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Neural computations emerge from recurrent neural circuits that comprise hundreds to a few
thousand neurons. Continuous progress in connectomics, electrophysiology, and calcium imaging
require tractable spiking network models that can consistently incorporate new information about
the network structure and reproduce the recorded neural activity features. However, it is challenging
to predict which spiking network connectivity configurations and neural properties can generate
fundamental operational states and specific experimentally reported nonlinear cortical computations.
Theoretical descriptions for the computational state of cortical spiking circuits are diverse, including
the balanced state where excitatory and inhibitory inputs balance almost perfectly or the inhibition
stabilized state (ISN) where the excitatory part of the circuit is unstable. It remains an open
question whether these states can co-exist with experimentally reported nonlinear computations
and whether they can be recovered in biologically realistic implementations of spiking networks.
Here, we show how to identify spiking network connectivity patterns underlying diverse nonlinear
computations such as XOR, bistability, inhibitory stabilization, supersaturation, and persistent
activity. We established a mapping between the stabilized supralinear network (SSN) and spiking
activity which allowed us to pinpoint the location in parameter space where these activity regimes
occur. Notably, we found that biologically-sized spiking networks can have irregular asynchronous
activity that does not require strong excitation-inhibition balance or large feedforward input and
we showed that the dynamic firing rate trajectories in spiking networks can be precisely targeted
without error-driven training algorithms.

I. INTRODUCTION

Layered or columnar neuronal structures consisting of
hundreds to thousands of neurons constitute local com-
putational blocks in the mammalian cortex. Each com-
putational block has its particular size and connectivity
rules, which determine its dynamics and computational
repertoire. Therefore, understanding the computational
regimes of recurrent networks with different sizes rang-
ing from hundreds to millions of neurons and permit-
ting diverse connectivity patterns is essential to explain
the emergence of cognitive functions and behavior. It is
currently a challenge to quantitatively predict the activ-
ity of medium-sized spiking neural networks. The most
powerful mathematical theories now operate at two op-
posite scales: they either model a small number of neu-
rons that generate a particular activity pattern of inter-
est [1], or they operate in the limit of large or infinitely
large networks [2]. Few theories can make mathemati-
cally tractable, quantitative, and experimentally relevant
predictions for the diverse, intermediate sizes of spiking
networks reported for local cortical circuits [3–5].

Here, we study the activity regimes of spiking networks
whose sizes range from a few hundred to thousands of
neurons. Many parameters describing spiking neurons
and their intracortical connections have recently been
measured across cortical cell types [6], and detailed nu-
merical network simulations have been put forward [7].
However, it is challenging to interpret spiking network
simulations because network dynamics depend strongly
on multidimensional parameter settings, while exper-

imentally reported parameters can vary within broad
ranges [8–12]. On the opposite side of the complexity
spectrum are population rate networks [13–15] which de-
scribe the average activity of neurons in each population
and can relate a specific activity regime to a connectivity
configuration. However, it is still unclear how to trans-
late computational results obtained with rate models to
biologically plausible spiking networks.

One of the most popular models for large or infinitely
large networks is the balanced state framework [16]. Its
biological correlate is the experimentally reported strong
balance between excitatory and inhibitory synaptic cur-
rents [17] and asynchronous irregular spiking activity
[18]. However, the computational hallmarks of the bal-
anced network limit, including response linearity and
strong feedforward connections, are not consistent with
the diversity of experimentally reported non-linear re-
sponses across cortical areas [19] and reports of weak
feedforward inputs [20]. Therefore, experimental obser-
vations deviating from the balanced state predictions
have been often addressed by keeping the core excita-
tory/inhibitory (E/I) balance framework while adding
specific synaptic plasticity rules [21], more complex
synaptic strength distributions [22], or a semi-balance
condition which allows for excess inhibition [23]. Further-
more, the existence and stability of the balanced state
limit come with strict conditions on the feedforward and
recurrent connection strengths (see [16, 24], Appendix),
which exclude many network connectivity configurations.
Finally, the balanced limit is based on the assumption
that networks are infinitely large and ignores finite-size
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effects.

Firing rate models of neural sub-populations with a
nonlinear activation function [13, 25, 26] are an alter-
native to the balanced state model. These models of-
ten use either a threshold linear function [25] or an S-
shaped sigmoidal function [13, 27] to describe the acti-
vation function (F-I curve) of neurons. The advantage
of the threshold linear network model is that it can be
solved analytically; however, it fails to reproduce non-
linear responses often observed in experiments. On the
other hand, network models with the sigmoidal trans-
fer functions support nonlinear responses; however, sys-
tematic mathematical analysis for the activity states of
these networks is currently in short supply. The stabi-
lized supralinear network model (SSN) [26] uses a supra-
linear power law as a transfer function. The advantage of
the SSN model is that its activity states can be character-
ized analytically [15, 28] and it can reproduce a variety
of nonlinear cortical responses in the realistic range of
firing rates observed in vivo [26].

Could the SSN model predict and quantify the activity
regimes in medium-sized spiking networks for all connec-
tivity configurations? Here, we argue that the SSN model
can be used to predict diverse nonlinear responses such
as supersaturation, bistable activity, and inhibition sta-
bilized regimes in spiking networks. We propose a map-
ping between the parameter space of the SSN model and
the more complex parameter space of the leaky-integrate-
and-fire (LIF) network of spiking neurons. The advan-
tage of this approach is that it results in a mathematically
tractable model which can be manipulated analytically.
Thanks to this, we can invert the model equations and
design the network’s input to target a desired activity
trajectory or operational regime of interest via closed-
form equations without network training. This approach
can be used to generate specific nonlinear functions (eg:
XOR gate).

In relation to the balanced state, we show that for bi-
ologically realistic connectivity configurations, even very
large networks (size N ≈ 105) can deviate substantially
from the balanced state predictions despite high E-I cor-
relations. Likewise, networks lacking precise E-I input
balance can produce asynchronous irregular firing pat-
terns resembling balanced network activity. Overall, we
find that medium-sized spiking networks can have a com-
plex, nonlinear behavior that is accurately described with
the SSN framework and can be far from the predictions
of the balanced state limit.

Examining the possible activity regimes of networks
with biologically plausible synaptic strengths, we could
delineate different computational regimes such as super-
saturation and bistability. We found that only a specific
range of connectivity and input choices allow the net-
works to be in the inhibition stabilized state [25]. The
inhibition stabilized state has been suggested as an oper-
ational state of the cortex [25, 29] and is linked to a de-
crease of the inhibitory firing rates following the increase
in inhibitory input. Here, we delineate the parameter

regimes in the medium-sized networks where inhibitory
stabilization and a set of other experimentally reported
nonlinear computations co-exist and parameter regions
where they are mutually exclusive.

II. RESULTS

Our goal is to understand how neural circuits compris-
ing a few thousand neurons organize their spiking ac-
tivity. We want to predict whether specific nonlinear
computations can occur in these networks and pinpoint
their location in the multidimensional parameter space
spanned by recurrent connectivity and input weights.
We choose the size of the networks to be 4000 neurons,
which is biologically plausible for local cortical circuits
(Appendix). Similarly, we restrict our analysis to the in
vivo reported range of activity of 0-10 Hz [30–37]. We
choose the strength and probability of synaptic connec-
tions to be within the same order of magnitude as the
values reported by the database of the Allen Institute
for the visual cortex area V1 in mice [6] (Appendix). To
model cortical activity, we use the leaky-integrate-and-
fire (LIF) model (see Methods), which represents an ac-
curate description of cortical neurons both in vivo and in
vitro [38]. To predict spiking network activity regimes,
we map the mean activity of spiking networks to a rate-
based 2D SSN model.

A. Approximating spiking network activity with
the SSN model

Our starting point is the observation that a power-law
function can accurately describe the F-I curve of a single
LIF neuron across different membrane time constants τ
and input noise values σ (see Fig. 1B,C). The power-
law approximation is consistent with the Ricciardi exact
solution of the LIF neuron Eq. 9 [39], which we denote
by Φ (Fig. 1B). Throughout this study, we are interested
in the firing rate range from zero to approximately 10 Hz
which has been reported in vivo across many brain areas
[30–37]. To this end, we fit the low firing rate regime
(0-10 Hz) of the F-I curve of a LIF neuron given by Φ
using the threshold power-law function of the form

ν = a(µ− b)n+. (1)

Where ν is the firing rate, µ is the input to the neuron and
(x)+ = max{x, 0}. The constants a, b, and n characterize
the power-law approximation, with a scaling pre-factor
a, an input threshold b upon which the neuron starts
firing, and an exponent n. The power-law exponent n
in our approximation varies between 2 and 4, which is
consistent with the biologically reported range [35, 40].

We connect the individual LIF neurons into a recur-
rent network of excitatory (E) and inhibitory (I) neurons
(Fig. 1A). We assume that E and I neurons differ in
their membrane time constants (τE=20 ms, τI=10 ms,
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black crosses in Fig. 1C) consistently with experimental
reports [6]. We note that the input to a neuron in a re-
current network, which is a superposition of postsynaptic
potentials (PSPs), is equivalent to an Ornstein Uhlenbeck
process or white noise if the number of incoming PSPs is
sufficiently large and the activity is irregular [41, 42].

To describe the activity of the E and I populations,
we use the power-law approximation of the single-neuron
transfer function (Eq. 1). In the mean field approxima-
tion, the average firing rate of each population is given
by a system of equations equivalent to the SSN [26]

τPE
dνE
dt

= −νE + aE(µE − bE)nE+

τPI
dνI
dt

= −νI + aI(µI − bI)nI+ .

(2)

Where νX , X ∈ {E, I} are the firing rates of the two
populations, the parameters aX , bX , and nX are given
by the F-I curve fit of E and I neurons (black crosses
in Fig. 1C), and µX represent the sum of recurrent and
feedforward inputs to each population. The population
time constants τPX characterize how fast the firing rate of
each population evolves. In vivo cortical networks have
been shown to respond to sudden stimulation with a tran-
sient (or onset) response that has a time scale of approx-
imately 20 ms [43]. Furthermore, in vivo recordings
of multiple cortical areas have reported autocorrelation
timescales of the order of hundreds ms [44–46] suggesting
that slow timescales that are larger than the neuronal or
synaptic variables are relevant for the analysis of biolog-
ical circuits. Therefore, in the following we will consider
firing rate dynamics that evolve on the time scales of a
few tens to a hundred milliseconds which is slower than
the intrinsic times scales of the network. Based on these
time scales, the firing rate dynamics of the recurrent net-
work can be understood using the equilibrium state and
the external drive of a network. The equilibrium states
of the SSN equation are described by

νE = aE
(
JEEνE − JEIνI + µext − bE

)nE
+

νI = aI
(
JIEνE − JIIνI + rµext − bI

)nI
+
.

(3)

Here r is the ratio of the external inputs to the I and
E populations r = µextI/µextE, which allows for the sim-
plified notation: µext = µextE and rµext = µextI. The
population-wise connection strengths JXY characterize
the recurrent connections from population Y to popula-
tion X, whereby X, Y ∈ {E, I}.

Previous work identified the constraints on connectiv-
ity configurations in the SSN model that underlie such
nonlinear activity responses as supersaturation [15], the
paradoxical effect [47, 48], bistability, and persistent ac-
tivity [28]. We show that the parameters of LIF spiking
networks can be mapped to the SSN such that the same
activity types emerge in the spiking network, according
to the observations made with the SSN. In the follow-
ing sections, we discuss each activity type and its corre-
sponding connectivity regime in the SSN, as well as in
LIF spiking networks.

B. Supersaturation - Firing rates can decline for
growing input

Firing rates of neurons in vivo can show a range of non-
linear behaviors as a function of stimulus strength [49].
In particular, the activity level of sensory neurons may
decrease after stimulus onset, and a substantial number
of pyramidal V1 neurons in mice show reduced firing in
response to enhanced stimulus contrast [50]. At the same
time, the average activity of thalamic neurons in mice -
primarily targeting V1 neurons - is an increasing func-
tion of the stimulus contrast [51]. Therefore, it appears
that E neurons can be suppressed despite the increase in
external input. This phenomenon is generally referred to
as supersaturation [15].

First, we studied E firing response to growing inputs
and aimed to delineate parameter regimes where a de-
creasing population response can be observed. We found
that supersaturation ( dνE

dµext
< 0) can be observed in a

large class of connectivity and input weights configura-
tions within the spiking networks that can be predicted
by the inequality derived for the SSN model in [15, 52]

r >
JII
JEI

. (4)

Interestingly, only three network parameters determine
the SSN network’s ability to be in a supersaturating ac-
tivity regime (Eq. 4). For a network to be supersaturat-
ing, the ratio of external inputs r has to exceed the ratio
of recurrent inhibition JII/JEI . As a result, the remain-
ing two connectivity parameters (the recurrent excitation
JIE and JEE) cannot control the existence of supersat-
urating activity in the SSN. The exact point at which a
network satisfying Eq. 4 becomes supersaturating does,
however, depend on all network parameters as it occurs
when the inhibitory firing rate exceeds a specific thresh-
old value (Appendix, Eq. B5).

To understand if the connectivity condition derived in
the SSN model (Eq. B5) leads to a quantitative descrip-
tion of supersaturation in spiking networks, we gener-
ated LIF network parameters fulfilling the supersaturat-
ing condition using the SSN-LIF mapping framework in
Eq. 1 (Fig. 2A). We found that the activity in a LIF
spiking network and its self-consistency approximation
Φsc (Eq. 12) align robustly with the activity of the SSN
model (Fig. 2A).

Recent work [27] compared the responses of LIF and
SSN models, pointing out that the peak E activity in su-
persaturating spiking networks is small, and in particu-
lar, it is smaller than the SSN peak. As shown in Fig. 2A,
the peak firing rates obtained with the two methods are
in agreement. Furthermore, we show that it is possible to
control the height of the E firing rate peak in both net-
works such that it can be made arbitrarily high (Fig. 2B,
Appendix). Specifically, we show that the peak of E ac-
tivity can be controlled by modifying the ratio of the ex-
ternal inputs r, and the connectivity parameters JEI and
J−1
IE by the same factor. This manipulation derived from
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FIG. 1. Spiking neurons can be quantitatively described by a supralinear power law for low activity. (A, top)
Schematic representation of the F-I transfer function of a neuron. (A, bottom) Architecture of the recurrent Excitatory-
Inhibitory network. (B) Neuronal firing rate as a function of input for different input noise σ and membrane time constant
τ . The firing rate response of simulated LIF neurons (colored triangles) is in line with the Ricciardi solution Φ (solid line,
Eq. 9). The power-law approximation (Eq. 1) accurately aligns with the LIF simulation and Ricciardi solution for low firing
rates. Note that the power-law fit is only applied in the range of ν < 10 Hz, and diverges beyond this range. The vertical mark
denotes the power-law parameter b for one of the curves (b is negative for the other two curves). (C) The power-law parameters
depend on input noise σ and the membrane time constant τ . The two crosses indicate the parameter regimes we use for the
excitatory (τE = 20 ms) and inhibitory (τI = 10 ms) neurons in recurrent networks. Other symbols indicate the parameters τ
and σ used in B. The fit is obtained with the least squares method. Power-law parameters are listed in Table III.

the SSN analysis (Appendix) leads to the same effect in
the spiking networks (Fig. 2B).

To determine how close the network operates to E-I
balance, we measure the Pearson correlation of the time
series of recurrent excitatory and inhibitory inputs to
each neuron ρE,I . The E-I correlation measured at the
peak E firing rate is close to zero, demonstrating that the
network operates far from E-I balance (Fig. 2C). Since
the coefficient of variation of the interspike intervals at
the peak E firing rate is close to 1 (CVISI ≈ 1), the
firing appears to be irregular, asynchronous, and com-
patible with a Poisson spiking process (Fig. 2D). Im-
portantly, the supersaturation regime occupies the bi-
ologically plausible activity range of 0-10 Hz in spik-
ing networks [30–37], and the amplitude of the synaptic
connection strengths, as well as the size of the network
(N = 4000), are both in line with biological estimates of
functional cortical network size [6, 53, 54] (Appendix).
We note that the supersaturation condition is incompat-
ible with the existence of a balanced state solution, as
defined in Eq. B1 as it would lead to negative firing
rates.

Knowing how the 2D firing rates emerge from recur-
rent and feedforward connectivity in the SSN allows us to
invert this relation and select external inputs such that
they lead to the desired E and I activity trajectory in the
spiking network. This is illustrated in Fig. 2E where we
targeted a complex 2D trajectory. We obtained the feed-
forward inputs that result in the desired dynamics νE(t)

and νI(t), by inverting Eq. 3:

µextE(t) =

(
νE(t)

aE

)1/nE

+ JEIνI(t)− JEEνE(t)

µextI(t) =

(
νI(t)

aI

)1/nI

+ JIIνI(t)− JIEνE(t).

(5)

These dynamic feedforward inputs µextE(t) and µextI(t)
are shown in Fig. 2F, bottom and the fidelity of the
targeting is illustrated in Fig. 2F, top. Notably, the
timescale of the autocorrelation function of neuronal ac-
tivity (as defined in [55]) is around 300 ms, which is in
line with recorded cortical activity [44–46]. These re-
sults indicate that complex dynamic trajectories evolv-
ing on biologically realistic timescales can be accurately
captured by the SSN steady states Eq. 3.

Let us note that while we used here dynamic feedfor-
ward inputs to move along the activity trajectory, it is
equally possible to dynamically modify the connectivity
to obtain the same 2D trajectory in activity space. In this
scenario, synaptic plasticity is recruited to obtain a user-
defined output. This can be done by setting the plastic
connections J as dynamic while the external inputs are
constant.

JEE(t) =

(
νE(t)
aE

) 1
nE + JEIνI(t)− µext + bE

νE(t)

JIE(t) =

(
νI(t)
aI

) 1
nI + JIIνI(t)− rµext + bI

νE(t)
.

(6)
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Overall, we show that the mapping between SSN and
spiking networks makes it possible to construct inputs or
synaptic weights in a spiking neural circuit such that its
activity follows a user-defined complex target dynamical
trajectory..

In balanced networks, the implementation of logical
gates is a complex task due to the linearity of the transfer
function [23]. Therefore, we asked whether the nonlinear
regimes of spiking networks can be used to perform spe-
cific logical operations. Here, we show that it is possible
to combine feedforward and recurrent inputs in a way
that makes the circuits perform the nonlinear XOR op-
eration, which is one of the key computing components
of logical circuits, while being challenging to implement
in a neural network [56]. We show in Fig. 2G how a
supersaturating network can execute the XOR operation
from two input signals. The E activity is maximal if
the input X1 +X2 corresponds to the peak input in the
SSN supersaturating regime. The E activity is unstim-
ulated if both inputs X1 and X2 are low and silenced if
they are both high. This shows that the nonlinearity of
medium-sized spiking networks can be exploited to carry
out fundamental logical operations.

Next, we explore if the experimentally reported con-
nectivity parameters in mouse V1 by the Allen Institute
[6] are consistent with supersaturation (Appendix, Ta-
ble II). We use these parameters as a reference point for
the biologically plausible range of connection strengths.
Interestingly, a circuit with these connectivity parame-
ters does not have a balanced state solution for the equal
external input ratio r = 1 (µextE = µextI) and requires
r < 0.9 to fulfill the balanced state requirement (Eq. B1).
The network can be supersaturating for values of r larger
than 0.9. Remarkably, for r = 1, the E activity does not
decrease in the low input range but saturates instead
(Fig. 3A), the network only becomes supersaturating for
µext > 150 mV/s (Fig. S1B). For larger values of r the
activity decreases and becomes silent for inputs close to
100 mV/s (see inset Fig. 3A, r = 1.5).

C. Inhibitory stabilization and its presence for
reconstructed synaptic weights

Inhibitory stabilization is a network state in which the
recurrent excitation feedback loop is strong and intrin-
sically unstable but can be stabilized by the recurrent
inhibition [25, 57]. The paradoxical effect is a feature of
the ISN [25], in which the I activity decreases as the in-
put to the I population is increased ( dνI

dµextI
< 0). Recent

studies using optogenetic stimulation of inhibitory neu-
rons confirmed the paradoxical effect in mouse visual,
somatosensory, and motor cortices [58] suggesting that
the ISN is a ubiquitous property present across cortical
networks. A recent review presented further experimen-
tal evidence and techniques used to study the inhibition-
stabilized dynamics and discussed the ISN consequences
for cortical computation [29]. In the SSN model [47, 48],

a network is inhibition-stabilized if it fulfills the condition

νE > (aEn
nE
E JnEEE)

− 1
nE−1 . (7)

We note that in networks with a threshold linear trans-
fer function, the analogous ISN condition only requires a
strong recurrent coupling JEE > 1 and does not impose
any constraints on the E firing rate level or the trans-
fer function parameters [25, 29]. However, large enough
JEE does not always guarantee that a recurrent neural
network with a nonlinear transfer function is in the ISN
regime. Increasing JEE can also lead to instability, as the
excitatory feedback loop can strengthen to a point where
it escapes stabilization from recurrent inhibition. In the
extreme case, it is even possible to build a network that
can never enter the ISN regime regardless of the value of
JEE , as E activity never reaches the level where it can
be stabilized by inhibition (Appendix).

Next, we investigated whether this condition (Eq. 7)
can predict the existence of the ISN in spiking networks
of LIF neurons. Interestingly, we found that the ISN
condition cannot be met for the connectivity strengths
reported for mouse V1 from the Allen Atlas [6] if the E/I
input ratio r is equal to 1. This is due to the fact that
the required E firing rate (νE >27 Hz) is higher than
the maximal possible stable E firing rate in the network
(Fig. 3A). For very low values of r (around r = 0.1), an
ISN state can only be reached by exposing the network
to very high external inputs (around µext = 1000 mV/s)
(Fig. S1B). We will choose a network which operates
outside these cases since the corresponding firing rates
are far beyond the 0-10 Hz firing rate range we consider
in this study. Therefore, to meet the ISN condition, we
modified one of the connectivity strengths. Specifically,
we increased the connectivity parameter JEE , which is
supported by the study by [10] who report larger JEE
than the Allen Atlas [6]. We chose JEE such that the
network is in the ISN state for E firing rates larger than
1.5 Hz and kept all other connectivity strengths as re-
ported by the Allen Atlas ([6], see Table II). Fig. 3B
shows that the resulting network exhibits the paradoxi-
cal effect and is therefore in the ISN regime.

D. Bistability and persistent activity

One of the most prominent experimentally recorded
neural activity features in vivo is the network ability
to switch between higher and lower firing levels. One
example is spontaneously alternating intervals of tonic
firing and silence observed across different cortical ar-
eas [34]. Another example is the sustained firing rate
in the prefrontal cortex after stimulus withdrawal during
decision-making tasks which is hypothesized to represent
short-term memory [14, 59]. The coexistence of multiple
network states can be explained theoretically by bistabil-
ity, where the system has two stable states for the same
level of input. If multiple stable states co-exist in a net-
work model, a sufficiently large perturbation can drive
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function of external input. LIF spiking activity is in line with the self-consistency solution (Φsc in Eq. 12, solid line) and is
also accurately captured by the SSN solution (dashed line). (B) The peak of E activity can be tuned to any desired level by
tuning the E/I ratio of external inputs (r) along with the connectivity weights JIE and JEI . (C) Histogram of the E/I input
correlation (ρE,I) onto E (blue) and I (red) neurons computed at the peak of E activity (see inset). The weak correlation
suggests the network is operating far from E/I balance. (D) The spiking activity of both E and I neurons is irregular and
compatible with a Poisson process (CVISI close to 1). The inset shows the distribution of firing rates of individual neurons.
(E) Spiking networks can follow a user-defined target dynamical trajectory. The black line shows the target trajectory we
aim to replicate with the network. The blue line shows the trajectory of the spiking network in the E-I activity phase space.
(F) Same simulation as in panel E, The time course of the E and I firing rates in the LIF network (top) follows the target
trajectory and results from designed dynamical inputs (bottom). (G) Supersaturating networks can perform the XOR task.
top: Layout of the network used to perform the XOR task, where the E-I network is supersaturating (Eq. 4). Bottom:
The LIF E population activity performs XOR logical operation of the two inputs X1 and X2. The feedforward weights are
JEX1 = JIX1 = JEX2 = JIX2 = 2.5 mV. The spiking network parameters can be found in Table II.
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FIG. 3. The experimentally reported network parameters can generate supersaturation and be adapted to enter
the inhibition-stabilized state. (A) Firing rates of the E and I populations, blue and red lines, respectively, as a function of
external input using the parameters reported by the Allen institute [6], see Table II. The dashed lines show the SSN solution.
In this network, the E activity saturates for inputs larger than 20 mV/s. If the external input to the I population is larger than
that to the E population, as shown in the inset with r = 1.5, E firing rate declines for growing input. (B) This spiking network
exhibits inhibitory stabilization matching the predictions of the SSN (dashed line). The connection strength JEE is higher than
in panel A (Table II). The ISN state is exposed by the paradoxical effect which occurs when the I firing rate decreases for
increasing µextI. First, the inputs to both populations grow to drive the network in a state where the E subnetwork is unstable:
νE > 1.5 Hz, Eq. 7 (vertical dotted line). Once µextI reaches 50 mV/s, only the input to I increases (from 50 to 100 mV/s),
while µextE remains at 100 mV/s. This results in a decrease in the firing rates of both populations, as predicted by the SSN
(dashed lines). The inset shows a close up of the I activity to illustrate the paradoxical effect and shows that the paradoxical
effect wanes as the E firing rate approaches the ISN threshold (νE ≈ 1.5 Hz).

network activity away from its current state towards an-
other attractor. In the situation where a bistable net-
work can sustain its high activity level in the absence of
feedforward input, it has persistent activity. Here, we
asked whether the SSN model can predict the connectiv-
ity regime supporting bistability in spiking circuits.

Bistability and persistent activity can be obtained
in the SSN model [28] without the need for synaptic
plasticity [21] or complex synaptic weight distributions
[22]. Unlike supersaturation and inhibition stabilization,
bistability cannot be delimited by a simple tractable con-
dition on network parameters (Appendix). However, we
can use the conditions presented in [28], as a starting
point to guide our search for bistability in biologically
realistic spiking networks, even though they are derived
under restrictive assumptions on the a, b, and n param-
eters. We show an example of a biologically realistic
bistable network in Fig. 4.

Both the self-consistency solution and LIF net-
work simulation confirm the SSN-predicted bistability
Fig. 4A: the network can sustain either low activity or
high activity for external inputs in the 2-4 mV/s range.
Although the SSN and Φsc are deterministic, the spiking
network simulation is not. Due to the stochastic nature
of the neuronal activity, fluctuations in firing can cause
spontaneous transitions between steady states (shown in
Fig. 4A, inset). We note that the spontaneous transi-

tions between the up and down states have not been re-
ported in the bistable balanced networks with short-term
plasticity [21] because spontaneous fluctuations in aver-
age firing and the probability for spontaneous transitions
decrease with network size.

We find that a higher excitatory membrane time con-
stant broadens the window of bistability (Fig. 4B), mak-
ing bistability more robust to spontaneous fluctuations
and easier to locate in phase space. As τE increases,
the bistability window shifts towards lower feedforward
input. When the bistability window intersects the verti-
cal µext = 0 axis, the network has a persistent activity
state in the absence of feedforward input (τE=22 ms in
Fig. 4B). Here again, the E-I balance is weak, as shown
by the correlation in recurrent inputs (Fig. 4C), and the
spiking activity is Poisson-like, as shown by the coeffi-
cient of variation of the ISIs (Fig. 4C).

Finally, the nonlinear transformation performed by
spiking networks can be functionally relevant for infor-
mation processing. Logical operations such as the AND
operation can be implemented without the need to re-
cruit synaptic plasticity, thanks to the sharp transition
between the two stable states. If the transition from the
low to the high activity level requires a strong input, so
that two signals X1 and X2 need to be present to elicit
the transition, the network can execute the AND oper-
ation. Moreover, the bistability of a neural network can
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FIG. 4. SSN-predicted bistability and persistent activity can be observed in spiking network simulations. (A)
E and I firing rates as a function of external input in a bistable network (coexistence of high and low activity states for a
given external input). Simulated LIF spiking activity is in line with the self-consistent solution (Φsc) and is also accurately
predicted by the SSN. The Φsc-predicted firing rates diverge slightly from the spiking network simulation because of the use
of exponential synapses, which lead to correlated recurrent noise (Methods, Appendix). The inset illustrates that the width
of the bistability window can vary between simulations of the same network due to the spontaneous transitions between the
two states. (B) The width of the bistability window depends on the excitatory membrane time constant: higher values of τE
lead to broader bistability windows, which are shifted leftward. If τE is sufficiently large for the bistability window to exist for
zero feedforward input, the network can sustain persistent activity. (C) E/I input correlations to E (blue) and I (red) neurons
indicate a persistent but weak E/I correlation, suggesting that the network is only loosely E/I balanced. (D) The coefficient of
variation of the interspike intervals (CVISI) is near 1, which is compatible with a Poisson process and demonstrates that activity
is asynchronous and irregular. Both (C) and (D) are measured in the upstate, as shown in the inset to (C). All parameters are
given in Table II.

also offer the possibility to store information. Once the
network has been switched into a different activity state
by a strong perturbation, it remains in the same state
even after the perturbation withdrawal.

E. Computational regimes and their position in
input space

In previous sections, we demonstrated that the SSN
framework can be used to locate specific computational
regimes such as supersaturation and the paradoxical ef-
fect in parameter space. Here, we focused on the activity

regimes associated with the 2D space of the feedforward
input and the I/E external input ratio (µext, r). For two
examples of connectivity matrices J , we scanned the 2D
input space for supersaturation (Eq. B5), ISN (Eq. 7)
and bistability using the characteristic function F as de-
fined in [28] (Eq. B10). We also show the input regimes
for which the network permits a balanced limit solution
(Eq. B3). Importantly, the sign of the determinant of the
weight matrix (detJ = JEIJIE−JEEJII) determines the
number of SSN steady states (stable and unstable): for
det J > 0, the SSN has an odd number of steady states
whereas for detJ < 0 the number of steady states is even
[15, 28]. Thus, networks with positive detJ (Fig. 5A) al-
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ways have at least one steady state. In the network shown
in Fig. 4, bistability occurs when the system transitions
from having one steady state to having three (two stable
and one unstable). On the other hand, networks which
have a negative det J (Fig. 5B) can lack steady states
at all, and any possible stable steady state coexists with
an unstable steady state [28]. Finally, the sign of detJ
also determines whether the system can have a stable
balanced state (Eq. B3) or lacks it. In networks where
the sign of detJ is negative, a balanced state solution
can exist with positive firing rates if r > max( JIIJEI

, JIEJEE
),

but it is unstable [24].
Fig. 5 shows the map of feedforward inputs and the

corresponding computational regime for two examples of
the connectivity matrix J . Panel A corresponds to the
connectivity parameters from the bistable network shown
in Fig. 4 with det J > 0. The region where bistability is
expected corresponds to the results in Fig. 4A with r =
1. The balanced state exists and is stable for low values
of r. Panel B corresponds to a network with detJ < 0. In
this case, the balanced state only exists for high values of
r, but it is unstable. Furthermore, we find that for large
input and low r, the network does not have a steady state.
In this region, inhibition cannot stabilize the network,
and the activity blows up. The same analysis is also
performed for the supersaturating network in Fig. 2 and
the mouse V1 network in Fig. 3A (Fig. S1). Overall,
using the SSN model, we can precisely locate the regions
corresponding to distinct behaviors of spiking networks
in their parameter space. Notably, we observe that the
sign of the determinant of the connectivity matrix J plays
a crucial role in the type of activity regimes available to
the network (Appendix).

F. Effect of network size on network response
nonlinearity

While medium-sized networks can generate diverse
nonlinear responses to external input, the balanced state
framework implies that network response becomes linear
as network size approaches infinity. How do networks
transition from nonlinear to linear regimes for increasing
network size N? To tackle this question, we re-scaled the
recurrent connections JXY by the factor 1/

√
N as a func-

tion of network size N , and increased N from N = 4×103

to 5× 105. This parameter re-scaling follows the conven-
tion of the balanced state theory [2, 16] and allows us to
address whether these nonlinear spiking networks con-
verge to the expected balanced state, and if so, when
and how.

A dynamically stable balanced state limit can only ex-
ist if det J is positive and the fraction of external input
weights r satisfies 0 < r < min( JIIJEI

), see Eq. B3. In
our network convergence study, we focus on three spiking
networks: one supersaturating network with detJ > 0
(shown in Fig. 2), one bistable network with detJ > 0
(shown in Fig. 4), and a supersaturating network with

det J < 0 (presented in Fig. 5B, where we set r = 3).
Among our three example networks, we have one example
for which a balanced state limit does not exist (supersatu-
ration), one network with a stable balanced state solution
(bistable network) and one network with a balanced state
that exists but is dynamically unstable (detJ < 0). In
all three cases, the self-consistency solution Φsc remains
an accurate description of the spiking network mean ac-
tivity across different network sizes N (Fig. 6A, C, E),
and its predictions align qualitatively and quantitatively
with the SSN model (Fig. 6B, D, F, inset).

We find that the network response can remain nonlin-
ear even for very large network sizes consisting of up to
half a million neurons (see inset). By re-scaling the feed-

forward input with the factor 1/
√
N [2, 16], the network

response should converge toward a single linear solution
- the balanced limit (Fig. 6B, D, E). In the case of the
supersaturating network, the balanced limit does not ex-
ist, as it would lead to negative E firing rates. Therefore,
in the limit of large network size the E firing rate tends
to zero. In the case of the bistable network, a balanced
state limit does exist but the network response is still far
from converging to it, even for N = 5 × 105. Finally,
for the network with det J < 0 and r = 3, the network
exhibits supersaturation for N = 4000 (see Fig. 5B).
However, as N increases, the network enters a region for
which there is no steady state, and where the firing rates
blow up. This behaviour is observed in spiking network
simulations, the mean field Φsc and the SSN solution. In-
terestingly, the LIF simulation appears to be more stable
than the mean-field predictions, and for N = 20000 the
firing rates grow substantially but do not explode as it
is the case for the mean-field solution. The inset shows
how this instability is caused by the collision of the two
steady state branches, leaving a gap where the firing rates
are unbound. For this network, the mean-field solution
converges to the balanced limit as N increases (Fig. 6F).
However, the balanced state limit is unstable here, and it
only matches with the unstable mean-field solution (high
firing rates part of the branch) whereas the stable low
activity solution tends to zero.

Overall, our example networks illustrate that for many
classes of spiking networks with biologically plausible
sizes and connectivity configurations, the activity will es-
cape the predictions of the balanced state. Depending on
the parameters, the balanced state may not exist or be
unstable. Yet, even when a stable balanced state exists,
it is not guaranteed that it provides a realistic description
of network activity, even for unrealistically large sizes N .
Next, we investigated whether the correlations between
recurrent I and E inputs that accompany the balanced
state can also be observed in our networks that are non-
linear and do not conform to the balanced predictions.
We have shown that the correlation between E and I
recurrent inputs ρE,I are weak in the bistable network
of 4000 neurons (Fig. 4C), which is an indicator that
the network is operating far from balance. However, we
found that ρE,I can be network size dependent: increas-
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FIG. 5. Mapping the computational states in the SSN model for two representative connectivity regimes. (A)
Varying the ratio of the external input weights and the amplitude of external drive in a network with a positive det J allows
to traverse different computational regimes (J as in Fig. 4, see parameters in Table II). Gray stripes denote the input space
subset with a stable balanced state limit (N →∞) which does not exist above the horizontal gray line. The blue area represents
the inhibition stabilized regime (ISN). The red area denotes the phase space occupied by supersaturating spiking activity. The
green area corresponds to a bistable region (as shown in Fig. 4A with r=1). Within the green region, the up-state is in the
ISN whereas the down-state is not. We note that the inhibitory stabilization and supersaturation can co-exist. (B) The same
analysis is performed on a network with negative det J (Table II). In this case the balanced state limit is unstable. The ISN
region is narrower and there is a broad range of inputs for which the network does not have a steady state solution.

ing the size N from 4000 to 40000 strongly increased the
correlation even though the firing rate activity in both
cases does not conform to the balanced state solution
(Fig. S2). In summary, the observation of strong E-I
correlation does not guarantee that the balanced state
framework is applicable to predict the firing activity.

III. DISCUSSION

Understanding the activity regimes of biologically sized
spiking networks is critical to make sense of experimen-
tally recorded data. The state-of-the-art experimental
techniques now enable simultaneous recordings of thou-
sands of neurons [60, 61]. Therefore, it is important to re-
late experimentally recorded network activity to the com-
putational capabilities of similarly sized networks in sil-
ico. On the theoretical side, many commonly used mod-
els operate in the limit of infinitely large networks (bal-
anced state) [2, 21–24]. Some features predicted by the
balanced state, such as high correlations between excita-
tory and inhibitory currents within neurons, have been
observed experimentally [62, 63]. However, other fea-
tures, such as strong feedforward inputs, have not been
experimentally reported, and some experiments argue
against it [22, 64–67]. Unlike the balanced state frame-
work, which assumes a tight E/I input balance, alterna-
tive models such as the SSN only assume loose E/I bal-
ance to achieve inhibitory stabilization [20, 29, 48, 57, 58].
Yet, clarifying under which conditions the predictions of

these two models are conflicting or aligning and how they
compare to spiking network simulations has so far re-
mained an open question.

Here, we mapped the computational regimes of spiking
networks containing a few thousand neurons across the
input space. We chose this size because neuroanatomi-
cal and connectomics studies of different cortical regions
such as the somatosensory cortex [68–72] indicated that a
functional unit such as a minicolumn could contain a few
thousand neurons. We also set the range of firing rate
activity such that it meets the experimentally reported
range of a few Hz [30–37].

We have shown that the nonlinear behavior of medium-
sized spiking networks can be quantitatively and quali-
tatively understood using the SSN model which is based
on the power-law activation function of individual neu-
rons. Importantly, the mapping we propose can address
the broad activity and connectivity regimes, including
those located outside the validity domain of the balanced
network formalism. We delineated connectivity regimes
where bistability, supersaturation, inhibitory stabiliza-
tion, or even the absence of steady states can occur in
spiking networks. We found that networks can be in-
hibition stabilized in conditions where a balanced limit
does not exist, even though both require strong inhibitory
feedback. The ISN can overlap with supersaturation or
can be achieved in networks with detJ < 0 (Fig. 5),
which is outside of the domain of the balanced state
framework. Furthermore, we found that network param-
eters obtained from experimental recordings are incom-
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FIG. 6. Increasing network size does not guarantee convergence to a balanced state (A-B) supersaturating network
with det J > 0, (C-D) bistable network with det J > 0, (E-F) supersaturating network with det J < 0, parameter regimes
which we identified using the SSN framework and studied for N = 4000 in previous figures. Here, we gradually increase the
size of these networks N and follow the balanced network convention to rescale the weights Jij by

√
N as the network grows.

(A) depicts the excitatory firing in the supersaturating network from Fig. 2A across different network sizes. The colored
lines represent spiking networks (from 4× 103 to 4× 104), the black lines represent the corresponding mean-field solution Φsc

(Eq. 12). The inset shows the excitatory rate for network sizes from N = 4×103 (blue) to N = 5×105 (red), in steps of ×100.1

obtained using Φsc. (B) depicts the same network as in A, but the external input is rescaled as µext/
√
N . This network does

not have a balanced state solution (see first condition of Eq. B3). As N grows, the excitatory activity peak becomes smaller
and in the limit of very large networks, the excitatory population remains silenced (νE = 0). The inset shows that the SSN
and Φsc predict the same behavior as N increases. (C) shows the excitatory activity for the bistable network from Fig. 4, for
N = 4× 103 and N = 4× 104. The spiking activity of the spiking LIF network (colored lines) is captured by Φsc (black lines).
As N increases we observe a broadening of the bistability window and a decreasing firing rate, see inset. (D) depicts the same
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FIG. 6. network as in panel C but now with rescaled external inputs. The balanced state predicts a linear solution for N →∞
limit (dashed line). The convergence to the balanced limit is very slow, and even at N = 5 × 105 neurons, the network rates
still do not converge to the balanced state. (E) Activity of a spiking network with a negative det J from Fig. 5B, with r=3. As
N grows, the excitatory activity dissociates into two distinct branches separated by an unstable region where the firing rates
diverge to ∞. The inset illustrates that this separation occurs when the stable and unstable steady states collide. (F) depicts
the same network as in E, now with rescaled external inputs. The balanced solution of this network (dashed line) is unstable
(Eq. B3). The unstable solution of Φsc approaches the balanced state, while the stable solution tends to 0 as N increases.

patible with a balanced solution unless the E population
receives a stronger feedforward input than the I popula-
tion.

We used our theory to target a 2D firing rate trajec-
tory of interest within the spiking neural circuit and could
implement an XOR gate by exploiting the intrinsic non-
linearity of the neuronal transfer function (Fig. 2E,G).
This suggests that designing a biologically realistic spik-
ing network to perform a task can be facilitated by un-
derstanding the input-output relationship in networks.

Studying the network responses across different net-
work sizes, we found that convergence to the balanced
state was not always guaranteed, even for unrealistically
large network sizes. Activity deviations from the pre-
dicted balanced solutions were significant and could be
observed even for large E/I correlations of the recurrent
inputs. This indicates that strong E/I correlations can
be present in networks that do not meet the balanced
network predictions on the activity level (e.g., exhibit
bistability, Fig. S2). At the same time, networks can be
asynchronous irregular in the absence of strong E/I cor-
relations (e.g., Fig. 2). Importantly, we showed that the
SSN model could accurately describe spiking networks
that do not have a stable balanced limit.

Overall, the balanced state framework has several lim-
itations such as a limited domain of validity, a linear
response function, the need for extensive network sizes,
and strong feedforward inputs. We show that we can
avoid these limitations by using a different rate model,
the SSN which assumes a power law transfer function.
As we show here, these limitations can be addressed in
medium-sized spiking networks by mapping them to the
SSN model, which supports nonlinear responses for a
broad range of connectivity configurations without the
requirement of strong feedforward inputs. It should be
noted, however, that other works are addressing these
limitations within the balanced state framework, by ex-
panding it. For example, balanced networks with short-
term synaptic plasticity have been proposed to permit
the emergence of nonlinear activity, such as bistabil-
ity [21]. Likewise, the experimentally reported small
feedforward input which drives spiking activity in vivo
[64–67] was inconsistent with the original balanced state
predictions but was accommodated via the inclusion of
broad synaptic weight distributions [22]. Similarly, semi-
balanced networks were proposed [23], where neurons
which receive net inhibition remain silent. This gener-
ated a piecewise-linear manifold which can operate as
a nonlinear decision boundary and allowed for a broader

domain of validity than the classical balanced framework.
Let us also mention that [27] considered a neuronal trans-
fer function which is nonlinear at onset (noise driven),
saturating at high rates (due to a refractory period) and
linear in between. This study showed quantitative differ-
ences in a set of nonlinear responses of SSN and spiking
network models which we resolved using a precise map-
ping between SSN solutions and spiking network activity.

Our modeling approach considers two homogeneous
neural populations, which operate at equilibrium. This
approach led to a model with tractable equations and
only a few parameters. The complementary modeling
strategy, which aims to provide a highly detailed descrip-
tion of a neural system [73] achieves precise biological
realism at the expense of mathematical tractability. Fu-
ture studies could expand the results presented here by
including additional features into the network and study-
ing their impact. Such features could include synaptic
plasticity which would provide an additional source of
network nonlinearity and lead to an even richer reper-
toire of operational regimes. Similarly, future work could
analyze the dynamical properties of spiking networks,
as they have been shown to affect the stability of fixed
points or to be linked with activity regimes such as os-
cillations observed in the SSN model [28] (τPE and τPI
in Eq. 2). Moreover, the distribution of synaptic weights
has been shown to play a significant role in the overall ac-
tivity regime of spiking networks [22, 74], suggesting that
heterogeneity in the properties of neuronal populations
could be an important feature of spiking networks which
future works could include in the SSN prediction. Fi-
nally, our study of medium-sized spiking networks (∼ 103

neurons) lays the groundwork for the analysis of much
larger networks, such as a whole functional area (∼ 105

neurons [75]). To that end, the large network would be
broken down into a ”network of networks” where each
system unit represents a single E-I network described by
the quantitative mapping developed here.
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IV. METHODS

A. Power-law approximation of the input-output
transformation in a single neuron

We represent the spiking activity of a neuron using the
integrate-and-fire model

dV

dt
= −V/τ + I. (8)

Where V is the membrane potential, τ is the membrane
time constant, and I is the input to the neuron. Upon
reaching the firing threshold Θ, V (t) is reset to VR. If we
assume the input I to be white noise with a mean µ and
variance σ2, the firing rate of the neuron in Eq. 8 can be
described by the Ricciardi function Φ [39, 76]

ν =Φ(µ, σ, τ)

=

(
τ
√
π

∫ Θ−µτ
σ
√
τ

VR−µτ
σ
√
τ

ez
2(

1 + erf(z)
)
dz

)−1

. (9)

For low inputs, Φ is a supralinear function of the mean
input µ and can be accurately approximated by a power
law with an exponent n > 1 (see Fig. 1). For high inputs,
however, Φ becomes linear. In this work, we restrict our-
selves to the low firing rate regime (ν ≤ 10 Hz) often
reported for cortical activity measured in vivo [30–37].
In this low activity regime with a constant variance σ
and time constant τ , the firing rate can be accurately
approximated by a power law Eq. 1, see Fig. 1B. The
power law parameters a, b and n are obtained by fitting
Eq. 9 (Fig. 1C).

B. LIF spiking network

We consider a spiking network of one excitatory (E)
and one inhibitory (I) population with NE = 3

4N and

NI = 1
4N LIF neurons, respectively. We assume that

both E and I populations are homogeneous, i.e. neu-
rons within each population have the same parameters
(membrane time constant τX , threshold potential ΘX ,
reset value VRX), receive external input with the same
mean µextX and variance σ2

extX, X ∈ {E, I}. The E and
I populations have different membrane time constants
(see black crosses in Fig. 1B), and the feedforward input
they receive differs by a factor of r (µextI = rµextE, see
Fig. 1A). Additionally to the feedforward input, the neu-
rons receive recurrent input from other E and I neurons
in the network. The connections are randomly generated
based on a homogeneous probability of connection, such
that each neuron in population X receives inputs from
exactly NY pXY randomly chosen neurons in population
Y , where pXY is the connection probability from popu-
lation Y to population X. We use two types of synapses,
the delta synapse and the exponential synapse.

For delta-synapses, the function

IXY (t) = jXY δ(t− ts) (10)

represents the input from a neuron of the population Y
to a neuron in X. Where jXY is the strength of the
synapse, ts is the spike time of the presynaptic neuron,
and δ is the Dirac delta function.

In some network configuration, delta synapses promote
synchronization of the whole neuronal population. This
synchronicity can lead to population spikes [77, 78] which
violates the assumption of asynchrony and irregularity
in the mean field approach. In order to avoid this syn-
chronization in these cases, we use exponential synapses
instead of delta synapses. In exponential synapses, the
synaptic potential from a neuron in population Y to a
neuron in population X decays exponentially in time

IXY (t) =
jXY
τsXY

e
− t−(ts+D)

τsXY , t > ts +D. (11)

Where jXY is the strength of the synapse, ts is the spike
time of the presynaptic neuron, τsXY is the synaptic de-
cay time constant and D is the synaptic delay. This type
of synapse prevents synchronization as the effect of each
spike is more distributed in time and each synaptic con-
nection has a different delay D.

We use the exponential synapse in the spiking network
simulation in Fig. 4, Fig. 6C, Fig. 6E and Fig. S2, and
delta synapses in all other cases.

C. Self-consistent network solutions

In this work we derive predictions for the activity
regimes of spiking networks using the closed-form solu-
tions offered by the SSN framework (Eq. 3). In some
instances, it is useful to compare the SSN predictions to
the previously proposed self-consistent network solutions
to understand the dynamic origin of the SSN predictions.
We provide here the system of self-consistent mean field
network equations that arise from the Φ transfer function
[78] and that need to be solved numerically to obtain E
and I firing rates νE and νI

νE = Φ(µE , σE)

µE = JEEνE − JEIνI + µext

σ2
E = JEEjEEνE + JEIjEIνI + σ2

extE

νI = Φ(µI , σI)

µI = JIEνE − JIIνI + rµext

σ2
I = JIEjIEνE + JIIjIIνI + σ2

extI

(12)

Where JXY is the population-wide connectivity defined
by

JXY = jXY pXYNY . (13)

In these equations, the steady state spiking activity of
neurons is assumed to follow a Poisson process with a
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constant rate νX , X ∈ {E, I}. The input to each neu-
ron is modeled as a Gaussian process with a mean µX ,
and a variance σ2

X . We refer to this approach as ”Self-
consistency solution” or Φsc in our figures.

D. Mapping LIF network - SSN

To meet the SSN activity regime with a simulation of
spiking LIF neurons, we map the LIF network parameters
to SSN parameters. The connectivity parameters JXY in
the SSN correspond to the population-wide connectivity
defined for the self-consistency solution Φsc according to
Eq. 13. The transfer function parameters a, b and n for
each of the populations are obtained by fitting the F-I
curve of the neuron obtained with the Φ function Eq. 9,
which depends on the LIF membrane time constant τ ,
reset potential VR, firing threshold Θ, and the input noise
σ (Fig. 1). The noise σ is set to be the external noise
σext.

In LIF spiking networks, σext models the fluctuations
in the membrane potential, which can be caused by fluc-
tuations in the external network input as well as origi-
nate from intrinsical properties of the neuron [79]. We
note that unlike in the Ricciardi mean-field solution Φsc
(Eq. 12), the SSN framework (Eq. 3) does not explic-
itly model the input noise σ to neurons embedded in a
network. Instead, the effect of the noise is implicitly in-
cluded in the power law approximation of the F-I curve.
As a result, the noise in the SSN model is independent of
the network activity leading to the assumption that the
noise associated with recurrent input is negligible com-
pared to the external noise σ2 = σ2

ext+σ2
rec ≈ σ2

ext. This
approximation holds if the firing rates ν and the connec-
tion strength jXY are kept low (Eq. 12), which is sup-
ported by experimental evidence [6, 30–37] (Appendix).

V. ACKNOWLEDGEMENT

This work was supported by the Max Planck Society,
University of Bonn Medical Center, University of Mainz
Medical Center, German Research Foundation (CRC
1080 to T.T.) and the Loewe Center for Multiscale Mod-
elling in Life Sciences. We thank Laura Bernáez Timón
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Appendix A: Extraction of experimentally reported
network parameters

We use the Cell Types and the Synaptic Physiology
databases from the Allen institute [6], to derive biolog-

ically plausible network parameters based on the data
collected for layer 2/3 of the mouse visual cortex. Nev-
ertheless, our analyses are not restricted to this brain
region, as our framework is applicable to any cortical
network. It should be noted that the reported values of
network parameters vary largely between sources [8–12].
Furthermore, detailed network simulations using state-
of-the-art experimentally measured parameters require
optimization of all their recurrent connection weights in
order to generate realistic spiking activity [73, 80]. There-
fore, we use the parameters for mouse V1 extracted from
the Allen institute database [6] as a starting point from
which we can explore the range of biologically plausible
network connectivity.

We use the Cell Type database [6], to obtain the mem-
brane time constant (τ) as well as the membrane resting
and threshold potentials (VR and Θ), for E and I neu-
rons. The data has been obtained through whole cell
patch clamp recording. We use the Synaptic Physiol-
ogy database [6] to derive the synaptic strength and the
probability of connection (jXY and pXY ) between E and I
neurons. The data has been obtained with octopatching,
the simultaneous patch-clamp recording of up to eight
neurons. The neurons whose dendrite type is classified
as spiny constitute the E population. The I population
consists of all neurons classified as Vip, PV and Sst.

The reported neuronal properties (τ , VR and Θ) were
obtained by averaging the recorded values from 66 E neu-
rons and 94 I neurons. The probability of connection
(pXY ) is the fraction of connected pairs with respect to
all probed pairs, where 80 EE, 150 EI, 160 IE and 607
II cell pairs were probed, Table I. Finally, we derive
the connection strength (jXY ) using the peak amplitude
(APSP ), the rise time (tR) and the decay time constant
(τD) of the postsynaptic potential. These parameters
are measured over 66 EE, 46 EI, 3 IE and 29 II con-
nected cell pairs. The mean-field analysis of the net-
work at equilibrium does not depend on the dynamical
properties of the synaptic transmission (i.e. the shape of
the PSP profile). Instead, the mean-field strength of the
synaptic connection is the overall depolarization caused
by a single presynaptic spike and it is characterized by a
single value jXY , regardless of the dynamics. It is given
by the time integral of the synaptic current elicited by
one presynaptic spike. We assume that the profile of the
postsynaptic membrane potential following a presynap-
tic spike is a linear increase followed by an exponential
decay and that the recorded postsynaptic neuron was at
resting potential before receiving its input.

PSP (t) =

{
VR +APSP t if t < tR

VR +APSP e
− t−tRτD if t > tR

Using the LIF equation (Eq. 8) for a single pre-
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NE 3000
NI 1000
pEE 6.5 %
pEI 20 %
pIE 27.5 %
pII 10 %
Vr 0 mV
θ 1 mV
τE 20 ms
τI 10 ms
σext 3 mV/

√
s

r 1

TABLE I. Spiking network parameters used in all figures by
default. Parameters deviating from the default ones are speci-
fied in figures’ panels and captions. For derivation, see section
Extraction of experimentally reported network parameters.

synaptic spike (
∫
Idt = jXY ) yields

jXY =

∫ ∞
0

(
dV

dt
+
V

τ

)
dt

=(VR − VR) +

∫∞
0
V dt

τ

=APSP
tR/2 + τD

τ
.

The synaptic strength is then normalized by the experi-
mentally recorded value of Θ− VR [6], so that VR and Θ
can be set to 0 and 1, respectively.

By default, we assume that both populations receive
the same external input (r = 1). Finally, we assume
the input noise σext to be 3 mV/

√
s, which leads to a

power law exponent in the F-I curve close to 3, similar
to the values reported in [35, 40] (Table III - E and I
populations).

The neuronal parameters used in LIF spiking network
simulations are presented in Table I. Fig. 3A is gener-
ated with the mouse V1 parameters we extracted from
the Allen institute database [6]. We explore the range
of biologically plausible network connectivity parameters
by modifying the individual connection strengths JXY
while keeping them within the range delimited by the
lowest and largest experimentally reported connectivity
values in mouse V1 (0.5 ≤ JXY ≤ 25). The connectivity
parameters used in all network simulations are presented
in Table II.

Deriving biologically plausible neural network size
for circuit simulations

In our framework, we assume that a network consists
of populations of neurons which share a similar external
input and preferentially connect together with a homoge-
neous connection probability and strength. All connec-
tions originating from outside this circuit are considered
to be feedforward input (see schematic Fig. 1A, bottom).

In biological circuits, it is difficult to determine what
can constitute a single network since the brain exhibits
a high degree of complexity and does not consist of well-
separated circuits. Nonetheless, the analysis of cortical
regions in which projection columns can be anatomically
identified leads to a consistent order of magnitude for net-
work sizes. Here we set the typical functional network to
consist of 3000 E and 1000 I neurons. We present the
corresponding citations below.

In the primary visual cortex of mice, it is especially dif-
ficult to define a local network size since the cortical map
is unstructured, meaning that neurons which share the
same receptive field do not co-localize [81]. However, this
does not mean that the concept of homogeneous network
cannot be applied to mouse V1, as neurons which share
the same receptive field preferentially connect together
[8]. Since local networks within mouse V1 cannot be de-
fined based on spatial anatomy, we used other regions
with anatomically-defined networks to define a reference
point.

In mouse somatosensory cortex, distinct neuroanatom-
ical structures known as barrels receive the sensory input
from each whisker [4]. These structures are perfect can-
didates to define the typical scale of a homogeneous net-
work. Their diameter ranges from 100 to 400 µm, with
a thickness in layer 4 of 100 µm [4]. Using the neuronal
density observed in [5], the number of neurons in these
structures ranges from 140 to 2200. In the rat barrel
cortex, the number of neurons in each layer of multiple
projection columns has specifically been counted [3], and
is on the order of N = 4000 in L4 and N = 6000 in L2/3.

In primates, the primary visual cortex of macaques
has been studied extensively. Unlike rodents, the corti-
cal organization of macaque V1 shows a columnar struc-
ture, both for eye dominance and orientation preference
[82]. Within a range of orientation preference of 10◦,
such columns are slab-shaped, with a size of 30 µm by
0.5 to 1mm [83]. With the thickness of L2 and L3 being
respectively 225 µm and 310 µm [84], and a cell den-
sity of 1.3× 105 neurons/mm3 [85]. We can deduce that
the number of neurons in L2/3 in such columns is in the
range of 1000 to 2000.

In summary, it appears that across species and corti-
cal regions, we can define functional networks with sizes
ranging from hundreds to a few thousands of neurons.
In this work, we choose a network size of 4000 because
it corresponds to the value reported in [3], which is the
only study where the neurons in a cortical column were
directly counted. In this context, we can use anatomical
analyses of neurons in the same brain region to deter-
mine the fraction of excitatory and inhibitory neurons in
a network [7, 86], which leads to a E/I ratio of 3.5 in
layer 2/3. This corresponds to 3110 E neurons and 890 I
neurons, which we round to 3000 and 1000 respectively.

Finally, we verify that the network size we assume (i.e.
4000 neurons) is plausible for mouse V1, since we could
not use a spatial anatomy feature to define a network.
We use the reported probability profile (p) for E→E con-
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jEE jEI jIE jII JEE JEI JIE JII

Mouse V1
Fig. 3A
Fig. S1B

3.59 68.1 28.7 108 0.672 13.2 23.7 11.8

Fig. 2
Fig. S1A
Fig. 6A-B

10.3 60 7.27 10 2 12 6 1

Fig. 4
Fig. 5A
Fig. S2
Fig. 6C-D

25.6 50 8.49 110 5 10 7 11

Fig. 5B
Fig. 6E-F

6.41 -5 1.21 -12.5 1.25 1 1 1.25

Fig. 3B 25.4 68.1 28.7 108 4.75 13.2 23.7 11.8

TABLE II. Network connectivity parameters used in all figures. The synaptic weights jXY correspond to the strength of a
single spike in spiking networks and are given in µV. The connection strength at the population level JXY , used in mean field
solutions, are given in mV (Eq. 13). For Fig. S2 and Fig. 6, synaptic weights are N-dependant since the 1/

√
N scaling is

applied; the given weights correspond to N = 4000. See section Extraction of experimentally reported network parameters.

SSN parameters a b n

Excitatory population 1.08× 10−4 -11.1 3.08
Inhibitory population 2.21× 10−6 4.8 3.82

Fig. 1 (σ = 1 mV/
√

s, τ = 20 ms) 3.91× 10−2 31.6 2.15
Fig. 1 (σ = 3 mV/

√
s, τ = 15 ms) 3.23× 10−5 -6.4 3.31

Fig. 1 (σ = 5 mV/
√

s, τ = 10 ms) 4.90× 10−8 -63.0 4.20
Fig. 4B (σ = 3 mV/

√
s, τ = 18 ms) 7.89× 10−5 -9.5 3.14

Fig. 4B (σ = 3 mV/
√

s, τ = 22 ms) 1.60× 10−4 -12.1 3.01

TABLE III. SSN parameters used in all figures. The parameters a, b, and n are based on the power-law fit of the LIF F-I curve
(Eq. 1), with the input µ in mV/s and the firing rate ν in Hz.

nections as a function of distance for mouse V1 L2/3,
Fig. 4B in [54] (near 20% for nearby pairs, going down
to 0% for neuron pairs 150µm apart). Following this
observation, the number of excitatory synapses to an ex-
citatory neuron can be obtained through a 3D spatial
integration of this connection probability profile: nc =∫ ∫ ∫

p(
√
x2 + y2 + z2)ηdxdydz, where η is the density of

excitatory neurons. Over an infinite 3D space, we obtain
the total number of E→E connections: nc = 8.7× 105η.
Using a neuronal density of 1.64 × 10−4 neurons/µm3

[87], and assuming a E/I ratio of 3.5, we obtain nc ≈111
connections. The result of this rough calculation is in the
same order of magnitude as the 195 connections we ob-
tain with 4000 neurons and a probability of connection
of 6.5% (as described in [6]), which suggests that this
network size is a valid approximation for mouse V1 as
well. It should be noted that the network we define does
not constitute a single block of cortex due to the salt-
and-pepper organization of this brain region, but consists
instead of distant neurons which receive the same exter-
nal input and are homogeneously connected within the
network.

Appendix B: Derivation of parameter conditions for
specific computational regimes

1. Balanced state framework

Here, we provide for completeness the solutions of the
balanced state framework derived previously [16] which
we used as a reference to study the convergence to the
balanced state. In this framework, the mean input to
each population vanishes as the number of neurons in
the network increases, µE ≈ µI ≈ 0 and the equations
for µE and µI in Eq. 12 can be simplified to

µext =JEIνI − JEEνE
r × µext =JIIνI − JIEνE .

The solution of the balanced state equations reads

νE =
rJEI − JII

JEEJII − JEIJIE
µext

νI =
rJEE − JIE

JEEJII − JEIJIE
µext.

The balanced state solution is only valid if both νE and
νI are positive for positive input, which corresponds to
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the following condition on connectivity
rJEI − JII

JEEJII − JEIJIE
> 0

rJEE − JIE
JEEJII − JEIJIE

> 0.

(B1)

Stability of the balanced state

Within the balanced state framework, we assume that
the change in firing rate of each population is a function
of the excess input it receives.

dνE
dt

= f(µE)

dνI
dt

= g(µI).

The firing rate of a population is at the steady state when
its total input is balanced (f(0) = 0 or g(0) = 0). By
linearising around a steady state, we get

νE = ν0
E + δνE

νI = ν0
I + δνI

˙ν0
E + ˙δνE = f(µ0

E + δµE)

ν̇0
I + ˙δνI = g(µ0

I + δµI)

˙δνE = f ′(µ0
E)δµE = f ′(µ0

E)(JEEδνE − JIIδνI)
˙δνI = g′(µ0

I)δµI = g′(µ0
I)(JEEδνE − JIIδνI)

This can be rewritten as[
˙δνE
˙δνI

]
=

[
f ′ 0
0 g′

] [
JEE −JEI
JIE −JII

] [
δνE
δνI

]
.

Where f ′ and g′ are positive (excess input drives the
firing rate up), the state (ν0

E , ν
0
I ) is stable if the two eigen-

values of the Jacobian matrix[
f ′JEE −f ′JEI
g′JIE −g′JII

]
have negative real parts.

The eigenvalues λ1 and λ2 are roots of the polynomial

λ2 − λ(f ′JEE − g′JII) + f ′g′(JEIJIE − JEEJII)

or

λ1, λ2 =

(
f ′JEE − g′JII

2

)
×
(

1±

√
1− 4f ′g′ det J

(f ′JEE − g′JII)2

)
.

The steady state is stable ⇐⇒{
f ′JEE − g′JII < 0

det J > 0
(B2)

The first condition requires that the response of the
inhibitory population (g′) is fast and strong enough to
prevent a runaway excitatory feedback loop. We do not
use this condition here because it depends on the dy-
namic properties of the network (f and g functions),
which are beyond the scope of this work. However, the
second condition constrains the connectivity matrix such
that JEIJIE − JEEJII > 0 [24].

The condition on the existence of a non-negative bal-
anced state (Eq. B1) can be combined with the stability
condition on connectivity (Eq. B2) to delineate the pa-
rameter range where a balanced state limit exists and is
stable [16, 24]:

{
0 < r < min( JIIJEI

, JIEJEE
)

det J > 0
(B3)

We use Eq. B3 to visualize the parameter range where
a balanced state exists in Fig. 5 and Fig. S1.

2. Condition on supersaturation

Supersaturation is characterized by a decrease in the
excitatory firing rate with increasing external input:
dνE
dµext

< 0.

Linearizing the system around a fixed point, leads to
the relation between input and firing rate at the steady
state [47]:

[
δνE
δνI

]
=


[
1 0
0 1

]
−
[
f ′E 0
0 f ′I

]
︸ ︷︷ ︸

=F

[
JEE −JEI
JIE −JII

]
︸ ︷︷ ︸

=J


−1

×
([
f ′E 0
0 f ′I

] [
δµextE

δµextI

])
.

Where δν and δµext are the firing rates and external in-
puts linearized around a steady state. The functions fE
and fI are the input-firing rate transfer functions of the
two populations. The functions f ′E and f ′I are the deriva-
tives with respect to input, calculated at the fixed point.
The effect of a change of external input yields:

[
δνE
δνI

]
=

[
f ′E (1 + f ′IJII) −f ′Ef ′IJEI
f ′Ef

′
IJIE f ′I (1− f ′EJEE)

]
∣∣I − FJ∣∣

[
δµextE

δµextI

]
.

(B4)
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In particular, the effect of external input on the exci-
tatory firing rate yields

dνE
dµext

=
f ′E (1 + f ′I (JII − rJEI))∣∣I − FJ∣∣

As shown in [47],
∣∣I − FJ∣∣ must be positive for the

fixed point to be stable. Furthermore, f ′I and f ′E are as-
sumed to be positive, meaning that the F-I curves are
monotonically increasing. This leads to the following
condition for supersaturation:

f ′I (JII − rJEI) < −1.

Which is only possible if r > JII
JEI

. In the SSN, the trans-

fer function is a power law (Eq. 1). Its derivative is then

f ′X = nXa
1
nX

X ν
nX−1

nX

X . This leads to the condition that
supersaturation occurs when the fixed point inhibitory
firing rate is sufficiently high [15]:

νI >
nI−1

√
1

aI (nI (rJEI − JII))nI
(B5)

For completeness, it is worth mentioning that there
exists one particular edge-case where r > JII

JEI
cannot

not lead to dνE
dµext

< 0. This occurs when the only stable

state of the system is such that νE = 0 regardless of
µext. This is discussed in the section Effect of JEE on the
occurence of ISN and requires rbE − bI > 0. Since these
cases correspond to situations where recurrent inhibition
is strong enough to prevent any excitatory activity, we
consider them to be supersaturating.

Modulation of E firing rate peak in supersaturating
activity regime

Here, we explain how we modified the height of the E
firing rate peak in Fig. 2B. We begin by analyzing how
the value of maximal E firing rate depends on SSN pa-
rameters for supersaturating networks. A characterizing
property of the maximal E firing rate νE is that it satis-
fies dνE

dµext
= 0. As shown previously [15], this occurs for

νI = (a
1
nI

I nI(JEIr− JII))−
nI
nI−1 , where JEIr− JII must

be positive. Since νI and νE are both positive, we can
remove the (·)+ operator in the SSN equations and apply
the inverse power law exponents to both sides to express
µext Eq. 3

a
− 1
nE

E ν
1
nE

E −
(
JEEνE − JEIνI − bE

)
= µext

r−1a
− 1
nI

I ν
1
nI

I − r−1
(
JIEνE − JIIνI − bI

)
= µext.

We combine two above equations to obtain

a
− 1
nE

E ν
1
nE

E + (
JIE
r
− JEE)νE =

− (JEI − r−1JII)νI + r−1a
− 1
nI

I ν
1
nI

I − bE +
bI
r
. (B6)

Substituting νI = (a
1
nI

I nI(JEIr−JII))−
nI
nI−1 in the above

equation, we obtain

a
− 1
nE

E ν
1
nE

E + (
JIE
r
− JEE)νE =

1

r
(aInI(rJEI − JII))−

1
nI−1 (1− 1

nI
)− bE +

bI
r
. (B7)

The solution of Eq. B7 corresponds to the maximal E
firing rate in the supersaturating activity regime. To in-
crease the E firing rate peak, we modified r, JIE , and
JEI . Specifically, we decreased r and modified JIE and
JEI such that the terms JIE/r and JEIr remained con-
stant. If JIE/r − JEE is positive, the left-hand side of
the equation is a monotonically increasing function of νE .
As 1/r increases, the right side of Eq. B7 moves upward
and the corresponding νE on the left side must increase as
well. In this way the unique solution νE of Eq. B7 - the
maximal E firing rate - increases as 1/r increases. The
method demonstrated here assumes that the left hand
side of Eq. B7 is an increasing function of νE . This is
the case if JIE/r − JEE is positive (as in Fig. 2), and
the peak of the excitatory activity can be increased in-
finitely. On the other hand, if JIE/r − JEE is negative,
the peak of supersaturation is bounded. In particular, for
supersaturating networks (JEI/r − JII) for which det J
is negative, JIE/r − JEE is negative. The peak of su-
persaturation is therefore bounded, and decreasing r can
lead to an unstable situation where no steady state exist
(as illustrated in Fig. 5B).

3. Condition on the paradoxical effect

The paradoxical effect [25, 47, 48] is characterized by
a decrease of the I firing rate, as the external input to
the I population is increased: dνI

dµextI
< 0. Here again, the

effect of a change in external input is given by Eq. B4
where

∣∣I − FJ∣∣ and f ′E must be positive. In this case,
dνI
dµextI

can only be negative if

f ′EJEE > 1.

This condition is equivalent to the condition for the insta-
bility of the excitatory subnetwork [47]. The paradoxical
effect is therefore a feature of the inhibition stabilized
network (ISN) as it occurs when the activity of the E
population is only made stable thanks to the suppression
from the I population. Using the SSN transfer function
(Eq. 1), the condition on the paradoxical effect leads to
Eq. 7

Effect of JEE on the occurence of ISN

Since the network is inhibition-stabilized for fixed
points which satisfy Eq. 7, it seems that any network
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can be in the ISN state, granted that JEE is sufficiently
strong. Here we ask whether there is any counterexample
to this. Are there networks which cannot enter ISN, no
matter how high JEE is?

From Eq. B6, we impose that νE =

(aEn
nE
E JnEEE)

− 1
nE−1 , which corresponds to the onset

of inhibition-stabilization to get

(
νI
aI

) 1
nI

− (rJEI − JII) νI =
1

(aEnEJEE)
1

nE−1

×
(
r − r

nE
+

JIE
nEJEE

)
+ rbE − bI . (B8)

This equation can be seen as the crossing of two func-
tions where the left hand side f is a function of the I
activity νI and the right-hand side g is independent of νI
but varies with JEE .

f(νI) = g(JEE).

If there is a value of νI which satisfies this equation, the
network has a fixed point such that νE is at the onset of
ISN. We note from Eq. B6 that

df

dνE
> 0 ⇐⇒ νE < aE

(
aEnE

(
JEE −

JIE
r

))− nE
nE−1

.

Since the value of νE at which we operate in Eq. B8 is
smaller than this (for JIE 6= 0), the network cannot be in
the ISN if f and g do not intersect and f remains below
g.

The f function starts at 0 for νI = 0 and is either
monotonously increasing (if JII > rJEI) and tends to
∞, or it reaches a maximum and then tends to −∞ (if
rJEI > JII). The second case corresponds to supersatu-
ration, where high values of νI can be sustained with low
recurrent excitation. Whatever the parameters, f first
rises and always has at least some positive values.

The g function can be represented as a polynomial

g(X) =
JIE

nE (aEnE)
1

nE−1

XnE

+
r (nE − 1)

(aEnE)
1

nE−1

X + rbE − bI .

Where X = J
− 1
nE−1

EE . Since the coefficients in front of
XnE andX are both positive and X is necessarily positive
(because JEE is positive), g can take all values larger
than rbE − bI . This means that, with JEE as a free
parameter, equation Eq. B8 will have a solution if there
is any νI such that f(νI) > rbE − bI .

For values of bE and bI such that rbE − bI < 0, the
network can always enter an inhibition-stabilized state
by tuning JEE . Interestingly, this is always the case with
the values of bE and bI we obtained from fitting the F-I

curve (See Table III) because experimentally reported
neuronal parameters [6] are such that τE > τI . Similarly,
in networks which do not satisfy the supersaturation con-
dition (JII > rJEI), g always crosses f .

On the other hand, in networks for which f has a
maximum (JII > rJIE), if rbE − bI is higher than this
maximum, the functions f and g never cross regard-
less of the value of JEE . In this scenario, the network
can never reach a steady state where it is inhibition-
stabilized. These cases correspond to situations where
the E activity is always suppressed and there is no stable
steady state with νE > 0. If JEE is large, another un-
stable steady state will exist (for detJ < 0, see section
Parity of solutions below), and if the system is perturbed
enough to reach it the E activity will enter an unlimited
feedback loop which leads to always increasing activity.
These systems cannot be in the ISN regardless of JEE
because the E activity is either entirely silent or cannot
be stabilized by inhibition.

4. Condition on multiplicity of solutions

As shown in [28], the two-dimensional SSN equation
(Eq. 3) can be rewritten as a single characteristic func-
tion F , where the steady states of the system correspond
to zeros of F .

F(µE) =aEJEE (µE − bE)
nE
+

− aIJEI (µI(µE)− bI)nI+ − µE + µext. (B9)

Where µI is a function of µE : µI(µE) =
aE det J
JEI

(µE − bE)
nE
+ + JII

JEI
µE +µext

(
r − JII

JEI

)
. The first

term of F is zero if the E population is silenced (νE = 0),
and the second one if the I population is silenced (νI = 0).
For any value µE which satisfies F(µE) = 0, the corre-
sponding excitatory firing rate is given by the power law
F-I function Eq. 1.

The number of zero crossings of the function F corre-
sponds to the number of fixed points of the system. Since
F is a continuous function, its number of zero crossings
only changes when two solutions merge into one or when
one solution splits into two. This corresponds to the sit-
uation when extrema of F fall on zero.{

F(µE) = 0

F ′(µE) = 0
(B10)

Where F ′ denotes the derivative of F with respect to
µE . This condition corresponds to changes in the number
of solutions. The parameters comprised between these
boundaries have the same number of solutions. This ap-
proach can be used to delimit the range of bistability or
absence of solutions (as shown in Fig. 5). Within such
a region, the number of network states is obtained by
determining the number of zero crossings of F .
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Parity of solutions

The number of zero crossings of the F function can be
studied through its limits. Assuming that the F-I curves
are supralinear(nE > 1 and nI > 1), we get:

lim
µ→−∞

F(µ) =∞

lim
µ→+∞

F(µ) = lim
µ→+∞

aEJEEµ
nE
E

− aIJEI
(
aE det J

JEI
µnEE

)nI
+

.

If detJ > 0, the second limit tends to −∞. Therefore,
the function has at least one zero and the F function for
positive determinants has have an odd number of solu-
tions (Mean-value theorem). On the other hand, if the
determinant is negative, the second limit tends to −∞.
In that case, there is no guarantee that the system has a
fixed solution and the number of solutions is even. Mul-
tiple roots (Eq. B10) are counted separately in this cal-
culation.

Appendix C: Noise contribution of exponential
synapses

In this section we expand the mean-field approximation
of the recurrent noise to the case of exponential synapses.
In the case of the delta synapse (Eq. 10), by assuming
a Poisson spike train, the standard deviation is given by
σXY = jXY JXY νXY (Eq. 12). For exponential synapses
however, since the current is distributed in time Eq. 11,
the noise is lower than this. The exponential synapse
corresponds to a shot noise process, and its covariance is
given by [88, 89]:

Cov(it, it+∆t) =
jJν

2τS
e
−∆t
τS .

Over a period ∆t, the variance of the received current is

V ar(

∫
∆t

idt) =

∫ ∆t

0

∫ ∆t

0

Cov(it, it′) dt dt
′

= 2

∫ ∆t

0

∫ t′

0

jJν

2τS
e
− t
′−t
τS dt dt′

= jJντ

(
∆t

τS
−
(

1− e−
∆t
τS

))
.

The Φ equation is derived from the analysis of a Orn-
stein Uhlenbeck process with white noise [39], so that the
noise σ considered in Φ is the rate of increase of the vari-
ance. For exponential synapses, we then approximate a
white noise Ornstein Uhlenbeck process by using the rate
of increase of variance:

σ2
OU =

V ar(
∫

∆t
idt)

∆t
= jJν

(
1− τS

∆t

(
1− e−

∆t
τS

))
.

Since the current at different time steps is correlated,
the variance of the overall cumulative current over a time
period ∆t is not a linear function of ∆t. This contrasts
with white noise processes where this rate is a constant.

For ∆t� τS , σOU tends to zero whereas for ∆t� τS ,
σOU approaches the Poisson limit jJν. In the context
of the mean field analysis of the network, we set the pe-
riod ∆t over which σOU is considered to be the period
between two successive postsynaptic spikes. Therefore,
we use the expected value of σOU over the distribution of
ISI. For Poisson processes, the ISI follows an exponential
distribution.

E[σ2
OU ] =

∫ ∞
0

σ2
OU (ISI)P (ISI) dISI

=

∫ ∞
0

jJνpre

(
1− τS

t

(
1− e−

t
τS

))
νposte

−νpostt dt

= jJνpre

(
1− νpostτS ln

(
1 +

1

νpostτS

))
.

All in all, the noise originating from the recurrent ex-
ponential synapses can be quantified and the Ricciardi
self-consistency solution Eq. 12 can be adapted to take
this effect into account:

σ2
X = jXEJXEνE

(
1− νXτSXE ln

(
1 +

1

νXτSXE

))
+ jXIJXIνI

(
1− νXτSXI ln

(
1 +

1

νXτSXI

))
+ σ2

extX.

However, it should be noted that this approach can only
provide an approximation of the firing of LIF neurons
since the Φ function is only exact for uncorrelated white
noise input.

Appendix D: Supplemental figures
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FIG. S1. Additional map of computational regimes. These maps are equivalent to the maps shown in Fig. 5, and are
generated for the connectivity of the supersaturating network shown in Fig. 2 and the mouse V1 network shown in Fig. 3A
(A) The map shows many similarities to the map shown in Fig. 5A. The balanced state is only defined for low r values across
external input values. Te network can be inhibition stabilized for large input and low r, whereas supersaturation occurs for
large input and high r. The supersaturation and ISN regions overlap. However, unlike Fig. 5A, this network does not have a
bistable regime in the range of inputs presented here.(B) Compared with the phase space in panel A, the ISN state (blue area)
appears more difficult to achieve for this network as it requires much higher external input to reach. We show in Fig. 3B that
increasing JEE makes the ISN accessible for external inputs µext lower than 100 mV/s.
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FIG. S2. Effect of network size on E/I input balance. As the size of networks increases, the correlation between incoming
E and I currents (ρE,I) becomes stronger. This is measured in E (blue) and I (red) neurons for the same bistability case as
Fig. 4 and Fig. 6C, at the point at which the excitatory firing rate reaches 10Hz (see inset above, for each network size). This
shows that the E-I balance gets tighter as the network size increases even though the firing rates are far from the balanced
state limit (dashed line, inset) and the network remains non-linear.
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