bioRxiv preprint doi: https://doi.org/10.1101/2020.06.03.131573; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

SpikeShip: A method for fast, unsupervised discovery of

high-dimensional neural spiking patterns
Boris Sotomayor-Gémez'?", Francesco P. Battaglia®, Martin Vinck!?"

1 Ernst Striingmann Institute (ESI) for Neuroscience in Cooperation with Max Planck
Society, Frankfurt, Germany

2 Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud
University Nijmegen, Nijmegen, Netherlands

3 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen,
Nijmegen, Netherlands

* boris.sotomayor@esi-frankfurt.de, martin.vinck@esi-frankfurt.de

Abstract

Neural coding and memory formation depend on temporal spiking sequences that span
high-dimensional neural ensembles. The unsupervised discovery and characterization
of these spiking sequences requires a suitable dissimilarity measure to spiking patterns,
which can then be used for clustering and decoding. Here, we present a new dissimilarity
measure based on optimal transport theory called SpikeShip, which compares multi-
neuron spiking patterns based on all the relative spike-timing relationships among
neurons. SpikeShip computes the optimal transport cost to make all the relative spike-
timing relationships (across neurons) identical between two spiking patterns. We show
that this transport cost can be decomposed into a temporal rigid translation term, which
captures global latency shifts, and a vector of neuron-specific transport flows, which
reflect inter-neuronal spike timing differences. SpikeShip can be effectively computed
for high-dimensional neuronal ensembles, has a low (linear) computational cost that
has the same order as the spike count, and is sensitive to higher-order correlations.
Furthermore SpikeShip is binless, can handle any form of spike time distributions, is
not affected by firing rate fluctuations, can detect patterns with a low signal-to-noise
ratio, and can be effectively combined with a sliding window approach. We compare
the advantages and differences between SpikeShip and other measures like SPIKE and
Victor-Purpura distance. We applied SpikeShip to large-scale Neuropixel recordings
during spontaneous activity and visual encoding. We show that high-dimensional spiking
sequences detected via SpikeShip reliably distinguish between different natural images and
different behavioral states. These spiking sequences carried complementary information
to conventional firing rate codes. SpikeShip opens new avenues for studying neural
coding and memory consolidation by rapid and unsupervised detection of temporal
spiking patterns in high-dimensional neural ensembles.

Introduction

Information in the brain is encoded by very high-dimensional “ensembles” of neurons,
which encode information with spikes. Populations of neurons can produce specific spike
patterns depending on sensory inputs or internal variables |[1H8]. With new recording
techniques like Neuropixels [9], it has become possible to simultaneously record from
thousands of single neurons [10H12]. This offers new opportunities to uncover the
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relationship between multi-neuron spiking patterns and sensory inputs or motor outputs,
yet also poses unique mathematical challenges for the unsupervised discovery of the
“dictionary” of neuronal “code-words”.

The notion of information encoding relies on the construction of a distance or
dissimilarity measure in an N-dimensional space. For example, the distance between
binary strings can be measured using the Hamming distance. In the brain, the distance
between two multi-neuron spiking patterns is conventionally based on differences in
the firing rates (spike / sec). Using this method, it has been shown for example that
high-dimensional neural ensembles span a low-dimensional manifold that relates to a
stimulus or behavioral variables in a meaningful way |13,/14]. However, firing rates do
not capture the potentially rich information contained by the precise temporal order in
which spikes are fired, e.g. neuron i firing at time ¢ and neuron j firing at ¢t + 7. For
instance, we expect that any time-varying sensory stimulus or action sequence may be
encoded by a unique multi-neuron temporal pattern of spiking. Indeed, multi-neuron
temporal sequences can encode information about sensory stimuli and are required for
the generation of complex motor patterns like bird songs |[1H7}/15,/16]. Temporal sequences
may also be critical for memory formation, because neural plasticity rules are highly
sensitive to the temporal order in which spikes are fired [17421]. It is plausible that
much of the information contained in spiking sequences has thus far not been discovered,
as temporal correlations have typically been studied based on relatively small neural
ensembles, whereas the number of pairwise spike-time relationships scales with N2.

A major computational problem is thus to measure the dissimilarity of spiking patterns
in terms of the relative spike timing between neurons. Developing such a measure has
several challenges, including 1) Techniques that rely on binning spikes and require exact
matches of patterns (e.g. information theoretical measures) have several disadvantages:
They require a relatively large number of observations due to combinatorial explosion,
lack robustness against spike time jitter and reduce temporal resolution due to binning.
2) Computational cost becomes a major constraint for high-dimensional ensembles of
neurons, and a measure should ideally have a computational cost that is linear in the
number of neurons and spikes.

Here, we develop a novel dissimilarity measure for multi-neuron spiking patterns
called SpikeShip, which has linear computational complexity of O(NN), and has the key
advantage of being sensitive to higher-order structure. SpikeShip can be interpreted as
the optimal transport cost to make all spike-timing relationships between two different
multi-neuron spiking patterns identical. That is, it solves the optimal transport problem
for the entire spiking pattern, and yields a unique decomposition of spike pattern
dissimilarity in terms of neuron-specific flows (which controls similarities in terms of
relative spike times) as well as a global flow term (which controls the similarity in terms
of absolute time). We demonstrated the power of the SpikeShip measure by applying
it to large scale, high-dimensional neural ensembles in mice from [12] and [22], and
demonstrating that temporal spiking sequences reliably distinguish between natural
stimuli and different brain states. We discuss the properties of this measure compared
to previous spike train measures like Victor-Purpura Distance (VP) [23,/24], SPIKE [25],
and Rate-Independent SPIKE (RI-SPIKE) [26]. Finally, we show that SpikeShip carries
orthogonal information compared with the traditional firing rates code.

Results

Our overall goal is to develop a dissimilarity measure between multi-neuron spiking
patterns that is exclusively based on the temporal order of spiking. Suppose that we
have measured the spikes from N neurons (“spike trains”), with spike trains divided
into M epochs of length T (measured in seconds or samples). Epochs could be defined
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by e.g. trials (e.g. stimulus presentations) or sliding windows. The problem is to find a
dissimilarity measure with the following properties:

1. The measure should depend on the temporal order of firing across neurons, but
not on the spike count.

2. If two spike patterns are identical in terms of cross-neuron spike timing relationships
(i.e. they are a temporally translated version of one another), then the dissimilarity
measure should equal zero.

3. The measure does not require binning or smoothing and is based on the exact
timing of the spikes.

4. It should measure dissimilarity in a gradual way, and avoid the problem of “com-
binatorial explosion” that occurs with methods that search for exact matches in
spiking patterns. Combinatorial explosion means that for a very large number of
neurons, the probability of an exact match in spiking patterns becomes extremely
small.

We introduce a measure that satisfies these constraints, called the SpikeShip measure
(see Methods). The idea of SpikeShip is to measure the dissimilarity between spike
trains using the mathematical framework of optimal transport, as shown in Fig.
and We will consider each spike train as a collection of “masses” (i.e. the spikes).
All spikes from each active neuron, together, contribute a unit mass, i.e. the mass of
each spike is normalized to the total mass. This ensures the rate invariance of the
method. The question now is what the optimal way is of transporting the masses in
time to make the two patterns identical in terms of the relative spike times among
neurons. Importantly, similarity here is strictly defined based on relative timing among
neurons, i.e. not on the absolute timing of the spikes. Intuitively, one would suspect
that measuring the similarity of spike train patterns based on the relative spike timing
among N neurons has a computational complexity of at least order N2, which would
make the method impractical for larger data sets. However, we surprisingly show that
there is a fundamental solution that can be computed in order V.

We show that the global optimal transport problem can be solved in two steps:

1. We first compute the optimal transport flow to transform a spiking pattern in
epoch k into the spiking pattern in epoch m, such that the patterns are identical
in terms of absolute timing.

2. Transport cost is now minimized by computing a global temporal translation
term and subtracting this term from all the individual spike shifts. This yields
neuron-specific flows, and allows us to compute the total transport cost needed to
make two patterns identical in terms of relative spike times.

The algorithm starts by computing the Earth Mover Distance (see Methods, Fig.
for each neuron separately in step 1, shifting mass from each spike in pattern k
to the spikes in pattern m. We denote the flows ¢; ,, with moved mass w; ,,, such that
Zu Wiy = 1.

The EMDs, however, only indicate the similarity of absolute spike times between two
epochs, i.e. are based on the alignment of the spikes relative to an event. Yet, we wish
that our measure reflects the relative timing of spikes between neurons. We show that
from the EMD flows computed in Step 1, we can subtract a global rigid translation term.
This uniquely yields the minimum transport cost to transform the multi-neuron spiking
pattern in epoch k such that its relative spike-timing relationships between neurons
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Fig 1. Illustration of SpikeShip A) Example of two epochs with spike times ¢, =
(10,10, 10,10, 10, 10) and t,, = (25,40,45,55,60, 70) (note only one spike per neuron in
this example). B) Distances between spike times ¢, and ¢,,. C) The vector ¢ contains
the differences of spike times t; and t,,. D) Computation of the median of & g™ = 40.
E) g™ is the optimal global shift such that f; = ¢; — g™. The neuron-specific shifts
f: (—25,—10,—5,5, 10, 20) contain all the information about the structure of distances
between t; and t,,. SpikeShip equals Fy,, = % ZZV |fil = 76—5.
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become identical to another pattern m. In the Methods section, we state our main
theoretical result, namely that the optimal transport flows are given by

fi,u = Ciu — gmin . (1)

Here g™ is the weighted median across all the original flows ¢; ,, with associated mass
Wy, . Thus, we can decompose the transport flow in two terms: (1) an optimal global
shift between two epochs, shared across all neurons; and (2) an optimal neuron-specific
transport flow. We then define SpikeShip (see Methods) as

-y
1€ Apm

min

Here Ay, is the set of all neurons that fired a spike both in epoch k and m. The weight
Wi gy = n%, effectively assigns an equal weight to each neuron that contains at least one
spike. '

The algorithm to compute SpikeShip has computational complexity O(Nn), because
the weighted median has complexity O(N) (Fig. [S2)). This means that SpikeShip
performs much better in terms of computational complexity than previous measures
like SPOTDis (which is O(N?)) [27] and it thus becomes feasible to compute for large
ensembles of neurons, as we will show further below.

Having computed a dissimilarity measure between multi-neuron spike trains, we
can use embedding and clustering techniques to detect patterns in an unsupervised
way. The rationale of our approach is that unsupervised clustering can be performed
based on the dissimilarity matrices, rather than on the spike train data itself. To
illustrate this, we generated 6 input patterns defined by the instantaneous rate of
inhomogeneous Poisson processes, as in [27]. Noise was generated with random firing
based on a homogenous Poisson process with a constant rate (i.e., homogenous noise)
(See Fig. ) We computed the pairwise distances between pairs of epochs using
SpikeShip distance, yielding a dissimilarity matrix (Fig. ) The patterns contained in
the data can be visualized using manifold learning algorithms such as t-SNE, using the
SpikeShip dissimilarity matrix as input [2830] (Fig[2C). Furthermore, HDBSCAN [31]
automatically detected clusters on the basis of the SpikeShip dissimilarity matrix. These
results illustrate how SpikeShip can unveil multi-neuron spiking patterns and shows its
efficiency in simulated, high-dimensional data.

An important property of SpikeShip is that it can distinguish spiking patterns even
when they are multi-modal. To demonstrate this, we use multiple bimodal activation
of Poisson patterns with patterned noise and homogeneous noise (See Fig. ) In
addition, we simulated a special case when neurons are “deactivated” in a certain segment
of the epoch (See Fig. ) We observed that, in both cases, SpikeShip can detect the
patterns successfully and each cluster were well separated as shown in their dissimilarity
matrices and 2D t-SNE embeddings (See Fig. . Finally, compared to the SPOTDis
measure, which is also based on optimal transport (SPOTDis), we found that SpikeShip
can detect patterns that are defined by lower signal-to-noise ratios (See Fig. [S4)).

Properties of SpikeShip and comparison to other methods

Next, we show that, besides the properties discussed above, SpikeShip has several other
desirable features that make it well-suited as a dissimilarity measure for spike train
patterns, and that distinguish it from previous spike train metrics:

(1) SpikeShip measures the dissimilarity of spiking patterns between a pair of epochs
based on the relative spike timing between neurons. SpikeShip can therefore be used to
detect patterns that are spontaneously occurring or that are not locked to the onset of
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Fig 2. Dissimilarity matrices and clustering comparison. A) Six samples from
simulated neuronal outputs according to an inhomogenous Poisson process, plus one for
noise (using scripts provided by ) B) Top: Sorted Dissimilarity matrix by pattern
using SpikeShip dissimilarity measure (left), and a 2-dimensional t-SNE embedding using
SpikeShip dissimilarity matrix (right). Bottom: Sorted Dissimilarity matrix by pattern
using SPOTDis dissimilarity measure (left), and a 2-dimensional t-SNE embedding using
SPOTDis dissimilarity matrix (right).

an event, using e.g. sliding window approaches. By contrast, other measures like VP
and SPIKE are not based on the relative spike timing. VP and SPIKE can, however,
be used to compare spike trains in different epochs based on the absolute spike timing
(Figure ) In this case, these measures are computed for each neuron separately by
directly comparing the spike trains in different epochs, one neuron at a time.

To show that SpikeShip can be used in cases where the onset of the pattern was not
known, we performed two kinds of simulations.

First, we studied a case where the onset of the patterns was not known, and the
duration of the pattern was also not known. In this case, a sliding approach could be
used to optimize the window length based on Silhouette score. We found that SpikeShip
outperforms both SPOTDis and Victor-Parpura with a sliding window approach, as

shown in Figure [S6B.
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Second, we considered a scenario in which there were random global shifts superim-
posed onto different patterns (See Figure ) Here, we added simulations in which
there were different patterns, plus global shifts of these patterns relative to the epoch
onset. Importantly, the global shifts were not systematically related to the different
patterns. As shown in Figure [S7B, VP cannot cope with these global shifts, whereas
SpikeShip still detects the original patterns based on relative spike timing. In addition,
SpikeShip yields the global flow term and thereby directly provides a global measure of
latency of the entire pattern.

(2) SpikeShip has a linear dependence on differences in relative spike-timing between
epochs (Figure ) Conversely, because VP has a hyperparameter (g), it can have a
highly non-linear dependence on spike timing. This is because as differences in timing
become larger, VP is exclusively driven by insertions, such that the total cost does not
increase (Figure [S5B). We further observed that the two other measures, SPIKE and
RI-SPIKE, were also influenced by the distance of spiking patterns to the edge of the
window (Figure [SBB).

(3) By design, SpikeShip is only sensitive to timing relationships, and not to firing
rates. The reason is that all the spike trains due to normalization have the same mass. By
contrast, VP should have a strong rate sensitivity because it also includes the insertion
cost (See Fig. . In fact, VP will be only rate sensitive when its hyperparameter g is
very small or very large, and exhibits temporal sensitivity only for intermediate values
of ¢. While SPIKE may have some rate sensitivity, RI-SPIKE is designed to have low
rate sensitivity [26].

To illustrate these differences, we first examined an example previously shown in [32],
with three patterns that either differ by firing rate (1 and 2) or by timing (1 and 2 vs. 3)
(Figure[S5A). In this example, the VP distance is primarily dominated by rate differences,
irrespective of the choice of ¢. In the example shown in Figure [S5A, three patterns are
shown that either differ by firing rate (1 and 2) or by timing (1 and 2 vs. 3). For all ¢,
VP does not assign the lowest between patterns 1 and 2 despite these two patterns having
a very close temporal relationship. By contrast, SpikeShip, SPIKE, and RI-SPIKE do
assign a much lower cost between patterns 1 and 2 (See Fig. ) Additionally, we
noted that several measures require temporal alignment. To demonstrate this point,
we simulated three Poisson patterns A, B, and C, as shown in Fig. [S5B. Here, the
pattern A contains Poisson spikes in a specific interval of the window length. Also, we
generated the same amount of patterns but after applying a linear shift for half of the
neural population and the entire neural population (pattern B and C, respectively) as
illustrated in Fig. [S5B. We found that SPIKE and RI-SPIKE are affected by the position
of the stimulus onset. Additionally, VP assigns a maximum distance when the cost of
shifting spikes is greater than the cost to insert them. Thus, these measures require a
clear definition of the stimulus onset to cover due to the definition of the window length
affects their distances.

Second, we studied different spiking sequences together with a local or global scaling of
firing rates across epochs. As shown in Fig. VP distance did not uniquely distinguish
the patterns based on temporal or rate structure, and is dominated by differences in
firing rates for a large range of q. By contrast, the performance of SpikeShip was not
affected by the scaling of firing rates between epochs (See Fig. and . Finally,
both SPIKE and RI-SPIKE were less effective than SpikeShip as they assign very high
dissimilarities between the noise spike trains, such that the overall clustering is worse

than for SpikeShip (See Figure [S11)).

Application to Allen Brain Institute’s neural datasets

Next, we applied SpikeShip to several high-dimensional neural datasets. Previous work
has shown that the visual system can very rapidly process natural images and extract
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categorical information [33]. It has been proposed that this relies on a temporal coding
strategy, whereby visual information is encoded based on the temporal sequence of spikes
relative to stimulus onset [33].

Here, we used SpikeShip to determine whether temporal spiking sequences in six
visual areas can reliably distinguish natural images from each other. To this end, we
analysed Neuropixel data from 32 mice while they passively viewed natural images
(dataset from the Allen Institute for Brain Science; see Methods). A total of 20 natural
scenes were selected with 10 repetitions each (i.e. M = 200 epochs) as shown in Fig. .
To create a high-dimensional vector of neurons, we pooled together all recorded neurons
(N = 8,301) across the 32 mice (See Fig. [3B).

The pairwise SpikeShip distance is presented in Fig. as a dissimilarity matrix
sorted by the presentations of each natural scene. The t-SNE embedding revealed clear
clustering of spiking patterns based on SpikeShip, such that different natural images
could be reliably distinguished from each other (See Fig. ) Hence, natural images
yielded distinct temporal spiking sequences that were time-locked to stimulus onset (so
that they could be extracted from combined data from multiple sessions), in support
of the idea that the visual system may use a temporal coding strategy. In sum, these
findings demonstrate that SpikeShip can unveil multi-neuron temporal spiking patterns
from high-dimensional recordings.

Comparison of SpikeShip vs firing rates in visual stimuli

We wondered how the information in temporal spiking sequences compared to the
information carried by conventional firing rate codes. Our first question was, which
one of these two codes conveyed more information. To determine this, we computed
a distance matrix for the firing rates, by computing the Euclidean distance between
the firing rate vectors. These distances were computed in the same time window as we
used for SpikeShip (Fig. [4A). We then computed a measure of discriminability between
natural images based on the distances within and between images (see Methods, Eq.
26).

We found that there was a higher discriminability between natural images for Spike-
Ship as compared to firing rate vectors for all the natural scenes (Fig. )

Next, we wondered to what extent the information in SpikeShip was independent of
the firing rate information. To this end, we computed the Spearman correlation between
the SpikeShip distance and firing rate dissimilarity matrices, which contained information
from all epochs across all natural images. We found that the dissimilarity matrices
of SpikeShip and firing rates were only weakly correlated across epochs (Spearman
correlation equals 0.1804). Accordingly, the t-SNE visualization shows that the relative
locations of the clusters show major differences between both methods (Fig. [S12]).

Altogether, these results show that SpikeShip and firing rates contain different and to
a large extent independent information about natural stimuli. Furthermore, SpikeShip
allowed for a better separation of the different natural stimuli in comparison to firing
rates. We further observed that both SPIKE and RI-SPIKE were less effective in
separating the different patterns than SpikeShip, and showed a stronger correlation with
firing rates (Fig. [S13). These findings support the idea that the visual system may use
spiking sequences to encode information about natural scenes, as proposed by e.g. [33].

Application to spontaneous activity

Next, we applied SpikeShip to high-dimensional neural recordings from multiple brain
areas while mice spontaneously transitioned between different behavioral states. Previous
works have shown that behavioral states have major effects on the firing rates of neurons
across multiple brain areas [10,34]. Recent work has shown that different facial motion
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Fig 3. SpikeShip analysis of spike sequences for natural scenes presentations
(Allen Brain Institute). A) Sample of 10 Natural Scenes from Allen Brain Institute’s
dataset. B) Raster plot of two epochs with N = 8,301 neurons for each presentation.
C) Left: Sorted dissimilarity matrix by image ID for 20 natural scenes presentations
with 10 presentations each (M = 200). Right: 2-dimensional t-SNE embedding for each
presentation.
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Fig 4. Comparison of pairwise distances between Firing rates and SpikeShip.

A) Dissimilarity matrices for Allen Brain Institute data (sorted by natural scenes).
Colormaps were changed to show more variability in distances. B) Discriminability index
for dissimilarity matrices shown in A) by using firing rates (dpgr) and SpikeShip (dgs).
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Fig 5. Spontaneous activity analyses. A) First 4 SVD dimensions of dataset.
B) subtraction of the median of the first four SVD motion dimensions (denoising). C)
Normalized SVD motion used to detect low- and high-states. Circles represent samples
of temporal windows for posterior analyses. D) Raster plot for N = 2,296 neurons for
different epochs. E) Multi-spike sequence analyses. Left: Dissimilarity Matrices. Middle:
2D t-SNE embedding. Right: 2D Spectral Embedding (Laplacian Eigenmaps). F) Mean
SpikeShip distance from experiments. G) Spearman correlation between firing rates
and SpikeShip per experiment.
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components outperform the prediction of firing rates as compared to running speed and
pupil diameter (a measure of arousal). Hence, we wondered whether different behavioral
states are accompanied and distinguished by specific spiking sequences.

To investigate this, we analysed the data set of [22], which contains multi-areal
recordings from > 1000 neurons in three mice. Similar to [10], we distinguished between
different states based on the facial motion components using the SVD (singular value
decomposition), and identified low, medium, and high-motion epochs (Figure —C). We
randomly selected one hundred epochs for both low-, medium and high-motion states
and computed the SpikeShip dissimilarity matrix (M = 200, See )

In Fig. , we show the dissimilarity matrix for one mouse (“Waksman”; N = 2, 688,
for the other two mice see Fig. . The first 100 epochs represent low-motion states,
and the remaining 100 are the middle- and high-motion epochs. The dissimilarity
matrix reveals that the spiking sequences during medium and high motion are relatively
similar to each other, whereas there is a relatively high variability among sequences
during low-motion epochs (Fig. —F). Furthermore, both the t-SNE embedding and the
spectral embedding show a separate state-space region for the spiking sequences during
medium and high motion.

We further wondered if SpikeShip contains orthogonal information compared to firing
rates, similar to what we had observed for natural images. Again, we computed the
Spearman correlations between the SpikeShip and the firing rate dissimilarity matrices.
We found relatively weak correlations between the firing rate and SpikeShip dissimilarity
matrices for the three mice: (0.189,0.024, —0.064) for N = (1462, 2296, 2688) neurons,
respectively (See Fig. [5G).

Altogether, these findings indicate that different brain states give rise to specific
temporal correlation patterns across neurons, with relatively homogeneous spiking
sequences during active behavior as compared to quiescence.

Discussion

We studied the problem of measuring the dissimilarity between two multi-neuron spiking
patterns based on the relative spike-timing relationships across neurons (i.e. firing order).
We developed a new measure called SpikeShip. SpikeShip solves the problem of optimally
transporting the spikes of individual neurons, such that the global pattern of spike-timing
relationships becomes identical between two epochs. Intuitively, one would think that
such a measure has a computational complexity of at least O(N?), but we show that it
can be computed with O(N) computational complexity; this is a major improvement
over our previous work [27]. We show that a dissimilarity between two spiking patterns
can be decomposed into neuron-specific flows and a temporal rigid translation term.
Importantly, SpikeShip is not restricted to the 2nd order correlations, but is based on
the higher-order structure in the spike train.

Our technique can also be used to align temporal sequences in an unsupervised
way if there is a global jitter between spike patterns. This achieves a similar goal as
a recent study [35], described as “warping”; however, the method in our paper does
not require any parameter estimation; furthermore, it can also be used to align trials
corresponding to different stimuli or behavioral conditions. For example, suppose that
we want to analyse the sequence of neural activation in relationship to some event, e.g.
freely moving your arm. Suppose that we do not know the exact onset of the neuronal
sequence in relation to moving your arm, and we record multiple realizations of this
event. With SpikeShip, we can immediately decompose the transport cost between any
two trials in terms of a global translation term (which is a non-linear computation) and
a neuron-specific shift. We showed here that the global translation term picks up shared
latency shifts between neurons. The global translation term allows one to align trials
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that were recorded in different conditions, e.g. moving your arm left or right. And it
yields, in essence, a state-space characterization of temporal trajectories (e.g. related
to different movements), rather than a trajectory through a state-space of firing rate
vectors.

We applied SpikeShip to large, real neuronal datasets of experiments in mice. We
found that SpikeShip can be used for the unsupervised decoding of different natural images
from a high-dimensional temporal spiking pattern across N > 8000 neurons. Interestingly,
we found that SpikeShip outperformed the classical firing rate vector, and that the
spike timing information was only weakly redundant with the information in the firing
rate vector. This suggests that spike timing information carries additional information
relative to the firing rate, as has been hypothesized by [33]. Interestingly, the SpikeShip
technique does not require the explicit identifications of spike latencies, and is able to
extract higher-order correlations from spiking patterns and also distinguish multimodal
patterns from each other [27]. Furthermore, as we showed here, the computation is
extremely efficient. We further analysed large-scale recordings from the visual cortex,
retrosplenial, sensorimotor, frontal, striatum, hippocampus, thalamus, and midbrain.
We showed that the temporal structure of spike trains distinguished between low- and
high-motion epochs, and again provided orthogonal information to the firing rate code.
Furthermore, we found that spiking patterns become more homogeneous during high-
motion epochs, which is consistent with the notion that arousal improves the reliability
of signal transmission in the cortex [34].

SpikeShip has several advantages or distinct properties as compared to other measures:
1) It is useful to note that there are different measures that are designed for distinct
computational problems. SpikeShip is explicitly designed to measure the similarity
between patterns in terms of relative spike time relationships. This distinguishes it
from e.g. the VP distance, which measures similarity in terms of absolute spike times.
We note that while SpikeShip is designed to measure similarity based on relative spike
timing, it can also be used to measure similarity in terms of the absolute timing of spikes.
In doing so, it has the advantage of extracting separately a global translation term,
indicating shared latency shifts, and inter-neuronal timing differences. We furthermore
showed that SpikeShip can be used in combination with a sliding window approach. Here
the computational cost offers a great advantage as many different window lengths can
be compared based on e.g. Silhouette score, as we show here. 2) SpikeShip is by design
not sensitive to global or local scaling of firing rates, as opposed to VP. We note that
also RI-SPIKE is designed to be insensitive to a scaling of firing rates. We note however
that SpikeShip dissimilarity between any two epochs is based on the spike trains of those
neurons that fire at least one spike. Thus, although the value of SpikeShip is not biased
by firing rate, the firing rate can influence which neurons the measure is computed over,
in particular when neurons have very low (baseline) firing rates. 3) SpikeShip has the
major advantage of finding sequences based on higher-order temporal structure based on
relative spike timing, with a computational cost of O(Nn). 4) As shown here, SpikeShip
is highly noise robust, and outperforms our previous method SPOTDis. 5) SpikeShip
can be used for the detection of multi-modal patterns, which e.g. distinguishes it from
methods that detect sequences based on the latency of firing. 6) SpikeShip is a bin-less
measure, i.e. it is based on exact spike timings. 7) SpikeShip does not require exact
matches between patterns, but is based on a metric distance (earth mover distance)
that reflects the magnitude of differences in relative spike timings. This is an important
difference relative to measures that e.g. require exact matches in patterns. Yet it also
distinguishes it from e.g. VP, which shows a highly non-linear dependence on timing
differences, and SPIKE and RI-SPIKE, which show a non-monotonic dependence on
timing differences.

We note that SpikeShip has an efficient computation time of order Nn (number of
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neurons times number of spikes), which is comparable to the computational cost of
the spike count. This is remarkable given that SpikeShip quantifies the dissimilarity
based on all the relative spike-time relations. SpikeShip achieves this computation time
by computing the Earth Mover Distance (EMD) first for each spike train separately,
and obtaining individual flows by computing a global flow. We note that EMD was
also applied to cross-correlations (in [27]) and to individual spike trains [36]. In [36]
the EMD is quantified one neuron at a time, i.e. without considering inter-neuronal
spike-time relationships, and the dissimilarity of spiking pattern is thus based on the
absolute timing relative to a stimulus onset. Crucially, SpikeShip aims to quantify
the dissimilarity of spiking patterns (between two epochs) in terms of the spike-timing
relationships among all recorded neurons (i.e. inter-neuronal spike time relationships).
This means that SpikeShip is based on relative spike-time relationships, which makes
it invariant to e.g. the onset of a sequence relative to the beginning of an epoch, and
allows for the quantification of spontaneously occurring sequences that are not locked to
a stimulus onset. Thus, SpikeShip allows for a wide variety of applications (including
sequences time-locked to a stimulus onset) and is thus more generic than EMD computed
per neuron separately.

Looking forward, SpikeShip opens new avenues to study temporal sequences in
high-dimensional neural ensembles. Recent technological developments now allow for
recordings of thousands of neurons simultaneously, either using electrical recordings or
two-photon imaging [|9]. The technique developed here is applicable to both kinds of
data, due to linear computation time. Application of SpikeShip to such kind of data
might generate important insights into the role of temporal sequences in sensory coding
and memory consolidation.

Materials and methods

Derivation of SpikeShip

Here we derive a new dissimilarity measure, called SpikeShip, which has computational
complexity O(N) for one pair of epochs. To derive this measure, we first consider the
simplified case where each ith neuron fires one spike for all M epochs. In SpikeShip, we
use an L1 cost on differences in spike timing, which has two principal reasons: First, using
the L1 norm indeed allows for an efficient computation of SpikeShip with computational
complexity O(nN) (number of spikes times number of neurons). Second, using the L1
norm instead of the L2 norm avoids over-weighing large spike time shifts (i.e. a shift
from e.g. 0 to 0.1 is weighted similarly as a shift from 1 to 1.1).

SpikeShip for a single spike per epoch

Let f;;m = (f1,kms---, [N km) be a vector of flows for each neuron in epoch m. In other
words, fi rm is the shift of the spike fired by the first neuron in the mth epoch. The
total moving cost equals

1 N

The problem statement is to find a flow vector fkm such that after moving the spikes,
the resulting spike train patterns are identical between epoch k and epoch m, in terms
of the full matrix of spike timing relationships. We wish to find the flow vector that
satisfies this constraint with minimum cost Fj,,.

Example: Suppose there are two epochs for N = 6 neurons with spike times
tr = (10,10,10, 10, 10, 10) and #,, = (20, 30, 35, 45, 50, 60). We will show that the flow
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vector with minimum cost, such that spike patterns have identical temporal structure,
equals fr., = (—20,-10,-5,5,10,20) (Fig.
More formally, let ., ; be the timing of the spike for the ¢th neuron in the mth epoch.
We denote the spike times after (post) moving them in epoch m as
tpOSt = tm,i — f’i (4)

m,i

Vi, where we omitted the subscripts k£, m from the variable f; i, for simplicity. The
constraint that all the across-neuron spike timing relationships should be identical after
moving implies that

£ — PO = tg i — g Vi, j € N. (5)

In other words, the delay between two spikes from two different neurons (4, 7) should be
identical between pattern k and m after moving the spikes. Substituting based on Eq. [4
this can be expressed as

(tmyi — fi) = (bmj — fi) = thi — th - (6)

Let ¢; be the shift in spike timing for each neuron in epoch m, such that the spike train
patterns become identical,

Cp = tm,z’ - tk,i . (7)
Note that with this definition of ¢;, the equation
(tm,i =€) = (tmg = ¢5) = thi — th (8)
holds for all (4, j). For all i, we can express f; as a function of the shift ¢;, such that
fi=ci—gi. 9)
We wish to solve
N
Grnin = argfnin Fy = argfninZ\ci - gil (10)
g g9 i

under the constraint of Eq [6]
From Egs [0} [§] and [9 it follows that

(tmi =i+ 9i) = (tmg — ¢+ 95) = (bmi — &) = (bmj = ¢5) (11)
Hence the equation g; = g; holds for all (4, j). Thus, we can rewrite Eq. to

N
gt = argminzm — g (12)
g i

to find a global shift that minimizes the L1-norm of the residuals. The solution to
this equation is

g™ = Median{¢c} . (13)

Thus, our main result is that the original shifts between the two spiking patterns can be
written as the decomposition

O (14)

for all ¢, i.e. the optimal transport in terms of neuron-specific shifts and a global
temporal rigid translation term. Thus, the optimal transport between two spiking
patterns (e.g. after stimulus onset) can be decomposed into the optimal transport in
terms of neuron-specific shifts and a global temporal rigid translation term.

March 2, 2023

15,30


https://doi.org/10.1101/2020.06.03.131573
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.03.131573; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Global shift definition for multiple spikes

We now consider the case where in each epoch, every neuron fires a variable number
of spikes. We will show that a similar derivation for SpikeShip can be made based on
the weighted median. Let n;; and n; ,, be the number of spikes for the i-th neuron in
epoch k£ and m. We will also assign a weight to each spike, such that the total weight
per neuron in the computation of SpikeShip is equal. In order to do so, we first find the
smallest common multiple of the spike counts for each neuron, denoted n;. For instance,
if njp =2 and nym = 6 then the least common multiple equals 6. We now replicate

each spike n"l*k . Each spike will now have a weight of w; = wr . (Note
that in the actual computatlon we do not replicate the spikes in practice, but use an
algorithm similar to the one detailed in [27]). Then, based on the optimal transport cost
(EMD), we obtain shifts ¢; ,, for the u-th spike of the i-th neuron, v = (1,...,n}). Note
that we have shown EMD for spike trains can be efficiently computed by first shifting
the mass from the most left-ward spike (i.e. first spike) out of n} spikes in epoch m to
the most left-ward spike in epoch & [27], and then proceeding with the second spike, etc.

We use a similar derivation as the one above. Let t,, ; ., be the timing of the u — th
replicated spike for neuron 4 in the mth epoch, for all (¢, m,u), u = (1,...,nf). We
denote the spike times after (post) moving them in epoch m as

post

tm,i,u =t m,i,u fL u (15)

V(i,u), where we omitted the subscripts k, m from the variable f; pm, ., for simplicity.
The constraint that all the across-neuron spike timing relationships should be identical
after moving implies that

post post ) .
tm iU tm JJsu tk,uu - tk?;]ﬂl« (16)

In other words, the delay between two spikes from two different neurons (i, j) should
be identical between pattern & and m after moving the spikes. Substituting based on
Eq. this can be expressed as

(t miu — fi, u) = (tm m,ju f]}u) = thiu — tkju - (17)
There is one additional constraint, namely
( m,i,u fl u) - ( m,i,v T fi,'u) = tk,i,u - tk,i,v . (18)

In other words, all the pairwise relationships after moving within the same neuron should
be identical.

Let ¢; ,, be the shift in spike timing for each neuron in epoch m, such that the spiking
patterns in the window become identical,

Ciu = tm,i,u - tkﬂ‘,u . (19)
Note that with this definition of ¢; ,,, the equation
(tm,i,u - Ci,u) - (tm,j,u - Cj,u) = tk,i,u - tk,j,u (20)

holds for all (7,4, u). For all 4,u, we can express f;, as a function of the shift ¢; ,, such
that

fi,u = ci,u - gi,u . (21)

Define gE ((gi717~-~7gi,n;‘) a"'7(gN,1,"' agNm,;‘v))
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We wish to solve
N n;
Gonin = ATEMIN Y > " wyu[Ciu — Giul (22)
g 7 u

under the constraints of Eq and
Given these two constraints, the equation g; ., = gj,, holds for all (4, j,u). Thus, we
can rewrite Eq. 22 to

N n
gmin = arg min Z Z wi,u|Ci,u -9 (23)
g i uw

to find a global translation term that minimizes the L1-norm of the residuals. The
solution to this equation is the weighted median g,

min __ . :
g™ = WeightedMedian ((01,1, Wi« -+ Clint wlyn;) ey (cN,l, WN,1s- -, cN7n}fV,wN7n*N)) .

Now average mover cost, SpikeShip, equals

1 1o
Fion = 71— > E;|fi,u|- (24)

where Ag, = {i : nim > 0 An, g, > 0} is the set of neurons that are active in both
epochs k and m. Thus, we derive the result that the original shifts between the two
spiking patterns can be written as the decomposition

Ciu = gmin + fi,u ) (25)

for all (i,u), i.e. the optimal transport in terms of neuron-specific shifts and a global
translation term. Thus, the optimal transport between two spiking patterns (e.g. after
stimulus onset) can be decomposed into the optimal transport in terms of neuron-
specific shifts and a global temporal rigid translation term. This computation has linear
complexity O(N). We base the computation of the weighted median on [37,38] and an
adaptation of the Robustats [39] Python library. In practice, the computation of ¢; ,
(optimal transport per neuron) can be efficiently performed not by replicating the spikes
to the common multiple integer (used in the derivation above), but by using a similar
algorithm as in [27].

Comparison with other spike train metrics
Victor-Purpura distance

Victor-Pirpura metric (VP) combines both rate and temporal information by defining a
hyper-parameter ¢ related with the cost of shift between spikes. Thus, VP extracts rate
information for small values of ¢, converging to the absolute difference of spike counts for
two spike trains with n; and n; spikes when ¢ =0 (i.e., VP(¢ =0) = |n; — nj|). On the
other hand, for high values of ¢, VP distance maximizes the contribution of timing coding,
converging to the sum of the total spike of both spike trains (i.e., VP(qg — 00) = n;+n;)).
We used Elephant (Electrophysiology Analysis Toolkit) [40] to compute VP distance.

SPIKE and RI-SPIKE distances

Both SPIKE and RI-SPIKE measure the similarity of two spike trains in terms of the
absolute spike timing. RI-SPIKE was developed to avoid a rate bias in the computation
of the dissimilarity. To perform the analyses for SPIKE and RI-SPIKE metrics, we used
a python library for spike train similarity analysis called PySpike [41].
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SPOTDis

Previously, we have developed a dissimilarity measure between multi-neuron temporal
spiking patterns called SPOTDis (Spike Pattern Optimal Transport Dissimilarity) [27].
SPOTDis is defined as the minimum energy (optimal transport) that is needed to
transform all pairwise cross-correlations of one epoch k into the pairwise cross-correlations
of another epoch m. This optimal transport is given by EMD (Earth Mover Distance).
SPOTDis only measures pairwise correlations and has computational cost of order N2.
We used SPOTDis python module |27] to perform the analyses.

Application in high-dimensional neural data
Allen Brain Institute datasets

We used the free, publicly available datasets of Allen Brain Institute through AllenSDK
(For more details, see http://help.brain-map.org/display/observatory/Documentation).
Neuropixels silicon probes [9] were used to record neurons with precise spatial and
temporal resolution [12].

We selected the cells of 32 mice during natural scene presentations. The cells were
selected considering a signal-noise ratio (SN R) such that SNR > 0. The neural activity
from a total of N = 8,301 cells was selected from the Primary visual area (VISp), Lateral
visual area (VISl), Anterolateral visual area (VISal), Posteromedial visual area (VISpm),
Rostrolateral visual area (VISrl), and Anteromedial visual area (VISam).

The computation time for SpikeShip to compute one dissimilarity matrix of Fig.
was on average 58.8 secs (see Methods), thus indicating a highly effective computation
time for N = 8,301 neurons. In contrast, we estimate the computation time for the
previous SPOTDis measure [27] to be approximately 175.71 hours (1 week and 7.7 hours;
based on n & 3.33 spikes per neuron).

Spontaneous activity

For the spontaneous activity dataset, we used free, publicly available datasets [22]. Tt
contains data about three mice: “Waksman” (N = 2,688), “Robbins” (N = 2,296),
and “Krebs” (N = 1,462). Probes were located in distinct cortical areas (visual,
sensorimotor, frontal, and retrosplenial), hippocampus, thalamus, striatum, and midbrain
[10]. Furthermore, each experiment has information about the recorded spike times, cells,
and the processed SVD components of whisker’s motion (i.e. pixel difference between
consecutive frames of a mouse face movie).

For our analyses, we added the first four SVD components (Fig. ) and then we
subtracted the median across dimensions (denoising, see Fig. ) A sliding window
was used to sum the activity SVD the whisker’s motion across the interval [t, ¢ + 0.5]
seconds (Fig. ,D). We selected one hundred epochs for both low- and high-motion
states based on the SVD motion value, and ran SpikeShip across different amounts of
cells, depending on the experiment. The manifold learning algorithms were t-SNE and
Spectral Embedding from the python library Scikit Learn v0.22.1.

For these experiments, SpikeShip took 25.5 secs in creating a dissimilarity matrix.
Considering N ~ 2,500, n &~ 5, based on Fig. D, the computation time of SPOTDis
can be estimated as 34.06 hours (1 day and 10.06 hours; SU = 4, 808).

Discriminability index

Since the information in temporal spiking sequences compared to the information from
traditional firing rate codes could differ, we wanted to quantify to what extent the degree
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of discriminability within and between different visual stimuli differ in a dissimilarity
matrix diss (i.e. within and between natural images) per stimulus id.

To this end, we computed a “Discriminability index” (d), defined as the difference
between the average distance within and between stimulus id, divided by the squared
sum of their variances to the power of two.

Hdiss,between,id — Hdiss,within,id
ddiss,id = (26)

2 2
\/sdiss,between + Sdiss,within

Therefore, it indicates how many standard deviations are two sets of distances away
from each other.

Code availability
The source code of SpikeShip can be accessed from the GitHub repository:

https://github.com /bsotomayorg/SpikeShipl
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correspond to (|tny.m| = 2, |tn,,m| = 1) and (|tng k| = 3, [tn,.k| = 2), respectively. (Mid-
dle) The difference of spike times is computed by normalizing the mass across neurons
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Fig S2. Accuracy and Speed-up comparison for single- and multi-spike pat-
terns. A) Example of single spike trains for two epochs for 10 neurons. Patterns
were generated as uniform sequences with n = 1 spike per neuron per epoch. B)
Computational speed-up (log-scale) for SpikeShip vs. SPOTDis (serial execution) gross-
berger2018unsupervised for increasing amount of neurons N. Speed-up is approximately
N when there is 1 spike per neuron, and it increases when n > 1 (i.e. the multi-spike
pattern case). C) Example of three single-spike patterns: (—20, 0,0, +20), (0,0,0,0), and
(—=15,—15,+15,415), from left to right. SpikeShip assigns a geometrically more appro-
priate transport cost between pattern 1 and 2 (F 2 = 10) than SPOTDis (D, o = 12.5),
considering their distance with pattern 0.
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Fig S3. Multimodal activation and deactivation patterns can be detected
using SpikeShip. Simulations from . (A) Multiple bimodal activation patterns and
examples of realizations for each pattern (N = 50 neurons). Simulation parameters were
Ain = 0.35 spks/sample, Ay = 0.05 spks/sample, Tepocr, = 300 and Tpyise = 20 samples.
Bottom figures show sorted dissimilarity matrix and t-SNE for simulation with patterned
noise (left) and homogeneous noise (right). (B) Multiple bimodal activation patterns
and examples of realizations for each pattern (N = 50 neurons). Simulation parameters
were Aoyt = 0.02 spks/sample (i.e. the deactivation period), A, = 0.3 spks/sample,
Tepoch = 300 and Tyeqctivation = 150 samples. Bottom figures show sorted dissimilarity
matrix and t-SNE for simulation with patterned noise (left) and homogeneous noise
(right).
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Fig S4. Performance of SpikeShip depends on the SNR but it outperforms
SPOTDis. (A) Performance of SPOTDis (left) and SpikeShip (right) measured
with ARI score. We performed the same simulations as in . Firing rate inside pulse
period is varied, while the firing rate outside pulse was varied. We simulated 5 patterns
with 30 repetitions each, with A,,: = 0.05 spks/sample, and \;, attaining values of
0.15, 0.2, 0.25, 0.35, 0.45 or 0.5 spks/sample, Tpyise = 30 and Tepocn, = 1000 samples.
The number of neurons was 25, 50 or 100, and 150 epochs of homogeneous noise. We
show the mean and the standard deviation across 10 repetitions of the same simulation.
Performance relative to ground truth increases with SNR. Lower SNRs are needed for
achieving the same performance when the number of neurons is larger. (B) as (A), but
now varying the pulse duration. Simulation parameters were A,,; = 0.05 spks/sample,
and A, = 0.5, 0.4, 0.3, 0.2, 0.1 spks/sample, and T),se of 100, 200, 300, 400 or 500

samples, with T,poc, = 1000 samples; note that the product of A;,. Tpuse remained
constant.
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Fig S5. Comparison of metrics varying stimulus onset. A) SpikeShip preserves
timing relationship between spike trains. Simulations of three spike trains as in (Fig.
5D). SpikeShip extracts the temporal information based on the timing not rate of spike
trains. B) SpikeShip preserves relative timing information for multi-neuron patterns.
Top: Example of three multi-neuron spiking patterns. Onset of spike patterns B and
C where shifted relative to pattern A. Colors correspond to the shift/delay applied to
half (blue) and the full neural population (green). Bottom: Comparison between spike
train distances measuring patterns (A, B) and pattern (A, C). SpikeShip can detect
linear changes in the neural pattern when the delay is applied to the half of the neural
population. When no changes are applied in the temporal information but a global delay.
SpikeShip is invariant to delays applied to the entire neural population.
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Fig S6. Dependence of clustering performance on chosen window length and
temporal jitter of spike pattern onset. Simulations from . (A) Each pattern
has a length of 300 samples, and is embedded in a larger window starting from -300
samples to +300 samples, with homogeneous noise surrounding the pattern on the left
and right. The onset of the pattern is -150 samples plus some random offset At,,. For
each epoch realization, the value of At,, was randomly chosen with uniform probability
from an interval determined by the maximum window offset (max offset of 100 meant
that At,, € [-100,100]). For the clustering, we assumed that the sequence duration is
unknown. We select a window ranging from —T,,/2 to +T,,/2 samples of length Ty,.
(B) Clustering performance was measured relative to ground-truth (ARI) and with an
unsupervised performance measure, Silhouette. Clustering performance decreased as
the maximum window offset increased, due to the inclusion of noise spikes around the
spike pattern. SpikeShip has a small but consistent performance advantage relative
to SPOTDis. Furthermore, SpikeShip strongly outperformed VP results in clustering
performance, which as expected was severely distorted by global shifts in spiking patterns.
ARI and Silhouette scores correspond to the mean value obtained across 10 repetitions
for each combination of window length (T,,) and max window offset (At,,).
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Fig S7. Comparison of VP and SpikeShip for simulations with multiple
patterns and global shifts. Simulations from . We simulated 6 patterns with
Poisson noise surrounding the pattern on the left and right. The onset of the pattern
was randomly assigned between 0 and 0.8 with a window length of 0.2 s for the patterns.
The analysis window used here is 1 s, i.e. the entire period. SpikeShip correctly detects
the 6 different patterns, but also SpikeShip can decompose the spike patterns to make it
invariant to changes in global shifts. VP distance drastically depends on the global shift
applied to the spikes. SpikeShip can retrieve the global shift from the spike sequences
and reconstruct the random global shifts applied to the spike trains.
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Fig S8. Performance of VP distance is affected by changes in both local and
global scaling rates. Simulations from . A) Global scaling. Same simulations as
in Fig Victor-Purpura distance (VP) was used with different values of g. When
=0,
respectively. Epochs are clustered based on rates. B) Local scaling. Same simulations as
in Fig VP distance was used with different values of ¢. When ¢ — oo, VP =n; +n;.
Besides high values of ¢ aim to extract temporal information from spike trains, these
2D embeddings demonstrate that the contribution between rate and timing using VP is
difficult to interpret and very sensitive to noise.

VP = |n; — n;|, with n; and n; the spike count of spike sequences i and j,
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Fig S9. Performance SpikeShip is not affected by a global scaling rate. Simu-
lations from . Shown are two different temporal patterns. Each temporal pattern can
occur in a low (A, = 0.2 and A,y = 0.02 spks/sample), medium (A;,0.4 and Ayyr = 0.04
spks/sample) or high rate (\;, = 0.7 and A,,;0.07 spks/sample) state, with a constant
ratio of A\;,/Aous. In addition, the noise pattern can also occur in one of three rate states.
The pulse duration was 30 samples. Shown at the bottom the sorted dissimilarity matrix
with SpikeShip values, the t-SNE embedding with the ground-truth cluster labels and
the t-SNE embedding with the HDBSCAN cluster labels.

March 2, 2023 28


https://doi.org/10.1101/2020.06.03.131573
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.03.131573; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pattern 1 Pattern 1 Pattern 2 Pattern 2
(low/high rate) (high/low rate) (low/high rate) (high/low rate)

# Neuron

# Neuron

1 125 250 1 125 250 1 125 50 1 125 230 1 115 50
Sample Sample Sample Sample Sample
Sorted dissimilarity matrix t-SNE (true labels) t-SNE (cluster labels)
[ max
- Naise «  Cluster 1
= Pattern 1 {low/igh) Cluster 2
. « Pattern 1 (high/flow) o Cluster 3
E «  Pattern 2 (lowhigh)
ug-l_ = Pattern 2 (high/low)
- L
2
]
o &0 120 180 240
Epoch

Fig S10. Performance of SpikeShip is not affected by a local scaling rate
Simulations from . Shown are two temporal patterns. Each temporal pattern could
occur in one of two rates states: In the first rate state, the first 25 neurons are firing
at a low rate (\;;, = 0.3 and A\,,; = 0.03 spks/sample), and the other 25 are firing at a
high rate (A;, = 0.7 and A, = 0.07 spks/sample). In the second rate state, the rate
scaling is reversed. The pulse duration was 30 samples. Shown at the bottom the sorted
dissimilarity matrix with SpikeShip values, the t-SNE embedding with the ground-truth
cluster labels and the t-SNE embedding with the HDBSCAN cluster labels.
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Fig S11. Performance of SPIKE and RI-SPIKE are affected by both global
and local scaling. Simulations from [27]. A) Global scaling. SPIKE and RI-SPIKE
computations for globally scaled sequences. Top: dissimilarity matrices sorted by pattern
id and scaling factor. Bottom: 2D t-SNE embeddings of epochs. B) Local scaling.
SPIKE and RI-SPIKE computations for locally scaled sequences. Both A and B were
computed using the same simulations as in Fig. [S9} Top: dissimilarity matrices sorted
by pattern id and scaling factor. Bottom: 2D t-SNE embeddings of epochs. The first

180 epochs correspond to noise.
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Fig S12. Comparison between clusters from SpikeShip and Firing rates
embeddings of Natural scenes. A) 2D t-SNE embeddings from SpikeShip and Firing
rates’ dissimilarity matrices. The allocation of natural scenes’ clusters are different
between the two embeddings. B) Scaled Euclidean pairwise distance between centroids

of each cluster for both SpikeShip (Left) and firing rates (Middle), and their difference
(Right).
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Fig S13. Analysis of large scale neural recordings during visual stimuli pre-
sentations with SPIKE and RI-SPIKE. Top: Dissimilarity matrices sorted by
Natural Scene ID. Middle: 2D t-SNE embeddings from dissimilarity matrices colored
by Natural Scene ID. Bottom: The clustering performance through ARI score and
Spearman correlation between dissimilarity matrices computed via SPIKE, RI-SPIKE,
Firing rates, and SpikeShip. The clustering performance of SPIKE and RI-SPIKE is
lower than the clustering performance by using the traditional firing rates and SpikeShip.
SPIKE and RI-SPIKE are highly correlated while Firing Rates and SpikeShip are highly
uncorrelated.
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Fig S14. Spontaneous activity analyses for 3 mice. Multi-spike sequence analyses
for three mice (rows). Left: dissimilarity matrices. Middle: 2D t-SNE embedding. Right:
2D Spectral Embedding (Laplacian Eigenmaps).
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