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Summary 

Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine 

head correlates with the strength of its synapse. The distribution of spine head sizes 

follows a lognormal-like distribution with more small spines than large ones. We analysed 

the impact of synaptic activity and plasticity on the spine size distribution in adult-born 

hippocampal granule cells from rats with induced homo- and heterosynaptic long-term 

plasticity in vivo and CA1 pyramidal cells from Munc-13-1-Munc13-2 knockout mice with 

completely blocked synaptic transmission. Neither induction of extrinsic synaptic plasticity 

nor the blockage of presynaptic activity degrades the lognormal-like distribution but 

changes its mean, variance and skewness. The skewed distribution develops early in the 

life of the neuron. Our findings and their computational modelling support the idea that 

intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic 

and extrinsic synaptic plasticity maintains lognormal like distribution of spines. 
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Introduction 

A variety of features in the brain including dendritic spine size  (Loewenstein et al., 2011; 

Montero-Crespo et al., 2020; Santuy et al., 2018), synaptic strength (Cossell et al., 2015; 

Ikegaya et al., 2013; Lefort et al., 2009; Song et al., 2005) and neuronal firing rate 

(Mizuseki & Buzsáki, 2013) are strongly positively skewed with a heavy tail, displaying a 

lognormal-like distribution. Lognormal-like distributions of synaptic and firing rate 

parameters are thought to play a fundamental role in the structural and functional 

organization of the brain (Barbour et al., 2007; Buzsáki & Mizuseki, 2014; Kasai et al., 

2021), and a number of explanations for the emergence of such distributions in active 

and plastic networks have been proposed.  

Spines are plastic and motile structures of neuronal dendrites that function as 

postsynaptic sites for excitatory inputs. The spine head contains the postsynaptic density 

(PSD) with AMPA and NMDA glutamate receptors (Ziff, 1997). The size of the PSD 

correlates with spine head size, the number of presynaptic vesicles (Harris et al., 1992; 

Harris & Stevens, 1989), and the density of postsynaptic receptors (Matsuzaki et al., 

2001; Nusser et al., 1998; Takumi et al., 1999; Zito et al., 2009). Therefore, spine head 

size has been used as a morphological proxy for synaptic strength (Asrican et al., 2007; 

Bromer et al., 2018). Spines change in size, shape and number depending on synaptic 

activity (for reviews see Bhatt et al., 2009; Harris, 2020; Kasai et al., 2010; Nishiyama & 

Yasuda, 2015; Segal, 2017; Suratkal et al., 2021), which has been termed extrinsic spine 

size dynamics (Kasai et al., 2021). 

Given the overwhelming evidence for activity-dependent, extrinsic spine dynamics, the 

conventional view would be to expect spine size distributions to depend heavily on 
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synaptic activity and associated synaptic plasticity (Barbour et al., 2007, see also Mateos 

et al., 2007; McKinney, 2010; McKinney et al., 1999). However, spines also display 

spontaneous, activity-independent, intrinsic changes (Mongillo et al., 2017; Ziv & Brenner, 

2018). In keeping with a major role of such intrinsic spine dynamics, recent data from 

pharmacologically silenced cultured rat cortical neurons challenged the conventional 

view, indicating that skewed synapse weight distributions can emerge in an activity-

independent manner (Hazan & Ziv, 2020). However, what remains unclear are the 

important questions as to (i) what kind of spine size distributions emerge during dendritic 

maturation of adult newborn neurons, when, and whether these are affected by homo- 

and heterosynaptic plasticity, and (ii) whether such skewed synapse weight distributions 

can emerge spontaneously in intact neuronal circuits. To address these issues, we 

studied the distribution of spine sizes in adult-born dentate granule cells from rats with 

induced in vivo homo- and heterosynaptic long-term plasticity. In addition, we studied 

spine size distribution in Munc13 double-knockout mouse brain circuits with completely 

blocked presynaptic activity. We found that homosynaptic long-term potentiation (LTP), 

with associated spine growth, and heterosynaptic long-term depression (LTD), with 

associated spine shrinkage, do not disrupt the lognormal-like spine size distribution but 

rather modulate its parameters. Moreover, we report that the lognormal-like distribution 

of spine sizes emerges even with entirely blocked synaptic activity. 
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Results 

Independence of spine size distribution from long-term homo- and heterosynaptic 

plasticity in adult-born hippocampal granule cells (abGCs) 

As the effects of nerve cell age and long-term synaptic plasticity on the skewness of spine 

size distributions are unknown, we characterized the spine size distribution and its 

relationship to long-term synaptic plasticity in retrovirally labeled hippocampal abGCs of 

three different cell ages. These are characterized by gradual onset and development of 

homo- and heterosynaptic plasticity (21, 28 and 35 dpi, see Methods; Jungenitz et al., 

2018), soon after start of spinogenesis at 16-18 dpi (Ohkawa et al., 2012; Radic et al., 

2017). In these cells, homosynaptic LTP associated with spine enlargement was induced 

in the middle molecular layer (MML) following 2 h stimulation of the medial perforant path 

(Jungenitz et al., 2018). At the same time, concurrent heterosynaptic LTD associated with 

spine shrinkage was induced in dendrites in the adjacent unstimulated outer and inner 

molecular layers (OML, IML). Those effects were restricted to the stimulated ipsilateral 

hemisphere and therefor, the unstimulated contralateral site served as control. Here, we 

fitted a lognormal function to the raw data to test whether it provides a good fit for the size 

distribution of mushroom spines. In the first round of analyses, this was done collectively 

for all of the cells of one condition (i.e. synaptic layer, cell age and hemisphere) together 

(Figure 1).  

In all conditions – in ipsi- and contralateral dentate gyrus, at all cell ages and in all three 

layers – the lognormal-like distribution matched the data exceptionally well with very high 

goodness of fit (r2) values of 0.95 - 0.99. As expected, changes in the shape (peak and 

width) of the distribution reflected the overall homosynaptic spine enlargement in the 
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ipsilateral MML with respect to the contralateral MML as well as the overall heterosynaptic 

spine shrinkage in the ipsilateral OML and IML with respect to the contralateral OML and 

IML. This confirms that after plasticity induction, the number of large spines increased 

and the number of small spines decreased in the stimulated layer while opposite changes 

occurred in the adjacent unstimulated layers (Jungenitz et al., 2018). However, the 

lognormal form of the distribution remained.  
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Figure 1. Collected spine size data from anesthetised rat abGCs reveal robust lognormal-like spine 

size distributions in all dentate layers and cell ages irrespective of ipsilaterally induced 
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homosynaptic or heterosynaptic plasticity. (A) Left: An example retrovirally labeled abGC imaged at 

35 days post injection (dpi; scale bar: 25 µm). The ipsilateral MML experienced 2-hour high frequency 

stimulation. Right: Top panel shows an enlarged dendritic segment located in the stimulated ipsilateral 

MML. Middle, bottom panel depicts analysed spines (scale bar: 1 µm). (B) Spine size distributions and their 

average lognormal fits for all cells in one layer (OML, MML, IML), time (21, 28 and 35 dpi = cell age) and 

hemisphere (ipsilateral stimulated = green, and contralateral control = magenta), fitted to the spine data. 

Note the high overall goodness of fit for all conditions. The lower ipsilateral vs. contralateral (stimulated vs. 

control) distribution peak associated with reduced distribution width in the stimulated MML indicates 

homosynaptic spine expansion; the higher ipsilateral vs. contralateral distribution peak in the OML and IML 

indicates heterosynaptic spine shrinkage. OML, MML, IML: outer, middle, inner molecular layer; GCL: 

granule cell layer of the dentate gyrus. The dashed line represents the lognormal fit, the solid line the spine 

data binned into size categories.  

To see if a skewed, lognormal-like distribution also appeared at the level of individual 

cells, we examined spines in each cell separately. Both ipsilateral and contralateral 

(Supplementary Figure 1 and 2) dentate abGCs showed highly rightward skewed 

distributions at all cell ages and in all layers with a variety in shapes, peaks, and widths, 

and a lognormal-like spine size distribution was observed in all individual cells.  

Overall, we achieved a good fit, with the majority of r2 values between 0.8 and 0.99. There 

was some variability in the goodness of fit as fewer samples were available for analysis, 

and one outlier was as low as -0.5 (MML ipsilateral, at 21dpi). The generally high r2 values 

indicate a lognormality of the data at the individual cell level, independent of cell age, cell 

layer, or stimulation (hemisphere). Thus, the rightward skewness of spine size distribution 

is a robust and synaptic-plasticity-independent phenomenon already present at an early 

nerve cell age. 
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To quantify the comparison of spine size distributions between ipsilateral (stimulated) 

dentate gyrus with induced synaptic plasticity and the contralateral (control) side, we 

calculated the goodness of fit (r2) (Figure 2) and skewness (Supplementary Figure 3).  

 

Figure 2.  Individual cell level analysis of the spine size data from anesthetised rat abGCs confirms 

robust lognormal-like distribution in all dentate layers and cell ages. The goodness of fit values were 

similar in the ipsilateral (stimulated; green) and contralateral (control; magenta) dentate gyrus layers. Left, 

middle, right panel: 21, 28 and 35 dpi, respectively. Left, middle, right panel: 21, 28 and 35 dpi, respectively. 

Each dot represents a single cell. The error bar represents SEM. The y-axes are cropped at 0, with one 

outlier below this value in the MML ipsilaterally at 21 dpi.  

There were no significant differences (p < 0.05) in the goodness of fit between the two 

hemispheres, in any layer or time (i.e. cell age in dpi) comparison (Figure 2). Another way 

to quantify the lognormality of the spine size data is to calculate the skewness (asymmetry 

around the mean) of the data. All cells in every condition displayed a skewness above 0, 

confirming that the data were not symmetrically distributed but skewed to the right 

(Supplementary Figure 3). Again, there were no significant differences between the 

hemispheres. Overall, the skewness quantification supported the results obtained by the 

r2 comparisons, showing that the lognormal-like distribution of spine sizes is independent 

of stimulation-induced homo- and heterosynaptic plasticity. Comparing the standard 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532740doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532740
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

deviations taken from the natural logarithms of the spine data (in the following called 

sigma), which is an indicator of the width of the distribution and in this case the range of 

the spine sizes, some significant differences (p < 0.05) were observed (Supplementary 

Figure 4). The sigma value for the stimulated ipsilateral MML at 28 dpi significantly 

increased compared to the contralateral side. This indicates that the shape widened and 

that there was an increase in bigger spines due to the induction of homosynaptic LTP. 

There was a significant decrease in the ipsilateral spine sizes in the IML at 21 dpi and the 

OML at 35 dpi compared to the contralateral side, indicating that the shape narrowed and 

the number of smaller spines increased due to heterosynaptic LTD.  

For a lognormal distribution, the logarithm of the individual values is normally distributed. 

As an additional quantification method, we calculated the logarithm of the data and fitted 

a Gaussian distribution to the transformed data (Figure 3). The distributions at the 

youngest cell age (21 dpi) showed a well-fitted Gaussian distribution in all three layers 

and both ipsi- and contralaterally, indicating the condition for the lognormal distribution 

was met. In older cells (both 28 and 35 dpi), the Gaussian distribution fit less well to the 

logarithmic data. This was especially the case on the right side of the peak, where the 

actual number of spine sizes was higher than the estimated fit. There was an 

overabundance of bigger spines at older cell ages, regardless of plasticity induction. 

However, this overabundance of bigger spines could be observed especially in the MML, 

where homosynaptic plasticity was induced. This indicates that spines do not follow a 

strict lognormal distribution but a lognormal-like distribution.  

We compared three skewed distributions, including the lognormal distribution, to quantify 

whether the lognormal distribution is the best fit of those three. To this end, we used the 
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Akaike Information Criterion (AIC). Our analyses and comparisons revealed that of the 

three distributions tested (lognormal, gamma and Weibull), the lognormal distribution had 

an advantage over the other two, indicating that it was the best fit for the data 

(Supplementary Figure 5 and 6).  

 

Figure 3.  Fitting a Gaussian distribution to logarithmically transformed spine data of abGCs 

revealed that spine sizes follow a lognormal-like distribution. The average Gaussian fits for all cells in 

one dentate layer (OML, MML, IML), time (21, 28 and 35 dpi) and hemisphere (ipsi- and contralateral), fitted 

to the logarithm of the spine data (green and magenta). The dashed line shows the Gaussian fit, the solid 

line represents the spine data. The differences between data and fit is shown by shading in the areas 

between both. At 21 dpi, in all layers and both ipsi- and contralateral, the Gaussian distribution fits well to 
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the data. In the older cells (28 and 35 dpi) there is apparent overabundance of bigger spines and thus a 

bias to the right of the peak. This is pronounced especially in the MML, where high-frequency stimulation 

occurred. OML, MML, IML: outer, middle, inner molecular layer; GCL: granule cell layer of the dentate 

gyrus.  

Independence of spine size distribution from presynaptic transmitter release 

Viewed together, the data from rat abGCs showed a strong independence of the 

lognormal-like spine size distribution from homosynaptic and heterosynaptic plasticity. 

This raises the question as to whether synaptic activity in general affects spine size 

distributions. To assess this, we analysed spines in nerve cells with blocked presynaptic 

transmitter release.  

We used a data set of CA1 pyramidal cell (CA1 PC) spines from organotypic hippocampal 

cultures obtained from Munc-13-1-Munc13-2 double knockout mice (DKOs) (Sigler et al. 

2017). In these mutants, presynaptic glutamate and GABA release is almost entirely 

blocked (Varoqueaux et al. 2002; Sigler et al. 2017). The spine data comprised three 

developmental time points, at which spine size was measured in organotypic slices (7, 14 

and 21 days in vitro, div) and two further groups, one where synaptic activity (presynaptic 

transmitter release) was blocked (DKO group 0) and the corresponding control group 

(group 1). CA1 PCs possess three different spine types: 22.85±6.01% mushroom spines 

(mean±SD), 23.73±4.83% thin spines and 51.16±6.62% stubby spines. About 

2.26±2.53% were defined as ‘other’ and not included in further analyses.  

The data were analysed by different conditions, separated by time in vitro (div) and group. 

In the first step, all cells and spine types were analysed together in each condition. In the 

second step, spine sizes were analysed at the single cell level, for all spine types together. 
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Finally, the three different spine types were analysed separately, first for all cells in one 

condition, then at the individual cell level as well.  

A lognormal distribution was fitted to the spine data. As with the abGC data above, the 

goodness of fit (r2) showed that the lognormal fit described the spine size distribution very 

well, in all conditions and for all spines (Figure 4).  

 

Figure 4. Collected spine size data from CA1 PCs in Munc-13 DKO (blocked presynaptic release) 

and WT (control) organotypic slice cultures revealed robust lognormal-like distribution in all cell 

culture ages irrespective of blocked presynaptic release. (A) An example GFP labeled CA1 PC from a 

DKO slice culture imaged at 21 days in vitro (div; scale: 50 µm). (B) The panel shows an enlarged dendritic 

segment. (C) Average lognormal fit for all spines (mushroom, stubby and thin) and all CA1 PCs in one 
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condition (blocked presynaptic release or control) pooled together. Note that the lognormal function fit the 

data (red and blue dots) with high goodness of fit (r2) values in both groups, and at all time points (div). The 

dashed line shows the lognormal fit, the solid line represents the spine data.  

Again, like with the abGC data, at the individual cell level, spine sizes in every CA1 PC in 

both groups followed a lognormal distribution, at each cell culture age (div) that we studied 

(Figure 5A). There were differences in the shape and width of the distribution, but the 

rightward skewness was preserved even at the individual cell level.  

We compared the goodness of fit parameter r2 between the groups and different time 

points (div), for all spines together (Figure 5B). There were no significant differences 

between the two groups, only a trend in the blocked activity group towards a slightly 

reduced r2. Comparing the time points, there was no significant difference (p < 0.05) within 

the blocked activity group. In the control group there was a significant increase (p < 0.01) 

in the goodness of fit from day 7 to day 21 in vitro, indicating that the lognormal distribution 

described the data better for more mature slice cultures. A similar trend was seen in the 

blocked activity group, but without reaching statistical significance. This shows that there 

is a lognormal-like distribution of spine sizes irrespective of whether the presynaptic 

transmitter release is blocked or not. 

A closer analysis of the spine size data revealed that the skewness values were typically 

above 0 (in some exceptional cases for thin spines below 0, indicating a skewness to the 

left), confirming that the spine sizes were not symmetrically distributed. Comparing the 

different conditions revealed no significant differences between different time points (cell 

culture age in div) or between the groups (Supplementary Figure 7A). Within each group, 

the skewness increased slightly but not significantly over time. The sigma comparison 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532740doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532740
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

revealed no significant differences in the width of the distribution and the range of spine 

sizes (Supplementary Figure 8). A trend was seen at 21 div, where the blocked 

presynaptic transmitter release group has a slightly increased sigma compared to the 

control group, indicating that the range of spine sizes increases.  

 

Figure 5. Individual cell level analysis of the spine size data from CA1 PCs in Munc-13 DKO (blocked 

presynaptic release) and WT (control) organotypic slice cultures revealed a robust lognormal-like 

distribution independent of synaptic activity. (A) Lognormal fits in individual cells in both groups and at 

three time points (div). The single blue (above) and red (below) line represents the mean of all spine sizes 
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as seen in Figure 4C. (B) Goodness of fit (r2) comparisons. The comparison between the two groups yielded 

no significant difference. In the control group, r2 increases significantly (p < 0.01) over time. (C) Thin spines 

showed lower goodness of fit than stubby and mushroom spines in both experimental conditions. Each dot 

represents a single cell, error bars represent SEM. m – mushroom spines, s – stubby spines, t – thin spines 

Next, we tested whether a deeper analysis of spine type subgroups (mushroom, stubby 

and thin) would show inter- or intra-group differences (Figure 5C). The thin spine 

population showed lower r2 values than the mushroom and stubby spine population. In 

line with this, thin spines also showed the lowest score for skewness (Supplementary 

Figure 5B). At the individual cell level, mushroom spines in each cell followed a lognormal 

distribution (Figure 6A). The group with blocked presynaptic transmitter release showed 

a similar goodness of fit as the control group. There was a significant increase of r2 over 

time (p < 0.05) in the control group (Figure 6B). Mushroom spines had a slightly higher 

skewness in the control group, but the difference was not significant (Supplementary 

Figure 7C) and they showed the lowest sigma value in comparison to the other two spine 

types, indicating a smaller range of sizes (Supplementary Figure 8).  Analyses of thin and 

stubby spines at the individual cell level are shown in Supplementary Figures 9 and 10. 
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Figure 6. Analysis of mushroom spines from CA1 PCs in Munc-13 DKO and WT (control) 

organotypic slice cultures showed a high goodness of fit to a lognormal distribution.  (A) Individual 

fits for mushroom spines in each cell. The single blue (above) and red (below) fit shows the average 

distribution (B) Goodness of fit (left panel) analysis revealed no significant differences between the groups 

(blocked presynaptic release vs. control) and a significant increase in r2 over time (p < 0.05) (7, 14 and 21 

div) for control. Each dot represents a single cell, error bar represents SEM.  

As with the abGC data set, we conducted the AIC analysis and comparison for mushroom 

spines, to check whether the lognormal distribution was the best fit out of three skewed 

distributions. The lognormal distribution had an advantage over the other two in both 

experimental groups and at all cell ages (Supplementary Figure 11). These findings 
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indicate that a lognormal-like spine size distribution is preserved even when synaptic 

activity is blocked. Intriguingly, the sizes of thin spines showed a less good fit to a 

lognormal distribution. 

Again, as with the abGC spine data set, a final analysis of spine data from Munc13 DKOs 

and control littermates focused on the lognormal-like distributions of spine sizes in more 

detail by employing the normal (Gaussian) fits of logarithmically transformed data. The 

logarithm of lognormal-like spine size data should lead to a normal-like distribution. 

Taking the logarithm of the data and fitting a Gaussian distribution to the transformed data 

revealed for all spine types that the distribution had a bias towards the left side of the 

peak, meaning there was an overabundance of small spines in the samples (Figure 7A), 

at all cell ages and in both experimental groups. For mushroom spines, there was a clear 

cutoff to the left (Figure 7B), whereas for thin spines there was a cutoff to the right of the 

peak (Figure 7C). This was due to the method by which spines were categorised by size 

into thin or mushroom spines. Stubby spines showed the best Gaussian fit, indicating that 

the stubby spines were distributed strictly lognormally. The bias to the left might be an 

artefact of the method used to detect and measure the spines. Overall, the findings 

indicate, similar to the abGC data set, that spines were lognormal-like distributed 

independently of synaptic activity.  
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Figure 7. Gaussian fits to logarithmically transformed spine data for all spine subtypes and each 

type individually showed varying degrees of lognormality. The average Gaussian fits for all spine 

subtypes (A), mushroom spines (B), thin spines (C) and stubby spines (D)  in all cells at one time (7, 14 
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and 21 div) and experimental condition (blocked presynaptic release and control), fitted to the logarithm of 

the spine data (red and blue). For all spine types together, there was a bias to the left of the peak at all 

three cell ages and for both conditions, indicating an overabundance of small spines in the data sample, 

making the distribution more lognormal-like. Mushroom spines (B) and thin spines (C) showed a cut off at 

the same spine size, with mushroom spines displaying spine sizes above the cutoff and thin spines below. 

The Gaussian distribution did not fit as well to those two spine types, meaning that they are more lognormal-

like. Stubby spines (D) showed the best fit to the logarithmic data. The dashed line shows the Gaussian fit, 

the solid line represents the spine data. The differences between data and fit is shown by shading in the 

areas between both. 

A computational model implementing intrinsic and extrinsic synaptic plasticity accounts 

for the generation and preservation of skewed synaptic weight distributions  

Many computational models of synaptic dynamics presume that the distribution of 

synaptic weights arises predominantly due to activity-dependent (extrinsic) synaptic 

plasticity (Gilson and Fukai, 2011; Zheng et al., 2013; Effenberger et al., 2015; Scheler, 

2017). Therefore, our observation that synaptic activity is not necessary for the 

emergence of skewed spine size distributions requires an extended computational 

approach that captures the key role of activity-independent (intrinsic) plasticity. To 

account for this, we used a computational model of synaptic dynamics that combines 

intrinsic plasticity (Hazan and Ziv, 2020) with classical extrinsic plasticity mechanisms. 

Lognormal distributions are typically preserved when applying multiplicative stochastic 

operations. Combined intrinsic and extrinsic synaptic plasticity might represent a 

biological implementation of such multiplicative changes of synaptic weights. Thus, to 

investigate the influence of intrinsic and extrinsic plasticity on the lognormal distribution 

of spine sizes, we developed a minimal computational model, that was able to account 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532740doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532740
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

for the experimental data. Extrinsic synaptic plasticity was modeled as Hebbian activity-

dependent spike-timing-dependent plasticity (STDP) consisting of additive LTP and 

multiplicative LTD. Intrinsic synaptic plasticity was based on activity-independent 

fluctuations modeled as multiplicative noise. The model was inspired by van Rossum et 

al. (2000). The synaptic weights, for which we assume spine sizes to be a reliable proxy, 

were determined for each condition after the simulation was run, and a lognormal 

distribution was fitted over the weight data. In a first simulation, we wanted to see if 

intrinsic plasticity alone (modeled as multiplicative noise) can generate a lognormal 

distribution. To this end, we fed a uniform distribution as initial weights into the model and 

tracked the synaptic weights over the time course of the simulation to see how it 

developed (Figure 8A). The distribution became lognormal over time, showing that 

multiplicative noise is indeed sufficient to generate lognormal distributions (Hazan & Ziv, 

2000).  

Next, we explored in silico how synaptic activity in the form of LTP-inducing HFS affects 

the shape of the synaptic weight distribution. We used the model to recreate the plasticity 

processes in the Jungenitz et al. (2018) data set. We compared a HFS (periodic spiking 

input at 200 Hz) with a control simulation with an input of 10 Hz (Figure 8B). The model 

generated lognormal distributions in both simulations with high goodness of fit values 

(r2 = 0.99), but with differences in shape and peak. This was supported by the Gaussian 

distribution of the logarithmic weight data (Figure 8B, right panel). The lognormal 

distribution resulting from the HFS simulation showed a narrower distribution and a higher 

peak at medium sized spine sizes, whereas the control simulation showed a broader 

shape, with a peak at lower sized weights. This is contrary to the experimental results, 
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where the HFS stimulated spines in the MML showed a broader distribution with bigger 

spines increasing in number, whereas the unstimulated control spines showed a narrower 

distribution. This discrepancy could be due to the differences in the duration of the 

experiment and the simulation, or to the choice of modelled heterosynaptic scaling.  

We then recreated the experimental data obtained upon block of presynaptic transmitter 

release by comparing a completely silent simulation (i.e. using only intrinsic noise) and a 

control simulation that received Poisson input at a frequency of 5 Hz (Figure 8C). The 

simulation yielded similar results to the experimental data. The intrinsic noise distribution 

broadened as compared to the control simulation, but there were no significant 

differences between the two groups. Both distributions were well-fitted by a lognormal 

distribution (r2 = 0.99), which was also supported by the well-fitted Gaussian distribution 

of the logarithmic weight data (Figure 8C, right panel). As shown by Rossum et al (2000), 

additive STDP also contributes to a skewed distribution of synaptic weights as already 

strong synapses are more likely to trigger a postsynaptic response and therefore 

potentiate again. Interestingly, however, additive intrinsic noise can lead to relatively large 

changes in the strengths of small synapses and limit the skewness of the weight 

distributions. This, alongside the experimental results on silenced cultures, implies that 

intrinsic noise should be chiefly multiplicative. 

In sum, and in agreement with the abGC spine data, combined extrinsic and intrinsic 

plasticity can maintain the skewed distributions in the presence of correlated LTP-

inducing synaptic activation. Furthermore, in line with Munc-13 DKO spine size data, our 

modeling shows that extrinsic plasticity is not necessary for the generation of skewed 

spine size distributions and that intrinsic plasticity alone is sufficient. 
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Figure 8. Computational modeling indicates that intrinsic (activity-independent) synaptic plasticity 

is sufficient for the generation of lognormal-like spine size distributions and a combination of 

intrinsic and extrinsic synaptic plasticity is sufficient for the maintainance of the lognormal-like 

distributions. (A) An initially uniform distribution transforms into a lognormal distribution over time. Only 

multiplicative noise that represented intrinsic synaptic plasticity was applied to the distribution, which was 

enough to generate a lognormal distribution over time out of the uniform distribution. (B) Periodic high 
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frequency simulation (HFS) with an input rate of 200 Hz was applied to the model (light green) and 

compared to a control simulation that received a 10 Hz periodic input (magenta). The HFS simulation shows 

a narrower distribution with the peak centered around medium sized weights whereas the control simulation 

has a broader distribution with the peak more to the left, centered around smaller weights. Both simulations 

follow a lognormal distribution with high goodness of fit values. (C) Intrinsic mechanisms, simulated as a 

silent network without any extrinsic input (red) shows a slightly shifted distribution compared to the control 

simulation (extrinsic activity simulated with an input at 5 Hz; light blue). The silent simulation has a slightly 

higher peak centered around medium sized weights and seems to be broader compared to the control 

simulation. Both simulations follow a lognormal distribution with high goodness of fit values.  
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Discussion 

Excitatory post-synaptic potential sizes and spine head sizes have lognormal-like 

distributions (de Vivo et al., 2017; Ikegaya et al., 2013; Lefort et al., 2009; Loewenstein 

et al., 2011; Merchán-Pérez et al., 2014; Montero-Crespo et al., 2020; Santuy et al., 2018; 

Song et al., 2005). Here, we confirm that spine size distributions follow a lognormal shape 

in both hippocampal dentate abGCs in vivo and in organotypically cultured CA1 PCs. In 

dentate abGCs, a lognormal-like distribution of spine sizes was present at all studied cell 

ages, irrespective of homo- or heterosynaptic long-term plasticity induction. Most 

strikingly, in CA1 PCs, spine size distributions were skewed and lognormal-like even in 

Munc-13 DKOs, in which presynaptic transmitter release is entirely blocked. These data 

show that the lognormal-like distribution of spine sizes is activity- and plasticity-

independent. The skewness of spine size distributions develops early in cell age without 

extrinsic influences related to presynaptic transmitter release, and therefore seems to be 

determined intrinsically. However, we cannot exclude potential extrinsic influences that 

are not related to presynaptic transmitter release, such as trophic factors or adhesion 

proteins. 

Independence of spine size distributions from intrinsic dynamics and extrinsic plasticity 

Intriguingly, we detected robust lognormal-like distributions of spine sizes in young 

newborn GCs that had experienced homo- and heterosynaptic plasticity. This is in 

agreement with previous studies showing unchanged spine size, spine type distribution, 

and spine numbers at 30 min and 2 h after homosynaptic long-term potentiation in dentate 

granule cells and CA1 PCs, respectively (Bromer et al., 2018; Sorra & Harris, 1998). 

Together with our previous work (Jungenitz et al. 2018, Beining et al., 2017), these data 
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indicate that high-frequency activation of synapses evokes their homo- and 

heterosynaptic plastic changes leading to a redistribution instead of an overall increase 

(or decrease) in spine size and synaptic strength. The plasticity-related redistribution of 

synaptic weights with a homeostatic maintenance of the total synaptic area per µm of 

dendrite length (Bourne & Harris, 2007; Bromer et al., 2018) may be a result of activity-

dependent competitive redistribution of synaptic building resources (Triesch et al., 2018). 

In addition to the plasticity-independence, the skewed spine size distribution in abGCs 

was detected at the earliest studied time point (21 dpi), shortly after onset of spinogenesis 

between 16 – 18 dpi (Ohkawa et al., 2012; Radic et al., 2017). This indicates that it 

develops in early stages of a nerve cell’s life. Extending long-term time lapse imaging of 

abGCs (Radic et al., 2017) to include their initial developmental stages with the time of 

rapid spinogenesis should clarify whether the first spines already display skewed size 

distributions. 

A recent study on cultured primary cortical neurons (Hazan & Ziv, 2020) provided results 

in line with our observation that spine size distribution is independent of presynaptic 

glutamate release. In this study on dissociated neurons in culture with pharmacologically 

blocked spiking and synaptic activity during the plating procedure, synapses showed 

physiological diversity with a full range of synaptic sizes (Hazan & Ziv, 2020). The 

synapse size distributions in these silenced networks in culture were rightward skewed, 

broad, and stable, showing characteristics of a lognormal-like distribution. Interestingly, 

networks with chronic activity suppression showed an increase in average spine size, and 

synaptic size distributions broadened, indicating that activity-dependent processes 

constrain synaptic growth (Minerbi et al., 2009; Statman et al., 2014; Ziv & Brenner, 2018). 
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Our analysis of spines upon blockage of presynaptic transmitter release documents a 

similar shift in spine sizes. The blocked transmitter release group shows a broader 

distribution with a lower peak, indicating a shift towards an increased number of bigger 

spines, possibly regulated by intrinsic mechanisms. Similar results were reported by 

Yasumatsu and colleagues (2008) who observed individual spines of CA1 pyramidal cells 

from rat hippocampal slices in culture after blocking synaptic transmission and plasticity 

mediated by NMDA receptors. They reported that spontaneous, intrinsic spine volume 

fluctuations were independent of activity-dependent plasticity processes. In the presence 

of NMDAR inhibition, the rate at which spines were eliminated was decreased and spine 

generation was unaffected. Spine elimination of mostly small spines was reduced but 

new, small spines still emerged, affecting the skewness of the distribution.  

An important finding of Yasumatsu et al. (2008) was that small spines were the most 

plastic ones, changing in size, being eliminated, or newly generated even within one day. 

Large spines, in contrast, were more persistent. This supports the idea that small, more 

plastic spines are more involved in learning processes, whereas stable, large spines are 

responsible for memory traces (Bourne & Harris, 2007; Hung et al., 2008; Kasai et al., 

2003). This might hint at a potential advantage of lognormal size distributions, with a large 

pool of small spines with higher plasticity potential and a minority of big and less plastic 

spines that can hold long-term memory traces (cf. Yap et al., 2020). However, our present 

study and previously published data (Hazan & Ziv, 2020; Sando et al., 2017; Sigler et al., 

2017, Kleinjan et al., 2023) show clearly that synaptic activity is not necessary for the 

emergence of large spines (Ziv & Brenner, 2018). In line with this, the diversity of spine 

types – in terms of fractions of mushroom, stubby and thin spines – is not affected in mice 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532740doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532740
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

with a complete suppression of synaptic transmitter release from glutamatergic neurons 

upon Cre-inducible expression of tetanus toxin (Dorkenwald et al., 2019; Sando et al., 

2017). Consistently, spinogenesis in CA1 PCs has been shown to be independent of the 

activation of ionotropic glutamate receptors (Lu et al., 2013), although their numbers 

might be modulated by the lack of activity (Sigler et al, 2017; Hazan and Ziv, 2020). Even 

the complete knockout of Ca2+ channels in synapses in cultured hippocampal neurons 

did not impair synapse structure (Held et al., 2020). All these observations are congruent 

with early investigations showing that in vivo-like synapse diversity emerges in neurons 

in chronically silenced organotypic cultures (Harms et al., 2005; Harms & Craig, 2005; 

van Huizen et al., 1985; but see McKinney et al., 1999).  

Computational model accounts for the generation and maintenance of lognormal-like 

weight distributions 

The finding that synaptic activity is not necessary for the skewed spine size and synapse 

weight distribution is unexpected in the context of several prominent theoretical models. 

Many computational models of synaptic weight dynamics assume that realistic weight 

distributions emerge due to a combination of Hebbian and non-Hebbian activity-

dependent synaptic plasticity. For example, spiking network simulations led to the 

suggestion that a highly skewed distribution of synaptic weights appears due to network 

self-organization (Zheng et al., 2013), by the combined effects of (i) excitatory and (ii) 

inhibitory spike-timing dependent plasticity (STDP and iSTDP), (iii) synaptic normalisation 

(preserving the total input weight of a neuron), (iv) intrinsic plasticity (for firing rate 

homeostasis), and (v) structural plasticity (in the form of synaptogenesis).  
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Similarly, other computational studies (van Rossum et al., 2000) used an STDP rule with 

a homeostatic component (diminished potentiation for strengthened synapses; see also 

Effenberger et al., 2015) or log-STDP (Gilson & Fukai, 2011) to reproduce the 

experimentally observed positively skewed weight distribution. Further, a more recent 

mathematical study argued that Hebbian learning is needed to produce and maintain 

skewed synapse size distributions (Scheler, 2017). However, the studies including our 

work and work of others (Hazan & Ziv, 2020) clearly show that activity-dependent synaptic 

plasticity is not essential for the lognormal-like weight distributions to occur. This means 

that the synaptic plasticity rules proposed in these computational studies are not 

necessary for the generation of heavy-tailed synaptic weight distributions, but that they 

may still be involved in the maintenance of the skewed distributions once neuronal 

networks become exposed to prolonged synaptic activity and plasticity.  

Indeed, our plasticity model, using a Kesten process as multiplicative noise for 

implementing intrinsic synaptic fluctuations (Hazan & Ziv, 2020), generated a lognormal-

like distribution without any influence of an extrinsic plasticity mechanism. The 

multiplicative noise (i.e. intrinsic plasticity mechanisms) also generated a lognormal 

distribution that is slightly broader than a control simulation with noise and activity-

dependent plasticity (i.e. both intrinsic and extrinsic mechanisms). This is in accordance 

with our results obtained with the Munc13 DKO data set. When we added additive STDP 

and simulated the network model with periodic high-frequency input (mimicking LTP-

inducing activity), the skewed, lognormal-like distribution was maintained, but changed in 

width and shape compared to a control simulation that received 10 Hz input. The 
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maintenance of the lognormal-like distribution is in agreement with the abGC LTP/LTD 

data set. 

However, in experimental data, the spine distribution affected by LTP-inducing HFS 

broadened compared to the control spines. In our model, the weight distribution of the 

HFS simulation got narrower in comparison to the control simulation. This discrepancy 

between the model and the data could be due to the time differences between the 

experiment and the simulation, where the HFS was applied for 2 hours to the cells, 

compared to the shorter period of the computer simulation. It could also be due to the 

choice of heterosynaptic scaling in the model. Further work is required to establish the 

range of parameters that are fully consistent with the experimental data, for example the 

relationship between strengths of intrinsic and extrinsic plasticity. The insight of this 

model, as previously shown by van Rossum (2000), is that even additive potentiation can 

generate and preserve skewed synaptic weight distributions as stronger synapses are 

more likely to trigger postsynaptic spikes and therefore more likely to undergo 

potentiation. The presence of skewed distributions even without STDP in our data is 

evidence that intrinsic noise is likely to be multiplicative. 

Activity-independent computational models based on stochastic multiplicative shrinkage 

and additive growth of synapses (mathematically well approximated by stochastic Kesten 

or nonlinear Langevin processes) successfully account for the emergence of lognormal-

like synaptic strength distributions (Hazan and Ziv 2020; see also Yasumatsu et al. 2008 

and Loewenstein et al. 2011). Similarly, a mechanistic model based on activity-

independent cooperative stochastic binding and unbinding of synaptic scaffold molecules 

can explain the rightward skewed, distributions of synaptic sizes (Hazan & Ziv, 2020; 
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Shomar et al., 2017). Our new model of intrinsic and extrinsic plasticity shows how 

activity-independent and activity-dependent synaptic dynamics may cooperate to 

maintain lognormal-like distribution of synaptic efficacies. 

An open question that remains is as to whether long-tailed distributions of synaptic 

weights have functional relevance. Their computational role is still not fully understood 

but several studies indicate that they may support optimal network dynamics in the form 

of sparse, fast, broad and stable responses (Cossell et al., 2015; Ikegaya et al., 2013; 

Iyer et al., 2013; Teramae et al., 2012; Teramae & Fukai, 2014) and facilitate network 

burst propagation (Omura et al., 2015). Sparse and strong synapses connect together to 

a so-called “rich club” of rare but highly connected neurons (Gal et al., 2017; Nigam et 

al., 2016). The rich-club neuron organization can generate bistable low-firing and high-

firing network states, whereas biologically unrealistic random networks only display 

mono-stable, low-firing states (Klinshov et al., 2014). The rare and strong synaptic 

connections participate to a disproportionate degree in information processing (Nigam et 

al., 2016), such as feature preference and selectivity in visual cortex (Cossell et al., 2015). 

They may also contribute to memory recall in associative memory networks (Hiratani et 

al., 2013). Network simulations also indicated that lognormal-like synaptic distributions 

are important in the context of criticality since they support continuous transitions to chaos 

associated with the generation of scale-free avalanches (Kuśmierz et al., 2020). In 

addition, a recent computational study showed that strong synaptic inputs from the heavy 

tail of the lognormal synaptic efficacy distribution play a crucial role in triggering local 

dendritic spikes (Goetz et al., 2021) which are known to enhance nonlinear single cell 

computations. 
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Conclusion 

In sum, our work highlights the importance of a skewed, lognormal-like distribution of 

brain parameters. It persists through high frequency stimulation and plasticity processes 

and emerges even when presynaptic transmitter release is blocked. Given its importance 

and widespread presence in the brain, computational plasticity models should strive to 

maintain a skewed, lognormal-like distribution of spine sizes and synaptic weights.  
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Methods 

Spine data from dentate adult-born granule cells (abGCs) in rats with induced homo- and 

heterosynaptic plasticity 

We analysed the distribution of spines in granule cell (GC) data in the dentate gyrus (DG), 

from Jungenitz et al. (2018). In this data set, structural homo- and heterosynaptic plasticity 

of spines was induced in abGCs using two hour high-frequency stimulation (HFS) of the 

medial perforant path (MPP) in anesthetised rats. AbGCs were stimulated at different time 

points after the injection of retroviral vectors (days post injection, or dpi). The cell ages 

used in the analysis were 21, 28 and 35 dpi. The HFS induced LTP associated with spine 

expansion in the middle molecular layer (MML) of the dentate gyrus (Jungenitz et al., 

2018). Concurrently it induced heterosynaptic LTD associated with spine shrinkage in the 

inner and outer molecular layer (IML/OML).  

The data set comprised spine data for individual cells in (i) the three different layers (IML, 

MML and OML), (ii) at the three different cell ages (21, 28 and 35 dpi), and (iii) from both 

the contra- and ipsilateral hemisphere. The contralateral side without the induction of 

synaptic plasticity (Jungenitz et al., 2018) was included as a control. All analysed spines 

were mushroom spines (spines with a large head in relation to the neck (Bosch and 

Hayashi, 2012; Rochefort and Konnerth, 2012)). Analysis was done at the level of 

individual cells or dentate molecular layers, separately for each layer, hemisphere, and 

cell age. 

Spine data from CA1 pyramidal cells in Munc13 double-knockouts 
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The blocked presynaptic activity data set contained spine data from CA1 pyramidal cells 

(PC) in hippocampal organotypic slices from Munc13 double-knockout (DKO) mice (Sigler 

et al., 2017). In these DKOs, the elimination of synaptic protein Munc13 causes a 

complete loss of spontaneous and evoked transmitter release (Varoqueaux et al., 2002). 

The data set comprised spine data from M13-DKOs and their controls, from three different 

time points of measurement (7, 14 and 21 days in vitro, div). The data set was split into 

apical and basal dendrites, and in three spine subgroups (mushroom, stubby and thin). 

Fitting a lognormal distribution to the data 

The spine head area was used to analyse the distribution of spine sizes. All analyses 

were done with Matlab software using a custom-written script. We analysed cells 

individually as well as collectively by combining and averaging all cells for one condition.  

From the raw data, the mean (µ) and standard deviation (σ) of the spine sizes’ natural 

logarithms were calculated. They functioned as a starting point for the algorithm 

implemented to fit the lognormal distribution over the spine data. Because the data spans 

multiple scales, the raw size data was normalised. For the normalisation, the integral of 

the spine size distribution was calculated, and the absolute number of spines in each size 

bin was divided by that integral.  

The next step in the analysis was to build the lognormal function that would be fitted to 

the normalised data. For this, a customised fitting procedure had to be derived for which 

the probability density function (PDF) of the lognormal distribution was used: 

𝑓(𝑥) =
1

𝑥
 

1

𝜎√2𝜋
 exp (−

(ln (𝑥) − µ)2

2𝜎2
) 
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µ and σ are defined as parameters, f(x) as the dependent and x as the independent 

variable. The lognormal distribution was then fitted to the normalised data. With the fit 

function, plots and respective goodness of fit statistics for each of the fits were generated. 

The goodness-of-fit statistics give an indication of how well the respective fit or model 

fitted the data. The r-square (r2) value was used in all further analysis.  

The key characteristic of a lognormal distribution is that the logarithm of the random 

variable will be normally distributed. Thus, taking the logarithm of the spine data is another 

good method to check if the data is distributed lognormally-like. A similar fitting procedure 

as above was applied. The data was first transformed by taking the logarithm of the spine 

sizes, then a Gaussian distribution was fitted to the logarithmic data:  

𝑓(𝑥) = 𝑎 exp (− (
𝑥 − 𝑏

𝑐
))

2

 

where a, b and c are the parameters, f(x) the dependent and x the independent variable. 

With the fit function fitting a Gaussian distribution to the logarithm of the data, new plots 

were generated that compared the logarithmic data with the fit.  

To determine differences between the different layers, cell ages or experimental and 

control groups, the given r2 for each condition was compared, using statistical non-

parametric tests. r2, or the coefficient of determination, is used to determine how well the 

variation in f(x) (the dependent variable) can be explained by x (the independent 

variable(s)). Essentially, it provides a measure of how well the observed outcomes can 

be replicated by a model. In our case, how well the applied fits describe the spine size 
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data. The value is less than or equal to 1, with 1 being a perfect fit of the model. The 

coefficient of determination is calculated as follows:  

𝑟2 =
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 

To support the findings of the goodness of fit comparisons, we also looked at the 

skewness (asymmetry around the mean) of the data and the width of the distribution 

(standard deviation of the data’s natural logarithm, in the following called sigma). More 

information about these comparisons can be found in the Supplementary Methods. 

Additionally, we conducted a model fit comparison for which we fit two additional skewed 

distributions (gamma and Weibull) to the data, and then used the Akaike Information 

Criterion (AIC) to compare all three distribution fits. This was done to see whether or not 

the lognormal distribution was the best fit for the data. More information about the AIC 

calculations and comparisons can be found in the Supplementary Methods.  

Statistical Analysis 

Several statistical tests were applied to test for statistical differences of r2 for a lognormal 

and the skewness between the different conditions in both data sets. The distribution 

analysis showed a lognormal distribution in the spine data, so only non-parametric tests 

were applied.  

For the hemisphere (ipsilateral / stimulated vs contralateral / non-stimulated) comparison 

in the rat dentate abGC spine data and the group comparison (Munc13 DKO group with 

blocked presynaptic release vs. control group) in the mouse CA1 PC spine data, we used 

a Mann-Whitney-U or ranksum test. To compare between the three different dentate 
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layers (IML / MML / OML), we used Friedman’s test. Since all three layer-samples in one 

cell come from the same cell, it was a repeated measurement of multiple variables. The 

Kruskal-Wallis test was used for the comparison between different cell ages or cell culture 

ages. If significant differences (p < 0.05) were found in one sample, both for the time 

comparison and the layer comparison, post-hoc paired ranksum tests were conducted. A 

Bonferroni-Holm correction for multiple tests was applied to test for specific significant 

differences in the sample. 

Multiplicative STDP model to investigate lognormal distributions 

To further investigate the influence of plasticity on the lognormal-like distribution of 

synaptic weights, we developed a simple model based on van Rossum et al. (2000). The 

model includes heterosynaptic scaling, an intrinsic multiplicative (Kesten) noise process, 

and an STDP learning rule with additive potentiation and multiplicative depression. The 

times between a presynaptic event and a postsynaptic event are written as ∆t. Negative 

values of ∆t, where the presynaptic event precedes the postsynaptic event, lead to 

potentiation w → wp and positive values lead to depression w → wd.  

𝑤𝑝 = 𝑤 +  𝑐𝑝 𝑒𝑥𝑝 (
−∆t

𝜏𝑆𝑇𝐷𝑃
) 

𝑤𝑑 =  𝑤 − 𝑤𝑐𝑑  exp (
∆t

𝜏𝑆𝑇𝐷𝑃
)   

w is the synaptic weight, 𝑐𝑝 is the weight of potentiation (𝑐𝑝= 0.007 pS), 𝑐𝑑 is the weight 

of depression (𝑐𝑑  = 0.003) and 𝜏 is the time constant for STDP (𝜏𝑆𝑇𝐷𝑃 = 0.5 ms). In 

addition, the synapses are affected by a continuous-time multiplicative noise process of 

strength 4% per second. The postsynaptic neurons are modelled as leaky integrate-and-
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fire cells receiving 100 inputs each and uniform heterosynaptic scaling maintains a 

constant total conductance. The membrane time constant is 10 ms and the firing 

threshold is 10 mV above rest. 

The model consists of a population of 1000 neurons, and the synapses are stimulated 

either in a Poisson manner or with periodic spiking, at different input frequencies 

depending on the simulation condition.  

To see whether or not multiplicative noise (i.e. intrinsic mechanisms) are enough to 

generate a lognormal distribution, a uniform distribution was fed into the model as an 

initial distribution and the synaptic weights were measured throughout the simulation. The 

model was then used to replicate the two experimental data sets. First, the high frequency 

stimulation that induced LTP in the stimulated spines was recreated with the model, using 

periodic spiking as input at a 200 Hz frequency. This was compared with a control 

simulation, that received 10 Hz input. The second simulation compared intrinsic 

mechanisms, simulated with only multiplicative noise in a silent period, and extrinsic and 

intrinsic processes using a control simulation at 5 Hz receiving Poisson input. A lognormal 

distribution was fitted to the synaptic weight data in the same way as previously described. 

Additionally, the logarithm was taken of the data and a Gaussian distribution was fitted to 

the transformed data.  
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