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Abstract 

 

Cortical circuits embody remarkably reliable neural representations of sensory stimuli that are 

critical for perception and action. The fundamental structure of these network representations is 

thought to arise early in development prior to the onset of sensory experience. However, how 

these endogenously generated networks respond to the onset of sensory experience, and the 

extent to which they reorganize with experience remains unclear. Here we examine this ‘nature-

nurture transform’ using chronic in vivo calcium imaging to probe the developmental emergence 

of the representation of orientation in visual cortex of the ferret, a species with a well-defined 

modular network of orientation-selective responses. At eye opening, visual stimulation of 

endogenous networks evokes robust modular patterns of cortical activity. However, these initial 

evoked activity patterns are strikingly different from those in experienced animals, exhibiting a 

high degree of variability both within and across trials that severely limits stimulus 

discriminability. In addition, visual experience is accompanied by a number of changes in the 

structure of the early evoked modular patterns including a reduction in dimensionality and a shift 

in the leading pattern dimensions indicating significant network reorganization. Moreover, these 

early evoked patterns and their changes are only loosely constrained by the endogenous network 

structure of spontaneous activity, and spontaneous activity itself reorganizes considerably to 

align with the novel evoked patterns. Based on a computational network model, we propose that 

the initial evoked activity patterns reflect novel visual input that is only poorly aligned with the 

endogenous networks and that highly reliable visual representations emerge from a realignment 

of feedforward and recurrent networks that is optimal for these novel patterns of visually driven 

activity. 

 

Cortical circuits emerge from a developmental sequence that includes two distinct phases: an early period 

prior to the onset of experience during which endogenous mechanisms are thought to formulate the initial 

framework of cortical networks1–4, and a subsequent period during which these early networks are refined 

under the influence of experience5–9. The visual cortex of higher mammals has served as a powerful 

model for exploring the contributions of these different phases to the development of mature cortical 
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networks. Prior to the onset of visual experience, activity independent mechanisms combine with activity 

dependent mechanisms driven by patterns of endogenous activity derived from the retina and the LGN10–

12 to generate a robust modular network structure in visual cortex that is evident in patterns of 

spontaneous activity13,14. This endogenously generated functional network is thought to form the initial 

framework for the emergent cortical representation of stimulus orientation since visual stimulation at or 

before eye opening drives weakly orientation-selective responses at the cellular and modular scale15–19 

and spontaneous activity prior to eye opening is predictive of the representations of stimulus orientations 

at eye opening14. Despite recognizing the considerable network organization present before experience, 

we lack a clear understanding of the capacity of the endogenous cortical network to reliably represent 

stimulus orientation at the onset of visual experience, and the degree to which visual experience alters 

endogenous network structure to achieve mature stimulus representations.   

 

To explore these critical early developmental dynamics, we employed chronic in vivo calcium imaging of 

visually evoked activity in visual cortex of postnatal ferrets prior to and following the onset of visual 

experience (Fig. 1a; Methods). Utilizing calcium sensors to visualize activity at the modular and cellular 

scale allowed us to study developing visual representations in the behaviorally relevant regime of 

individual trials. Our experiments reveal dramatic developmental changes in network response reliability 

and significant departures of the emerging visual representations from early endogenous network 

structure that are driven by the visual experience. Based on a computational model whose predictions 

closely match the biology, we propose that visual experience drives the alignment of feedforward and 

recurrent networks to transform a nascent modular network with diverse and unreliable visual responses 

into a mature network with a distinctive modular structure and highly reliable visual responses.  

 

Strong but highly variable network responses in visually naïve animals 

As a frame of reference for the qualities of the earliest visual responses, we start with consideration of 

the patterns of activity evoked by grating stimuli in animals that have had several days of patterned visual 

experience (Fig. 1a-c). As expected, single trial responses were strong and modular (comprising a 

number of distinct active domains) and also highly reliable, such that repeated presentations of the same 

stimulus evoked highly similar single trial patterns of activity (assessed 0.5 s after stimulus onset, Fig. 

1c, upper). Intriguingly, in young, visually naïve animals, with eyes opened prematurely several days prior 

to the natural time of eye opening (EO), single trial grating evoked activity was also robust (Fig. 1b, lower) 

and displayed an equally pronounced modular structure (Fig. 1c, lower). However, single trial response 

patterns were strikingly different for repeated presentations of the same grating stimulus (Fig. 1c, lower). 
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Figure 1: In visually naïve animals, grating stimulus evoked activity is robust and modular, but also highly variable 
both within and across trials.  

(a) Timeline of ferret visual cortex development and experiments (PD=postnatal day; EO=eye opening).  

(b) Grating stimulus evoked activity (GCaMP6s widefield epi-fluorescence imaging), averaged over the region of interest 

(ROI) in a visually naïve animal, two days prior to eye opening (EO-2; bottom) and in an experienced animal, six days 

after eye opening (EO+6; top). Light blue: stimulation (moving grating, 16 directions, randomly alternated). 

(c) Left: Examples of grating-evoked activity patterns for repeated presentations of the same stimulus. Top: experienced 

(EO+6); bottom: visually naïve (EO-2). Superimposed in green are the zero-contours from the first trial. Activity patterns 

are taken 0.5 s after stimulus onset. Right: Overlay of contours from n=5 trials (same stimulus). 

(d) Mean correlation between activity patterns evoked by the same stimulus, averaged over all stimuli (‘trial-to-trial 

correlation’, see main text and Methods). Animals longitudinally recorded. Error bars show Mean ± SEM for age groups: 

EO-3 to -2, EO+0, EO+4 to +7 (N= 4,11,11 animals, respectively). Control: random patterns with matched spatial 

correlation function (Methods). Legend, omitting control, applies also to (g), (i), (j), below.  

(e) Vector-sum orientation preference map (OPM); angle shown in color and magnitude (1 – circular variance (CV)) in 

luminance value.  

(f) Stability of activity pattern within a trial in a visually naïve (EO-2) and an experienced animal (EO+6).  

(g) Correlation between response patterns 1 s and 3 s after stimulus onset, averaged over all trials and stimuli (‘intra-trial 

stability’) at different ages. 

(h) Top: Examples of single cell grating-evoked activity patterns for repeated presentations of the same stimulus, 0.5 s after 

stimulus onset pooled over 4 imaging planes (GCaMP6 two-photon fluorescence imaging). Bottom: Cellular activity 

patterns during a trial (same field of view; activity temporally smoothed for illustration using a gaussian kernel, SD=0.33 

s).  

(i) Trial to trial correlation for cellular responses at different ages (N=5 animals). 

(j) Intra-trial stability of cellular activity, 0.5 s and 2.5 s after stimulus onset at different ages.  

      
Same animal presented in (c), (e), (f). For illustration, activity patterns were clipped at 2 SD.  
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To quantify this apparent difference in reliability of responses across trials we examined the ‘trial-to-trial 

correlation’ (see Methods for definition) in multiple animals across ages and found a dramatic increase 

in trial-to-trial correlation four days following the onset of visual experience (Fig. 1d, EO vs EO+4, 

p=0.0002, paired permutation test, see Methods), along with a drastic increase in orientation 

discrimination (SI Fig 1a). At the earliest time points tested, correlations between evoked activity patterns 

across trials while low, were greater than zero (Fig. 1d; p<10-5, random control patterns, see Methods) 

consistent with the presence of a nascent modular structure at this early stage. Indeed, averaging over 

trials in visually naïve animals confirmed the presence of a weak but systematic bias in preferred 

orientation across cortical space (orientation preference map – OPM) (Fig. 1e lower), consistent with 

previous studies that have found weak structure in trial-averaged activity patterns at these early time 

points15–17,19. Our observations suggest that a major contributor to the emergence of mature orientation 

representations (Fig.1e top) is reduction in response variability at the network scale.  

 

While these results have focused on the visual responses shortly (0.5 s) after stimulus onset, we thought 

it was important to assess whether a similar degree of instability was present in the dynamics of sustained 

activity. Our moving visual grating stimuli were presented for a duration of 4-5 seconds, and thus we 

systematically assessed the degree to which the evoked activity was stably maintained during visual 

stimulation by comparing the activity pattern 1 s after stimulus onset to that 2 s later. Indeed, following 

the onset of visual experience, responses were highly stable during the stimulation period (Fig. 1f top), 

contrasting with responses in the visually naïve cortex that showed a strong tendency to vary during the 

period of stimulation (Fig. 1f bottom). To quantify this trend, we defined ‘intra-trial stability’ as the 

correlation between activity patterns 1 s vs. 3 s after stimulus onset averaged over all trials and stimuli 

(see Methods). We found that across the animals in our sample, intra-trial stability increased significantly 

several days after eye opening (Fig. 1g; p<0.001, unpaired bootstrap test, see Methods), further 

emphasizing the high degree of instability in visually evoked responses of naïve animals.  

 

These wide-field imaging results were confirmed with chronic two-photon imaging of the activity patterns 

in large populations of single neurons. Repeated presentations of the same visual grating stimulus in 

visually naïve animals evoked single cell responses with amplitude and spatial structure comparable to 

experienced animals, but with much lower uniformity of responses across trials (Fig. 1h top, SI Fig. 2). 

Cellular population activity patterns from younger animals were only weakly correlated trial to trial (Fig. 

1i), severely limiting orientation discrimination (SI Fig 1b); but these patterns became progressively more 

correlated several days after eye opening (Fig. 1i), following a similar trajectory as observed with wide-

field imaging in larger fields of view (Fig. 1d). Additionally, population activity patterns in younger animals 

were not stably maintained during the period of stimulation (Fig. 1h lower, j), consistent with our results 

using wide-field imaging (Fig. 1g).  

 

Thus, with the initial exposure to activity driven by visual stimuli, endogenously generated circuits deliver 

responses that are strong and highly structured, but lack the reliability necessary to faithfully represent 

stimulus orientation. But to understand the nature of the transform that results in highly reliable network 

response patterns requires first establishing how the specific patterns of modular activity in visually naïve 

cortex are organized relative to those that emerge following visual experience. 
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Reorganization of visual representations with experience 

One possibility is that the visually naïve cortex comprises the same set of modular activity patterns as 

the mature cortex, but without a reliable assignment between stimulus and modular network pattern (Fig. 

2a). To test this idea, we examined the overall organization of evoked modular activity patterns for all 

trials and stimuli using principal component analysis. The principal components – themselves patterns 

(SI Fig. 3a) – reveal the most prevalent modes of co-variation between cortical locations across the 

activity patterns. In experienced animals, the projection of individual (z-scored and normalized) activity 

patterns into the space spanned by the two leading principal components (SI Fig. 3b) revealed a well-

ordered circular structure with radius close to 1, suggesting that stimulus orientation is mapped onto a 

nearly two-dimensional linear manifold in neural activity space (Fig. 2b, upper). If in visually naïve animals 

the weak trial-to-trial correlation were just due to a lack of assignment between stimulus and response, 

we would expect to see a similarly sized circle, with just the colors scrambled. In contrast, we found that 

in visually naïve animals many projection lengths were much smaller than 1 (Fig. 2b, lower) and the 

variance of evoked activity was distributed over the principal components more broadly than in 

experienced animals (Fig. 2c). To quantify this trend, we computed the linear ‘dimensionality’ of grating 

evoked response patterns (see Methods), which, initially was relatively high, but showed a pronounced 

decrease with the onset of visual experience (Fig. 2d, SI Fig. 3c). Thus, a lack of stimulus assignment 

cannot fully account for the unreliability of the early evoked activity patterns. Instead, the early modular 

responses are more diverse, residing in a higher-dimensional linear manifold than those found in the 

experienced cortex following the onset of visual experience. 

 

Having observed this diverse repertoire of evoked patterns in the visually naïve cortex, we next wondered 

whether it provides a pool from which the mature, less diverse representations are built, for instance, 

through a process of selection and pruning that involves competition (Fig. 2e, upper). To test this 

hypothesis, we turned to chronic imaging experiments that made it possible to compare, in the same 

animal, patterns of activity evoked by a given stimulus across age14,15; see Methods). According to this 

hypothesis, we would expect to find response patterns in the visually naïve cortex that closely match 

those in the experienced cortex. However, contrary to this possibility, we found that the mature evoked 

patterns were distinct from even the best matching early evoked patterns at eye opening and prior to that 

(Fig. 2f; control: mature to mature similarity, p<10-5, paired permutation test; see Methods). We 

corroborated this result analyzing populations of individual cells chronically recorded with two-photon 

imaging (Fig. 2g; p<10-5, paired permutation test). Consistently, not all variance of activity in the 

experienced cortex could be explained by the leading principal components of early activity (Fig 2h; see 

Methods; p= 0.0002, paired permutation test), indicating the emergence of novel variance components 

with the onset of visual experience. Changes were also detectible at the level of individual cells, which 

shifted their preferred orientation (SI Fig. 4), extending previous observations15. Thus, these results show 

that the mature reliable set of responses is not simply a subset selected from the broader repertoire of 

early responses (Fig. 2e, upper). Instead, reliable evoked activity patterns encompass novel 

combinations of coactive domains, implying a significant reorganization of visual representations (Fig. 

2e, lower).   
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(b) Single trial grating evoked activity patterns in a visually naïve animal (EO-2, bottom) and in an experienced animal 

(EO+6, top) projected into the space spanned by the first two principal components (PCs) computed on the 

respective day. Patterns were represented as vectors over all pixels and normalized to unit length. Here and below, 

evoked activity is taken 0.5 s after stimulus onset (unless noted otherwise). 

(c) Variance explained by leading principal components of evoked activity for different age groups (EO-3 to -2, EO+0, 

EO+4, EO+6: N= 4,11,11,2 animals, respectively). Thick lines, average over animals; thin lines, individual animals. 

(d) Linear dimensionality (participation ratio, see Methods) of evoked activity. Error bars show Mean ± SEM for age 

groups: EO-3 to -2, EO+0, EO+4 to +7 (N= 4,11,11 animals, respectively). 

(e) Illustration of the hypotheses that the establishment of mature, reliable responses from an initially diverse set of 

patterns involves only pruning (top) or the formation of novel patterns (bottom). 

(f) Maximal correlation between an evoked pattern in the experienced cortex (at EO+4) and all evoked patterns in the 

visually naïve cortex (pre EO or at EO) of the same animal, averaged over all evoked patterns at EO+4. Control: 

Maximal correlation on the same day based on random splits at EO+4 (Mean ± SEM).  

(g) As (d), but for single cell responses from chronically tracked cells. Responses were averaged over the entire 

stimulus period (4 s). 

(h) Blue: Fraction of variance of evoked activity in the experienced cortex (EO+4) explained by its leading PCs in the 

visually naïve state (EO+0). Grey: control (variance explained on the same day (EO+0), cross-validated, see 

Methods). Thick lines, average over animals (N=11); thin lines, individual animals. 
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Initially weak correspondence between evoked and spontaneous activity  

Having characterized the considerable diversity of early evoked activity patterns and their significant 

reorganization following eye opening, we next sought to shed light on the role of the endogenously 

generated network structure in shaping these early steps in the development of the representation of 

stimulus orientation. One possibility is that the structure of the early endogenous network, as reflected 

by the spontaneous activity in the visually naïve cortex, tightly constrains the initial evoked patterns, in 

which case we would expect to see a close correspondence between the two. Consistent with this idea, 

the patterns of spontaneous activity in the early visual cortex are diverse and modular14, reminiscent of 

the patterns of evoked activity we observe in visually naïve animals. Moreover, this early modular 

spontaneous activity is predictive of the columnar organization of the future orientation preference map14 

and, different from mice20, a significant structural relation between the two remains evident in the mature 

visual cortex of carnivores14,21,22 and primates23. However, it is currently unclear how closely the initial 

visually evoked responses of the endogenous network correspond to its modular patterns of spontaneous 

activity.  
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To test this possibility, we therefore recorded spontaneous activity in the same animals studied above. 

As reported previously14 we found that patterns of spontaneous activity in the early visual cortex often 

extended over the entire field of view and were comparable in strength to grating evoked activity (Fig. 3a, 

b). We extracted these patterns at the activity peaks during episodes of 5-10 minutes of spontaneous 

activity (see Methods) and used principal component analysis to reveal the most prevalent modes of co-

variation across spontaneous patterns (see Methods; SI Fig. 3a, d). Overall, the linear dimensionality of 

spontaneous activity changed only little over the age range considered (SI Fig. 3d-f). Exploring the 

relationship between grating evoked and spontaneous activity recorded on the same day in animals with 

4 days of visual experience, we indeed observed a tight alignment. Projecting single trial evoked activity 

patterns onto the two leading principal components of spontaneous activity revealed a representation of 

the cyclic stimulus space that was comparable in the degree of order to the projections onto the two 

leading evoked components at the same age (Fig. 3c top; compare Fig. 2b top). Projection lengths were 

close to 1 and, consistently, most visually evoked variance was concentrated on the two leading principal 

components of spontaneous activity (Fig. 3c bottom; see SI Fig. 5e-g for similar results in awake animals). 

In contrast, in visually naïve animals two days prior to eye opening, projection lengths were consistently 

smaller than 1 (Fig. 3d top) and the overlap onto the main spontaneous components, while still noticeably 

larger than for random control patterns (see Methods), was considerably smaller than the values found 

for the experienced cortex (Fig. 3d bottom). This trend was systematic across animals, and we captured 

Figure 3: The initial grating evoked patterns do not closely correspond to early spontaneous patterns of the 

endogenous network; with experience, both spontaneous and visually evoked activity reorganize and become 

aligned with each other. 

(a) Example with four days of visual experience (EO+4). Bottom: Spontaneous activity trace (black) averaged over the 

ROI. Top: Spontaneous activity pattern at peak indicated by grey arrow (right), and its best matching (single trial) 

visual grating evoked activity pattern (left).   

(b) As (a), but for the visually naïve cortex (EO-2). 

(c) Top: Single trial grating evoked activity patterns (normalized to unit length, see Fig. 2b) in the experienced cortex 

projected into the space spanned by the first two PCs of spontaneous activity. Bottom: fraction of variance of 

spontaneous activity, evoked activity and control patterns (red, blue and grey, respectively) explained by the first 

20 PCs of spontaneous activity. Thick lines, average over animals (N=11); thin lines, individual animals. Control in 

(c-e): random patterns with matched spatial correlation function (Methods). 

(d) As (c), but for the visually naïve cortex. The number of activity patterns in (c) and (d) were matched across age.  

(e) ‘Alignment of evoked with spontaneous activity’ defined as the fraction of spontaneous variance explained by an 

evoked pattern, averaged over all trials and stimuli. Error bars show Mean ± SEM for age groups: EO-3 to -2, 

EO+0, EO+4 to +7, N= 4,11,11 animals, respectively. 

(f) Red: Maximal correlation between an evoked pattern in the experienced cortex (EO+4) and all spontaneous 

patterns in the visually naïve cortex (pre EO or at EO), averaged over all evoked patterns at EO+4. Faint blue: 

maximal correlation with early evoked patterns (reproduced from Fig 2c). Control: Maximal correlation on the same 

day based on random splits at EO+4 (Mean ± SEM). 

(g) Fraction of variance of spontaneous (red) and evoked (blue) activity in the experienced cortex (EO+4) explained by 

the leading PC of spontaneous activity in the naïve state (at EO+0) (see Methods). Grey: control (variance 

explained on the same day (EO+0), cross-validated, see Methods). Thick lines, average over animals (N=11); thin 

lines, individual animals. 

(h) As (f), but now assessing the maximal correlation to spontaneous patterns in the experienced cortex (EO+4).  

Data presented in (a), (b), (c) and (d) is from the same animal). Evoked activity is taken 0.5 s after stimulus onset. For 
illustration, activity patterns were clipped at 2 SD.  
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it by a parameter-free measure named ‘alignment of evoked with spontaneous’, defined as the fraction 

of total spontaneous variance that an individual evoked pattern on average explains (Fig. 3e, see 

Methods). Consistently, also alternative alignment measures showed such trend (SI Fig. 5a-d), in line 

with previous reports in ferrets24, while different from the trend observed in zebrafish25. Thus, while 

significant (p<0.001, random control patterns, see Methods), compared to the tight alignment observed 

in the experienced cortex, the degree of alignment was several-fold smaller in the visually naïve cortex 

(Fig. 3e, p=0.0003, paired permutation test), arguing against the model that the patterns of evoked 

activity, at the onset of vision, correspond to endogenous network patterns.    

    

Co-refinement of spontaneous and evoked activity patterns 

Having seen the transformation from visual responses that are variable and only poorly aligned with 

spontaneous activity in the visually naïve cortex to the reliable and well aligned responses several days 

later, we next wondered whether the endogenous networks provide a stable framework to integrate and 

stabilize the developing representations. This ‘scaffold hypothesis’ predicts that spontaneous activity 

remains fairly static, while the drastic improvement in alignment between spontaneous and grating 

evoked activity after eye opening primarily results from changes in the evoked patterns to match the early 

spontaneous. In this case, we would expect to find patterns of spontaneous activity in the visually naïve 

cortex that accurately predict the grating evoked responses in the experienced cortex. However, 

inconsistent with this model, we found that even the best matching of all early spontaneous patterns 

deviated significantly from the evoked patterns in the experienced cortex (p<10-5, paired permutation 

test), and more than the early evoked activity did (Fig 3f, EO-2: p=0.0031, EO: p<10-5, paired permutation 

test). Consistent with this result, we found that a considerable fraction of the evoked variance in the 

experienced cortex could not be explained by the leading principal components of early spontaneous 

activity, showing that the two occupy distinct dimensions (Fig 3g, blue line, p=0.0007). Moreover, 

spontaneous activity itself changed considerably after eye opening, as was evident from both a lack of 

explained variance (Fig 3g, red line, p<10-5, paired permutation test) and the inability to find early 

spontaneous patterns that accurately predict those in the experienced cortex (Fig 3h, p=0.0002, paired 

permutation test). Thus, our results appear inconsistent with the scaffold model, as both the evoked 

and spontaneous activity in the experienced cortex depart significantly from the structure of spontaneous 

activity in the visually naïve cortex. However, our observation that spontaneous activity prior to eye 

opening is related to grating evoked activity at this early stage (Fig. 3e, SI Fig. 5a-d), and exhibits a similar 

correlation function at a local, modular scale (SI Fig. 6) is consistent with the possibility that the main 

contribution of the endogenous networks is to provide a precursor to the emerging evoked 

representations in the early cortex, which are then further transformed by visual experience to form 

mature, reliable visual representations.  
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Patterned visual experience is necessary to achieve mature network properties 

Next, we sought to test the degree to which visual experience drives the development of the reliable 

network representations we have described by studying responses in binocularly deprived animals. 

These animals (N=3) were lid-sutured for one week starting at P30 (the normal time of eye opening),  

 

preventing visual stimulation through the open eyes prior to the experiments (at around P38) (Fig. 4a; 

see Methods). As before, we recorded both visual grating evoked and spontaneous patterns of activity 

in all animals. Binocular deprivation had a significant impact on all of the four cortical network properties 

of grating evoked activity that we have shown change substantially after the onset of visual experience: 

trial-to-trial correlation, intra-trial stability, dimensionality and alignment with spontaneous activity. 

Principal component analysis revealed that evoked responses lacked the orderly circular distribution in 

two dimensions that is evident in normally reared animals and age-matched controls (Fig. 4b; compare 

Fig. 2b top). Indeed, visual responses in visually deprived animals lacked the reliability found in age-

matched, visually-experienced controls, both in trial-to-trial correlation and intra-trial stability (Fig. 4c, d; 

BD versus Control, c: p=0.017, d: p=0.021, unpaired bootstrap test) and showed weak orientation 
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Figure 4: Patterned visual experience is required to develop low-dimensional, stable visual responses aligned with 

the spontaneous network activity. 

(a) Experimental timeline for deprivation (orange) and control (blue) experiments. 

(b) Evoked activity in deprived animals projected into the space spanned by the first two PCs of evoked activity 

computed on the same day (8 days after the normal time of eye opening). Activity was normalized to unit length 

(compare Fig. 2b). 

(c) Trial-to-trial correlation in deprived (N=3, orange) and control (N=2, blue) animals, in comparison to visually naïve 

animals at EO+0 (black, reproduced from Fig. 1d). Circles: single animals; error bars: Mean ± SEM. 

(d) As (c), but for intra-trial stability (naïve animals reproduced from Fig. 1g). 

(e) As (c), but for linear dimensionality (naïve animals reproduced from Fig. 2d). 

(f) Same as (b), but projected into the spontaneous PC space. 

(g) Fraction of variance of spontaneous activity, evoked activity, and control patterns (red, blue and grey, respectively) 

explained by the first 20 PCs of spontaneous activity for deprived animals.   

(h) As (c), but for alignment of evoked with spontaneous activity (naïve animals reproduced from Fig. 3e).  
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discrimination (SI Fig 1c). Likewise, with deprivation, the diversity of visually evoked patterns was not 

significantly different from that found in visually naïve animals, with no sign of the decrease in 

dimensionality found in animals with experience (Fig. 4e, BD versus EO, p=0.38, unpaired bootstrap 

test). Finally, in the deprived animals, projecting evoked activity patterns onto the two leading principal 

components of spontaneous activity did not reveal an orderly structure (Fig. 4f; compare Fig. 3c top) and 

the overlap with the main spontaneous components, while noticeable, remained near the level of visually 

naïve animals (Fig. 4g; compare Fig. 3d bottom). Quantitatively, we did not observe any increase in 

alignment between evoked and spontaneous activity in deprived animals beyond what was observed in 

normal animals at the time of eye opening (p=0.971, unpaired bootstrap test; Fig. 4h). These results 

indicate that visual experience is critical for changes in a number of cortical network properties that 

accompany the emergence of reliable visual representations.  

 

The feedforward-recurrent alignment hypothesis  

While, in principle, these network properties could change independently from one another (SI Fig. 7), 

the fact that they mature over the same period of time, and depend on experience, made us wonder 

whether they could be the product of a common underlying mechanism that builds reliable network 

responses. Ample computational work suggests that recurrent connections can give rise to amplification 

within subnetworks of coactive network units26–31. Input that aligns more with such a subnetwork is 

expected to elicit a more robust response – an amplification that reflects greater resonance with the 

intrinsic network structure (Fig. 5a). At eye opening, the cortex is exposed to structured visually driven 

input for the first time and, assuming the two are, initially, not properly aligned, we reasoned that proper 

alignment of this novel feedforward drive to the cortical recurrent network could be an important factor in 

the maturation of faithful network responses to visual input. 
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To explore this possibility, which we call the ‘feedforward-recurrent alignment hypothesis’, we studied a 

conceptual model of early cortex and its response to visually evoked input using a minimal linear recurrent 

network of rate units (see Methods). Each unit represents the pooled activity in a local group of neurons. 

Connections between units describe the net interactions between local pools. These interactions can be 

positive or negative and are assumed to be symmetric, for simplicity, with random values drawn from a 

Gaussian distribution. Importantly, the interactions are assumed to be strong enough to influence activity 

patterns, consistent with the observation that spontaneous cortical activity exhibits a modular structure 

prior to eye opening, even after silencing LGN14. The network receives stimulus-driven, feedforward input 

that varies across neural populations, reflecting random biases in their input selectivity. 

 

We asked whether differences in the degree of feedforward-recurrent alignment (while keeping the 

statistical properties of the feedforward input and of the recurrent network unchanged) could reproduce 

the characteristics of network behavior that distinguish naïve and experienced V1 evoked responses. We 

Figure 5: Feedforward-recurrent alignment can account for the observed changes in network activity properties.  

(a) Schematic illustration of the feedforward-recurrent alignment hypothesis: In the experienced cortex, the feedforward 

input is aligned and ‘resonates’ with the recurrent network (right), whereas in the naïve cortex their relationship is 

random (left).  

(b-f) Computational model. 
(b) Top: Trial-to-trial correlation for random input (green) and input maximally aligned to the recurrent network (blue). 

Variability across trials is modelled by adding Gaussian noise (zero mean, unit variance) to each input (see Methods). 

Bottom: Trial-to-trial correlation as a function of feedforward-recurrent alignment.   

(c) As (b), but for intra-trial stability. Variability within trials is modelled by adding white Gaussian noise to each input 

starting from the steady-state evoked response (see Methods). Top shows activity of a network unit (normalized by 

average response).  

(d) As (b), but for dimensionality. Top shows variance explained by leading PCs of evoked activity (see Fig. 2c for 

comparison to experiment). Input is a 10-dimensional Gaussian distribution (see Methods). 

(e) Model of spontaneous activity (schematic, bottom): A broad, high-dimensional distribution of inputs aligned with the 

recurrent network (see Methods), producing a lower-dimensional output (top). 

(f) Alignment of evoked to spontaneous activity (see Fig. 3b, c (bottom) for comparison to experiment). Shaded region: 

SEM around mean (N=50 networks). 

(g) Model prediction: trials for which the steady-state evoked response is more aligned to spontaneous activity also show 

higher intra-trial stability. N=300 samples drawn for the input distribution used in (d) with optimal alignment and 

temporally varying noise as in (c). 

(h-j) Test, experimental data: 

(h) Outline of grating evoked activity 1 s (magenta) and 3 s (cyan) after stimulus onset for a response pattern more weakly 

aligned (left) and for one more strongly aligned (right) to spontaneous activity 0.5 s after stimulus onset. Intra-trial 

stability: 0.63 (left), 0.90 (right); alignment to spontaneous activity: 0.06 (left), 0.18 (right). Day: EO+4. Same animal as 

in Fig. 1f. 

(i) As (g) but for experimental data using all trials for all stimuli from the animal shown in (g) at EO+4.  

(j) Correlation for the data shown in (i) (large blue circle) and for all other animals in the oldest age group (grey circles; 13 

experiments from N=11 animals at EO+4 to +7). Error bars show Mean ± SEM. respectively). 

(k) Contours show outlines of grating evoked patterns (taken 0.5 s after stimulus onset) from different trials for a stimulus 

for which the average pattern is less (left) or more (right) aligned to spontaneous activity. Trial-to-trial correlation: 0.75 

(left), 0.84 (right); alignment to spontaneous activity: 0.13 (left), 0.18 (right). Same animal as in Fig. 1c. 

(l) As in (j), but quantifying the relationship illustrated in (k).   

(m) Evoked dimensionality co-varies with the alignment of the first evoked PC to spontaneous activity (see Methods). 13 

experiments from N=11 animals at EO+4 to +7. 
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computed the steady state responses of the network to a static input pattern to which we added a 

standard normal random vector to model trial-to-trial variability (Methods). Similarly, to model within-trial 

variability, we added standard normal white noise to the input and computed the correlation of responses 

at two different time points. Constructing input patterns with varying degree of alignment to the network 

(see Methods) revealed that those inputs that align better tend to give rise to less variable network 

responses, and this trend is systematic both across trials and within a trial (Fig. 5b, c). The reason for 

this trend is the stronger ability for aligned input to drive network responses, relative to the noise 

component, whose contribution is independent of alignment within this linear framework. Moreover, to 

reveal how the feedforward-recurrent alignment affects the dimensionality of the activity evoked by a low-

dimensional stimulus set, such as moving visual gratings, we considered the generic model of static input 

being sampled from a low-dimensional (correlated) Gaussian distribution with predefined degree of 

alignment (see Methods), observing that the dimensionality of the evoked activity patterns is smaller the 

better-aligned the input distribution is to the network (Fig. 5d).  

 

Moreover, this feedforward-recurrent alignment framework also provides a way for conceptualizing 

patterns of spontaneous activity and their relation to evoked activity in naïve and experienced animals. 

We assume that spontaneous activity in the visual cortex results from a broad range of inputs involving 

various sources, and that these modular patterns, driven by endogenous activity, reflect the current state 

of aligned feedforward-recurrent network. Robust modular spontaneous activity patterns are present at 

least 10 days prior to eye opening14 indicative of a feedforward-recurrent network alignment conditioned 

solely by endogenous patterns of activity in visually naïve animals. Modeling these endogenous inputs 

as samples drawn from a high-dimensional Gaussian distribution (Fig. 5e, bottom), the distribution of 

network activity patterns resulting from these endogenous inputs transformed via the recurrent network, 

is much lower-dimensional than the input distribution (Fig. 5e, top; Methods). Assuming at eye opening 

visual experience drives novel patterns of feedforward input that are not as well aligned to the recurrent 

network as the endogenous patterns, the evoked and spontaneous pattern distributions overlap only little 

(Fig. 5f, top, green vs. red line), similar to what we observed in visually naïve animals (Fig. 3d). 

Experience-driven changes that optimize the feedforward-recurrent alignment would then result in 

distributions of evoked and spontaneous patterns of activity that strongly overlap (Fig. 5f, top, blue vs. 

red line), consistent with our observation in the visually experienced cortex (Fig. 3c). Thus, in this generic, 

conceptual model, all four properties – trial-to-trial correlation, intra-trial stability, dimensionality of evoked 

activity and its alignment to spontaneous activity – are intricately linked to the feedforward-recurrent 

alignment, suggesting that the immaturity of these properties that we observe in the visually naïve cortex 

arises from a lack of alignment of feedforward and recurrent networks, while improving this alignment for 

visually driven input underlies, in part, the changes in the properties we observe after the onset of visual 

experience.  

 

Finally, this led us to ask whether our biological data is consistent with key predictions of this feedforward-

recurrent alignment model. In the model, these four properties are linked due to the common underlying 

mechanism: network amplification of inputs aligned to the structure of recurrent interactions. Notably, for 

input well aligned to the recurrent network this model predicts a tight link even at the level of individual 

trials, namely that responses that exhibit greater similarity with the leading components of spontaneous 
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activity also show higher intra-trial stability (Fig. 5g). Therefore, if this mechanism also holds for the 

cortex, then we expect to see such a trend also in the visually experienced age group, for which we 

assume a strong alignment to the recurrent network. Indeed, when analyzing the responses for all trials 

of all stimuli for animals in this age group, we observed that the larger the alignment of an individual 

evoked response pattern with spontaneous activity 0.5 s after stimulus onset, the more stable this 

response tended to be during the following few seconds of stimulation (Fig. 5 h, i). Moreover, for trial-to-

trial correlation we found an analogous trend (Fig. 5 j, k; SI Fig. 8 a-f) and, likewise, for dimensionality, 

when comparing mean values across different animals (Fig. 5 m, SI Fig. 8e). Together, these results 

show that these tight links between network properties that the proposed mechanism implies is indeed 

consistent with our empirical data.     

 

Discussion 

Our results demonstrate that experience plays a critical role in transforming an endogenously structured 

modular network with robust, but diverse and unreliable visual responses into a mature network with a 

distinctive modular structure and highly reliable visual responses. Following the first steps in the 

development of visual representations with single trial resolution, we find that what appears to be an 

increase of initially weak stimulus tuning when observed at the level of trial averages15–19, is better 

described as an increase in consistency both across and within trials of surprisingly robust modular visual 

responses. Moreover, achieving consistency cannot be explained by a simple process of pruning and 

selection of patterns, as it is accompanied by significant reorganization of the underlying network 

structure and the emergence of novel patterns comprising novel combinations of active domains.  

 

Based on our computational model, we propose that this nature-nurture transform involves the alignment 

of feedforward and recurrent networks in a fashion that is optimal for amplifying the novel activity patterns 

induced by the onset of visual experience. Such alignment is a property of the larger network, ensuring 

that individual activity domains act in concert when driven by visual input. Achieving alignment could 

involve changes in the feed-forward input to the recurrent network, changes in the recurrent network, or 

some combination of the two. We note that our model does not specify changes in the selectivity of 

feedforward inputs that are typically regarded as critical for development of the representation of 

orientation29,32–37. Nevertheless, the process of feedforward-recurrent network alignment could pave the 

way for the emergence of highly-selective feedforward responses following the onset of visual 

experience. The specific neural circuit changes that produce feedforward and recurrent network 

alignment and the plasticity mechanisms that enable them remain to be determined. Our observation that 

grating evoked activity, when falling closer to the main components of spontaneous activity, is more 

stable both within and across trials is consistent with a process of dynamic self-organization in which 

more aligned, stable and thus more correlated activity patterns are strengthened by mechanisms of 

activity dependent synaptic plasticity. It remains for future studies to determine the exact sequence of 

developmental changes that drives alignment of feedforward and recurrent circuits enabling the 

emergence of highly reliable stimulus representations.  
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1 Experiments

The experimental procedures follow [1] and [2] and are described in this section. All experimental procedures were
approved by the Max Planck Florida Institute for Neuroscience Institutional Animal Care and Use committee and
were performed in accordance with guidelines from the U.S. National Institute of Health. Juvenile female ferrets
from Marshal Farms were co-housed with jills on a 16 h light/8 h dark cycle. Parts of the data has been published
in [1]. The data presented in Fig. SI 5e-g has been published in [2].

1.1 Viral injections

Viral injections were performed as previously described [1][2]. Briefly we expressed GCaMP6s by microinjection of
AAV2/1-hSyn-GCaMP6s-WPRE-SV40 (University of Pennsylvania Vector Core) into the visual cortex 6-14 days
before imaging experiments. In developing ferrets, viral expression using the hSyn promoter has previously been
demonstrated to primarily label excitatory neurons [3] and yield multiple millimeters of roughly uniform labeling of
GCaMP6s [2]. Anesthesia induction was performed using either ketamine (50 mg/kg, IM) and/or isoflurane (1%–3%)
delivered in O2 and then maintained with isofluorane (1%–2%). Atropine (0.2 mg/kg, IM) was administered to reduce
secretions, while Buprenorphine (0.01 mg/kg, IM) and a 1:1 mixture of lidocaine and bupivacaine (injected directly
into the scalp) were administered as analgesics. Animal temperatures were maintained at 37◦C using a homeothermic
heating blanket. Animals were also mechanically ventilated and both heart rate and end-tidal CO2 were monitored
throughout the surgery. Under aseptic surgical technique, a small craniotomy was made over visual cortex 6.5-7 mm
lateral and 2 mm anterior to lambda. Approximately 1 mL of virus was pressure infused into the cortex through a
pulled glass pipette across two depths (200 mm and 400 mm below the surface). This procedure reliably produced
robust and widespread GCaMP6s expression in excitatory neurons over an area > 3 mm in diameter [2]. To improve
the uniformity of the GCaMP6s expression, sometimes an additional injection of 1 mL of virus was pressure injected
into a separate region of cortex displaced 1-1.5 mm away from the first injection site.

1.2 Eyelid suture procedure

In deprivation and chronic imaging experiments, eyelids were binocularly sutured during a short surgical procedure
between P26-30. Anesthesia was induced with isoflurane (2%–5%) and Buprenorphine (0.01 mg/kg, IM) was ad-
ministered. Using aseptic technique, both eyelids were sutured shut using continuous sutures (6-0 Ethilon suture).
Eyelid sutures were monitored daily until removed during an imaging experiment.

1.3 Cranial window surgery

All animals were anesthetized and prepared for surgery as described above. In acute imaging experiments, skin and
muscle overlying visual cortex were reflected and a custom-designed metal headplate (8 mm DIA) was implanted over
the injected region with MetaBond (Parkell Inc.). Then a craniotomy and a subsequent durotomy were performed,
and the underlying brain stabilized with a custom-designed titanium metal cannula (4.5 mm DIA, 1.5 mm height)
adhered to a thin 4 mm coverslip (Warner Instruments) with optical glue (71, Norland Products, Inc). The headplate
was hermetically sealed with a stainless-steel retaining ring (5/16” internal retaining ring, McMaster-Carr) and glue
(VetBond, 3M or Krazy Glue).

To allow repeated access to the same imaging field in chronic imaging experiments, we implanted a cranial
windows in each animal 2 days prior to the first imaging session. Using aseptic surgical technique, we adhered a
metal headpost (7x7 mm) to the skull 3.5 mm anterior of bregma and a separate custom-designed, chamber implant
overlying the injected region using MetaBond and black dental acrylic. At the end of the survival cranial window
implant surgery, the metal cannula was sealed with a silicone polymer plug (Kwik-kast, World Precision Instruments)
to protect the imaging window between imaging experiments. Whenever the imaging quality of the chronic cranial
window was found to be suboptimal for imaging, the chamber was opened under aseptic conditions, any regrown
tissue/neomembrane was removed, and a new coverslip was inserted.

1.4 Imaging experiments

Acute imaging experiments began immediately after the cranial window surgery. For survival imaging experiments,
where animals had a cranial window implanted days earlier, anesthesia was induced with isoflurane (2%–5%) and
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atropine (0.2 mg/kg) was administered. Animals were intubated and ventilated, and an IV catheter was placed in
the cephalic vein. The silicon polymer plug overlying the sealed imaging chamber was gently peeled off.

For both acute and survival imaging experiments, eyelid sutures were removed or eyelids were separated where
applicable to ensure visual stimulation was always presented to open eyes. Phenylephrine (1.25%–5%) and tropi-
camide (0.5%) were applied to the eyes to retract the nictitating membrane and dilate the pupil, and the cornea was
protected with regular application of eye drops (Systane Ultra, Alcon Laboratories). Prior to imaging, isoflurane
levels were reduced from a surgical plane to 1%–1.5%. After reaching a stable, anesthetic baseline for 30 minutes
(280-300 bpm), animals were paralyzed with pancuronium bromide (0.1 mg/kg/hr in lactated Ringer’s with 5%
dextrose, delivered IV). Upon completion of imaging in acute experiments, isoflurane was raised to 5% and given
Euthasol (0.5 ml, IV). In survival experiments, animals were instead recovered from anesthesia and returned to
their home cages. During recovery, up to 3 repeated doses of neostigmine (0.06 mg/kg/hr, IV) and atropine (0.05
mg/kg/hr, IV) were used to reverse paralysis.

1.5 Calcium signal measurement

Widefield epifluoresence imaging of GCaMP6s was achieved with a Zyla 5.5 sCMOS camera (Andor) controlled by
mManager [4]. Images were acquired at 15Hz with 4x4 binning to yield 640x540 pixels through a 4x air-immersion
objective (Olympus, UPlanFL 4x N/0.13NA). For analysis, images were spatially downsampled by a factor of 2x to
yield 320x270 pixels at a spatial resolution of 11.63 mm/pixel. The region of interest (ROI) was manually selected
to include all parts of the field of view showing strong GCaMP6s expression and a robust visually evoked signal.

Two-photon imaging of GCaMP6s was performed with a B-Scope microscope (ThorLabs) driven by a Mai-Tai
DeepSee laser (Spectra Physics) at 940 nm. The B-Scope microscope was controlled by ScanImage [5] in a resonant-
galvo configuration with multi-plane images (512x512 pixels) being sequentially collected across either one or four
imaging planes using a piezoelectric actuator for an effective frame rate of 30 Hz or 6 Hz respectively. Images
were acquired at 2x zoom through a 16x water immersion objective (Nikon, LWD 16X W/0.80NA) yielding cellular
fields-of-views of 0.7mm on each side (1.36 mm/pixel). The location of the two-photon calcium imaging ROIs was
primarily determined by finding a location with strong GCaMP6s expression and not occluded by large superficial
vessels.

1.6 Visual stimulation

Visual stimuli were delivered on a LCD screen placed approximately 25–30 cm in front of the eyes using PsychoPy
[6]. To evoke orientation responses, full-field square gratings at 100% contrast, at 0.015 or 0.06 cycles per degree
and drifting at 1 or 4 Hz were presented at 16 directions. For optimal responsivity, a single paired spatial and
temporal frequency was used for each animal to assess binocular orientation-specific responses. Stimuli were randomly
interleaved and presented for 4 s followed by 3-6 s of gray screen.

Spontaneous activity was recorded in a darkened room, with the visual stimulus set to a black screen.

2 Data analysis

All data analysis was performed using custom written scripts in either Python, MATLAB, or ImageJ.

2.1 Preprocessing for widefield imaging data

Following [2], all fluorescence images recorded on the same day were corrected for in-plane motion by aligning them
(rigid alignment in x and y position) to the preceding frame via maximal 2D cross correlation. This alignment was
primarily based on the high contrast vascular structure present in the raw images.

For further analysis, pixels contaminated by blood-vessel signals were removed from the images by generating
a mask covering the vascular structure and setting the pixels within this mask to the values outside the ROI. The
remaining pixels defined a new ROI, which we used for all analyses. The vascular mask was generated by high-pass
filtering the time-averaged fluorescence image and selecting all pixels with a fluorescence smaller than µF − 2σF ,
where µ and σ are the mean and standard deviation, respectively, of this time-averaged fluorescence image across
space. Overall, we found that similar results were obtained when including the signal from the pixels in the vascular
mask. In all patterns depicted in the figures the vascular mask pixels were not removed, for illustration purposes.
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The baseline F0 for each pixel was obtained by applying a moving rank-order filter to the raw fluorescence trace
(25-30th percentile) with a time window of 60 s. The baseline corrected evoked activity was calculated as (F-F0)/F0
= DF/F0.

Stimulus evoked responses

Visual grating evoked responses at time t after stimulus onset were calculated as the average DF/F0 over the period
(t-0.066 ms, t+0.066 ms). Trial-averaged responses at time t were calculated by taking the average across repeated
trials to the same stimulus direction at time t after stimulus onset. For all analyses, we used t = 0.5 s, apart from
the analysis of intra-trial stability, in which case we compared the response between t = 1.0 s and t = 3.0 s after
stimulus onset (see below).

Patterns of spontaneous activity

To extract the large-scale patterns of spontaneous activity, we followed the approach described in [2]. Briefly, we
first determined active pixels on each frame using a pixel-wise threshold set to 4 SD above a pixel’s mean value
across time, where the SD was estimated from the distribution obtained from the pixel’s activity values below the
mean and mean-reflected copies of these. A frame was named active if >80% of its pixels within the ROI were
active. Consecutive active frames were combined into a single event starting with the first high-activity frame and
then either ending with the last high-activity frame or, if present, an activity frame defining a local minimum in the
fluorescence activity. To assess the spatial pattern of an event, we extracted the maximally active frame for each
event, defined as the frame with the highest activity averaged across the ROI. Imaging sessions in which fewer than
ten spontaneous events were detected were excluded from further analysis [2]. Typically, the number of events per
unit imaging time increased with age and allowed us to gather >30 spontaneous patterns around eye opening and
>75 patterns 4-6 days after eye opening.

Registration for longitudinal imaging

To compare evoked and spontaneous activity across days in chronically imaged animals, we transformed all imaging
data into a common reference frame (compare [2]). This transformation corrected for small displacements and
expansions of cortical tissue over the imaging period due to cortical growth. We used an affine transformation,
thereby taking into account rotation, scaling, translation, and shear-mapping of the cortex:

x′ = Tx+ h , (1)

with transformation matrix T and displacement vector h. The six parameters of the optimal affine geometric
transformation were inferred from minimizing the distance between landmarks between an imaging session and the
reference imaging session using the Matlab function fitgeotrans. Typically, 20-30 landmarks were manually selected
by marking penetrating blood vessels (that is, blood vessels oriented orthogonally to the imaging plane). In animals
with more than two imaging days we chose the imaging session at a middle age (typically at eye-opening) as reference
session.

Spatial filtering

For analysis of the wide-field epifluorescence imaging data, we applied spatial band-pass filtering following [2] to
reduce spatial inhomogeneities in signal strength and photon noise. Briefly, we downsampled the DF/F0 images to
160 × 135 pixels and spatially filtered them using two-dimensional Gaussian filter kernels. For high-pass filtering,
we subtracted from each downsampled DF/F0 image a smoothed version of it obtained by applying a Gaussian filter
with SD shigh = 196 µm and normalizing the filtered values by the overlap of the filter kernel with the ROI mask, to
correct for boundary effects. Subsequently, we smoothed this image with a Gaussian filter kernel with SD slow = 26
µm for low pass filtering. The choice of these filter values largely preserved the modular activity structure of grating
evoked and spontaneous activity in ferret visual cortex [2].

2.2 Preprocessing for two-photon imaging data

Cellular ROIs

Cellular ROIs were manually drawn using custom software in ImageJ (Cell Magic Wand) [3]. The baseline F0 for
each pixel/cell was obtained by applying a moving rank-order filter to the raw fluorescence trace (25-30th percentile)
with a time window of 60 s. The baseline corrected evoked activity was calculated as (F-F0)/F0 = DF/F0.
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Morphing across age

To locate the same field-of-views between chronic imaging sessions, we acquired a series of z stack images across
different depths incremented at 5 µm steps during each experiment. For each chronic experiment, the original
field-of-view was carefully compared to the different z-locations, and a matched location was chosen based on the
relative similarity of physical landmarks, such as penetrating blood vessels. We only chose cells for analysis that were
common to both sessions. To aid the experimenter in selecting common cells, all fields-of-view were registered into a
common reference frame using a 2D elastic deformation (BUnwarpJ plug-in in ImageJ). To determine whether a pair
of cell ROIs across chronic experiments corresponded to the same cell, we putatively required that the centroid of the
candidate cell pairs were located within 4-5 µm and overlapped more than 25%. The experimenter then manually
decided whether the match was reasonable based on similarity of the local neighborhood and physical shape of the
cell ROIs.

Stimulus evoked activity

Visual grating evoked responses at time t after stimulus onset (Fig 1h-j) were calculated as the average DF/F0 over
the period (t-0.166 ms, t+0.166 ms). We used t = 0.5 s, apart from intra-trial stability, for which we compared the
response between t = 0.5 s and t = 2.5 s after stimulus onset (see below). For Figs. 2g, SI 1, SI 2 and SI 4, grating
evoked responses were averaged over the full stimulus period.

2.3 Quantification

Overlap between activity spaces

In several instances (see below), we were interested in the degree to which the activity patterns of a set A reside in
the most prevalent linear dimensions of a second set of activity patterns B. To estimate this quantity, we computed
the fraction of variance of patterns A that is explained by the leading principal components of the patterns in B.
Concretely, the variance of A explained by the i-th principal component pi,B is

vari,A =
pT
i,B · ΣA · pi,B

Tr(ΣA)
, (2)

where ΣA is the covariance matrix of the pattern set A and the principal component vectors pi,B are normalized to
unit length. The principal components were estimated using sklearn [7] with the LAPACK solver.

Trial-to-trial correlation

To measure how reliably the visual cortex responds to repeated presentations of an identical moving grating stimulus
(Fig. 1c-d, i), we first computed the correlations (here and below we used the Pearson’s correlation coefficient, if not
noted otherwise) between all possible pairs of single-trial response patterns for that stimulus and took the mean over
these correlations:

βθ =
2

Ntrial(Ntrial − 1)

Ntrial
∑

i=1

Ntrial
∑

j=i+1

corr
(

rθi , r
θ
j

)

, (3)

where Ntrial are the number of trials and rθ
i

is the response pattern for the i-th trial of stimulus θ (taken at t = 0.5 s
after stimulus onset). This mean correlation was then averaged over the Nstim. moving grating directions θ to define
the ’trial-to-trial correlation’ of responses for an animal on a given day.

Orientation Tuning

Orientation tuning for widefield (Fig. 1e) and two-photon imaging data (SI Fig. 4) was calculated based on trial-
averaged evoked responses to 16 binocularly presented moving grating stimuli equally spaced between 0◦ and 360◦.
Orientation preference was computed by vector summation z (x) =

∑16

k=1
rk(x) exp (−2 i π φk), where rk(x) is the

trial-averaged response to a moving grating with direction φk for pixel (widefield) or cell (two-photon) x. The

preferred orientation was defined as θ(x) = 0.5 arg(z(x)) and orientation selectivity as abs(z)/
∑16

k=1
|rk(x)| .

Intra-trial stability

To measure the reliability of the visual grating evoked responses within an individual trial (Fig. 1g, j), we compared
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the response pattern at two different time points t1 and t2 after stimulus onset (1 s vs. 3 s, respectively, for widefield
and 0.5 s vs. 2.5 s for two photon imaging data). First, we computed the correlation

ρi = corr (ri(t1), ri(t2)) , (4)

where ri(t1) and ri(t2) are the response patterns for the i-th trial at times t1 and t2, respectively. ’Intra-trial stability’
is defined by averaging this quantity over all trials from all grating directions (NEvoked = Nstim. × Ntrial trials in
total).

Dimensionality

We estimated the linear dimensionality deff of the subspace spanned by either evoked (Fig 2 d, Fig 4e, Fig 5 d,m) or
spontaneous (Supplementary Fig. 3e) activity patterns by the participation ratio [8]. To cross-validate our estimates
of the spectrum of the covariance matrix, we split the response patterns from an imaging session into two equally
large non-overlapping sets A and B (equal splits for each stimulus, individually), and used set B to estimate the
principal component vectors and set A to estimate the variance for each of these components by applying Eq. (2)
above. Our measure of ’dimensionality’ is then defined by

deff =
(
∑

k vark,A)
2

∑

k var2k,A
, (5)

where vark,A is the cross-validated estimate of the k-th variance component. We repeated this calculation for N=100
different random splits into sets A and B. All values reported are averages over these N repetitions.

Novel pattern components

To test whether the activity patterns in experienced (late) cortex are a subset of the broader, more diverse pool of
response patterns in the visually naïve (early) cortex (Fig 2f, g and Fig 3f, h), we computed the maximal (Pearson’s)
correlation of each late pattern to any early pattern and averaged this over all late patterns:

ρmax =
1

Nlate

Nlate
∑

j=1

Nearly

max
i=1

∣

∣

∣

(

corr
(

r
early
i , rlate

j

))∣

∣

∣
, (6)

Here, Nearly and Nlate are the total number of patterns in the naïve and experienced cortex, respectively. Statistical
significance was determined by repeating this analysis for the maximal correlation between two non-overlapping
subsets of the response patterns in the experienced cortex and applying a paired permutation test (see below).

To test whether the subspace spanned by the activity patterns in the visually naïve cortex encompasses the
activity patterns in the experience cortex (Figs 2f, 3g), we computed the fraction of evoked pattern variance in the
experienced cortex that can be explained by the leading principal components of the early evoked patterns. To do
so, we applied Eq. (2) with set A being the patterns in the experienced and set B those in the naïve cortex and
computed the cumulative distribution up to component K, i.e

cA =

K
∑

k=1

vark,A . (7)

We then compared this distribution to an internal control obtained by repeating this calculation, but now with sets
A and B taken as two non-overlapping sets from the visually naïve cortex. We employed random subsampling to
ensure all sets (across and within age) were of equal size and averaged both distributions over N = 100 different
random samples. The gap between these two distributions defines the variance in the experienced cortex that cannot
be explained by the early activity. To establish statistical significance of this gap, a paired permutation test (see
below) was applied for K = min{Kmax, 15}.

Shifts in orientation tuning

To assess whether cellular responses show significant shifts in their preferred orientation after the onset of visual
experience (SI Fig. 4), we compared the differences in preferred orientation across days with control differences
obtained from two independent estimates at the same day. Due to the large response variability in visually naive
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animals, estimates of the preferred orientation based on a small number of trials are relatively imprecise, and it
is important to establish that the observed change across days cannot be explained by such finite sampling noise.
Concretely, we estimated a change in preferred orientation across days as |θEO+4(x)− θEO+0(x)|, where θt(x) is the
preferred orientation for a neuron x at time t. To test whether this change was significant, we checked whether it could
be explained by the fluctuation between different measurements taken at the day of eye opening. To generate such
control distribution, single-trial responses for each stimulus were split into two equally large non-overlapping sets and
the within-day difference was estimated as |θSet2, EO+0(x)− θSet1, EO+0(x)|. Likewise, the difference across days was
estimated as |θSet2, EO+4(x) − θSet1, EO+0(x)|. We repeated these calculations for N = 1000 random splits, yielding
a within-day distribution and an across-day distribution. A shift in preferred orientation was deemed significant if
the average across-day change was more extreme than the within-day distribution (p<0.05).

Alignment with spontaneous activity

To assess the overlap of evoked activity with the prevalent linear dimensions of spontaneous activity (on the same
day; Figs 3c, d and 4g), we calculated the fraction of evoked pattern variance that is explained by the k-th principal
component of the spontaneous pattern. To do so we used Equation (2), where A and B are the sets of evoked and
spontaneous patterns, respectively.

The quantity ’alignment to spontaneous activity’ (Fig. 3e) was defined as the fraction of total spontaneous pattern
variance explained by an individual evoked pattern,

γi =
rTi,E · Σspont. · ri,E
‖ri,E‖2 Tr(Σspont.)

, (8)

averaged over all Nevoked evoked patterns. Here, ri,E is the ith evoked pattern taken 0.5 s after stimulus onset and
Σspont. the covariance matrix of the spontaneous patterns.

Tests of model predictions

Our model predicts that individual responses that are more aligned to spontaneous activity 0.5 s after stimulus onset
also tend to show a higher value of intra-trial stability during the subsequent stimulation period (Fig. 5g). We
tested whether the empirical data confirms this relationship by computing, for a given animal on a given day, the
correlation

ρintra = corri (γi, ρi) , (9)

where γi is the alignment of an evoked pattern ri to spontaneous activity (Eq. 8), and ρi is the intra-trial stability
of this evoked pattern (Eq. 4). As described above, the alignment to spontaneous activity was computed 0.5 s
after stimulus onset, while the intra-trial stability was assessed by comparing the response between 1 s and 3 s after
stimulus onset. The correlation ρintra is displayed in Fig. 5j.

Likewise, the model also predicts that individual stimuli, for which the average response is more aligned to
spontaneous activity, also show higher values of trial-to-trial stability (SI Fig. 8a). To test this prediction we
computed the correlation

ρinter = corrθ (γ̂θ, βθ) , (10)

where γ̂θ is the alignment of the trial averaged evoked pattern for stimulus θ to spontaneous activity (computed by
replacing the response with its trial average in Eq. (8), and βj is the trial-to-trial correlation for that stimulus (Eq.
3). The correlation ρinter is displayed in Fig. 5l.

Moreover, to test for a relationship between alignment to spontaneous activity and dimensionality, we assessed
the degree to which these two quantities co-vary across the animals in a given age group (Fig. 5m, SI Fig. 8e ).
Here, we only used the first principal component p1 of the evoked pattern set to estimate alignment of evoked to
spontaneous activity in order to avoid biases of dimensionality towards smaller numbers (as, for instance, the average
alignment of individual patterns would potentially do). Concretely, we used Eq. (8), but with ri,E being replaced
by p1. We then assessed for each age group individually the correlation (across animals) between this alignment
measure and the evoked dimensionality (Fig. 5m). Finally, by performing the analogous analyses for the trial-to-trial
correlation (SI Fig. 8e, left) and intra-trial stability (SI Fig. 8e, middle) we also tested for the relationship between
these quantities and the alignment to spontaneous activity on an animal by animal level.
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2.4 Statistical analysis

We used re-sampling methods for hypothesis testing. Significance was assessed by comparing the average value of a
given statistics between the real data and a suitable control distribution. The p-value was computed as the fraction
of values in the control distribution that were more extreme than the difference observed in the real data.

Random control patterns

To test for the significance of a statistics characterizing the structure of a set of evoked or spontaneous patterns
(for example, the trial-to-trial correlation in Fig. 1d), we computed the same statistics for N = 1000 control sets,
each one of which comprises an equal number of surrogate patterns as the original set. The patterns in a control set
exhibit the identical spatial correlation functions as the original patterns, but all statistical relationships beyond, i.e.
higher order statistics and relationships among patterns, are eliminated. To generate one control set, we produced
one surrogate pattern for each real pattern by computing its Fourier-transform, randomly shuffling the Fourier-phases
(while preserving the amplitudes), back-transforming it into real space and re-applying the ROI mask of the real
pattern. Repeating this procedure N times using different shuffles generated N control sets, from which we computed
N control values of the statistics of interest, the distribution of which we compared with the real value.

Unpaired bootstrap test

To test whether a group average differs significantly between two groups (as for instance the difference between
the response properties in normally reared vs. deprived animals in Fig. 4), we used an unpaired test based on a
control distribution of group differences generated via bootstrap resampling. To generate control group differences,
we pooled the data from the original two groups, drew two new groups of the same size from this pool by randomly
drawing samples with replacement, and then computed the difference between the group averages. Repeating this
procedure N = 1000 times resulted in a control distribution of group averages, which we compared with the real
difference.

Paired permutation test

To test whether a group of animals showed a significant change across age (for instance, to establish whether the
increase in trial-to-trial correlation in Fig. 1d is significant), we employed a paired permutation test to generate a
control distribution. We randomly flipped the data points for a given animal between age groups and recomputed the
difference between the group averages. Repeating this procedure N = 1000 times resulted in a control distribution,
which we compared with the real difference.

Error bars were, if not mentioned otherwise, computed as the standard error of the mean (SEM) within a given
age-group.

3 Network model

3.1 Motivation

We used a network model to study the feedforward-recurrent alignment hypothesis, which states that the experience-
driven maturation of faithful visual representations after eye opening involves the proper alignment of visual input to
the cortical recurrent network, such that this input gets sufficiently amplified through the network interactions. As a
simple example for such amplification mechanism, consider an input pattern that primarily drives network units that
also excite each other through their recurrent interactions. Such input is expected to elicit a response that is more
robust against external and intrinsic sources of noise than an input pattern that drives a population with mixed (i.e.
positive and negative) interactions. In the former case the input ’resonates’ with the network, while in the latter
case the input gets dispersed through the network interactions.

According to this hypothesis, in the experienced cortex the inputs are well-aligned with the recurrent cortical
network, whereas in the visually naive cortex, when patterned visual stimuli drive the visual system for the first
time, the alignment of these novel inputs is only poorly developed. The transition from poorly aligned to well-
aligned inputs is proposed to explain - via the change in network amplification that such improvement in alignment
implies - the changes in the network properties we observed with the onset of visual experience, i.e. the development of
reliable evoked responses that reside in a low-dimensional manifold, aligned with spontaneous activity. To explore this
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possibility, we studied a computational network model, which allowed us to cast this feedforward-recurrent alignment
hypothesis into concrete mathematical terms, to test whether it can account for the changes in the network properties
we observed during the maturation of visual representations and to derive further predictions that we tested using
our empirical data.

3.2 Model setup

The model is intended to provide a concrete, yet as simple as possible formalization of this feedforward-recurrent
alignment hypothesis in terms of a minimal linear network model of stimulus-evoked and spontaneous neural pop-
ulation activity in layer 2/3 of the early visual cortex. We assumed that prior to eye opening a sufficiently strong
recurrent network of excitatory and inhibitory neural populations is established in the visual cortex. This assumption
is consistent with the pronounced, widespread, modular patterns of spontaneous activity seen in excitatory neural
populations in the ferret visual cortex at this early stage in development, and the observation that such activity
persists even after silencing the LGN [2]. The assumption of strong inhibition, specifically, is consistent with the
observation that these early spontaneous activity patterns in excitatory neural populations critically depend on net-
work inhibition, which itself is organized into widespread modular patterns of activity that co-align with those in
excitatory populations [9]. Furthermore, we assumed that at eye opening, when structured visual stimuli drive the
visual system for the first time, the relationship between the recurrent network previously established in layer 2/3
and this novel type of visually driven input is random. Moreover, visually driven input was assumed to be stochastic,
reflecting various noise sources along the visual pathway including those within the cortex. Finally, we modeled spon-
taneous activity as the response of the recurrent network to an aligned, but relatively broad (i.e. high-dimensional)
drive, assuming that spontaneous activity reflects inputs from a wide range of different sources.

We modeled the recurrent neural network using a standard firing rate equation

τr
dr

dt
= −r+ J · r+ h . (11)

Here, r is the vector of rate units. Each unit ri, with i = 1, ..., n, represents the pooled activity in a local group i of
cortical neurons. The n× n matrix J describes the net interactions between these local pools of neurons, which can
be positive or negative. To keep the network as generic and simple as possible, we assumed the network structure
to be random and symmetric with interaction strengths drawn from a normal distribution N (µJ , σJ ) with mean
µJ = 0 and standard deviation σJ = R/

√
n. Here, R describes the overall strength of recurrent interactions. In

all figures we used R = 0.85, ensuring that the recurrent connections are strong enough to impact activity patterns.
The size of the network was n = 200 (see Table 1 for a summary of parameters). The external (feedforward) input
to the network is denoted by h = hdet + hsto and consists of a deterministic part hdet and a stochastic part hsto,
which are both assumed to be static, for simplicity, if not noted otherwise. Finally, we set the intrinsic timescale τr
equal to 1 so all time is measured in units of this time constant.

3.3 Network amplification

Following standard procedures (e.g. [10]), the solutions to Eq. (11) are efficiently expressed in terms of the eigenvec-
tors of the recurrent interaction matrix J. This matrix is real and symmetric and assumed to have full rank, hence
all eigenvalues λk are real and the eigenvectors ek form an orthonormal basis. In this basis, the dynamics decouples
and the firing rate is given by

r =
n
∑

k=1

ck(t)ek (12)

with coefficients ck that depend on the overlap of the external input and the eigenvectors. For the connectivity
defined above, the largest eigenvalue is approximately λmax ≈ R. For an input constant in time, the steady-state
solution of Equation (11) is given by

r∗ =

n
∑

k=1

(ek · h)
1− λk

ek (13)

showing that the network amplifies an input stronger the more it overlaps with eigenvectors exhibiting a large eigen-
value. Consequently, the network responses tend to be biased towards the dimensions spanned by these leading eigen-
vectors, which can suppress unspecific noise components and result in activity distributions much lower-dimensional
than the distribution of inputs, such as, for instance, in our model of spontaneous activity (Fig. 5e).

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.14.516507doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516507
http://creativecommons.org/licenses/by-nc-nd/4.0/


The alignment of a feedforward input h with the recurrent network J was defined as

ν =
hTJh

hTh
. (14)

Rewriting the interaction matrix as

J =

n
∑

k=1

λkeke
T
k (15)

we observe that the maximally possible alignment is assumed when the input is proportional to the eigenvector
emax with maximal eigenvalue λmax, in which case the alignment is νmax = λmax ≈ R. According to Eq. (13)
such maximally aligned input also gets amplified the most by the recurrent network. A random input, instead,
typically overlaps with a broad range of eigenvectors with mixed positive and negative eigenvalues and, therefore, its
alignment will be close to zero and its net amplification much smaller. Note that such alignment-dependent network
amplification is a generic property of recurrent networks and arises also in randomly structured networks, provided
the recurrent interactions are sufficiently strong.

3.4 Population response properties

Our goal was to study whether the core network response properties considered in this study (i.e. inter- and intra-trial
stability, dimensionality and alignment with spontaneous activity) improve substantially by aligning the feedforward
input with the recurrent network structure (while keeping all other features of the input and the recurrent network
unchanged). In the following we describe how we studied these response properties in the model.

Trial-to-trial correlation

To study the reliability of the network response to repeated presentations of the same stimulus in the model and to
analyze how this reliability depends on feedforward-recurrent alignment (Fig. 5b), we assumed that the deterministic
part of the stimulus-induced input to the network, det, is stimulus-dependent and fixed across different trials, while
the stochastic part, hsto, varies from trial to trial and is stimulus-independent, for simplicity. The norm of the
deterministic part of the input vector was set to 1, without loss of generality, see Table 2 for summarized parameters.
Concretely, we considered inputs drawn from the multivariate normal distribution

htrial i ∼ N
(

hdet, σ
2
trial I

)

(16)

with stimulus-dependent mean hdet, and diagonal covariance matrix with strength σ2
trial . Given this input, the

distribution of evoked patterns is
rtrial i ∼ N (µE,ΣE) , (17)

where (using Eq. 13) the mean response is given by

µE =
n
∑

k=1

(ek · hdet)

1− λk

ek (18)

and the covariance structure by

ΣE = σ2
trial

n
∑

k=1

1

(1− λk)2
eke

T
k . (19)

Analogously to the experimental data, we computed trial-to-trial correlation by drawing response vectors (N=100)
from the pattern distribution (see Eq. 17) for a given input hdet and taking the mean over all possible pairwise
correlations between these response vectors. Fig. 5b upper shows histograms over these pairwise correlations for a
maximally aligned input, i.e. hdet equal to the eigenvector with largest eigenvalue λmax (blue), and randomly aligned
input of equal strength (green). To reveal the systematic dependency of trial-to-trial correlation on feedforward-
recurrent alignment (Fig. 5b lower), we chose hdet proportional to the eigenvectors with ascending eigenvalues. Note
that sampling the mean inputs from a broader distribution, such as the 10-dimensional Gaussian distribution defined
in Dimensionality (see below) led to similar results.
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Intra-trial stability

To study the stability of the network response to a sustained stimulus and how this stability depends on the alignment
of the stimulus-induced input to the recurrent network (Fig. 5c), we assumed as input h a stationary Gaussian
stochastic process that is uncorrelated in space and time with variance σ2

noise , i.e. 〈hi(t)hj(t
′)〉 = δ(t − t′)δijσ

2
noise

and time-independent mean hdet that depends on the stimulus. The stochastic differential equation for the external
input is then dh = hdetdt+ σnoise dW, where W is the Wiener process, and the stochastic differential equation for
the network activity

dr = (−r+ J · hdet) dt+ σnoise dW. (20)

We numerically integrated the equation above for a duration of T = 120 with the steady-state solution hdet (see Eq.
13) as initial condition, using the Euler-Maruyama scheme with a time-step ∆t = 0.1 (see Table 3).

Analogously to the experimental data, we computed intra-trial stability as the correlation c(∆t) = r̂(t)r̂T (t+∆t)
between z-scored response vectors r̂(t) with time-lag ∆t. This correlation depends on the strength of the noise
relative to the signal and the temporal correlations induced by the recurrent connections. As the temporal distance
for assessing intra-trial stability in the experimental data is relatively large (2 s), we assumed that most temporal
correlations induced by the recurrent network can be neglected and chose a sufficiently large time difference ∆t = 20.
To obtain a more accurate estimate, we averaged c(∆t) over all time points 0 ≤ t ≤ 100. Fig. 5c upper shows
the normalized time-dependent response of the network unit with maximal time-averaged response, for a maximally
aligned input (blue), and a randomly aligned input of equal strength (green). As above, to reveal the systematic
dependency on feedforward-recurrent alignment, we chose hdet to match eigenvectors with ascending eigenvalues
(Fig. 5c lower).

Dimensionality

To study in the model how the dimensionality of stimulus-evoked activity depends on feedforward-recurrent align-
ment (Fig. 5d), we applied time-independent inputs hDim to the network drawn from a low-dimensional multivariate
Gaussian distribution hDim ∼ N

(

0,ΣDim
)

with predefined dimensionality. As for the experimental data, dimension-
ality was defined by the participation ratio [8] deff = (Σkvk)

2/Σkv
2
k, where vk are the eigenvalues of the covariance

matrix ΣDim. To construct ΣDim we chose these eigenvalues proportional to an exponentially decaying function, i.e.

vl ∼ exp (−2l/β) , (21)

where β is a parameter. This models the decay of the variance explained by the leading principal components of
evoked activity observed in our experimental data (see Fig. 2c) and yields a dimensionality deff ≈ β, which can be
seen from the following argument: Inserting the expression (21) into the participation ratio we obtain

deff =
(
∑n

k=1
exp(−2k/β))

2

∑n
k=1

exp(−4k/β)
. (22)

In the regime relevant to us 1 ≪ β ≪ n holds and thus we can approximate the sums by indefinite integrals, i.e.

deff ≈
(∫

∞

0
exp(−2k/β) dk

)2

∫

∞

0
exp(−4k/β) dk

=
β2/4

β/4
= β , (23)

showing that in this regime the effective dimensionality is indeed approximated by β. In Fig. 5d, we used β = 10.
We chose the following procedure to systematically vary the degree of alignment of this low-dimensional input to the
recurrent network. We ordered the eigenvectors ek of the interaction matrix J according to their eigenvalues λk in
descending order, such that e1 is the eigenvector with the largest eigenvalue λmax and eN the eigenvector with the
largest negative eigenvalue λmin. We then assigned variances with exponentially decaying magnitude (according to
Eq. 21) to M = κβ < n of these vectors, starting with a leading eigenvector eL and proceeding with the index in
ascending order. The index L thus effectively determines alignment and the covariance matrix is then given by

ΣDim =

L+M
∑

k=L

vk−L

(

eke
T
k

)

. (24)
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Truncating the sum at κβ results in an additional imprecision in the dimensionality, which can be estimated by
performing the integrals in Eq. (23) only up to an upper bound κβ. This results in

deff = β
1− exp(−2κ)

1 + exp(−2κ)
, (25)

which is negligible for sufficiently large κ. We used κ = 5 in which case the truncation error is less than 0.01%.
To compute the activity spectrum for a maximally aligned input (Fig. 5d upper, blue line) we chose L = 1. For

a random input (Fig. 5d, upper, green line) we used n orthonormal random vectors instead of the eigenvectors. To
systematically study how dimensionality depends on feedforward-recurrent alignment (Fig. 5d lower), we varied L
between 1 and n/2.

Given such low-dimensional Gaussian input distribution, the evoked activity patterns are then samples from a
Gaussian distribution with covariance structure

ΣAct. = (1− J)−1ΣDim(1− J)−T . (26)

Because the input covariance ΣDim and the interaction matrix J share an eigenbasis per construction, the eigenvalues
of ΣAct. can be expressed as

vAct.
k = exp (−2(k − L)/β)

1

(1− λk)2
, (27)

for k = L, ..., L+M . The dimensionality of the evoked activity space can then be expressed as

deff =

(
∑

k exp (−2(k − L)/β)(1− λk)
−2

)2

∑

k exp (−4(k − L)/β)(1− λk)−4
. (28)

Alignment with spontaneous activity

We assumed spontaneous activity reflects inputs from a wide range of different sources, and so we modeled these
inputs as samples drawn from a broad Gaussian distribution (Fig. 5e). Moreover, given that spontaneous activity
is present more than a week prior to eye opening, we assumed this distribution is already aligned to the recurrent
network at eye opening and remains aligned, subsequently. We modeled this distribution as

hspont. ∼ N
(

0,Σspont.
)

, (29)

where Σspont is defined as ΣDim (Eq. 24), but using L = 1 and βspont. = 20. Spontaneous activity patterns are
modeled as steady-state responses to these inputs and, following Eq. (26), are given by samples from the distribution
ri,S ∼ N (0,Σs.act.), where the covariance structure is given by

Σs.act. =

n
∑

k=1

exp (−2(k − 1)/βspont.)

(1− λk)2
eke

T
k . (30)

Analogous to the empirical data, we computed the alignment of evoked patters with spontaneous activity using Eq.
(8).

3.5 Network parameters

See Tables 1, 2 and 3 for a summary of parameters.
All networks were simulated using custom-written code in python.
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Table 1: Network parameters
Parameter Symbol Value
Number of network neurons n 200
Mean of weight distribution µJ 0
Magnitude of maximal eigenvalue R 0.85

Table 2: Simulation parameters
Number of trials Ntrial 100
Noise strength (trials) σtrial 0.02
Noise strength (time) σtime 0.3
Evoked dimensionality βevoked 10
Spont. dimensionality βspont. 20

Table 3: Numerical parameters
Parameter Symbol Value
Time step dt 0.1
Duration of simulation T 120
Time constant τr 1
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Supplemental Information 

 

 

 

SI Figure 1:  The strong but highly variable network responses in visually naïve and 

deprived animals are accompanied by relatively weak orientation discriminability. 

(Related to Figs. 1 and 4) 

  

(a) Discriminability index D’ (Cohen’s d) for distinguishing responses for a 0 and 90 deg grating 

stimulus. Data obtained from the same animals as in Fig. 1c. Error bars show Mean ± SEM 

for age groups (EO-3 to -2, EO+0, EO+4 to +7, N= 4,11,11 animals, respectively.  

(b) Same as (a), but for cellular responses. Same animals as in Fig. 1i.  

(c) Same as (a) but for deprived (N=3, orange) and control (N=2, blue) animals, in comparison 

to visually naïve animals at EO (black, reproduced from (a)). Circles: single animals; error 

bars: Mean ± SEM. Same animals as in Fig. 4c. 
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SI Figure 2:  Chronic two photon calcium imaging of visual grating evoked activity in the 

early developing visual cortex reveals a high degree of response variability in visually 

naive animals in populations of individual cells. (Related to Fig. 1h-j)  

  

(a) Representative example of chronic two photon calcium recordings in the early developing 

ferret visual cortex (used in Fig. 1h-j). Approximately the same cortical region was imaged 

in a visually naive cortex (left) and after four days with visual experience (right). For 

illustration purposes, only about one quarter of the total imaging field of view is depicted.  A 

cell tracked over the two time points is marked by the blue box.   

(b) Visual grating evoked calcium traces (same stimulus, six trials) for a representative cell 

(marked in (a) by the blue box) in the visually naïve (bottom) and experienced (top) cortex.  

(c) Single trial responses (averaged over the entire stimulus period of 4 s) of the same cell as 

in (b) as a function of grating orientation. Open black circles: individual trials; solid red 

circles: trial averages.   
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SI Figure 3: Additional analyses regarding the dimensionality of visual grating evoked 

and spontaneous activity. (Related to Fig. 2b-d, 3a-b) 

(a) Activity patterns can be expressed as a weighted superposition of principal components 

(PC), which themselves can be represented as patterns covering the same cortical ROI as 

the activity patterns. Three example PC are illustrated in red. 

(b) Large bold circles: three examples of evoked patterns projected into the space spanned by 

the first two PC of evoked activity. These patterns and the first two PCs are illustrated (in 

grayscale and red, respectively). Small faint circles: Projections of all evoked patterns 

(reproduced from Figure 2b). 

(c) Dimensionality estimates based on shared variances across two non-overlapping 

subregions in the ROI (following the method in Stringer et al., 2019) yield an age trend 

similar to our estimates in Fig. 2d. To define the two subregions, we divided the ROI into N 

nonoverlapping stripes of width 392 μm and assigned stripes with an odd index to 

subregion 1 and those with an even index to subregion 2. Pre-processing of calcium activity 

patterns was applied separately in these two subregions.  

(d) Fraction of variance of spontaneous activity explained by its leading PC for different age 

groups (EO-3 to -2, EO+0, EO+4, EO+6: N= 4,11,11,2 animals, respectively; thick lines, 

average over animals; thin lines, individual animals; see Methods).  

(e) Linear dimensionality of spontaneous activity across age (participation ratio, cross-

validated, see Methods).  

(f) As (b), but for spontaneous activity.  

Note that the number of patterns is matched across age, but not between evoked and 

spontaneous activity, hindering a direct comparison of their dimensionality.  
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SI Figure 4: After the onset of visual experience, individual cells show significant shifts 

in orientation tuning, consistent with the appearance of novel components in the evoked 

activity patterns. (Related to Fig. 2)  

  

(a) Orientation preference (color) and tuning strength (luminance value) in cells chronically 

recorded using two-photon calcium imaging. Left: at the onset of visual experience (EO+0); 

right: after four days of visual experience (EO+4). . Cells were pooled across 4 field of 

views at different depths (dz=30 µm). Orientation tuning was calculated by vector 

summation of trial-averaged evoked responses to 16 binocularly presented moving grating 

stimuli equally spaced between 0 deg and 360 deg (see Methods).  

(b) Shifts in preferred orientations between EO and EO+4 for the case shown in (a). Strong 

color saturation: significant shifts (p<0.05; see (d), below); weak saturation: non-significant 

shifts. Note the spatially coherent shifts in preferred orientation in nearby cells.     

(c) Same data as in (b) as a scatter plot. Orange: cells with significant change in preferred 

orientation.  

(d) Illustration of significance test for change in preferred orientation in individual cells (see 

Methods for details). We estimated a change in preferred orientation across days as 

|𝜃!"#$(𝑥) 	−	𝜃!"#%(𝑥)|, where 𝜃&(𝑥) is the preferred orientation for a neuron x at time t. To 

test whether this change was significant, we compared it to a control, taken as the 

difference between two independent estimates  within  the same day (specifically, the day 

of eye opening, as it shows the larger variance). First column: Responses (averaged over 

the entire stimulus period) as a function of grating orientation (bottom: EO+0; top: EO+4). 

Open black circles: individual trials. Second column: Average and 95 percentile distribution 

of tuning curves estimated by resampling average responses based on half of the trials. 
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Third column: Distributions of within-day differences in preferred orientation. Fourth column: 

Distribution of across-day differences in preferred orientation. Same cell used in all panels.  

(e) Distributions of differences in preferred orientation across-days (blue) and for the within-day 

control (orange; taken in naïve animals) pooled over all cells from all animals. Inset shows 

average shift in animals (bright filled circles; N=5; p=0.048) and in individual field of views 

(faint open circles; Nx4=20; p<10-5, paired permutation test, see Methods).  
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SI Figure 5: Additional analyses of the alignment of spontaneous and visual grating 

evoked activity. (Related to Fig. 3) 

(a) As a first alternative to the analysis in Fig. 3c-e we computed the 2nd order correlation 

between the spontaneous correlation and several evoked correlation structures, namely 

the total signal correlation (left), the trial-split signal correlation (middle) and the noise 

correlation (right). Animals were longitudinally recorded. Same animals and age bins as in 

Fig. 1 d, g: (EO-3 to -2, EO+0, EO+4 to +7, N= 4,11,11 animals, respectively). 

Correlations calculated for the subset of the 20% most selective locations at EO+4 

excluding pairs with a distance smaller than 465 microns. 

(b-d): As a second alternative to the analysis in Fig. 3c-e, we analyzed the shared dimensions 

between spontaneous and evoked activity (Stringer et al, 2019). 

(b) Fraction of variance explained by shared dimensions between spontaneous and evoked 

activity across age for the animal from Fig. 3a-d. Shared dimensions were calculated as 

linear combinations of the leading principal components of spontaneous activity (of the 

same age) accounting for 75% of its own variance. 

(c) Fraction of evoked variance explained by shared dimensions four days after EO (top) and 

at EO (bottom). Thin lines: individual animals; Broad lines: average over animals. N=11 

animals. 
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(d) Total fraction of evoked variance explained by N=1, 2, all (orange, magenta, black) shared 

dimensions, averaged over animals (N=11). Error bars: Group average and SEM. 

(e-g) Alignment in awake animals. 

(e) Projections of evoked patterns into the space spanned by the first two evoked PC, as in 

Fig. 2b top, but for an awake animal. 

(f) Projections of evoked patterns into the space spanned by the first two PC of spontaneous 

activity, as in Fig. 3c top, but for an awake animal.  

(g) Alignment of evoked to spontaneous activity in the awake cortex (N=2 animals; compare 

Fig. 3c). Data in (e-g) from Smith et al., 2018. 
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SI Figure 6: At a local, modular scale, the initial grating evoked patterns and the patterns 

of the endogenous network exhibit a similar correlation function. (Related to Fig. 3)  

(a) Example correlation patterns (Smith et al., 2018) for total signal correlation (top row) and 

spontaneous correlation (bottom row) for the same seed point in a visually naïve ferret. 

Scalebar: 1 mm. 

(b) 2D correlation function of evoked (top) and spontaneous activity (bottom) at EO-2. 

Correlation patterns from (a, left) were averaged over all possible seed-points, displayed 

for a diameter of 0.8 mm.  

(c) Radial profiles of correlation functions from (b) with SD over seed-points. Note the similar 

location and depth of the trough, indicating a similar spatial scale and degree of order in 

the local modular structure of the spontaneous and initial evoked activity.   
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SI Figure 7: Network response properties can, in principle, change largely independently 

from one another. (Related to Fig. 5) 

Schematics of evoked activity projected onto the principal components (PC) of either evoked 

(compare Fig. 2b) or spontaneous activity (compare Fig. 3b, c) showcasing the four network 

properties in focus: trial-to-trial correlation (larger the smaller the scatter of responses with the 

same preferred orientation (marked by color)), dimensionality (smaller the larger the radius of 

projections onto evoked PCs), Intra-trial stability (larger the smaller the extend of  trajectories of 

temporally evolving activity) and alignment with spontaneous activity (larger the larger the radius 

of projections onto spontaneous PC).  

(a) Evoked responses in visually naïve animals are relatively high-dimensional and show poor 

trial-to-trial correlation, intra-trial stability and alignment with spontaneous activity. 

(b) Evoked responses in experienced animals are low-dimensional and show high trial-to-trial 

correlation, intra-trial stability and alignment with spontaneous activity. 
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(c) These four properties can develop largely independently from one another. The sketches 

show the schematics of evoked activity if only one of the four properties develops (left) and 

if all but one develop (right).  
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SI Figure 8: The model predicts a correlation between the alignment of the trial-averaged 

evoked pattern to spontaneous activity and trial-to-trial correlation, consistent with the 

empirical data. (Related to Fig. 5g-j) 

(a) Model prediction: single-trial responses to a stimulus for which the trial-averaged pattern is 

more aligned to spontaneous activity also show higher trial-to-trial correlation. N=300 

samples drawn for the input distribution used in Fig. 5d with optimal alignment and added 

noise as in Fig. 5b. 

(b-d): Test in experiment.  

(b) Reproduced from Fig. 5k. Contours show outlines of grating evoked patterns (taken 0.5 s 

after stimulus onset) from different trials for a stimulus for which the average pattern is less 

(left) or more (right) aligned to spontaneous activity. Trial-to-trial correlation: 0.75 (left), 0.84 

(right); alignment to spontaneous activity: 0.13 (left), 0.18 (right). 

(c) As (a) but for experimental data using all stimuli from the animal shown in (b) at EO+4.  

(d) Reproduced from Fig. 5l. Correlation for the data shown in (c) (large blue circle) and for all 

other animals in the oldest age group (grey circles; 13 experiments from N=11 animals at 

EO+4 to +7). Error bars show Mean ± SEM. respectively).  

(e) Trial-to-trial correlation, intra-trial stability and evoked dimensionality co-vary with the 

alignment of the first evoked PC to spontaneous activity (see Methods). 13 experiments 

from N=11 animals at EO+4 to +7. Parts of data reproduced from Figure 5m.  
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