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Abstract

Motivation: DNA CpG methylation (CpGm) has proven
to be a crucial epigenetic factor in the gene regulatory
system. Assessment of DNA CpG methylation values via
whole-genome bisulfite sequencing (WGBS) is, however,
computationally extremely demanding.

Results: We present FAst MEthylation calling (FAME), the
first approach to quantify CpGm values directly from bulk
or single-cell WGBS reads without intermediate output files.
FAME is very fast but as accurate as standard methods, which
first produce BS alignment files before computing CpGm
values. We present experiments on bulk and single-cell
bisulfite datasets in which we show that data analysis can
be significantly sped-up and help addressing the current
WGBS analysis bottleneck for large-scale datasets without
compromising accuracy.

Availability: An  implementation of FAME is
open source and licensed under GPL-3.0 at
https://github.com/FischerJo/FAME.

Introduction

DNA methylation has been shown to be an essential build-
ing block of the gene regulatory system (Mattei, Bailly, and
Meissner 2022), being often referenced as the “fifth base”.
As an epigenetic mark, it has been shown to be crucial for
dynamic gene regulation throughout development and ag-
ing (Smith and Meissner 2013; Bashkeel et al. 2019; Green-
berg and Bourc’his 2019; Field et al. 2018) and aberrant
methylation has been reported in different diseases, espe-
cially having a broad impact on cancer (Lister and Ecker
2009; Kulis and Esteller 2010; Papanicolau-Sengos and Al-
dape 2022; Huang et al. 2014; Wang et al. 2022). DNA
methylation can be measured large scale using methylation
arrays (Pidsley et al. 2016) or using sequencing (Meissner
et al. 2005; Krueger et al. 2012). Assessment of genome-
wide DNA methylation status via bisulfite sequencing (BS)
is considered as the gold standard for methylation profiling.
The current developments in sequencing technology, how-
ever, led to a drastic increase in the amount of data produced,
on the one hand due to higher throughput and on the other
hand due to the development of single-cell BS approaches in
which hundreds of individual cells are analyzed (Schwartz-

man and Tanay 2015; Smallwood et al. 2014; Farlik et al.
2015; Liu et al. 2021).

While there have been many attempts to speed-up the
computation of DNA CpG methylation (CpGm) values, all
previous approaches have relied on a two-step procedure.
Bisulfite reads are first aligned to the genome and then
CpGm values are computed from read alignment files.

This separation into two steps creates an unnecessary
overhead if the primary interest lies in the CpGm values,
because bisulfite alignment files consume large amounts
of disk space, imposing extra I/O time and disk resources
for the computations. Furthermore, most methods are built
around existing read alignment software that was originally
developed for traditional DNA read alignment. However,
WGBS reads are more difficult to align as read T nucleotides
may map to genomic C nucleotides. This not only requires
more specialized index structures compared to traditional
DNA alignment (Supp. Fig. 1), but also introduces mapping
ambiguity for read T nucleotides, referred to as the asym-
metric mapping problem (Lister and Ecker 2009).

Based on how the asymmetric mapping problem is han-
dled, available methods for WGBS read alignment can
be classified into reduced alphabet (RA) and bisulfite-
aware (BA) mapping approaches. RA mappers exchange C
residues to T in all sequences (reads and reference), obtain-
ing a reduced three letter alphabet, such that bisulfite con-
verted cytosines do not count as sequencing errors during
mapping. This reduction leads to false positive mappings
in the genome (Fig. 1a) and, hence, less sensitive methy-
lation calls. Popular RA mappers are Bismark (Krueger
and Andrews 2011), BSSeeker (Chen, Cokus, and Pelle-
grini 2010; Guo et al. 2013), BratNova (Harris, Ounit, and
Lonardi 2016), as well as gemBS (Merkel et al. 2019), and
bwameth (Pedersen et al. 2014), which use efficient DNA
aligners such as Bowtie (Langmead and Salzberg 2012) or
bwa (Li and Durbin 2009) to build an index of CtoT and
GtoA converted genome sequences.

While widely deployed, RA mappers do not correctly
address the asymmetric mapping problem and have been
shown to have reduced accuracy (Otto, Stadler, and Hoff-
mann 2012; Frith, Mori, and Asai 2012). This is because
they do not properly account for wrong mapping positions
due to the reduced alphabet. In contrast, BA methods use
different approaches to resolve the mapping ambiguity: (i)
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Figure 1: Alignment aware mapping. a Errors made through traditional reduced alphabet mapping. Former C reduced to T are
given in blue, strand origin indicated by arrows. b Principle of asymmetric aware mapping, T can be mapped unidirectionally
to C. ¢ Example of asymmetric (bisulfite-aware) Shift-And automaton. Visualization of the query of the letter sequence (i.e.,
genomic segment "TCT” to the for the pattern "TAACTT” (i.e., read). The current position in the segment (left side) is indicated
by a red arrow.
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realign potential reads at positions obtained with the reduced
alphabet using a BA alignment method (Huang, Huang, and
Chen 2018), (ii) use a k-mer based index with bitmasks to
address converted cytosines (Xi and Li 2009), or (iii) di-
rectly solve the asymmetric mapping problem with a modi-
fied alignment algorithm (Otto, Stadler, and Hoffmann 2012;
Frith, Mori, and Asai 2012). BA mappers such as Sege-
mehl (Otto, Stadler, and Hoffmann 2012) are among the
most accurate methods, but are very slow and, hence, hardly
scale to the massive amounts of data currently being pro-
duced. While there have been many attempts to speed-up
the bisulfite alignment process, the extended throughput in
current single cell datasets is making analysis even more
challenging and customized single cell analysis methods are
needed (Wu et al. 2019).

Here we present FAME (Fast and Accurate MEthylation
calling), the first BA mapping method with an index that
is tailored for the alignment of BS reads with direct com-
putation of CpGm values. Our method is built on a novel
data structure that exploits gapped k-mer counting within
short segments of the genome to quickly reduce the genomic
search space. FAME is optimized to handle large single
cell datasets. With the resulting lightweight index structure,
FAME enables ultra-fast and parallel querying of reads with-
out I/O overhead. We evaluated the performance of FAME
on both synthetic and real data in comparison to the state-of-
the-art tools. All experiments showcase the unique ability of
FAME to retrieve as accurate results as the best state-of-the-
art methylation caller in just a fraction of time. With orders
of magnitude faster processing time and no need to write in-
termediate files to disk, it overcomes the current bottleneck
in BS-seq processing, easily scaling to large single cell pro-
cessing tasks.

Approach

To solve bisulfite-aware WGBS mapping efficiently, we pro-
pose Fast and Accurate MEthylation calling (FAME). Our
method consists of two main building blocks, an index struc-
ture specifically tailored to model CpGm methylations, and
an efficient alignment method that implements asymmetric
mapping of read Ts to reference Cs based on the index. We
next give a more detailed overview of FAME and then dis-
cuss the index and alignment separately.

FAME

FAME is a bisulfite aware mapper that is built on top of
a custom indexing and alignment method, an overview of
which is given in Fig. 2. It leverages a gapped k-mer based
index structure (Fig. 2a), that enables ultra-fast retrieval of
small genomic segments of large genomes, where each of
these segments contains a potential match for the given read.
This index structure is fixed for a given reference genome
and thus can be queried in parallel for multiple reads. Fur-
thermore, it contains counting structures for all CpGs that
allow a direct update of methylation rates — the measure of
interest — and thus avoids expensive hard disk writes of in-
termediate alignment files. Using this index, FAME aligns a
read in three phases, (i) MCpG candidate retrieval, (ii) ver-
ification of candidate MCpGs, and (iii) methylation calling

(Fig. 2b). In the following, we explain the details of the in-
dex and how to use it to align a read and call methylation
rates.

Index For index construction, a given reference genome is
segmented into small windows of about 2kb length, called
Meta CpGs (MCpGs). Each MCpG stores the set of CpGs
it comprises and their respective genomic location. Every
second k-mer within each MCpG is indexed using a fast
rolling hash function from the library ntHash (Mohamadi
et al. 2016), replacing all Cs by Ts in each spaced k-mer. All
false positives introduced by this replacement are resolved
in the alignment phase. Such spaced k-mers are substrings
of length k that are masked with a spaced seed that consists
of k positions that are either the original letter or a wildcard.
A spaced k-mer thus matches a length k& genomic sequence
if for each position the letter in the k-mer and genomic se-
quence are equal, or the k-mer contains a wildcard. The hash
values for spaced k-mers present in the reference genome,
which are computed by ntHash, are used to populate a large
hash table!, mapping spaced k-mers to the MetaCpGs they
appear in.

To make the index more efficient, three optimizations are
applied to the index. The first optimization, which is loss-
less, removes all except one k-mer object belonging to the
same MCpG within a hash table cell (i.e., k-mers that have
the same hash value), as this information is redundant. The
second optimization throws out a distinct k-mer that occurs
more than a predefined threshold, as such k-mers are likely
to belong to repetitive regions, which are problematic during
alignment. The third optimization introduces a bitmask for
all reference k-mers. This bitmask has a 1 for all positions
with a T, O otherwise. For a given read k-mer, we can thus
discard reference k-mers if the read k-mer has a C at any
positions with a 1 in the bitmask. This allows to reduce the
number of false positives by a quick bitmask check already
in the candidate retrieval phase.

With the index structure at hand, we can now efficiently
retrieve candidate regions for bisulfite-aware alignment,
which is explained in the following section.

Alignment To align a read to the reference, FAME runs
trough three phases (compare Fig. 2b). In the first phase, the
candidate retrieval, each spaced k-mer of the read is looked
up in the index using its hash value provided by ntHash. For
each k-mer we, hence, get a collection of MCpGs where this
k-mer might occur in. This way we obtain for each read an
upper bound on how many of its k-mers are present in each
MCpG. By setting a minimal number of k-mer occurrences
q in a MCpG, most MCpGs can be excluded from further
alignment steps.

In the second phase, similar to previous work (Otto,
Stadler, and Hoffmann 2012), we employ a bisulfite-aware
bitvector algorithm to solve the asymmetric mapping prob-
lem using edit distance and verify read matches to all can-
didate windows. In particular, FAME builds a Shift-And au-

'The hash table implementation is a fast open source imple-
mentation of the Hopscotch hashmap. https://github.com/Tessil/
hopscotch-map
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Figure 2: FAME workflow. General workflow of FAME for
index construction (a) and read alignment (b). a For a given
reference genome (top), a CpG index is constructed for all
MCpG windows using a rolling hash function for gapped
k-mers. b WGBS reads are searched with three phases: can-
didate retrieval, verification and methylation calling. Methy-
lation rates are updated in a separat data structure, directly
yielding methylation values without any realignment (bot-
tom). FAME can process bulk or single cell datasets.

tomaton for the read (Baeza-Yates and Gonnet 1992), but
initializing the bitmask for Cs to all positions where a C
or a T is present in the read. An example of a bisulfite
aware Shift-And automaton is given in Fig. 1c, which can
be easily generalized to an approximate Shift-And automa-
ton (Supp. Fig. 2). All candidate MCpGs are queried to the
automaton to find true matches for a given read.

For paired end reads the three steps work analogously, but
are applied to both reads in parallel. An additional pruning
step can be carried out after the first step by throwing out all
MCpGs of one read that do not have a corresponding MCpG
that lies within insert size distance away to the paired read.

In the third phase, the unique best hit — if one exists —
is used to align the read to the original reference genome at
this position and the CpGm counts are updated immediately.
FAME applies a Dynamic Programming computation of the
Levenshtein distance to find the best alignment between read
and the matching subsequence of the reference leveraging
banded alignment matrices, with the band width given by
the number of errors in the unique best hit.

Storing all data in memory allows highly parallel imple-
mentation of all three steps and results in fast processing,
while the memory consumption is similar to other methods,
requiring less memory than Bismark or Segemehl (see Supp.
Tab. 1). Further, there is no need for large disk storage ca-
pacities for intermediate files, a bottleneck imposed by other
methods, which generate up to terabytes of data for a single
single-cell dataset.

All alignment phases can also naturally be extended to
support single cell experiments (compare Fig. 2). For that,
reads are processed as batches, where each batch represents
the read yield of a single cell. Each of these batches runs
through the three alignment phases of FAME and methy-
lation rates are estimated per batch and streamed into a file.
This results in a matrix containing all single cell experiments
as rows, avoiding any overhead caused by repeated loading
of the index for each cell, or excessive I/O caused by writing
out methylation calls for all CpGs for each individual cell,
which usually have sparse coverage.

Methods

In the following, we discuss data generation and preprocess-
ing along with performance metrics used for our evaluation
and comparison.

Synthetic data preparation

To carry out an evaluation on data with known ground
truth, we generate synthetic data resembling high quality
WGBS reads. Each synthetic data set consists of 25 million
100bp reads sampled uniformly from chromosome 22 of hu-
man reference genome hg19. For each CpG in the genome
we flip a coin and draw a methylation rate p either from
N (0.2, 0.08) or N (0.8, 0.08), reflecting hypo- or hyper-
methylated CpGs by Gaussians with low or high mean, re-
spectively, as usually observed in bulk sequencing data. For
each generated read, we methylate each CpG in the read
with probability p given by the reference CpG. Conversion
success rate is set to 99%, which is commonly observed in
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on the synthetic grid data set and (b) runtime for the same.

real WGBS experiments. Cytosines in non-CpG context are
methylated with probability 0.01 reflecting real mammalian
genomes. Finally, we introduced [ errors, where [ was drawn
from a Poisson with A = 0.5 to simulate base calling er-
rors. For paired end reads we generated 25 million pairs of
two reads generated as explained above, with the restriction
that reads should only be between 100bp and 400bp apart
from each other, drawn uniformly at random, reflecting the
allowed insert size of paired end protocols. As we know the
ground truth mapping positions of each read and the methy-
lation counts for each CpG, we can compute the Root Mean
Squared Error (RMSE) and Spearman correlation coefficient
using all CpGm values. We considered all CpGs, where at
least one tool mapped more than five reads. We measured
the runtime as the sum of time by alignment and by methy-
lation calling.

WGBS and EPIC bead data processing

In preparation for the comparison on real data, we down-
loaded the 5 WGBS paired-read datasets of LNCaP cell by
(Pidsley et al. 2016), along with corresponding EPIC bead
methylation calls. We then processed the EPIC bead data
using RnBeads (Assenov et al. 2014; Miiller et al. 2019) to
obtain methylation rates for all CpG positions on the EPIC
bead array. For the two replicates, we averaged the methy-
lation rates per CpG. The 5 WGBS read sets were pooled,
leading to about 437 million reads. Adapters were trimmed
using trim galore?, following the original approach by (Pid-
sley et al. 2016):
1 trim_galore —--length 85 —--max_n 1
—--paired --gzip

“http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/

2 LNCaP_pooled_1.fastg.gz
LNCaP_pooled_2.fastg.gz -o
trimmed/

For the evaluation, we considered the 841, 708 CpG po-
sitions out of 843, 385 CpGs present on the array, where at
least one tool mapped more than five WGBS reads. We con-
sidered the EPIC derived CpGm values as a baseline for this
comparison.

Single-cell WGBS data processing

To test available methods on a recent single-cell dataset, we
consider data of induced pluripotent stem cells generated in
a study by (Linker et al. 2019). Analogue to the original
study, we preprocessed the single cell data using trim-galore.
1 trim galore --paired --clip_R1l 6
-—-clip_R2 6 --gzip --length 90
2 CELLID_1.fastg.gz CELLID_2.fastqg.gz

Performance metrics

In previous work, the number of aligned reads has often been
considered a good proxy for mapper performance. However,
this measure is misleading as reads aligned to the wrong po-
sition are counted positively towards performance. As an ex-
treme example, consider a mapper that maps all reads to the
first position of chromosome 1, resulting in 100% aligned
reads, which is of course a wrong alignment. Thus a better
approach is to report the number of correctly mapped reads,
doing an extensive postprocessing of alignments to compare
to known ground truth read positions on synthetic datasets.
For real data, such a ground truth is impossible to obtain.
With the actual goal of quantifying DNA methylation, we
can mitigate this issue by evaluating how close the predicted
methylation rate is to the actual methylation rate. Hence, the
performance is good if and only if the alignment is good
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(i.e., correct). We can leverage orthogonal experiments mea-
suring CpG methylation on real data, such as EPIC arrays,
to obtain alignment independent methylation rates against
which we can evaluate all WGBS estimates. We measure
predicted against actual methylation rate in terms of the Root
Mean Squared Error (RMSE):

)2
RMSE:\/ ZCeC(Ta me)” )

where C' denotes the set of all CpGs with measurements and
|C'| denotes the size of this set. m, denotes the ground truth
(simulations or EPIC array) CpGm value of CpG ¢ and m,
denotes the estimated value of one of the investigated tools
based on WGBS data. Similarly, Spearman rank-based cor-
relation was computed to measure the agreement between
baseline CpGm values and estimates from the compared
tools.

We consider all CpG sites where at least one tool mapped
more than 5 reads (considering this CpG as mappable) and
set the predicted methylation rate of tools that do not have
any mapped reads at this CpG to 0 if the ground truth methy-
lation rate is larger than 0.5, and to 1 if the ground truth
methylation rate is smaller than 0.5. This introduces a small
penalty if a tool is not able to cover a region during align-
ment, although it was possible.

Results

We have developed FAME as a novel method for the quan-
tification of DNA methylation rates at CpGs directly from
bisulfite read data without producing intermediate alignment
files (Fig. 2). We compare FAME against existing RA and
BA mapping approaches in terms of runtime and quality
of called methylation rates both on synthetic and real data.
We note that there are a plethora of tools available and we
have selected a competitive subset of those for our compari-
son, which are the most state-of-the-art algorithms that have
full capabilities for alignment and methylation calling (more
details, including why certain tools are excluded, in Supp.
Tab. 2). The competing RA mappers were BratNova (Har-
ris, Ounit, and Lonardi 2016), Bismark (Krueger and An-
drews 2011), and gemBS (Merkel et al. 2019), the compet-
ing BA mappers were BSmap (Xi and Li 2009), and Sege-
mehl (Otto, Stadler, and Hoffmann 2012) (method parame-
ters in Supp. Sec. 5).

We measure the quality of called methylation rates in
terms of Spearman correlation coefficient and the RMSE be-
tween predicted and baseline methylation rates. With ground
truth methylation rates known for synthetic data, and methy-
lation estimates available from orthogonal experiments for
real data, we can thus evaluate each method’s ability to call
methylation rates. Furthermore, methylation calls serve as a
proxy for read alignment performance, as the methylation
calls are good if and only if the alignments are good. Thus,
in our evaluation we are not concerned with the issues of
typical read alignment evaluations, where ground truth read
positions are inherently hard to obtain for real data.

Hyperparameter optimization We first designed a sim-
ulation study to determine FAME’s default parameters on

an independent synthetic dataset following the in silico data
generation described in Section . The results for varying fil-
ter threshold ¢ — the maximum times a k-mer is allowed to
occur in the genome to be considered for the index — and
the minimum number of reads ¢ for a MCpG to be consid-
ered for alignment are given in Fig. 3. As expected, we can
see that with larger ¢ and smaller g the performance wors-
ens but the runtime improves. These parameters provide a
natural tradeoff between accuracy and runtime. We settle for
default values ¢ = 1500, ¢ = 5, as they show a good bal-
ance between runtime and prediction accuracy and use them
throughout the rest of the paper.

DNA methylation calling on synthetic read set

Next, we generated synthetic data (25 million reads) sam-
pled from human chromosome 22 resembling WGBS se-
quencing data (see Section ). The performance of each tool
was measured in terms of the combined runtime of read
alignment and methylation calling on the whole genome, as
well as quality of methylation calls. The results are given in
Tab. 1 and Fig. 4a, a more detailed visualization of the called
methylation rates can be found in Supp. Fig. 3.

We observe that FAME yields accurate results, improv-
ing on all tested RA mappers and yielding as good re-
sults as the most accurate mapper Segemehl. More impor-
tantly, FAME is running an order of magnitude faster than
Segemehl and Bismark, the most accurate RA and BA ap-
proaches in our test, bringing down the computation time
from several hours to minutes, whereas the second fastest
method gemBS showed poor methylation rate calls.

Our results further confirm that BA mappers, such as
FAME and Segemehl, yield more accurate methylation rates
than RA mappers, which supports the intuition considering
the false positive matchings introduced by RA approaches
(see Fig. 4c¢).

Predicting DNA methylation on real world data
against EPIC bead

In the next experiment, we used real WGBS data (437 mil-
lion paired reads) from the LNCaP cell line, which were
accompanied by EPIC array measurements (Pidsley et al.
2016). EPIC arrays provide an alternative large-scale mea-
surement of CpGm values, which is not concerned with the
same biases as WGBS.

The results, visualized in Figure 4b and Table 1, show
that FAME is 8, 9.5, and 2 times faster than Segemehl, Bis-
mark, and gemBS, respectively. In terms of accuracy, FAME
outperforms all RA and BA mappers on this real data set
(Figure 4b, Table 1, Supp. Fig. 7, 8). FAME thus provides a
unique balance between WGBS processing speed and accu-
racy. Further analyses showed that Segemehl and FAME are
on par with the highest number of covered CpGs, while all
other methods show up to an order of magnitude more CpGs
with no aligned read. As with the synthetic data experiment,
this real data set highlights inferior RA mapper performance
compared to BA mappers, which has been independently re-
ported in the literature (Otto, Stadler, and Hoffmann 2012;
Frith, Mori, and Asai 2012).
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Figure 4: Comparison on bisulfite sequencing data. Visualization of results for simulated bulk sequencing WGBS reads (a)
and real WGBS data (b) of LNCaP cell lines (Pidsley et al. 2016). We compare runtime (x-axis) against error of the predicted
methylation values as RMSE (y-axis). The size of each point indicates the number of unmapped CpGs. In case of the real world
data, EPIC arrays serve as baseline methylation calls against which we compare the methods. Runtimes in hours on log-scale

for scBS-seq (c) of 192 cells ((Linker et al. 2019)).

The synthetic data sets used to evaluate the methods and
the processed EPIC bead data are deposited online for repro-
ducibility (see Data Availability statement).

Scaling to single cell data

To this end, the analysis showed that FAME yields accurate
results in a fraction of time of the state-of-the-art. The fol-
lowing analysis is concerned with the scalability of methy-
lation calling to the sequencing yields produced from single
cell experiments. A unique feature of FAME is to directly
support single cell WGBS datasets, where reads of each cell
are aligned, counted, and methylation rates are put out per
cell, without additional overhead. We thus investigated the
performance on single cell data using a dataset of 192 cells
from (Linker et al. 2019). We used gemBS and Segemehl
to represent the fastest, respectively most accurate, compet-
ing method from our previous analyses and applied them on
this single cell data set. FAME was able to process all cells
within 11 hours, which is an order of magnitude faster than
competitors, which both took more than 5 days to finish the
analysis (see Figure 4c). All runtimes were achieved while
parallelizing on 32 cores on a modern server and demon-
strate that single cell data methylation calling is a huge bot-
tleneck, even more with the recent advances of combinato-
rial indexing and other platforms that yield sequencing of
thousands of cells per run (Vitak et al. 2017; Mulqueen et al.
2018).

Discussion

In the scope of this work, we present a novel method to ef-
ficiently quantify DNA methylation from WGBS data and
analyze its ability to accurately predict methylation rates on
synthetic and real world data in comparison to state-of-the-
art methylation callers.

To overcome limitations of evaluations that are solemnly
based on mapping efficiency, here we directly evaluate on
synthetic data how close the predicted methylation rates are
to the ground truth. Thus, any inefficiencies in read mapping,
wrongly mapped reads, or mapping biases are captured by
this evaluation as they lead to wrong or biased methylation
estimates, which otherwise could be missed. While we gen-
erated the synthetic data in close resemblance of how reads
are actually produced by a sequencing protocol, there might
be issues in real world data that are not captured by this data
set. We, hence, compared on real-world data with the same
underlying idea, to leverage baseline methylation rates to
evaluate the estimation capabilities of the methods at hand.
The actual methylation rates of a cell are unknown, yet we
can do our best to evaluate on real data taking into account
orthogonal experiments of quantification of DNA methyla-
tion. Here, we leverage estimates from EPIC arrays as com-
parison to the WGBS calls of each tool. While not being an
actual ground truth, it gives a different view on methylation
rates that does not suffer from the issues inherent in the pro-
cess of read alignments with asymmetric mappings (Pidsley
et al. 2016). In our analysis we settled for the EPIC bead
data, as it is to the best of our knowledge the most reliable
and state-of-the-art protocol for genome wide methylation
analysis besides WGBS.

Overall, both synthetic and real world evaluation matched
our expectations that bisulfite aware mapper yield more
accurate methylation estimates than tools that use a re-
duced alphabet for mapping, which is in line with previ-
ous findings (Otto, Stadler, and Hoffmann 2012; Frith, Mori,
and Asai 2012). The state-of-the-art bisulfite aware mapper
Segemehl yields consistently highly accurate results, but is
prohibitively slow in comparison to other tools. The widely
used tool Bismark also showed consistently reasonable per-
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Metrics Reduced Alphabet Mapper Bisulfite Aware Mapper

Bismark | BratNova | gemBS BSmap | FAME | Segemehl

E Runtime (h:m:s) 3:47:53 3:24:38 0:17:57 2:54:22 | 0:11:54 2:46:03

I

s RMSE 0.101 0.156 0.196 0.609 0.063 0.053

= | Performance

£ Spearman 0.93 0.86 0.78 -0.34 0.97 0.98

[=]

2 #missed CpGs 12371 44800 57319 583528 5130 4444

s Runtime (h:m:s) 48:13:18 | 28:46:20 | 10:41:38 | 18:12:25 | 5:09:46 | 42:50:24

o~

< RMSE 0.182 0.345 0.231 0.325 0.17 0.181

£ | Performance

© Spearman 0.86 0.61 0.8 0.79 0.88 0.86

<

)

~ #missed CpGs 132704 747904 442318 28208 88470 71571

Table 1: Method comparison. All methods are compared on synthetic (top) and real WGBS data (bottom). Runtime of alignment
and methylation calling (32 threads) and accuracy given as Root Mean Squared Error (RMSE, lower is better) and Spearman
correlation (higher is better) are reported. The number of CpGs for which no reads were aligned (#missed CpGs) is given in a

separate row.

formance despite being a reduced alphabet mapper, yet is
less accurate than Segemehl or FAME. To our surprise, the
method gemBS showed poor estimation quality in our tests.
Similar issues of gemBS have been reported independently
in a recent comparison study on plant data (Grehl et al.
2020). Our method FAME shows among the best perfor-
mance regarding estimation quality, while being an order of
magnitude faster than the state-of-the-art. Especially for re-
cent large-scale single cell sequencing data sets, this elim-
inates the need for high performance computing capabili-
ties, which opens the alignment and methylation calling of
WGBS single cell data sets to a broader community.

The focus of our work lies on the estimation of DNA
methylation from WGBS data. An interesting avenue for
future work would be an adaption of our algorithm to
NOME data by building the index for GpCs instead of
CpGs. Hence, we can use FAME to get open chromatin calls
from NOME-seq experiments (Rhie, Schreiner, and Farn-
ham 2018), leveraging FAME’s accuracy and speed for a
different data modality. Similarly, adaptations of our index
and algorithm to accommodate SLAM-seq based experi-
ments (Muhar et al. 2018) would make for exciting future
work. In SLAM-seq — Thiol(SH)-linked alkylation for the
metabolic sequencing of RNA — 4-thiouridine (4sU) labeled
mRNAs allow to directly quantify the amount of (labeled)
mRNA, as a T;C conversion is prompted when doing 3’-
end mRNA-sequencing on labeled fragments but not on un-
labeled fragments. In both application scenarios, NOME-seq
and SLAM-seq, correctly resolving the asymmetric map-
ping is crucial to obtain accurate results and suitable meth-
ods are needed for fast processing for these new generation
of techniques.

Conclusion

We considered the problem of efficiently and accurately
mapping reads from bulk and single-cell WGBS experi-
ments. Current methods are either slow — imposing bottle-
necks on the analysis of the reads — or inaccurate. What all
of them have in common is that they are diskspace-intensive
with terabytes of data produced as byproducts for a sin-
gle experiment, posing a challenge for modern single-cell
dataset analysis. Apart from the inaccuracies introduced by
many alignment tools, this poses a challenge especially in
the now common cloud-computing settings, where both run-
time as well as diskspace directly translate to costs.

Here, we introduced FAME, a fast and accurate WGBS
aligner that is specifically tailored to solve the asymmetric
mapping problem introduced by bisulfite treatment. As the
approach is fully self-contained and directly models CpGm
values in memory, it further avoids unnecessary intermediate
alignment files that make the whole process expensive and
slow. On both synthetic as well as real data, we show that
FAME is as accurate as the best of state-of-the-art methyla-
tion caller, yet orders of magnitudes faster and with an order
of magnitude less required diskspace, while maintaining a
similar memory consumption.

A unique feature of FAME is to directly support single
cell WGBS datasets, where reads of each cell are aligned,
counted, and methylation rates are output per cell, with-
out additional overhead. We investigated the performance on
single cell data (Linker et al. 2019). We used the state-of-the-
art gemBS and Segemehl to represent the fastest respectively
most accurate competing methods from our previous analy-
sis and applied them on the same single cell data. FAME was
able to process the full dataset within 11 hours, whereas both
other methods took more than 5 days, all being parallelized
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on 32 cores.

In conclusion, FAME paves the way for accurate, large-
scale CpGm calling and is ideal for cloud computing, be-
cause it needs no specialized hardware or access to large file
systems. As the number of WGBS experiments increases,
e.g., due to advances in single cell measurements, FAME is
prepared to address this data deluge. Furthermore, the novel
index and corresponding alignment procedure opens up effi-
cient and accurate mapping in different setting of asymmet-
ric mapping in the future, such as required in NOME-seq
and SLAM-seq. FAME is open source and licensed under
GPL-3.0 under https://github.com/FischerJo/FAME .

Data Availability

Our generated synthetic data of our performance analy-
sis is publicly available through https://zenodo.org/record/
2574694. The bulk WGBS data by (Pidsley et al. 2016)
was deposited through accession IDs SRR4238609 up to
SRR4238613 in the Sequence Read Archive (SRA) by the
authors of that study. (Linker et al. 2019) published their data
through project ID PRIEB15062 through the European Nu-
cleotide Archive (https://www.ebi.ac.uk/ena/browser/view/
PRJEB15062), the raw reads of the methylation analysis
forming the basis for our experiments.
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