
Supplementary Material – Efficiently Quantifying

DNA Methylation for Bulk- and Single-cell Bisulfite Data

Jonas Fischer & Marcel H. Schulz

January 27, 2023

1

Figure 1: Reference sequence space blowup in WGBS. A: The two major steps of the WGBS protocol are
visualized, leading to a 2-fold blowup of the reference sequence space. First, the reference sequence is
denatured and treated with sodium bisulfite, leading to a C to T conversion of unmethylated Cytosines.
Positions with Cs in the origin strand (before sodium bisulfite treatment) are consistently colored red. In
the PCR step, strand fragments are amplified, leading to sequences representing strand fragments (+) and
their reverse complement (-). This results 4 different strands, due to the reverse complementarity of A to T
at positions where there was an unmethylated C in the original strand (all positions with former Gs colored
in orange). B: The read mapping problem in the WGBS sequence space, tackled trivially by mapping to
the full reference space (1) and mapped using the idea that either the read itself or its reverse complement
must map to the C/T transformed version of the reference (2). The latter circumvents the 2-fold blowup in
space requirement for the reference.

2

Figure 2: Approximate shift-and automaton. An example of an approximate shift-and automaton for the
pattern Hallo with a maximum of τ = 2 errors. A state ij appearing in layer j is known to have already
produced j errors. The transitions when reading a character c, indicated by full arrows, are just as in the
normal shift-and algorithm. Transitions introducing an error in the match will cause a step into the next
lower layer. These transitions are indicated by a dashed arrow. Σ transitions are triggered when reading
any character of the text, corresponding to insertions (vertical transitions) and substitutions (diagonal tran-
sitions). The ε-transitions can always be performed, without the need of reading a character from the text,
corresponding to a deletion.

3

Figure 3: Synthetic data performance per tool. The performance of all tools on the synthetic data set is
visualized as heated scatterplots with predicted methylation rate on the x-axis and actual methylation rate
on the y axis. The color of a point indicates the number of samples (CpGs) falling into this area of the plot.
Accuracy metrics are given as RMSE, Spearman, and Pearson correlation coefficient in the bottom right of
each plot.

4

Figure 4: LNCaP Pidsley data performance per tool. The performance of all tools on the LNCaP Pidsley data
set is visualized as heated scatterplots with predicted methylation rate on the x-axis and actual methylation
rate on the y axis. The color of a point indicates the number of samples (CpGs) falling into this area of the
plot. Accuracy metrics are given as RMSE, Spearman, and Pearson correlation coefficient in the bottom
right of each plot.

5

Figure 5: Performance comparison. Visualized are the results of all methods measuring runtime (log scale on
x-axis) against prediction accuracy (accuracy) in terms of Spearman Correlation Coefficient (left) and RMSE
(right). In a, results are on the LNCaP data set with correlation and RMSE computed between predicted
methylation rate and EPIC bead methylation rate for all CpGs present on the bead. In b, results are on
synthetic data generated from chromosome 22 of the human genome with known ground truth. Accuracy
metrics are computed between predicted and actual methylation rate of all CpGs on chromosome 22.

6

Method Memory in GB
BSMAP 28
BratNova 8
Bismark 50
FAME 35
gemBS 32
Segemehl 55

Table 1: Rounded numbers for memory consumption in GigaByte (GB) for each tool in the comparison.
The RAM consumption was measured on the Pidsley data set.

7

Table 2: Summary of available tools related to WGBS alignment and methylation calling. We consider
different categories: is the software able to call methylation values from alignment result files (Meth. calling)?
Does the approach use a BA mapping approach (Bisulfite-aware)? Does the software support non-directional
reads , BAM output or input of gzipped reads as well as support of multicore parallelization? The last column
indicates whether a tool was included.

Method
Alignment

Method
Meth.
calling

Bisulfite-
aware

Non-
directional

BAM Gzip
Multi-

threading
Included in
comparison

Bat-Meth [1] FM-index No No Yes - - No
No, too slow

in [2]

Bat-Meth2 [1] Batalign Yes No Yes No Yes Yes
No, slower than

Batmeth and Bismarck

Bismark [3]
bowtie

/HISAT
Yes No Yes Yes Yes Yes Yes

Bisulfighter [4] LAST Yes Yes No - - Yes
No, no unstranded
PE-read support

Brat-BW [5] FM-index Yes No - No - No
No, predecessor
of Brat-NOVA

Brat-NOVA [6] FM-index Yes No Yes No No No Yes

BSMAP [7] custom Yes Yes Yes Yes Yes Yes Yes

BSSeeker2 [8]
bowtie/SOAP

/rmap
Yes No No Yes No No

No, too slow
in own exp.

and [2]

BSSeeker3 [9] SNAP Yes No No Yes Yes -
No. software not working,

contacted authors1

without success

BWA-meth [10] BWA-mem No No Yes Yes Yes Yes
No. Only,
aligner.

gemBS [11] GEM Yes No Yes Yes Yes Yes Yes

GSNAP [12] custom No Yes Yes No Yes Yes
No. Only,
aligner.

LAST [13] LAST No Yes No Yes Yes Yes
No. No unstranded
PE-read support.

WALT [2] Hash table No No No No No Yes
No. Only,
aligner.

MAQ [14] custom No Yes No No No No
No. Outperformed

by [3] and [8].

RMAPbs [15] RMAP Yes - - No No No
No. Outperformed

by [3] and [8].

Segemehl [16]
enhanced

suffix array
Yes Yes Yes Yes Yes Yes Yes

1 The algorithm was not able to align reads and the problem could not be fixed by the authors see github
thread: https://github.com/khuang28jhu/bs3/issues/3

2 https://arxiv.org/abs/1401.1129

8

https://github.com/khuang28jhu/bs3/issues/3
https://arxiv.org/abs/1401.1129

1 Computational challenges of WGBS

In Whole Genome Bisulfite Sequencing (WGBS), which is considered the gold standard for methylome
analysis of genomes, sodium bisulfite is exploited to induce the conversion of unmethylated Cytosines to
Uracil. By subsequent PCR cycles on the genomic fragments, Uracils will be replaced by Thymines, because
the Polymerase is insensitive against Uracil and will read it as Thymine [17]. When mapping the reads of
the experiment to the reference, a Thymine in the read is allowed to map to a Cytosine in the reference,
which means that this Cytosine was unmethylated in the sample.

When carrying out a bisulfite sequencing protocol, the sample DNA is denatured first to allow for the
sodium bisulfite treatment, triggering chemical reactions leading to the conversion of all unmethylated Cy-
tosines to Uracil. Then, the two strands are amplified separately using PCR. The subsequent steps are similar
to the normal sequencing protocols, including fragmentation of the genome by e.g. sonication or treatment
with nucleases, followed by library preparation steps such as adaptor ligation [17]. The two major protocols,
considered as standard for WGBS are termed MethylC-seq by Lister et al. and and BS-seq by Crokus et al.
An overview of both protocols, which differ in the used adaptor sequences and fragment processing steps,
is given in e.g. [18]. Once the experimenter obtains all reads by sequencing the library, the computational
post- processing to align the reads to the reference genome has to be performed.

There is one major challenge emerging when it comes to the alignment of WGBS reads in silico. Due
to the bisulfite treatment, unmethylated Cytosines (Cs) appear as Thymines (Ts) in the PCR product and
Guanines (Gs) appear as Adenines (As) in the reverse complement PCR product. Consequently, we need
to allow a match of read Ts to reference Cs, as well as read As to reference Gs (see Fig. 1). However, read
Cs mapped to reference Ts and read Gs mapped to reference As are considered as an error in all traditional
aligners. We call this the asymmetric mapping problem (depicted in Fig. 1 in main paper), which needs to
be accounted for in the alignment phase.

2 Related work

There exist a plethora of software packages that deal with WGBS methylation calling that can be classified
into two paradigms. Reduced alphabet mapper (RAs) simplify the mapping problem by using two versions
of the reference genome, one version with all Cs replaced by Ts and one version with all Gs replaced by As
(see Figure 1A). This allows the mapper to leverage the potential of classical alignment tools such as Bowtie
[19, 20]. However, this approach comes with two disadvantages, first it introduces false positive matches by
ignoring the asymmetric mapping, and second only alignment files are produced, which requires an additional
time consuming step to index all reads at a given CpG position and count methylated and unmethylated Cs
at this positions. Bisulfite aware (BA) mapper, on the other hand, allow for the asymmetric mapping and
hence do not introduce false positive matchings, but can not rely on fast classical alignment software.

The bisulfite aware methods were historically the first developed for WGBS experiments, such as BSMAP
[7], RMAP [15], and Segemehl [16]. In our analysis we compare against BSMAP, the fastest BA and more
accurate than RMAP, and Segemehl, which shows very accurate methylation calls. We could not include
the LAST aligner [13] and its bisulfite enhancement Bisulfighter [4] as they do not support unstranded PE
reads (communication with the authors).

In contrast to BA mappers, there exist many RA mappers that are usually wrapper methods for es-
tablished classical DNA alignment software. Bismark is the most widespread tool for WGBS methylation
calling, which is an RA build around alignment software packages such as Bowtie [3, 19, 20]. BSSeeker2 [8]
uses an approach for the mapping that is highly similar to Bismark, but also offers processing for Reduced
Representation Bisulfite Sequencing experiments. To reflect a real world scenario, we ran all tools on a single
server, where in initial experiments BSSeeker2 ran slower than Bismark, which is why we did not incorporate
this tool in our comparison. Recently, the new version BSSeeker3 was published that includes a realignment
step to account for the asymmetric mapping [9], but we were not able to get the tool running and the au-
thors could not fix the problem (the aligner reported no read alignments2. BratNova is a reduced alphabet
mapper that uses only one FM index for forward and reverse strand, an extension of the idea of Bismark’s
usage of several FM indices (one for each strand). This is space efficient and reduces postprocessing time [6].
BratNova comes with no native support for parallelization and we asked the authors to supply a functioning
FM construction code (not supplied on the website), which was used then in our benchmark. NovoAlign
bisulfite is a software package, in which the bisulfite alignment mode is only commercially available and thus
excluded from our experiments as we had no access to it. We chose Bismark as the representative for the
accuracy of the RA mappers, as it is a well established and widely used tool.

2github issue https://github.com/khuang28jhu/bs3/issues/3

9

https://github.com/khuang28jhu/bs3/issues/3

2.1 Choice of Methods

Although there is a plethora of methods available, we limited our comparison to a representative set of
tools. These tools reflect different indexing and alignment approaches. Although there were other methods
available, they were either already proven to be slower than one of the chosen methods, did not run even
after contacting the original authors, or were not able to produce an actual call of methylation rates on the
given data. We compiled a comprehensive list of available bisulfite tools, excluding methods for color based
sequencing. Table 2 includes general information about each tool as well as an explanation in case we did
not include a tool in our analysis.

10

3 Results

3.1 Performance on synthetic data

We only considered CpGs that were covered by at least one of the tools with more than 5 reads and penalized
any missing methylation call for those considered CPGs by setting the predicted methylation rate to 0 if
the true methylation rate >0.5, and to 1 otherwise. An overview of the results comparing runtime with
achieved RMSE/Spearman Correlation is visualized in Figure 5a. The performance of each individual tool
is visualized in Figure 3.

3.2 Hyperparameter tuning

The index structure that we build introduces several hyperparameter. A hyperparameter of minor importance
is the size of a MCpG m. A small m means that we hash fewer k-mers for a particular MCpG, it is hence less
likely to retrieve a false positive by purely looking at k-mer counts in the candidate retrieval phase. However,
we have a larger overall number of MCpGs, increasing the potential number of distinct candidates found for
the matching phase. As the candidate counting is a major bottleneck, a too small m hence throttles the
performance. For large m, the counting phase is cheaper, as we need to count for fewer MCpGs. Since we
hash more k-mers per MCpG than for small m, it is more likely to get false positive candidates that need
to be validated in the matching phase. Thus, it is important to have a balance here. During all tests, we
sticked to m = 2048, as it generally worked well on our syntethic hyperparameter tuning data (as described
in the main paper).

A very important parameter is the strictness t (maximum number of occurrences of a distinct k-mer in the
reference) of the index optimization that throws out frequent k-mer sequences, influencing the performance
of the algorithm dramatically. Smaller t means a stricter, more lossy filter and thus results in less accurate
but much faster versions of the algorithm, because these redundant k-mers often correspond to repetitive
regions, which would result in retrieving all repetitive regions as candidates everytime a read contains this
k-mer. Smaller t is less sensitive in repetitive regions.

The threshold q corresponds to the minimum number of read k-mers matched in a MCpG such that the
read is considered as a candidate. We ran a gridsearch along t and q on synthetic data (see Synthetic data
section) to find good default values for these hyperparameter. The results in terms of accuracy and runtime
are depicted in Fig. 3 in the main paper. We settled for default values t = 1500, q = 5, as they show a good
tradeoff between runtime and prediction accuracy.

3.3 Performance on real data

For the evaluation we looked at all EPIC bead CpG positions that are mapped by at least one tool with more
than 5 reads. We compared the predicted methylation rates of all tools for these positions with the EPIC
methylation rate. To penalize uncovered CpGs, we set the predicted methylation rate for each uncovered CpG
to 0 if the EPIC methylation rate > 0.5, and to 1 otherwise, i.e. the worst prediction that would be possible.
The results for each individual tool are visualized in Figure 4, an overall summary comparing runtime and
RMSE/Spearman Correlation is depicted in Figure 5. The commands to generate the methylation rates are
described in Section 5.

3.4 Memory consumption

We compared the memory consumption in terms of maximum allocated RAM at any time in the steps
involved in a pipeline on the Pidsley data set. The index was constructed was constructed for the hg19
reference. In summary, all tools consumed memory within the same order of magnitude, with Segemehl
showing the highest amount of allocated RAM. All results are given in Table 1. Note that due to difficulties
in measuring the memory for Bismark, we resort to the estimate given by the original authors in the Bismark
manual3.

4 FAME manual

FAME is available on GitHub under https://github.com/FischerJo/FAME. Through a checkout, the full
codebase is downloaded, including a version of gzstream4, Tessil’s hopscotch map5, Google’s sparsehash

3Appendix (II) description of the multicore parameter (https://github.com/FelixKrueger/Bismark/tree/master/Docs)
4https://www.cs.unc.edu/Research/compgeom/gzstream/
5https://github.com/Tessil/hopscotch-map

11

https://github.com/FischerJo/FAME
https://github.com/FelixKrueger/Bismark/tree/master/Docs
https://www.cs.unc.edu/Research/compgeom/gzstream/
https://github.com/Tessil/hopscotch-map

implementation6, googletest7, and a modified version of ntHash [21]. To set general parameters like length
of a read, insert size, etc, the user has to modify the file CONST.h as described in the README.md. For
all hyperparameters of the algorithm we strongly recommend sticking to the default values.

To run FAME, Google’s sparsehash library needs to be compiled. To achieve this, run the following
command in the top level directory of sparsehash:

./ configure; make; make DESTDIR=include install

To build FAME, type make in the top level directory of the FAME repository.
Once the program is compiled, the binary file FAME is available. With this binary, the whole algorithm

can be used. A helper function is available to guide the user through the parameters, called through ./FAME

--help. The printed manual looks similar to the following:

SUMMARY

This program is designed for the computation of methylation levels

in (large) mammalian genomes. Please specify the desired values

for

the parameters in the file CONST.h, and rebuild the project using

the provided Makefile (first "make clean" then "make").

All files are provided as command line arguments by the user.

OPTIONS

Options followed by [.] require an additional argument

--help

-h Help

--genome [.] Specification of a filepath to a

reference genome

in fasta format.

-r [.] Specification of a filepath to a

set of reads in

fastq format. If not specified ,

index is built and

saved in file provided via --

store_index.

-r1, -r2 [.] Specification of a filepath to a

set of reads in

fastq format corresponding to the

first resp. second

read infor paired read set

--gzip_reads Read file specified by -r is

treated as gzipped

file (.gz file ending).

--store_index [.] Store index in provided file in

binary format.

--load_index [.] Load index from provided file.

Note that all

parameters used to build the index

must be the same

6https://github.com/sparsehash/sparsehash
7https://github.com/google/googletest

12

https://github.com/sparsehash/sparsehash
https://github.com/google/googletest

as used in the current CONST.h.

This will be checked

while loading.

--out_basename [.]

-o [.] Store CpG methylation leves in

specified filepath ,

generating a file with name

basename_cpg.tsv

Format is specified as header in

first line of file.

--no_loss Index is constructed losless (

WARNING: VERY SLOW!)

--unord_reads Disable optimization to find

stranding of reads.

--human_opt The reference genome is treated as

GRCH or HG version

of the human genome. Unlocalized

contigs etc are pruned.

EXAMPLES

Setting: Read a reference genome and save index for consecutive

usages.

/path/to/FAME --genome /path/to/reference.fasta --store_index

index.bin

Setting: Load index from previously stored index , map reads stored

in .gz format.

/path/to/FAME --load_index index.bin -r /path/to/reads.fastq.gz

A full list of options and hyperparameters can be found in the README.md file in the top level directory of
FAME and on the github page of FAME.

If a WGBS read set is queried to FAME, the software will produce an output file that contains a 6 column
table in tab-separated-value (tsv) format. The column contain for each CpG

Chromosome Position FwdMeth FwdUnmeth RevMeth RevUnmeth

where ”Position” is the (0-based) position of the C on the forward strand, and ”FwdMeth” and ”FwdUnmeth”
are the number of methylated Cs and unmethylated Cs mapped to the forward strand CpG, respectively.
”RevMeth” and ”RevUnmeth” are the corresponding counts for the CpG on the reverse strand.

5 Commands

In this section we briefly summarize all program calls we made to generate the results of the individual
mapping tools.

5.1 Bismark

Index generation:

./ bismark_genome_preparation --path_to_bowtie /Path/To/Bowtie/

/Path/To/hg19_ref/

Read mapping:

./ bismark --multicore 5 -X 1500 --non_directional -o tmp_bis/ --gzip

--path_to_bowtie /Path/To/Bowtie/ --samtools_path /Path/To/Samtools/

--genome /Path/To/hg19_ref/ -1 LNCaP_pooled_1_trimmed.fastq.gz -2

LNCaP_pooled_2_trimmed.fastq.gz

13

Methylation calling:

./ bismark_methylation_extractor --cytosine_report -p --comprehensive

--merge_non_CpG --

buffer_size 10G --genome_folder /Path/To/hg19_ref/ --samtools_path

/Path/To/Samtools/ -o methcall_bis/ --multicore 5

LNCaP_pooled_1_trimmed_bismark_bt2_pe.bam

5.2 BratNova

We used a FM construction code that was provided by the main author after contact by email.
Index generation:

./ brat_nova/build_bw -r /Path/To/hg19_ref/referencesHG19.txt -P

/Path/To/BratNovaIndex

Read mapping on synthetic data:

./ brat_bw -P /Path/To/BratNovaIndex -1

paired_hg19_CHR22_poisson0_5_p1.fastq -2

paired_hg19_CHR22_poisson0_5_p2.fastq -a 450 -o

output_resultsSimData.sam -pe

Methylation calling (note that files are changed according to BratNova requirements):

./acgt -count -r /Path/To/hg19_ref/referencesHG19.txt -s mappedResults.txt

-P methylomeLNCAP.txt

5.3 BSMAP

Read mapping for LNCaP data:

./ bsmap -a LNCaP_pooled_1_val_1.fq.gz -b LNCaP_pooled_2_val_2.fq.gz -d

/Path/To/hg19_ref/hg19.fa -o LNCAPv6out.sam -p 32 -n 1 -v 6 -x 1800

Read mapping for synthetic data:

./ bsmap -a paired_hg19_CHR22_poisson0_5_p1.fastq -b

paired_hg19_CHR22_poisson0_5_p2.fastq -v 10 -d

/Path/To/hg19_ref/hg19.fa -o SimDataNew.sam -z 64 -p 32 -n 1 -r 0 -x

650

Methylation calling:

./ methratio.py -o SimDataNew.bsmap -d /Path/To/hg19_ref/hg19.fa -s

/Path/To/samtools/ -z -u -p -x CG SimDataNew.sam

MethylDackel call for error search:

$samto view -bS LNCAPv6out.sam | $samto sort - LNCAPv6sorted.bam

./ MethylDackel extract -q 0 -p 1 /Path/To/hg19_ref/hg19.fa

LNCAPv6sorted.bam

5.4 FAME

Index generation:

./FAME --genome /Path/To/hg19_ref/hg19.fa --store_index

index_hg19_spaced_k32_w24_6_m2048_t1500 --human_opt

Read mapping and methylation calling for LNCaP (insert size set to 1600, remaining parameters to default):

./FAME -r1 LNCaP_pooled_1_trimmed.fastq.gz -r2

LNCaP_pooled_2_trimmed.fastq.gz --gzip_reads --load_index

index_hg19_spaced_k32_w24_6_m2048_t1500 -o LNCaP_results

Read mapping and methylation calling for synthetic data (all parameters to default):

14

./FAME -r1 paired_hg19_CHR22_poisson0_5_p1_Segemehl.fastq -r2

paired_hg19_CHR22_poisson0_5_p2_Segemehl.fastq --load_index

index_hg19_spaced_k32_w24_6_m2048_t1500 -o Synth_results

Read mapping and methylation calling for single cell data (read length set to 125, as given by the protocol):

./FAME --load_index index_grch38p13_spaced_k32_w28_6_m2048_t1500_mod2

--gzip_reads --sc_output FAME_meth_per_cell.tsv -o FAME_collapsed

--sc_input FAME_meta.txt --paired --unord_reads

5.5 gemBS

We used gemBS version 3.2.1 in the experiments. gemBS uses two files that are setup before running the
method. A conf file and csv file, the first details parameters and location of the reference sequence and fastq
files and the index. The second file names the experiments and the read files to be used for it.

Experiment gemBS.conf file:

reference = /Path/To/hg19.fa

extra_references = reference/conversion_control.fa.gz

index_dir = indexes

base = .

sequence_dir = .fastq/@SAMPLE

bam_dir = ${base}/ mapping/@BARCODE

bcf_dir = ${base}/ calls/@BARCODE

extract_dir = ${base}/ extract/@BARCODE

report_dir = ${base}/ report

project = SimDataChr22

species = Human

threads = 32

jobs = 1

[mapping]

underconversion_sequence = NC_001416 .1

overconversion_sequence = NC_001604 .1

include IHEC_standard.conf

[calling]

contig_pool_limit = 5000000

Experiment gemBS.csv file for simulated data :

Barcode ,Name ,Dataset ,File1 ,File2 ,Library

barcodeDE ,Simdata1 ,SimDatachr22 ,paired_hg19_CHR22_poisson0_5_p1.fastq.gz ,

paired_hg19_CHR22_poisson0_5_p2.fastq.gz ,LBsim

Experiment gemBS.csv file for Pidsley data :

Barcode ,Name ,Dataset ,File1 ,File2 ,Library

lncapBarcode ,Reads ,LNCAPreads ,LNCaP_pooled_1_val_1.fq ,

LNCaP_pooled_2_val_2.fq ,LBLNCAP

Then the same commands for index generation are used:

gemBS prepare -c gemBS.conf -t gemBS.csv

gemBS index

Read mapping and methylation calling:

gemBS map

gemBS call -t 32 -j 8

gemBS extract -B

15

5.6 Segemehl

We used Segemehl version 0.3 for the experiments.
Index generation:

./ segemehl.x -d /Path/To/hg19_ref/hg19.fa -x hg19.ctidx -y hg19.gaidx -F 2

Read mapping for LNCaP data:

./ segemehl.x -d /Path/To/hg19_ref/hg19.fa -i simSegemehl/hg19.ctidx -j

simSegemehl/hg19.gaidx -t 32 -q LNCaP_pooled_1_val_1_Segemehl.fq -p

LNCaP_pooled_2_val_2_Segemehl.fq -D 1 -b -o LNCAPDataD1.bam -F 2

--maxpairinsertsize 1800

Read mapping for synthetic data:

./ segemehl.x -d /Path/To/hg19_ref/hg19.fa -i simSegemehl/hg19.ctidx -j

simSegemehl/hg19.gaidx -t 32 -p

paired_hg19_CHR22_poisson0_5_p1_Segemehl.fastq -q

paired_hg19_CHR22_poisson0_5_p2_Segemehl.fastq -b -D 0 -o

SimDataD0out.bam -F 2 --maxpairinsertsize 650

Sam related sorting and indexing:

sam=/Path/To/samtools

$sam sort -m 10G -@ 32 SimDataD0out.bam SimDataD0sort

$sam index SimDataD0sort.bam

Methylation calling:

./ haarz.x callmethyl -d /Path/To/hg19_ref/hg19.fa -u -b SimDataD0sort.bam

-t 32 -o CpGCallsSegemehl.vcf

References

[1] J. Q. Lim, C. Tennakoon, G. Li, E. Wong, Y. Ruan, C. L. Wei, and W. K. Sung. BatMeth: improved
mapper for bisulfite sequencing reads on DNA methylation. Genome Biol., 13(10):R82, 2012.

[2] H. Chen, A. D. Smith, and T. Chen. WALT: fast and accurate read mapping for bisulfite sequencing.
Bioinformatics, 32(22):3507–3509, 2016.

[3] F. Krueger and S. R. Andrews. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq
applications. Bioinformatics, 27(11):1571–1572, 2011.

[4] Y. Saito, J. Tsuji, and T. Mituyama. Bisulfighter: accurate detection of methylated cytosines and
differentially methylated regions. Nucleic Acids Res., 42(6):e45, 2014.

[5] E. Y. Harris, N. Ponts, K. G. Le Roch, and S. Lonardi. BRAT-BW: efficient and accurate mapping of
bisulfite-treated reads. Bioinformatics, 28(13):1795–1796, 2012.

[6] E. Y. Harris, R. Ounit, and S. Lonardi. BRAT-nova: fast and accurate mapping of bisulfite-treated
reads. Bioinformatics, 32(17):2696–2698, 2016.

[7] Y. Xi and W. Li. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics,
10:232, 2009.

[8] W. Guo, P. Fiziev, W. Yan, S. Cokus, X. Sun, M. Q. Zhang, P. Y. Chen, and M. Pellegrini. BS-Seeker2:
a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14:774, 2013.

[9] K. Y. Y. Huang, Y. J. Huang, and P. Y. Chen. BS-Seeker3: ultrafast pipeline for bisulfite sequencing.
BMC Bioinformatics, 19(1):111, 2018.

[10] Brent S. Pedersen, Kenneth Eyring, Subhajyoti De, Ivana V. Yang, and David A. Schwartz. Fast and
accurate alignment of long bisulfite-seq reads. pre-print, 2014.

[11] A. Merkel, M. Fernandez-Callejo, E. Casals, S. Marco-Sola, R. Schuyler, I. G. Gut, and S. C. Heath.
gemBS - high throughput processing for DNA methylation data from Bisulfite Sequencing. Bioinfor-
matics, Aug 2018.

16

[12] T. D. Wu, J. Reeder, M. Lawrence, G. Becker, and M. J. Brauer. GMAP and GSNAP for Genomic Se-
quence Alignment: Enhancements to Speed, Accuracy, and Functionality. Methods Mol. Biol., 1418:283–
334, 2016.

[13] M. C. Frith, R. Mori, and K. Asai. A mostly traditional approach improves alignment of bisulfite-
converted DNA. Nucleic Acids Res., 40(13):e100, 2012.

[14] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants using mapping
quality scores. Genome Res., 18(11):1851–1858, 2008.

[15] A. D. Smith, W. Y. Chung, E. Hodges, J. Kendall, G. Hannon, J. Hicks, Z. Xuan, and M. Q. Zhang.
Updates to the RMAP short-read mapping software. Bioinformatics, 25(21):2841–2842, 2009.

[16] C. Otto, P. F. Stadler, and S. Hoffmann. Fast and sensitive mapping of bisulfite-treated sequencing
data. Bioinformatics, 28(13):1698–1704, 2012.

[17] N. Plongthongkum, D. H. Diep, and K. Zhang. Advances in the profiling of DNA modifications: cytosine
methylation and beyond. Nat. Rev. Genet., 15(10):647–661, 2014.

[18] R. Lister and J. R. Ecker. Finding the fifth base: genome-wide sequencing of cytosine methylation.
Genome Res., 19(6):959–966, 2009.

[19] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biol., 10(3):R25, 2009.

[20] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9(4):357–
359, 2012.

[21] H. Mohamadi, J. Chu, B. P. Vandervalk, and I. Birol. ntHash: recursive nucleotide hashing. Bioinfor-
matics, 32(22):3492–3494, 2016.

17

	Computational challenges of WGBS
	Related work
	Choice of Methods

	Results
	Performance on synthetic data
	Hyperparameter tuning
	Performance on real data
	Memory consumption

	FAME manual
	Commands
	Bismark
	BratNova
	BSMAP
	FAME
	gemBS
	Segemehl

