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The ability to extract regularities from the environment is arguably an adaptive characteristic of 

intelligent systems. In the context of speech, statistical learning is thought to be an important 

mechanism for language acquisition. By considering individual differences in speech auditory-

motor synchronization, an independent component analysis of fMRI data revealed that the neural 

substrates of statistical word form learning are not fully shared across individuals. While a network 

of auditory and superior pre/motor regions is universally activated in the process of learning, a 

fronto-parietal network is instead additionally and selectively engaged by some individuals, 

boosting their performance. Furthermore, interfering with the use of this network via articulatory 

suppression (producing irrelevant speech during learning) normalizes performance across the 

entire sample. Our work provides novel insights on language-related statistical learning and 

reconciles previous contrasting findings, while highlighting the need to factor in fundamental 

individual differences for a precise characterization of cognitive phenomena. 

 

INTRODUCTION 

Statistical learning (SL) is the capacity to use distributional information present in the 

environment to extract meaningful regularities. SL has been demonstrated across age groups from 

birth (1,2), sensory modalities (e.g., audition (3,4), vision (5), touch (6)), representational domains 

(5) (temporal, spatial), and even species (7,8). In the domain of speech and language processing, 

statistical word form learning (SWFL) is considered critical in the early stages of language 

acquisition as the ability to segment phonological word forms from continuous speech (3,9). 

Segmented word forms are readily associated with meanings (10) and can also be used in 

subsequent stages to discover grammatical relationships (11). While regarded fundamental to 
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language learning by most contemporary theories, the precise neural substrates of this ubiquitous 

phenomenon are not well understood and remain controversial. 

There have been several experimental attempts to pinpoint the neural basis of SWFL, but 

the existing literature shows inconsistent results. Some studies report a correlation between SWFL 

performance and the activity of the superior temporal gyrus (STG) and dorsal pre/motor regions 

(12–15). Other experiments instead implicate the left inferior frontal gyrus (IFG) (16) and its 

interaction with superior temporal areas (17,18). We hypothesize that the inconsistency of results 

in the literature is a consequence of very specific individual differences in the neural resources 

allocated for SWFL.    

In a recent study, we provided a first glance of how one might capitalize on individual 

differences to gain deeper mechanistic insights into SWFL: individual listeners grouped by their 

spontaneous speech auditory-motor synchronization abilities turn out to differ in their SWFL 

performance (19). Specifically, we showed there a behavioral task (the Spontaneous Speech 

Synchronization test, henceforth ‘SSS-test’) that robustly classifies participants into high and low 

speech auditory-motor synchronizers. At the brain level, high synchronizers showed a greater 

brain-to-stimulus synchrony in the left IFG during passive speech listening as well as more volume 

in the white matter pathways underlying the dorsal language stream (i.e., the arcuate fasciculus) 

(20). Critically, the high/low synchronizer distinction was predictive of SWFL performance (Fig 

1A), but the relationship between auditory-motor synchrony, population-level brain differences, 

and SWFL remained elusive. Here we hypothesized that the dorsal language stream, including the 

IFG, is not only linked to auditory-motor synchrony as previously reported but also gives high 

synchronizers the advantage in SWFL over low synchronizers. 
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Fig 1. Previous work motivating the hypothesis. (A) During the SSS-test, participants listen to an isochronous 

stream of random syllables (rate 4.5 syllables/sec) while concurrently whispering the syllable “tah”. Left panel: 

example of the perceived (upper panel) and produced (lower panel) signals. Green line, bandpass filtered envelope 

used to compute input-output synchrony. Middle panel: Synchrony between perceived and produced syllables yields 

a bimodal distribution, allowing the classification of participants into low (blue) and high (orange) synchronizers. 

While some participants spontaneously align the produced syllabic rate to the perceived one (high synchronizers), 

others show no modification of the produced rate due to the presence of the external rhythm (low synchronizers). 

Right panel: High synchronizers outperformed lows in a statistical word-learning task. They also showed enhanced 

brain-to-speech synchronization over left frontal regions and a greater volume in the white-matter pathways 

connecting temporal and frontal areas(19). (B) The word-learning task consists of a learning phase wherein four tri-

syllabic pseudo-words are presented in a continuous stream. Learning is assessed post exposure. Left panel: 

Participants are instructed to repeat a nonsense syllable (articulatory suppression condition; AS) or to passively listen 

(passive listening condition; PL) during the entire learning phase. Middle panel: predicted performance decreases due 

to articulatory suppression (9). Right panel: differences between high and low synchronizers are hypothesized at the 

cognitive and brain levels.  
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To test this hypothesis, we used Independent Component Analysis (ICA) of fMRI data in 

combination with a classic behavioral paradigm designed to interfere with the availability of the 

dorsal language stream for SWFL (21). Specifically, the behavioral paradigm employed involves 

the contrast between passive listening (PL) and articulatory suppression (AS) conditions (Fig 1B). 

AS requires participants to repeat a nonsense syllable during (word) learning, which hampers 

SWFL performance (9). ICA, on the other hand, is a data-driven neuroimaging approach well-

suited to identify spatially independent and temporally coherent brain networks that support 

specific cognitive processes (22). Previous work using this approach has related SWFL to a 

network comprising auditory and superior pre/motor areas (14). This earlier work, however, did 

not consider the high/low synchronizer distinction. In all, in the current experiment we investigate, 

in both high and low synchronizers, the brain networks engaged during SWFL under PL and AS 

conditions as well as the behavioral consequences of AS for performance (Fig 1). We hypothesize 

that, if high synchronizers show better learning – putatively due to a greater reliance on the dorsal 

language stream - they should show a greater recruitment of this functional anatomic stream than 

low synchronizers during learning as well as a greater AS effect.  

 

RESULTS 

Behavioral results: Articulatory Suppression modulates high but not low synchronizers' SWFL 

performance  

An initial cohort (N = 55, 34 females; mean age, 22; age range, 18 to 37) underwent 

behavioral testing. Participants completed four blocks of statistical word-learning in two different 

experimental conditions, PL and AS, followed by the SSS-test (Method and Fig 1). In both tasks, 

the auditory stimuli were presented at a rate of 4.5 syllables per second, corresponding to the mean 
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syllable rate across languages (23–25) and the natural frequency of speech-motor regions(26). The 

outcome of the SSS-test showed the expected (19,27) bimodal distribution, allowing the 

classification of participants into high and low synchronizers (Fig 2A). Moreover, the synchrony 

between perceived and produced syllables in the SSS-test was highly correlated with that in the 

AS blocks (Fig 2B; N = 55, Spearman correlation coefficient r = 0.75, p < 0.001). This 

demonstrates that speech-to-speech synchrony is not only reliable across time, as was previously 

demonstrated (19), but also across tasks, confirming that auditory-motor synchrony is a stable 

feature of each individual. 

 

 

Fig 2. Articulatory Suppression modulates only high synchronizers' performance. (A) SSS-test outcome. 

Histogram of the phase locking values (PLV; measure of speech-to-speech synchrony, see Methods) between the 

envelope of the perceived and produced speech signals, bandpass filtered at 3.5-5.5 Hz. Black line, critical value 
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separating high and low synchronizers (N = 55, see Methods). (B) Participants' PLV during AS as a function of the 

PLV from the SSS-test. Red line represents the correlation of the data. (C) Percentage of correct responses during PL 

and AS on the entire sample. (D) Percentage of correct responses during PL and AS for the low (blue) and the high 

(orange) synchronizers. *p < 0.05, **p < 0.01, ***p < 0.001 Linear mixed model results. Dots: model predicted group 

means. Bars: 95% confidence interval. AS: articulatory suppression. PL: passive listening. 

 

A linear mixed-model analysis (N = 55; see Method) of the learning performance showed 

a significant decrement in AS relative to PL (Fig 2C; Main effect of Condition: χ2 = 15.4, p < 

0.001). This result thus replicates previously reported AS effects on SWFL(9). The analysis also 

showed a main effect of Group (Highs > Lows; χ2 = 9.11, p < 0.01) in line with our previous work 

(19)  and, importantly, a significant interaction between the two factors (Condition*Group; χ2 = 

4.22, p < 0.05). Critically, when the sample was next split into high and low synchronizers by 

estimating their corresponding marginal means (see Method), we observed the AS effect in the 

population of high synchronizers (Fig 2D; Nhigh = 23, zratio = 3.92, p < 0.001) but not in the 

population of low synchronizers (Fig 2D; Nlow = 32, zratio = 1.63, p = 0.1); that is to say, the 

performance of low synchronizers was not modulated by the action of speaking during the learning 

phase. Additionally, in line with previously reported data(19), high synchronizers outperformed 

lows in the PL condition (zratio = 3.02, p < 0.01), but there was no difference in performance 

between groups in the AS condition (zratio = 0.64, p = 0.52). Importantly, for all groups and 

conditions, learning remained significantly above chance (signed rank tests against chance level, 

two-sided: phigh/AS < 0.001, phigh/PL < 0.001, plow/AS < 0.001, plow/PL < 0.001).  

 

Neuroimaging results (I): High synchronizers activate an additional brain network during 

statistical word learning 
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Having established the expected behavioral differences between high and low 

synchronizers, we next acquired fMRI data from a new group of participants (N = 38) while they 

performed the same behavioral paradigm (see Method). The SWFL paradigm was optimized for 

fMRI testing. Specifically, we included both a rest block and a speech motor block as control 

conditions. During the speech motor block, participants were required to repeatedly whisper the 

syllable "tah" with no concurrent auditory input. The behavioral performance in the scanner 

showed the same trend as the learning pattern obtained with the first sample (Fig S1; Condition 

(PL > AS): χ2 = 5.40, p < 0.05; Group (Highs > Lows): χ2 = 3.67, p = 0.055; Condition*Group: 

χ2 = 2.74, p = 0.098; Highs (PL>AS): zratio = 2.32, p < 0.05; Lows (PL vs AS): zratio = 0.08, p = 

0.93; Highs vs Lows in PL: zratio = 1.92, p = 0.055; Highs vs Lows in AS: zratio = 0.05, p = 0.96). 

Even under notably adverse listening/learning conditions (i.e., during fMRI scanning), the 

detrimental effect of the AS condition was restricted to the high synchronizers. 

Using the Group ICA of fMRI Toolbox(22) (GIFT; see Methods) we identified 5 brain 

networks that were significantly recruited during SWFL in the PL and/or the AS condition (Fig S2 

and Fig S3). Critically, a fronto-parietal network including bilateral inferior and middle frontal 

gyri, inferior parietal cortex, and the supplementary motor area distinguished between high and 

low synchronizers during the PL condition (Fig 3A; Nhigh = 18, Nlow = 20, Mann-Whitney-

Wilcoxon test, two-sided p = 0.038, FDR-corrected). Moreover, while the activity of this network 

during PL was statistically significant for high synchronizers, it was not for the lows (Mann-

Whitney-Wilcoxon test, two-sided phigh < 0.005 and plow = 0.9, respectively, FDR-corrected). 

Moreover, we found moderate evidence in favor of the null hypothesis that the network was not 

activated during PL for the lows (Bayes Factor BF01 = 4). 
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Fig 3. High synchronizers activate an additional brain network during statistical word learning. (A) In 

red/yellow, the fronto-parietal network is shown over a canonical template, with MNI coordinates on the lower portion 

of each slice. Neurological convention is used. A p < 0.05 FWE-corrected threshold at the cluster level with an 

auxiliary p < 0.001 threshold at the voxel is used. This is the only network showing significant differences in activity 

between high and low synchronizers during PL (see bar plots on the lower right; * p < 0.05, FDR-corrected). (B) 

Scatterplot displaying participants' PLV during AS as a function of the fronto-parietal network’s engagement. Red 

line represents the correlation of the data. Left panel: all subjects. Right panel: high synchronizers.  

 

Similarly, during AS, only high synchronizers significantly engaged the fronto-parietal 

network (Fig 3A; Mann-Whitney-Wilcoxon test, two-sided phigh < 0.005 and plow = 0.42, FDR-

corrected), again with moderate evidence in favor of the null hypothesis for the lows (BF01 = 4.1). 

In this condition, however, the network’s activity did not differentiate between the groups. Given 
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that groups were defined by their speech auditory-motor synchrony, we then correlated the 

engagement of the fronto-parietal network with the synchronization (PLV) between the perceived 

and produced syllables during AS. Indeed, these measures were positively correlated in the entire 

sample as well as in the high synchronizers only (Fig 3B; Spearman correlation coefficient rall = 

0.41 and rhigh = 0.56, pall = 0.009 and phigh = 0.012), suggesting a link between spontaneous 

auditory-motor synchrony and fronto-parietal network engagement. 

 

 Neuroimaging results (II): The interplay between networks boosts learning 

Next, we assessed whether the activity of any of the networks significantly engaged during 

the PL condition was predictive of SWFL. Replicating previous results(14,28), we found a network 

comprising mainly bilateral auditory regions and a small superior pre/motor cluster (henceforth, 

auditory network) whose activity positively correlated with learning performance in the whole 

sample (Fig 4A; Spearman correlation coefficient r = 0.42 and p = 0.032, FDR-corrected). We 

found no significant correlations between learning and network activity in the AS condition. Since 

during PL (i) highs behaviorally outperformed lows; (ii) the fronto-parietal network was only 

activated by high synchronizers; and (iii) the auditory network was related to learning 

performance, we next examined whether the learning benefit of high synchronizers over lows in 

SWFL was related to the interaction between the two networks (auditory and fronto-parietal). 

Specifically, we explored the relationship between the time courses of these two networks at the 

individual listener level and the learning benefit. As illustrated in Figure 4B, high synchronizers 

with a greater learning benefit (defined as PL minus AS) appeared to show a distinct pattern with 

interweaving time courses between the auditory and fronto-parietal networks. To quantify this 

observation, we employed an analysis typically used in electronics: XOR. Applied to our signals, 
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this logical operation assigns a single value per time point: one (1) when a single network is above 

baseline activity, or zero (0) otherwise; that is, a one is assigned when one or the other network 

(but not both) is active (Fig 4B, lower insets).  For each high synchronizer, we averaged the XOR 

over time, and correlated this value with their learning benefit (PL-AS) (note that this analysis 

would be meaningless for low synchronizers, given the non-significant activation of their fronto-

parietal network). In line with the observed pattern, a positive correlation was found (Fig 4C; 

Spearman correlation coefficient r = 0.65, p < 0.005). This suggests that the learning benefit shown 

by high synchronizers over lows is related to a specific pattern of activity highlighted by the XOR 

rather than a perfect correlation between time courses of the networks. 
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Fig 4. An interplay between networks boosts learning. (A) The auditory network supports learning during PL. 

Upper panel: In red/yellow, the auditory network is shown over a canonical template, with MNI coordinates on the 

upper portion of each slice. Neurological convention is used with a p < 0.05 FWE-corrected threshold at the cluster 

level, with an auxiliary p < 0.001 threshold at the voxel level. Lower panel: Scatterplot displaying participants' 

percentage of correct responses during PL as a function of the auditory network’s engagement. (B) The learning 

benefit during PL (correct answers in PL − correct answers in AS) is related to the interplay between the time courses 

of the fronto-parietal (red) and the auditory (green) networks. Left/right panel: a representative high synchronizer with 

a greater/smaller learning benefit. Lower panels: Time evolution of the XOR analysis. (C) Scatterplot displaying high 

synchronizers' learning benefit as a function of the normalized XOR between the fronto-parietal (red) and the auditory 

(green) networks. Red line: correlation of the data. 

 

DISCUSSION 

The behavioral and neuroimaging data show that the neural substrates supporting SWFL 

vary across individuals in a systematic way. We arrived at this observation by splitting the 

population into two groups according to their spontaneous speech auditory-motor synchronization 

abilities (Fig 2), a classification that has now been shown to be robust in a number of experiments, 

both in-lab and online, in different languages, and with different experimental manipulations 

(19,27). Specifically, we found two distinct networks related to SWFL performance. One network 

encompasses mainly auditory regions and a small superior pre/motor cluster (auditory network), 

appears to be universally or generically recruited, and directly correlates with learning. Another 

network, including inferior frontal, inferior parietal and supplementary motor areas (fronto-parietal 

network), is neither necessary nor sufficient for learning, yet it boosts learning performance. This 

latter network, whose activity correlates with spontaneous auditory-motor synchrony, is 

exclusively recruited by high auditory-motor synchronizers during learning. These observations 
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parsimoniously account for the apparently disparate results in previous SWFL literature and 

provide a new way to discuss statistical learning in neural terms. 

In terms of behavior, we find that the effects of AS are not universal. Typically, the 

execution of an articulatory suppression task leads to performance deficits. We demonstrate –in 

two independent cohorts– that only the performance of participants with a high degree of auditory-

motor synchronization is affected by AS. Low synchronizers, in contrast, remain unaltered in their 

word learning performance. Our results thus indicate that articulatory rehearsal is not necessary 

for SWFL but its additional recruitment confers a learning benefit: high synchronizers, who show 

robust AS effects, performed better than lows during PL. Note that these results are not discordant 

with the previous literature (9) since averaging across high and low synchronizers yields the 

expected overall AS effects. 

At the neural level, we found an important distinction between high and low synchronizers 

with respect to the engagement of a fronto-parietal network: only high synchronizers engage this 

network during PL. While SWFL performance correlates with the activity of the auditory network 

across the entire sample -in line with previous literature (14)- a synergistic relationship between 

both networks boosts learning performance in the high synchronizer group. Importantly, the 

engagement of the fronto-parietal network also predicted the degree of spontaneous 

synchronization of produced speech during the AS condition.  

A relationship between auditory-motor synchronization and language skills has been 

previously reported in the literature (19,29,30). For example, precision in tapping to a metronome 

has been argued to correlate with reading and spelling abilities in children with developmental 

dyslexia (31). Similarly, synchronization to a beat correlates with phonological awareness and 

rapid naming in typically-developing preschoolers (32). Despite the cumulative evidence for a link 
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between auditory-motor synchronization and these various language skills, the existence of a 

neural substrate shared among these apparently unrelated cognitive abilities remains an empirical 

question. With this question in mind, our results suggest that the reported fronto-parietal cortical 

network subserves this shared role: on the one hand, the engagement of this network during PL 

confers a benefit in learning; on the other, during AS, the engagement of this network predicts the 

degree of speech auditory-motor synchronization. 

Insofar as there are differences between high and low synchronizers at a structural level 

and differences in synchrony that are stable in time (19), we understand the high/low synchronizer 

differences reported in this and previous works as trait differences. We have also theorized on how 

structural connectivity differences can give rise to the synchrony differences between the groups 

under particular stimulation conditions (e.g., auditory stimulation within a specific frequency 

range; (33)). Because of this, our reported group differences could also be understood as state 

differences, the precise functional significance of which remains an open question. 

From a mechanistic and more neurophysiologically motivated perspective, we propose that 

enhanced syllable-level segmentation or parsing -a key prerequisite for SWFL- results from the 

coordinated activity between auditory and fronto-parietal networks, ultimately leading to better 

SWFL performance. In line with this conjecture, we previously showed that the frontal-most 

component of the fronto-parietal network, the IFG, aligns with the onset of passively perceived 

syllables in high synchronizers. This frontal region has also been shown to send top-down signals 

to auditory cortex (the main component of the auditory network) to better align its activity to the 

speech input (34,35). A similar proposal has been advanced in the literature to account for the 

enhanced processing of phonology that results from improved auditory timing perception through 

auditory-motor training (36). Broadly speaking, therefore, our results line up with recent theories 
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of SL, which postulate the works of both learning systems (e.g., comprising auditory areas in the 

case of auditory input) and modulatory attentional/control systems (e.g., as supported by fronto-

parietal networks) underlying learning performance (37,38). However, we add to these current 

views of SL by specifying the role of these modulatory systems in terms of timing operations 

critical to auditory-motor synchronization advantageous to learning.  

On the other hand, there exist multiple and distinct fronto-parietal networks associated with 

attention that overlap with our reported fronto-parietal network in high synchronizers. Its ventral 

fronto-parietal component (i.e., inferior prefrontal to inferior parietal cortex), for example, has 

been related to stimulus-driven attention (39), which may in turn be related to the salience network 

(40). Note that the stimulus-driven attention network is mostly bilateral (e.g., (41)) but shows 

different patterns of lateralization, rightward for spatial attention and leftward for temporal 

attention (42). Given the relationship between our fronto-parietal network and auditory-motor 

synchronization (this paper and (19), a possibility therefore is that high synchronizers’ fronto-

parietal engagement relates to a temporal attention mechanism.  

Another possibility is that fronto-parietal activity in high synchronizers relates to a control 

network (e.g., (43)) that flexibly interacts with other task-specific networks (e.g., (44,45)). This is 

possible given the activity in more dorsal frontal regions that also feature in our fronto-parietal 

network. Interestingly, recent articles (e.g., (46,47)) show that a supra-modal fronto-parietal 

network entrains to stimulation (sensory and via rhythmic TMS) in the theta band and that this 

entrainment (causally) enhances auditory working memory. This is very similar to our previous 

(19) and current findings, in which high synchronizers entrain to theta stimulation (higher 

behavioral PLV and brain-stimulus PLV during passive listening) and show a behavioral 

advantage over individuals that do not show this entrainment. The extent to which this and the 
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aforementioned fronto-parietal networks are one same network or different networks that interact 

for high synchronizers during the SL task cannot be answered by our current data and so remains 

an empirical question. However, our analysis (ICA for fMRI) indicates that, at the very least, these 

fronto-parietal regions’ time-courses cohere in time.  

There are also reasons to distinguish these fronto-parietal networks from the dorsal network 

for goal-directed attention (48), despite a similar involvement of dorsal prefrontal regions. In 

contrast to research showing SL benefits from interfering with this network (e.g., (49,50)), we 

show that articulatory suppression hinders learning. Moreover, fronto-parietal involvement, which 

correlates with auditory-motor synchronization, confers a learning benefit during passive listening. 

It is therefore likely that the dorsal prefrontal regions we report, which are shown to cohere in time 

with other fronto-parietal regions, perform a role different from goal-oriented attention within the 

context of our tasks. This is in line with the idea that the same region can undertake different roles 

depending on its interactions with other regions. It was not possible to determine the precise role 

of prefrontal regions alone from our data. On the other hand, we also show that the learning benefit 

relates to the way the fronto-parietal network interacts with the auditory network. Another 

possibility, therefore, is that different kinds of dorsal prefrontal involvement during learning incur 

in either learning benefits or hindrance.    

A possible reason for the lateralization discrepancies with Assaneo et al. (2019) (19) 

(bilateral engagement vs left lateralization) is the use of radically different measures and analyses 

(ICA of the BOLD signal vs a phase-locking value between an auditory stimulus and the MEG 

signals). Thus, although bilateral frontal and parietal regions may work together for synchrony 

(and learning benefits) in high synchronizers, as reflected in the ICA for fMRI analysis, each 

region may perform different computations to achieve that goal that are not captured by the PLV 
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analysis, with entrainment in theta occurring only in left frontal regions. We similarly hypothesize 

that small structural differences (as those reported in (19), as captured by a particular method 

(diffusion-weighted MRI in that case), can give rise to large functional differences as appears to 

be the case in high synchronizers (33). 

 In sum, by considering individual differences in auditory-motor synchronization skills, our 

work sheds light onto the neural substrates of the statistical learning of phonological word forms 

and shows that what appeared to be disparate results in the existing literature stems from pooling 

together fundamentally distinct populations. More specifically, we reveal that, beyond a 

universally recruited network for SWFL, an additional fronto-parietal network that enables 

auditory-motor synchronization is selectively engaged by some individuals to produce a benefit in 

learning. The auditory-motor SSS-test we use thus emerges, once more, as a useful tool to achieve 

a more nuanced characterization of speech related phenomena. This work, therefore, not only 

highlights the importance of considering individual differences in SL (42) but also sounds a note 

of caution about assuming the existence of monolithic mechanisms underlying such cognitive 

tasks.     

MATERIALS AND METHODS 

Participants 

A first cohort of 65 participants completed the behavioral protocol. Ten participants were 

removed because they spoke loudly instead of whispering or because they stopped whispering for 

longer than 4 sec (during the SSS-test and/or the AS blocks). The data from 55 participants (34 

females; mean age: 22; age range: 18 to 37) were analyzed. 

A second cohort comprising 22 low and 22 high synchronizers participated in the fMRI 

protocol. Participants were selected from a larger group of 388 individuals, which completed the 
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SSS-test in the context of a previous study (19) (Fig S1A). Three participants were initially 

removed due to recording measurement error or problems completing the learning task (e.g., 

participant fell asleep, responses not recorded) and were removed from the fMRI sample. Three 

additional participants were removed due to artifactual fMRI data. The final dataset thus comprised 

38 individuals (23 females; mean age: 28; age range: 20 to 54; 19 High Synchronizers and 22 

Low). 

All participants were fluent English speakers with self-reported no neurological deficits 

and normal hearing. They provided written informed consent and were paid for taking part in the 

study. The local Institutional Review Board (New York University’s Committee on Activities 

Involving Human Subjects) approved all protocols. 

Overall experimental design 

The behavioral protocol consisted of four blocks of statistical word-form learning 

performed under two different conditions (PL and AS), followed by the SSS-test (see Fig 5A). 

Four pseudo-languages were generated, and their order was randomized across participants. In the 

statistical learning blocks, participants were instructed to pay attention to the audio stream to be 

able to answer post-exposure questions about the perceived sounds. During the PL condition, 

participants passively listened to two of the pseudo-languages. During AS, participants repeatedly 

whispered the syllable “tah” while listening to the remaining two pseudo-languages. As in the 

SSS-test, participants were not instructed to synchronize their speech to the auditory stimulus. 

Instead, they were told that the point of the whispering was to make the listening task more 

challenging.  In line with the previous literature (9,51), we assumed that the effects of AS on 

statistical learning would be due to an interference with the articulatory loop rather than to a higher 

executive load, which would be very unlikely given the highly automatized nature of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2022. ; https://doi.org/10.1101/2020.07.03.187260doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.187260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

articulation subtask. PL and AS conditions were interleaved, and the two possible orders (PL-AS-

PL-AS or AS-PL-AS-PL) were randomized across participants. After listening to each pseudo-

language, learning was tested on a two-alternative forced choice test. 

 

 

Fig 5. Overall experimental design. (A) The behavioral protocol consisted in 4 blocks of statistical word-form 

learning (each comprised a different pseudo-language) followed by the SSS-test. The statistical word-learning blocks 

were completed under 2 different conditions: PL, wherein participants passively listened to the pseudo-languages and 

AS, where participants concurrently, and repeatedly, whispered the syllable “tah”. Conditions were interleaved and 

the order (AS-PL-AS-PL or PL-AS-PL-AS) was counterbalanced across participants. Lower panel: for the fMRI 

session, 2 speech-motor and 4 rest blocks were added to the behavioral protocol. (B) Schematic representation of a 

statistical word-learning block. Left panel: learning phase. Participants listened to the two-minute-long auditory 

stream containing the four words of the pseudo-language. Right panel: test phase. Learning was assessed after each 

pseudo-language exposure by an 8 trial two-alternative forced choice test contrasting a word, upper line, and a part-

word, lower line. 
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The behavioral protocol was modified for fMRI acquisition. First, we divided the protocol 

into two experimental runs with one AS and one PL block each. In addition, one minute of rest 

was introduced before each statistical word-learning block (PL or AS) and two minutes of speech 

production without auditory input (speech motor condition) were introduced at the end of each run 

(see Fig 5A). Specifically, the speech motor condition consisted in repeatedly whispering the 

syllable "tah" with no auditory input. The SSS-test was not included in the fMRI session. 

Participants’ speech synchronization abilities were assessed in a previous study (19). 

Importantly, participants’ whispered articulation was recorded during every AS block for 

both the behavioral and fMRI versions of the experiment (for the latter we used an MRI compatible 

noise cancelling microphone; OptoAcoustics FOMRI).  

Stimuli 

For the SSS-test and the word-learning task, we created four pseudo-languages (L1 to L4) 

each containing 12 distinct sets of syllables (unique consonant-vowel combinations) handpicked 

to maximize both between and within set variability. The syllables in each pseudo-language were 

combined to form four distinct tri-syllabic pseudo-words (henceforth, words). The words were 

relatively balanced on English word-average bi-phoneme and positional probabilities according to 

The Irvine Phonotactic Online Dictionary (IPhOD version 2.0; http://www.IPhOD.com/), to 

maximize their learnability. Words were concatenated in pseudorandom order to form auditory 

speech streams with no gaps between words, lasting 2 minutes each. An equal number of non-

consecutive repetitions per word was ensured. For the learning test after each pseudo-language 

exposure, we created part-words by the concatenation of a word’s final syllable and the first two 

syllables of another word of the same pseudo-language. A minute-long random syllable stream for 

the SSS-test was created by the random combination of a set of 12 syllables different from those 
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used for the pseudo-languages. The stream of syllables contained no pauses between them and no 

consecutive repetitions. Words, part-words and streams were converted to .wav files using the 

American Male Voice diphone database (US2) of the MBROLA text-to-speech synthesizer (52) 

at 16 kHz. All phonemes were equal in duration (111ms) - satisfying a constant syllable 

presentation rate of 4.5Hz, pitch (200Hz), and pitch rise and fall (with the maximum in the middle 

of the phoneme).  

Statistical Word-Learning Task 

The statistical word-learning task for each pseudo-language consisted of a learning phase, 

during which participants listened to the 2-minute-long streams containing the four words of the 

pseudo-language (L1 to L4); and a test phase, where each word of the pseudo-language was 

presented against four part-words (randomly selected from the pool of 12 possible part-words) in 

a two-alternative forced choice (see Fig 5B). During each test, words and selected part-words were 

presented twice each, within non-repeating pairs, making this a total of eight test trials. Test items 

were presented auditorily and in their written forms (left and right of the screen). Participants were 

required, for each test pair, to indicate their choice by pressing ‘1’/left or a ‘2’/right according to 

the order of auditory presentation and location on the screen. The presentation of the pseudo-

languages was counterbalanced between participants. In order to select the best phonology to 

orthography matching for the visual presentation, the written renderings of all words and part-

words with the highest convergence among five independent native speakers were selected.  

SSS-test  

Participants in a sound isolated booth and seated in front of a computer with a microphone 

placed close to their mouth, listened to a rhythmic stream of syllables while whispering the syllable 

“tah” concurrently and repeatedly for one minute. Next, they listened to isolated syllables and had 
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to indicate for each one whether they were present in the stream. Participants were not explicitly 

instructed to synchronize their speech to the external audio; instead, the instruction was to correctly 

recall the syllables. Before performing this task, participants were primed to repeatedly whisper 

“tah” at a rate of 4.5 syllables/sec; the same rate at which the external syllables were presented. 

For further details about the test, see (19,53). 

Speech synchronization measurement 

The degree of synchronization was measured by the phase locking value (PLV) between 

the envelope of the produced speech and the cochlear envelope (24,54) of the rhythmic syllable 

stream or the pseudo-language. The PLV was computed using the following formula: 

𝑃𝐿𝑉 =
1
𝑇
'(𝑒!"#!(%)'#"(%)(
)

%*+

' 

where t is the discretized time, T is the total number of time points, and θ1 and θ2 the phase of the 

first and the second signals (i.e., of the envelopes of the auditory and produced speech signals). 

The PLV was computed for windows of 5 seconds length with an overlap of 2 seconds. The results 

for all time windows were averaged within each stimulus presentation, providing one PLV per 

block. 

Envelopes were resampled at 100 Hz, filtered between 3.5 and 5.5 Hz, and their phases 

were extracted by means of the Hilbert transform.  

Definition of high and low synchronizers  

Each participant was classified as a low or a high synchronizer according to their 

corresponding speech synchronization value (Whisper to Audio PLV) obtained during the SSS-

test. A threshold value was estimated from a previous dataset (19) comprising 388 PLVs obtained 
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with different versions of the SSS-test (Fig S1A). We applied a k-means clustering algorithm(55), 

using a squared Euclidean distance metric with 2 clusters, and computed the midpoint between the 

clusters’ centers (PLVthreshold = 0.49). Participants with a PLV below/above this value were 

classified as low/high synchronizers.  

Scanning parameters 

All fMRI scans took place at the NYU Center for Brain Imaging using a 3T scanner 

(Siemens Prisma 3T MRI scanner) and a 64-channel phased-array head coil. For the statistical 

word-learning fMRI task, two runs of at least 400 (note that the test is self-paced and total timings 

vary between participants) sequential whole-brain multi-echo echo-planar imaging (EPI) volumes 

were acquired (TR = 1500 ms, TE = 45 ms, flip angle = 77º, voxel size = 2.0 × 2.0 × 2.0 mm3, 64 

axial slices, acquisition size = 104×104). A high resolution T1 MPRAGE image was also acquired 

(TR = 2400 ms, TE = 2.24 ms, flip angle = 8º, voxel size = 0.80 × 0.80 × 0.80 mm3, 256 sagittal 

slices, acquisition matrix = 320 × 300). 

fMRI and ICA preprocessing 

Data were preprocessed using MATLAB R2018a and the Statistical Parameter Mapping 

software (SPM12, Wellcome Trust Centre for Neuroimaging, University College, London, UK, 

www.fil.ion.ucl.ac.uk/spm/).  For each subject, we first realigned the two word-learning runs to 

the mean image of all EPIs. The T1 was then co-registered to this mean functional image and 

segmented using Unified Segmentation (56). The deformation fields obtained during the 

segmentation step were used to spatially normalize all functional images from each run to the MNI 

template included in SPM12 (we maintained the original acquisition voxel size of 2.0 × 2.0 × 2.0 

mm3). Images were finally spatially smoothed with a 6 mm FWHM kernel.  
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We used the Group ICA of fMRI Toolbox (22) (GIFT v4.0b; 

http://mialab.mrn.org/software/gift/) to apply group spatial ICA to the previously preprocessed 

fMRI data. Based on previous research in clinical and healthy populations (14,57,58), the number 

of independent components to be extracted was set to 20. Note that this is a purely data-driven 

approach. Data were intensity normalized, concatenated and, using principal component analysis, 

reduced to 20 temporal dimensions. Then, this preprocessed data were fed to the infomax algorithm 

(59). The intensities of the spatial maps were in percentage of signal change after the intensity 

normalization, and thus no scaling was used.  

To assess which of the 20 ICA networks retrieved were related to the different conditions 

of interest (PL and AS), both spatial and temporal classification methods were employed. First, 

for all subjects, the spatial map of each individual ICA network was submitted to a second-level 

analysis using a one sample t-test under SPM12 (60). We then obtained, for each network, a group 

map of activity that was thresholded using a p < 0.05 FWE-corrected threshold at the cluster level, 

with an auxiliary p < 0.001 threshold at the voxel level. Clusters with fewer than 50 voxels were 

not included in the analyses. We visually inspected these thresholded networks and 8 were 

discarded as they reflected artifacts related to movement or the presence of ventricles or blood 

vessels (14,58). 

 Using GIFT, for the remaining 12 networks, we calculated a multiple regression that fitted 

each participant’s network time-course to a model. The model was created using SPM12 by 

convolving the timing of both the main (AS and PL) and control (Rest and Speech motor) 

conditions with a canonical hemodynamic response. To control for motion artifacts, the model 

included six movement regressors obtained from the realignment step. The test phase was also 

included in the GLM model as a separate nuisance condition. Therefore, the beta values for the 
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AS and PL conditions were computed from the part of the fMRI signal pertaining to the listening 

blocks (i.e., without the testing phase, which was modeled separately). By fitting a multiple 

regression between this model and each network’s time-course, we obtained, for each condition, 

beta values that represented network engagement. For PL beta values, we used the Rest condition 

as a baseline. For AS we used both the rest and the speech motor control conditions as baseline to 

capture the activity related to the learning process during AS itself and not to the motor-activity 

related to the whispering. For any comparison using beta values, participants exceeding 2 SD were 

excluded from the analysis.  

For the group spatial maps of each network, maxima and all coordinates are reported in 

MNI space. Anatomical and cytoarchitectonical areas were identified using the Automated 

Anatomical Labeling (61) and the Talairach Daemon(62) database atlases included in the xjView 

toolbox (http://www.alivelearn.net/xjview/). 

Statistical Analyses 

Group analyses were performed on the proportion of correct responses averaged across 

same-type conditions (PL and AS). To test for differences between learning conditions and groups, 

we performed generalized linear mixed modelling in R (version 4.0.2) and RStudio (version 

1.3.959) using the lme4 package (63). The dependent variable (responses to the learning tests) was 

assumed to have a binomial distribution and a logit link function was applied. An initial model 

included Condition (AS, PL), Group (High, Low) and their interaction as predictors. This model 

also included Subjects as a random effects factor to allow for varying intercepts between subjects. 

This was compared to alternative models with additional random effects factors Order, Language, 

and Trial number. These factors were removed, keeping the initial model, because the increase in 

variance explained by these more complex models was in all cases negligible. Akaike Information 
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Criterion (AIC) was used for this assessment, thus selecting the model with the best balance 

between goodness of fit and complexity. The effects of the different predictors and their 

interactions on learning performance were assessed by means of likelihood ratio tests using 

the afex package (64) in R. These tests were based on Type 3 sums of squares. Following a 

significant interaction between Group and Condition, we estimated marginal means, using the 

emmeans package in R, of participants’ performance within each group (Highs, Lows) for the PL 

and AS conditions. Where specified, we additionally used non-parametric Mann-Whitney-

Wilcoxon and Wilcoxon signed-rank tests for between and within subject comparisons, 

respectively. Multiple comparisons were controlled using a False-Discovery Rate correction. Non-

parametric Spearman’s rank correlations were used to assess the relationship between variables. 

Bayes factors (BF01), which reflect how likely data are to arise from the null model (i.e., the 

probability of the data given H0 relative to H1), were also computed with the software JASP using 

default priors (65–67).  
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Fig S1. Behavioral performance in the scanner. (A) SSS-test outcome. Histogram of 388 PLVs obtained in a 

previous work1 with two different versions of the SSS-test. Black dots represent the participants selected to complete 

the fMRI protocol. Black line represents the threshold value adopted in this work to separate high and low 

synchronizers: PLVthreshold = 0.49. A k-means clustering algorithm using a squared Euclidean distance metric was 

applied over this distribution (N = 388). The threshold value is the midpoint between the two clusters’ centers.  (B) 

Scatterplot displaying participants' PLV during AS inside the scanner as a function of the PLV from the SSS-test. Red 

line represents the correlation of the data. The correlation is displayed for visualization purposes, to emphasize that 

the synchronization of low synchronizers is consistently worse than that of highs during the AS block. The correlation 

within groups remains significant only for high synchronizers (rHIGH=0.45 pHIGH=0.044; rLOW=0.21 pLOW=0.31). (C) 

Percentage of correct responses for the statistical word-learning task during PL and AS conditions inside the scanner 

on the entire sample. (D) Percentage of correct responses for the statistical word-learning task during PL and AS 

conditions inside the scanner for the low (blue color) and the high (orange color) synchronizers. The mixed-model 

analysis of this dataset yielded a significant difference between conditions (main effect of Condition (PL > AS), χ2 = 

5.40, p < 0.05)), and a main effect of group close to significance (Highs > Lows; χ2 = 3.67, p = 0.055), and a trending 
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Condition*Group interaction (χ2 = 2.74, p = 0.098). Dots: model predicted group means. Bars: 95% confidence 

interval. AS: Articulatory Suppression; PL: Passive Listening. 

 

 

Fig S2. Brain networks significantly activated during PL. The different networks are shown over a canonical 

template with MNI coordinates on the upper portion of each slice. Neurological convention is used with a p < 0.05 

FWE-corrected threshold at the cluster level and an auxiliary p < 0.001 threshold at the voxel level. In addition to the 

auditory (green) and fronto-parietal (red) networks described in the main manuscript, a sensorimotor (magenta) and a 

right lateralized fronto-temporo-parietal (yellow) networks were also activated during PL. All these networks were 

significantly activated during PL for both high and low synchronizers, except the fronto-parietal, which was only 

active for the high. *p < 0.05 Mann-Whitney-Wilcoxon between-group comparison, FDR corrected. 
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Fig S3. Brain networks significantly activated during AS. The different networks are shown over a canonical 

template with MNI coordinates on the upper portion of each slice. Neurological convention is used with a p < 0.05 

FWE-corrected threshold at the cluster level and an auxiliary p < 0.001 threshold at the voxel level. In addition to the 

auditory (green) and fronto-parietal (red) networks described in the main manuscript, a left (light blue) and a right 

(yellow) lateralized fronto-temporo-parietal network were also activated during AS. All networks were significantly 

activated during AS for both high and low synchronizers, except for the fronto-parietal which was only active for the 

high and the auditory, which was marginally significant for the lows (punc = 0.03). 
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