 685 

PCA4 – CT (Additional file 1 Table 5, Additional file 1 Figure 6-9). Resulting output p-values were 686 

FDR corrected and positions with q < 0.01 defined as significant ENV associated positions (EAP).  687 
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We then compared the highly differentiated outlier windows (OW) from our previous analysis on 688 

population differentiation, with the here resulting set of EAPs and checked for overlapping regions of 689 

the two sets. With regard to the above-described characteristics to define OWs, we again stringently 690 

considered only those EAPs, which fell into a respective OW (EAP-OW). Differences in allele 691 

frequencies of the candidate SNPs (EAP-OW positions) along the gradient were analyzed per ENV 692 

using Prism® (Version 7, GraphPad Software Inc., USA). In order to identify highly significant 693 

positions for climate adaptation, we verified if EAP-OW are additionally present in those OPs.  694 

Functional enrichment associated with climate adaptation  695 

Candidate genes were studied in a functional enrichment analysis. Therefore, all EAP-OW positions 696 

were annotated using the coordinates of protein coding genes of the Ae. aegypti reference genome (48). 697 

InterProscan (115) was used to classify proteins into families and predicting domains as reference for 698 

the functional enrichment analysis. Gene ontology (GO) terms significantly enriched in genes were then 699 

analyzed using the topGO R package (116) in the category ‘biological processes’, with the weight01 700 

algorithm and Fisher statistics. Enriched GO terms with a p < 0.05 were further assessed (30). To analyze 701 

if base substitutions at SNPs lead to synonymous or non-synonymous mutations in the amino acid 702 

sequence of candidate genes, tbg-tools v0.2 (https://github.com/Croxa/tbg-tools; (76)) was used. The 703 

characteristic of the amino acid present, before and after the base exchange was also assessed (117,118).  704 

 705 

Knowledge on the biological function of candidate genes containing non-synonymous mutations was 706 

collected from literature and databases. We performed a literature survey in Google Scholar by using 707 

the candidate gene name (or/and the Locus tag) in combination with the following terms: 1) Aedes 708 

aegypti, 2) Aedes, 3) mosquito, 4) insect. Furthermore, we extracted candidate gene IDs containing non-709 

synonymous and synonymous mutations and searched for their function using UniProt, NCBI, and 710 

Vectorbase. Moreover, we screened GO-terms of candidate genes in UniProt for similarities of GO-711 

terms found in the functional enrichment analysis. The procedure was likewise repeated also for 712 

candidate genes containing synonymous mutations but only the locus tag and the species name was used 713 

as a search term. 714 

 715 
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Genomic signatures of local adaptation  716 

Next to climate adaptation, we searched for candidate genes indicating strong local adaptation. 717 

Therefore, we defined candidate genes/positions laying in the CDS, that were not overlapping with an 718 

EAP but were present in an OW and additionally overlapped with an OP (OW-OP), as candidates for 719 

purely local adaptation. Potential candidate genes for local adaption that are involved in insecticide 720 

resistance or vector competence were especially taken into focus. Additionally, we compared candidate 721 

SNPs/genes of the Nepalese population with a recent study that investigated genomic signs of ‘local 722 

environmental adaptation’ (=climate adaptation) in populations from Panama (17 genes; (27)).  723 

 724 

We located the kdr mutations V1016G, F1534C, and S989P in the reference genome and extracted the 725 

sequences from one sorted bam-file of one population by using the  in_silico_PCR.pl script 726 

(https://github.com/egonozer/in_silico_pcr) and the primers given by (119). Extracted sequences were 727 

processed in Geneious Prime® 2019.2.1 and excact genome positions of the kdr mutations were 728 

calculated. Allele frequencies at the position of the kdr mutations were extracted from the sync-file and 729 

overlaps of kdr mutations with OW as well as OP were checked.  730 

 731 

The combined occurrence of the kdr mutations in the populations sampled along the altitudinal gradient 732 

was investigated using allele frequency differences. We fitted a Bayesian multivariate response model 733 

with binomial distribution of the allele frequency differences of kdr mutations with the brms package 734 

(120), which is a high-level interface to Stan (121) with R v.4.0.5 (122) in RStudio v.1.3.959 (123). The 735 

response variable “allele frequency” was included as the proportion of the major allele observations to 736 

all allele counts using “trials”. In addition to the fixed factor “altitude”, an “additive overdispersion” 737 

random effect was added to estimate the residual correlation. The model was run without intercept, and 738 

additionally without the residual random effect  as well as without altitude and tested for differences 739 

between those models using the “leave-one-out” criterion. As the model fit did not differ between 740 

models, the full model including altitude and the random factor is reported only. The full model was run 741 

with 4 parallel chains with 3,500 iterations each, where the first 1,000 were used as warm up and 742 

discarded. Priors were flat for allele frequencies as suggested by the “get_prior” function. Trace plots, 743 
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effective sample sizes (range of effective sample sizes: 755 – 4822) and R-hat (124) values (1 < 1.02) 744 

confirmed a proper convergence. 745 

Allele frequency differences of detoxification genes (as listed by (47)) were checked in our dataset and 746 

in the genome annotation published by (48) for i) being part of the CDS, ii) having an overlap with OW-747 

OP and iii) showing a non-synonymous or synonymous mutation (tbg-tools v0.2; 748 

https://github.com/Croxa/tbg-tools; (76)). Differences in allele frequencies at candidate SNPs between 749 

populations were visualized in a heat map (Prism®, Version 7, GraphPad Software Inc., USA).  750 

Local adaptation in vector competence was analyzed by comparing a list of SNPs (top 0.001% most 751 

significant SNPs) associated with DENV1 or/and DENV3 infection by (49) with the allele frequency at 752 

the respective site of the Nepalese populations. With a stringent approach, we checked whether these 753 

SNPs were present in the CDS, overlap with OW-OP and whether SNPs lead to a non-synonymous or 754 

synonymous mutation with the tbg tool. As described above, the allele frequencies at candidate SNPs 755 

were visualized using a heat map to compare them between the Nepalese populations, to identify 756 

different resistance to dengue infection (Prism®, Version 7, GraphPad Software Inc., USA).  757 
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