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Abstract

People can describe spatial scenes with language and, vice versa, create images based on
linguistic descriptions. However, current systems do not even come close to matching
the complexity of humans when it comes to reconstructing a scene from a given text.
Even the ever-advancing development of better and better Transformer-based models
has not been able to achieve this so far. This task, the automatic generation of a 3D
scene based on an input text, is called text-to-3D scene generation. The key challenge,
and focus of this dissertation, now relate to the following topics:

(a) Analyses of how well current language models understand spatial information,
how static embeddings compare, and whether they can be improved by anaphora
resolution.

(b) Automated resource generation for context expansion and grounding that can help
in the creation of realistic scenes.

(c) Creation of a VR-based text-to-3D scene system that can be used as an annotation
and active-learning environment, but can also be easily extended in a modular
way with additional features to solve more contexts in the future.

(d) Analyze existing practices and tools for digital and virtual teaching, learning, and
collaboration, as well as the conditions and strategies in the context of VR.

In the first part of this work, we could show that static word embeddings do not benefit
significantly from pronoun substitution. We explain this result by the loss of contextual
information, the reduction in the relative occurrence of rare words, and the absence
of pronouns to be substituted. But we were able to we have shown that both static
and contextualizing language models appear to encode object knowledge, but require
a sophisticated apparatus to retrieve it. The models themselves in combination with
the measures differ greatly in terms of the amount of knowledge they allow to extract.
Classifier-based variants perform significantly better than the unsupervised methods
from bias research, but this is also due to overfitting. The resources generated for this
evaluation are later also an important component of point three.

In the second part, we present AffordanceUPT, a modularization of UPT trained on
the HICO-DET dataset, which we have extended with Gibsonien/telic annotations. We
then show that AffordanceUPT can effectively make the Gibsonian/telic distinction and
that the model learns other correlations in the data to make such distinctions (e.g., the
presence of hands in the image) that have important implications for grounding images
to language.
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The third part first presents a VR project to support spatial annotation respectively
IsoSpace. The direct spatial visualization and the immediate interaction with the 3D
objects should make the labeling more intuitive and thus easier. The project will later be
incorporated as part of the Semantic Scene Builder (SeSB).The project itself in turn relies
on the Text2SceneVR presented here for generating spatial hypertext, which in turn
is based on the VAnnotatoR. Finally, we introduce Semantic Scene Builder (SeSB), a
VR-based text-to-3D scene framework using Semantic Annotation Framework (SemAF)
as a scheme for annotating semantic relations. It integrates a wide range of tools and
resources by utilizing SemAF and UIMA as a unified data structure to generate 3D scenes
from textual descriptions and also supports annotations. When evaluating SeSB against
another state-of-the-art tool, it was found that our approach not only performed better,
but also allowed us to model a wider variety of scenes. The final part reviews existing
practices and tools for digital and virtual teaching, learning, and collaboration, as well
as the conditions and strategies needed to make the most of technological opportunities
in the future.
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Zusammenfassung

Menschen können räumliche Szenen mit Sprache beschreiben und umgekehrt Bilder auf
der Grundlage von sprachlichen Beschreibungen erzeugen. Aktuelle Systeme kommen
jedoch nicht einmal annähernd an die Komplexität vonMenschen heran, wenn es darum
geht, eine Szene aus einem gegebenen Text zu rekonstruieren. Auch die immer weiter
fortschreitende Entwicklung immer besserer Transformator-basierter Modelle konnte
dies bisher nicht leisten. Diese Aufgabe, die automatische Generierung einer 3D-Szene
auf der Grundlage eines Eingabetextes, wird text-to-3D scene-Generierung genannt. Die
zentrale Herausforderung und der Schwerpunkt dieser Dissertation beziehen sich nun
auf die folgenden Themen:

(a) Analysen, wie gut aktuelle Sprachmodelle räumliche Informationen verstehen,
wie statische Einbettungen imVergleich dazu abschneiden und ob sie durchAnaphora-
Auflösung verbessert werden können.

(b) Automatisierte Ressourcengenerierung für Kontexterweiterung und Erdung, die
bei der Erstellung realistischer Szenen helfen können.

(c) Schaffung eines VR-basierten text-to-3D scene-Systems, das als Annotations- und
Active-Learning-Umgebung verwendet werden kann, aber auch leicht auf mod-
ulare Weise mit zusätzlichen Funktionen erweitert werden kann, um in Zukunft
weitere Kontexte zu lösen.

(d) Analysieren Sie bestehende Praktiken und Werkzeuge für digitales und virtuelles
Lehren, Lernen und Kollaboration sowie die Bedingungen und Strategien im Kon-
text von VR.

Im ersten Teil dieser Arbeit konntenwir zeigen, dass statischeWorteinbettungen nicht
wesentlich von der Pronomenersetzung profitieren. Wir erklären dieses Ergebnis durch
den Verlust von Kontextinformationen, die Verringerung des relativen Vorkommens sel-
tener Wörter und das Fehlen von Pronomen, die ersetzt werden müssen. Wir konnten
jedoch zeigen, dass sowohl statische als auch kontextualisierende Sprachmodelle Ob-
jektwissen zu kodieren scheinen, aber einen ausgeklügelten Apparat benötigen, um es
abzurufen. Die Modelle selbst in Kombination mit den Maßnahmen unterscheiden sich
stark in Bezug auf die Menge des Wissens, das sie zu extrahieren erlauben. Klassifika-
torbasierte Varianten schneiden deutlich besser ab als die unüberwachten Methoden aus
der Bias-Forschung, was aber auch auf Overfitting zurückzuführen ist. Die für diese Be-
wertung generierten Ressourcen sind später auch ein wichtiger Bestandteil von Punkt
drei.
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Im zweiten Teil stellen wir AffordanceUPT vor, eine Modularisierung von UPT, die auf
dem HICO-DET-Datensatz trainiert wurde, den wir mit Gibsonien/telischen Annotatio-
nen erweitert haben. Wir zeigen dann, dass AffordanceUPT effektiv die Gibsonian/telic-
Unterscheidung treffen kann und dass das Modell andere Korrelationen in den Daten
erlernt, um solche Unterscheidungen zu treffen (z.B. das Vorhandensein von Händen im
Bild), die wichtige Implikationen für die Erdung von Bildern mit Sprache haben.

Im dritten Teil wird zunächst ein VR-Projekt zur Unterstützung der räumlichen An-
notation bzw. IsoSpace vorgestellt. Durch die direkte räumliche Visualisierung und die
unmittelbare Interaktion mit den 3D-Objekten soll die Beschriftung intuitiver und damit
einfacherwerden. Das Projekt wird später als Teil des Semantic Scene Builders (SeSB) in-
tegriert. Das Projekt selbst stützt sich wiederum auf die hier vorgestellte Text2SceneVR
zur Erzeugung von räumlichem Hypertext, die wiederum auf der VAnnotatoR basiert.
Schließlich stellen wir den Semantic Scene Builder (SeSB) vor, ein VR-basiertes text-
to-3D scene-Framework, das das Semantic Annotation Framework (SemAF) als Schema
für die Annotation semantischer Beziehungen verwendet. Es integriert eine Vielzahl
von Werkzeugen und Ressourcen, indem es SemAF und UIMA als einheitliche Daten-
struktur nutzt, um 3D-Szenen aus textuellen Beschreibungen zu generieren und auch
Annotationen zu unterstützen. Bei der Bewertung von SeSB im Vergleich zu einem an-
deren hochmodernen Tool zeigte sich, dass unser Ansatz nicht nur besser abschnitt,
sondern auch eine größere Vielfalt von Szenen modellieren konnte. Der letzte Teil gibt
einen Überblick über bestehende Praktiken und Werkzeuge für digitales und virtuelles
Lehren, Lernen und Zusammenarbeiten sowie über die Bedingungen und Strategien, die
erforderlich sind, um die technologischen Möglichkeiten in Zukunft optimal zu nutzen.
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1 Introduction

1.1 Motivation

People can describe visual scenes with language and, conversely, create visual images
based on linguistic descriptions, e.g., in their heads or on paper (Sadoski et al., 1990;
Sadoski & Paivio, 2013). However, current systems do not even come close to the com-
plexity of humans when it comes to reconstructing the scene from a given text (Hassani
& Lee, 2016). On the other hand, it is not trivial for a human to create a scene manually
using appropriate software, as this always requires a certain level of expertise (e.g. using
Adobe Photoshop© or Blender) (Ma et al., 2018).

A technology that has become increasingly popular in recent years is virtual reality
(VR)¹ This is not only because the technology is becoming more and more sophisticated,
but also because it is becoming more and more affordable and thus no longer repre-
sents a major barrier to entry (Rodriguez, 2016; Zantua, 2017). The same applies to the
development tools to be able to develop software for these devices.

The main motivation of this work was to combine these two concepts (VR and text-
to-3D scene generation) to create a system that not only provides a direct tunnel to the
described scene, but also allows these scenes to be created in an intuitive way (through
language and grab/drop objects). This system will be presented later as Semantic Scene
Builder (SeSB, Chapter 9).

The possible practical applications of text-to-3D scene generation are manifold. From
applications for digital learning (this point will be discussed in Chapter 6) to private
home applications (e.g. setting up a virtual home office) to commercial applications (e.g.
planning kitchen interior).

Last but not least, text-to-3D scene generation is a highly interesting scientific topic
where many disciplines come together. Not only from computer science (like Natural
Language Processing (NLP) and Computer Vision (CV)) but also from linguistics (Den-
nerlein, 2009) and psychology (Greene, 2013), for example.

Themain focus of this work is on the contextual associations that are relevant in scene
descriptions (Figure 1.1).

Spatial expectations refer to the spatial arrangement and relations of and between
objects. These can be co-occurrence relations between objects (e.g., a computer keyboard
is usually also a computer mouse), hierarchies between objects (e.g., a piece of cake is

¹VR here stands for fully-immersive virtual reality, supported by hand tracking and head-mounted dis-
plays (Riva, 2006).
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Figure 1.1: Areas of contextual expectations that are relevant for scene generation. These
both local (within a text) and global (shared background between speaker
and listener) can influence the scene being described. These can influence
both locally (within a text) and globally (shared background of speaker and
listener) the scene described by the speaker as well as the scene presented by
the listener (Comparable to Pickering & Garrod (2004)).

usually on a plate and the plate is on a table, or pictures hanging on a wall), or spatial
associations in general (e.g., in a kitchen there is usually also a stove).

Temporal expectations refer to temporal classifications. This can refer to historical
classifications (e.g., a medieval kitchen compared to today, or radios in the 1960s com-
pared to today), but also to individual time spans (e.g., you wear different clothes as a
child than as an adult) or times of day (e.g., you eat different things in the morning than
in the evening).

Cultural expectations is based on cultural differences, e.g. a typical German break-
fast consists of different foods than a French breakfast. Or houses and rooms look dif-
ferent in Central Europe than in East Asia.

Conceptual expectations refers primarily to the affordances of objects (e.g., chairs
are for sitting or cars for riding; Pustejovsky & Krishnaswamy, 2016).

Requirements-related expectations refer to the conditions that certain events or
states require. These can be objects (e.g., to cook an omelet, you need eggs) but also
other actions (e.g., to renovate a house includes painting the wall).

Process-related expectations expectations related to what has been processed so far
or is likely to happen next.
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This complexity is also reflected in the diversity of content of the publications written
for this dissertation, most of which can be assigned to one of these contextual expec-
tations. The following Section (Section 1.2 will now go further into the challenges of
text-to-3D scene generation and then into the Contributions (Section 1.3) that this work
has made to the various challenges.

1.2 Challenges

In recent years, work in text-to-3D scene generation has increasingly focused on gener-
ating more and more realistic scenes based on existing scene datasets. The actual lan-
guage processing moved increasingly into the background and served only to add con-
crete expression conditions (parsable by predefined dependency rules) for scene genera-
tion (e.g Ma et al., 2018; Chang et al., 2017b). Accordingly, from a linguistic perspective,
many tasks remain unsolved (Hassani & Lee, 2016).

This already starts with the actual text processing. Thus, all relevant entities (which
are relevant and which are not) in a text have to be recognized, coreferences have to
be resolved, and finally, spatial relations and semantic roles have to be identified. This
requires an extensive tool pipeline of not always homogeneous tools that must work
together here. Most models are based on pre-trained word embeddings or language
models trained only on text, and thus it is not clear how well they can capture spatial
relationships.

Next, we need to resolve the various interconnected relationships and contexts (al-
ready addressed in the motivation from Section 1.1). Most of the implicit information
that can be carried along in scene descriptions lacks the resources necessary to resolve
it. This is also true for 3D scenes in general, so there are not enough resources for 3D
scenes and associated text pairs. And for the few that do exist, the available descriptions
are again very specific and leave little room for interpretation and context (e.g. Chang
et al., 2015b).

The final challenge is to underlay the linguistic units with 3D objects and arrange them
in a spatially meaningful way. Again, it may be necessary to insert additional objects
into the scene to make it look more realistic.

In addition to the fact that the required data is not available in sufficient quantity,
there is also no suitable annotation environment that supports the creation of this data.
Most of the previous works are also not open source, so it is difficult to address the
individual points and compare the results without directly developing and implementing
a completely new text-to-3D scene system.

Finally, there is the question of whether such systems in VR are suitable for other
applications besides the creation of simple scenes, such as digital education.

The following sectionwill now discuss how this dissertation contributes to the various
challenges.
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1.3 Contributions
The following sections list the contributions of this dissertation. They are divided into
four main categories and mapped as far as possible to the contextual expectations from
Section 1.1 and Figure 1.1.

Analysis & Evaluation of Language Models
Word embeddings like Word2Vec (Mikolov et al., 2013a) or transformer-based (Vaswani
et al., 2017) language models like BERT (Devlin et al., 2019) are an essential part of any
modern NLP application. As the popularity grows, so does the desire to improve the
quality of these foundations. Although static embeddings are increasingly being re-
placed by context-based variants, they still have their place as their application is much
faster, more resource-efficient and easier to interpret (Gupta & Jaggi, 2021). This is also
where the basic idea of using context-based models to improve the static ones comes
from (Gupta & Jaggi, 2021). We used BERT-based models to resolve coreferences, re-
placing pronouns with their proper names in the training data. We were able to show
that all tested word embedding approaches did not significantly benefit from pronoun
substitution and explained the results by saying that we ended up with exactly what we
were trying to prevent with the approach: the loss of contextual information (Henlein
& Mehler, 2020, Chapter 3).

Another important issue, as mentioned earlier, is that of interpretability. With regard
to the generations of text-to-3D scene, the question arises to what extent transformer-
based language models enable the extraction of knowledge about object relations. In
other words, to what extent such knowledge is represented in these models? For this
purpose, we used different approaches from bias research and analyzed static and dy-
namic models. In doing so, we were able to show that the models differ greatly in terms
of the amount of knowledge they allow to extract. Similarity measures perform much
worse than classifier-based approaches. And static models perform almost as well as
contextualized models - in some cases even better. The considered relations were: ob-
ject relations (X occurs in Y ; X consists of Z ; action A involves the use of X) and thus
refer to these contextual expectations: spatial expectation, conceptual expectations and
requirement-related expectations (Henlein & Mehler, 2022, Chapter 7).

Grounding of Human-Object Interactions
Tightly linked to conceptual expectations is the grounding of human-object interactions.
It deals with the question for which purposes/interactions objects are created and which
conditions they have to fulfill for these actions to be possible. This is especially true
for the orientation of objects, e.g., a spoon is handled differently when it is used to eat
soup (horizontal) — when it is used to mix coffee with milk (vertical) — or if the spoon
is only held (called habitat; Pustejovsky & Krishnaswamy, 2016). For this distinction,
we annotated the HICO-DET dataset (Chao et al., 2018) with Gibsonian and telic (Puste-
jovsky, 2013) affordances and then trained our model (called AffordanceUPT) on this
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dataset. For this model, we demonstrated that it is effective in discriminating between
Gibsonian and teltic affordances in images and that our model learns other correlations
in the data to make such discriminations (e.g., the presence of hands in the image), al-
though orientation recognition remains difficult, and thus habitat detection (Henlein
et al., 2023a, Chapter 8).

SeSB
While the developments in text-to-image generation have recently shown huge progress
due to the huge amount of available data, this amount of data is still unthinkable for
3D scene generation (see Section 2.4). The first work consisted of a concept for a VR
environment for the annotation of ISO Space, a markup language for the annotation of
spatial structures in texts (see Section 2.1.1). However, the annotation of IsoSpace itself is
relatively complex, so the VR environment should not only support the annotator itself
but also partially automate the process (Henlein et al., 2020, Chapter 4).

Alongside Text2SceneVR was developed, which allows the creation of spatial hyper-
texts in VR. Supported functions were the free placement of objects and creation and
texturing of walls and rooms (Abrami et al., 2020a, Chapter 5).

Both project ideas were then combined as Semantic Scene Builder (SeSB), a modular
text-to-3D scene generation system based on SemAF as the underlying data structure.
Via VR, the user can make changes to the generated scenes at any time or create them
himself from scratch. We also evaluated the modules built into SeSB against a mod-
ern open-source method for text-to-scene (the only one publicly available) and found
that our approach not only performed better but could also model a wider variety of
scenes. SeSB benefits from two self-generated resources that allow the model to resolve
roomnames (spatial expectations) and required objects for actions performed by humans
(requirement-related expectations). Furthermore, based on the different context expec-
tations, we have shown which weaknesses the current systems still have and in which
directions it is essential to further develop in the future so that the systems become even
more realistic (Henlein et al., 2023b, Chapter 9).

VR as a Tool for Digital Learning
The last point is about the concrete application of VR-based systems for digital learning
and teaching purposes. A point that has become more important, especially in recent
years, due to quarantine and corona regulations. Based on the work of Fowler (2015);
Mikropoulos & Natsis (2011) and Mayes & Fowler (1999), we derived several require-
ments for educational VR applications and analyze a variety of current programs to see
to what extent these are met. We were able to show that the possibilities offered by
VR are far from exhausted, as most applications only try to emulate reality instead of
expanding it. In addition to the existing tools, we show the possibilities in the field of
virtual and three-dimensional teaching and learning environments using the example of
VAnnotatoR (Henlein et al., 2021, Chapter 6).
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1.4 Dissertation Structure

This dissertation is structured as follows. Chapter 3 - 9 are the published papers, which
were made in the context of this dissertation.

Chapter 1 provides an introduction to the topic (Section 1.1) discussed here, including
challenges (Section 1.2) and contributions (Section 1.3) to the topic addressed by this
dissertation.

Chapter 2 presents related work that is built upon later in this dissertation or that is
substantively related to this work. Specifically, the following areas are highlighted: The
Semantic Annotation Framework (SemAF) and, as part of it, especially IsoSpace as an
annotation scheme for the annotation of (spatial) semantics, which will later serve as a
foundation for SeSB (Section 2.1). The architecture of TextImageR and the associated
entire infrastructure of SeSB, consisting of TextImageR, TextAnnotatoR and VAnno-
tatoR (Section 2.2). The functionality of transformer models and associated language
models such as BERT are the cornerstone of current state-of-the-art NLP methods (Sec-
tion 2.3). And last but not least other text-to-3D scene generation models and their
approaches (Section 2.4).

Chapter 3 investigates the impact of coreference resolution as a preprocessing step
for static word embeddings. Various downstream tasks serve as evaluation criteria for
this purpose.

Chapter 4 presents an initial concept of how a VR annotation environment can be
used to annotate IsoSpace and text-to-3D scene data, and the benefits of this VR envi-
ronment.

Chapter 5 presents Text2SceneVR, a VR tool based on VAnnotatoR for creating spa-
tial hypertexts for training future text-to-3D scene systems.

Chapter 6 provides a detailed overview of existing practices and tools for digital and
virtual teaching, learning, and collaboration, as well as the necessary requirements and
strategies to make the most of technological opportunities in the future, with a focus on
solutions and strategies for three-dimensional, virtual environments and applications.

Chapter 7 evaluates the extent to which transformer-based language models allow
us to extract knowledge about object relations (X comes in Y ; X consists of Z ; action
A involves the use of X). For this purpose, we use approaches from BIAS research and
compare the results with static embeddings.
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Chapter 8 introduces AffordanceUPT, a modular adaptation of UPT, for the classifi-
cation of Gibsonian and telic affordances. To this end, the HICO-DET dataset has been
extended accordingly, and interesting features of AffordanceUPT are highlighted that
may be of interest for grounding affordances in the future.

Chapter 9 finally introduces Semantic Scene Builder (SeSB), a VR-based text-to-3D
scene framework using SemAF and UIMA to integrate a variety of tools and resources.

Chapter 10 summarizes the content of this dissertation (Section 10.1) and provides an
outlook for future work (Section 10.2).
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2 Related Work

This chapter presents the main related work to which this thesis refers. For this pur-
pose, the following works are presented in particular: The annotation scheme for the
annotation of semantic and thus also spatial structures in texts (Semantic Annotation
Framework, Section 2.1). A framework for natural language annotation and process-
ing (TextImager, Section 2.2). State-of-the-art language models that are currently used
in almost all Natural Language Processing applications (Transformers, Section 2.3). And
finally, themost important text-to-3D scene generation publications in recent years (Sec-
tion 2.4).

2.1 Semantic Annotation Framework
The Semantic Annotation Framework (SemAF) is published under ISO/TC 37/SC 4/WG 2
Semantic Annotation. It was developed with the goal of creating a unified, and thus mu-
tually compatible, framework to represent different levels of linguistic semantics (Ide
& Pustejovsky, 2017, Chapter 4). The individual modules range from temporal (Iso-
TimeML; Pustejovsky et al. (2010); ISO (2012a)) and spatial (IsoSpace; Pustejovsky et al.
(2011a); ISO (2020)) annotations to annotations of discourse referents (SemAF-DS; ISO
(2014c) and measurable quantitative (MQI; ISO (2021)). Other modules are still under
development, such as for spatial semantics (ISO, 2022b).
SemAF consists of two main components: Entities, which can be marked in the text, and
Links, which represent the possible relations between the entities. Different modules
now introduce different entities and links that represent different semantic information.
Both have additional attributes that depend on the entity/link type. The most important
modules for this work, are discussed in the next sections. An example annotation can
be found in a later Chapter (Chapter 9, Figure 9.2).

2.1.1 IsoSpace
The IsoSpace module is used to annotate spatial semantics. The focus is on the labeling
of spatial entities and their spatial relationships to each other. The entities themselves
are divided into Locations, Paths and regular Spatial Entities. The spatial relations are
annotated via Qualitative Spatial Links (QSLinks) and Orientation Links (OLinks). QS-
Links represent topological RCC8+ (Region Connection Calculus) relations (Randell et al.,
1992). OLinks represent all other spatial relations (e.g. behind, south, across). Addition-
ally, there areMeasure Links (MLinks) to be able tomap concrete spatial dimensions. And
Movement Links (MoveLinks) represent spatial and intrinsic movements or changes. For

9
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Type Name Example Short Description
En

tit
y

SpatialEntity he, dog, cup regular spatial entities
Place Frankfurt, village geographic or administrative location
Path street, river, coast location consisting of a sequence of lo-

cations
EventPath triggered by Motions to describe the

path of that motion
SpatialRelation in, on, west, to signalwords for spatial relations or

movements.
Motion swim, aged An event that changes an object extrin-

sically or intrinsically.
NonMotion drink, live broad term for all kinds of events that

can take place anywhere
Measure 5m, 20 kg spatial dimension

Li
nk

QSLink EC, PO, TPP RCC8+ relation between two entities
OLink spatial relation between two entities

(from a relative viewpoint)
MoveLink connects a mover with an EventPath
MLink connects a Measure with en Entity

Table 2.1: All IsoSpace related Entities and Links.

a complete list of entities and links provided by IsoSpace, see Table 2.1.

2.1.2 VoxML

The SemAf VoxML module (ISO, 2022a) itself is still under development, so this section
only discusses the VoxML paper published so far (Pustejovsky & Krishnaswamy, 2016).

Unlike the other SemAF modules, VoxML is not an additional annotation layer for
texts, but a description language for 3D objects. The goal is to describe semantic knowl-
edge about these objects, including attributes, events and habitats. Such knowledge is
essential for tasks like text-to-3D scene generation where the positioning and orienta-
tion of objects is an essential part of making a scene look natural (cf. Biederman et al.,
1982; Boyce & Pollatsek, 1992; Lauer et al., 2020). Unfortunately, there are not enough
3D objects with VoxML annotations yet, so their inclusion in text-to-3D scene is not yet
useful.

2.1.3 Other Modules

In the following, a few more (but not all) modules of SemAF will be presented, which
will play a role in the upcoming parts of this work.

10
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IsoTimeML IsoTimeML (Pustejovsky et al., 2010; ISO, 2012a) is an revised and adapted
version of TimeML (Pustejovsky et al., 2005a,b) to be compatible with SemAF standard.
IsoTimeML is for annotating events, times and their temporal relationships in texts and
therefore essential for understanding temporal relationships and sequences in scene de-
scriptions.

Semantic roles (SemAF-SR) SemAF-SR (ISO, 2014b) supports the annotation of se-
mantic roles (Palmer et al., 2005). This is important for scene descriptions in order to
make it comprehensible who performs which actions and to assign objects to these ac-
tions.

Reference annotation (RAF) RAF (ISO, 2019) is used for the annotation of e.g. coref-
erences (Radford, 2004, p. 332) and thus allows the resolution of multiple names of the
same entity.

Measurable quantitative information (MQI) MQI (ISO, 2021) allows annotating
quantification and quantitative information. Since the model itself is comparatively new
and the basic functionality is already available in IsoSpace, it will not be discussed further
in the rest of this paper.

2.2 Texttechnology Lab Annotation Architecture

In the following section, the main components of the Texttechnology Lab Annotation
Architecture and thus of SeSB are presented. These main components are:

1. TextAnnotatoR (Abrami et al., 2019a, 2020c, 2021) as annotation web applica-
tion, as well as REST application to serves as an interface between the documents
and all other applications (Section 2.2.1).

2. TextImageR (Hemati et al., 2016) for automatic processing and preprocessing of
text data via a lot of integrated machine learning tools (Section 2.2.2).

3. VAnnotatoR (Mehler et al., 2018; Spiekermann et al., 2018; Abrami et al., 2020a)
as VR annotation environment implemented in Unity3D¹ (Section 2.2.3).

A complete overview of the entire current architecture can be found in the work of
Abrami et al. (2021). An overview of how the individual components are connected is
shown in Figure 2.1.

¹https://unity.com/
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Figure 2.1: Highly simplified overview of the Texttechnology Lab Annotation Architec-
ture.

2.2.1 TextAnnotator
TextAnnotatoR is an annotation framework that enables collaborative and simultane-
ous annotations based on UIMA (Ferrucci & Lally, 2004). The UIMA documents them-
selves are managed and stored within a MongoDB (Abrami & Mehler, 2018). TextAn-
notatoR offers both a WebSocket application including various annotation tools for
different applications, as well as a REST interface for connecting further tools, such as
VAnnotatoR or MobileAnnotatoR (Adeberg, 2020). Among others, the following an-
notators have been implemented in TextAnnotatoR (Abrami et al., 2021):

• QuickAnnotator for annotating Multi Word Expressions and Named Entities.

• PropAnnotator for annotating Semantic Roles and Word Sense Disambiguation.

• DepAnnotator for annotating Dependency Relations based on different Tagsets.

• SemAFAnnotator (de Reichenfeld, 2022) for annotating IsoSpace and 3D scenes
from a top-down view (Compatible with SeSB).

2.2.2 TextImager
TextImageR is used to preprocess new documents and then save them directly in the
UIMA format required by TextAnnotatoR where possible errors can also be corrected.
In the TextImageR itself, a large number of tools are implemented for an equally large
number of languages. These range from standard syntax parsers such as tokenizer, part-
of-speech tagging, and dependency parsing to content analysis such as word sense dis-
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ambiguation (Uslu et al., 2018a) and DDC classification (Uslu et al., 2018c). In addition,
the TI has several visualization tools that allow you to visually compare a variety of dif-
ferent documents at different levels, e.g. Text2Voronoi (Mehler et al., 2016a) or LitViz
(Uslu et al., 2018b).

2.2.3 VAnnotatoR

VAnnotatoR is a VR- and UIMA-based annotation tool implemented in Unity3D. The
tool itself allows a variety of applications, e.g. the creation of multimodal hypertexts
(Mehler et al., 2018) regular textual annotations (Spiekermann et al., 2018) or the in-
teraction with historical information (Abrami et al., 2020b). The interaction with the
environment takes place via a head-mounted display and the interaction via the corre-
sponding VR controllers.

2.3 Language Models
In this section, various word embedding methods and language models are presented,
with transformer-based language models in particular currently representing the state
of the art in language processing.

2.3.1 Static Wordembeddings

Probably the best-known method to create static word embeddings on large amounts of
data is Word2Vec (Mikolov et al., 2013a,b). The goal is to find vector representations for
words that contain both syntactic and semantic information. The basic idea itself was not
new (cf. Rumelhart et al., 1985), but what made Word2Vec stand out was that it could
be trained on large amounts of data very quickly. The basic architecture is relatively
simple. A window of size n is moved over the text, and a neural network is trained to
determine the middle word based on the surrounding words (CBOW) or, conversely, to
determine the given words based on the middle word (Skip-gram). Mikolov et al. (2013a)
noted that CBOW usually performs better, whereas İrsoy et al. (2021) evaluated that the
performance of both variants is the same and the difference was only due to a bug in the
implementation.

Besides Word2Vec there are many other methods to create static embeddings. The
most important of these are:

• GloVe (Pennington et al., 2014), using global word co-occurrence relations.

• fastText (Mikolov et al., 2018; Bojanowski et al., 2017; Grave et al., 2018), including
subword information.

• Levy (Levy & Goldberg, 2014), based on dependency relations instead of linear
word sequences
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Figure 2.2: Transformer architecture based of Figure 1 of Vaswani et al. (2017). The dot-
ted red lines are residual connections (He et al., 2016).

2.3.2 Transformers

Transformers were first introduced in the work of Vaswani et al. (2017). It was intro-
duced as an encoder-decoder model for machine translation tasks. The idea was to avoid
complex recurrent (Hochreiter & Schmidhuber, 1997) or convolution neural networks
and instead rely on self-attention mechanics (Bahdanau et al., 2014) to allow more paral-
lelization. The architecture is visualized in Figure 2.2. To be precise, “Scaled Dot-Product
Attention” is used, whereby the input consists of so-called Queries Q, Keys K , and Val-
ues V . dk describes the dimension of Q and K and is used as a scaling factor.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Instead of applying the attention mechanisms only one time, the Transformer uses a
so-called “Mutli-Head Attention System” where h defines the number of attention heads.
In this way, the model can view information from different representation subspaces at
different positions.
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2.3 Language Models

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.2)

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.3)

The decoder model now differs from the encoder model in two essential points. First,
in the first layer, via masking of future positions, the model can only refer to information
prior to i at any time i. Second, the decoder uses K and V of the decoder, which assists
the decoder to focus on important parts in the input sequence.

To take into account the order of the words or their distance from each other, so-called
“positional encodings” are used.

Based on this architecture, the following variants of language models have evolved:

Encoder-based Language Models Based on the Transformer-Encoder architecture,
BERT (Bidirectional Encoder Representations from Transformers; Devlin et al., 2019)
was developed. BERT itself is pre-trained on two tasks: “Masked Language Modeling”
(MLM) where during training some of the words are masked and the model is supposed
to predict these words based on the context, and “Next Sentence Prediction” (NSP) where
the model is given two sentences and is asked to determine if the second sentences can
come after the first sentences. As with Word2Vec, there are now countless variations,
each with its own twist, to name just a few:

• RoBERTa (Liu et al., 2019b): They dropped NSP and instead used more training
data and improved the masking algorithm.

• ALBERT (Lan et al., 2019): Instead of NSP, they predict the order of two sentences.

• ELECTRA (Clark et al., 2020): Instead of MLM, the tokens are replaced by an-
other language model and the model itself should predict which tokens have been
replaced.

• DistilBERT (Sanh et al., 2019): Created via “knowledge distillation” (Buciluǎ et al.,
2006; Hinton et al., 2015) from a larger BERT model.

Decoder-basedLanguageModels On the other hand, decoder-based languagemod-
els were developed, such as GPT-2 (Radford et al., 2019). Instead of sentences with
masked tokens, these models are trained with incomplete sentences, and the model is
expected to predict the next token and therefore perform better on tasks like text gen-
eration. While encoder-based models almost always need to be tuned to the actual task
after the fact, decoder-based models show much better performance on zero-shot and
few-shot tasks (Brown et al., 2020; Wang et al., 2022; Scao et al., 2022).

Also, Transformer architectures are not limited to NLP applications but have been
ported very successfully to other areas of computer science, such as Computer Vision
(Khan et al., 2021; Han et al., 2022) or Finance (Ding et al., 2020).
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2.4 Text-to-3D Scene

2.4.1 WordsEye
WordsEye(Coyne & Sproat, 2001)² was not the first, but the first successful text-to-3D
scene system and is still developed today (e.g. Coyne et al., 2011; Ulinski et al., 2019)³.
Even then, WordsEye supported objects, attributes, signs, poses, and spatial relation-
ships, among others. Texts are processed using dependency parsing and PoS tagging,
where nouns are recognized as 3D objects and relations are represented into a kind of
frame semantics using dependency rules (Coyne et al., 2010). This is now supplemented
by VigNet (Coyne et al., 2011), an extension of FrameNet (Baker et al., 1998), e.g. to
ground the different meanings of prepositions.

2.4.2 SceneSeer
SceneSeer (Chang et al., 2017b, 2014a,b, 2015a) relies less on manually generated re-
sources, but learns in advance from prebuilt scenes support priorities for objects, for
example, that a piece of cake is on a plate and that plate in turn is on a table. The input
text is processed via Stanford CoreNLP (Manning et al., 2014) and is based on similar
rules as WordsEye. In addition, SceneSeer supports the subsequent modification of the
created scenes with the help of text commands also within certain limits of Active Learn-
ing.

2.4.3 Language-driven synthesis of 3D scenes from scene
databases

The work of Ma et al. (2018) is based even more on prebuilt 3D scenes. Again, the input
text is processed via Stanford CoreNLP and transformed into an abstract scene layout
via rule-based part-of-speech and dependency graph rules. The graph is then matched
with existing scenes and the most similar scene is taken as a template. In addition to a
self-taught model that provides additional support to parents, the following models are
integrated:

1. a co-occurrence model for adding relevant objects based on co-occurrence prob-
abilities (e.g., a mouse next to a keyboard).

2. a pairwise model for predicting the relative position between two objects (e.g.,
where to place a chair next to a table).

3. a group model for dealing with group relationships (e.g. “clean office table”).

4. and a relative model to handle conflicts between explicit relationships specified
in the input dataset and implicit relationships specified by existing objects.

²http://www.wordseye.com/
³https://wordseyeworld.com/
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2.4 Text-to-3D Scene

2.4.4 SceneFormer

The focus of SceneFormer (Wang et al., 2021a) is the creation of realistic scenes (Scene
Synthesis, see Section 2.4.5). It uses an end-to-end approach, combining multiple trans-
former-encoder models (Vaswani et al., 2017) to sequentially determine the object cate-
gory, orientation, position, and dimension for each newly added object. However, they
also present a text-conditional variant that only supports a maximum input of 3 sen-
tences and 40 tokens. In addition, the models are trained only on living rooms and bed-
rooms using the SUNCG dataset (Song et al., 2017), which is no longer freely available
for licensing reasons.

2.4.5 Related Tasks

Scene Synthesis

Scene Synthesis describes the task of creating realistic scenes. Most of the works in
this direction focus specifically on indoor scenes (e.g. Li et al., 2019; Wang et al., 2021a;
Ritchie et al., 2019; Huan et al., 2022) This is mostly not about the generation of random
scenes but based on some form of input. This can be text-based, of course, but also
based on RGB-D images (Huan et al., 2022), pre-made layouts (Wang et al., 2021a), user
interactions (Zhang et al., 2021d), scene graphs (Dhamo et al., 2021) ect. (Zhang et al.,
2019).

Text-to-Image

Related to text-to-3D scene generation is the generation of images. This task has also re-
ceived much more attention lately(e.g. Tan et al., 2019; Ramesh et al., 2021, 2022; Saharia
et al., 2022; Ding et al., 2022; Alayrac et al., 2022). These models benefit from the combi-
nation of advances in grounded language modeling (like CLIP; Radford et al., 2021) and
the sheer amount of data that can be crawled from the Internet (cf. LAION-5b⁴ which
provides 5,85 billion image-text pairs).

Text-to-Shape Generation

An increasingly growing area of research is the creation of 3Dmodels of objects based on
text descriptions. Depending on the approach, these objects are created as point cloud
(Yang et al., 2019; Achlioptas et al., 2018), voxel (Sanghi et al., 2022; Chen et al., 2018),
mesh (Nash et al., 2020) or implicite representation (Chen & Zhang, 2019; Mescheder
et al., 2019). Or alternatively get the most suitable object from an object database (Text-
to-shape retrieval; Ruan et al., 2022).

⁴https://laion.ai/
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2 Related Work

Text-to-Animation

And finally, there is the variant of creating not static scenes from text descriptions, but
entire animations. These applications are mostly very domain specific. This can be, for
example, the generation of TV shows (Hayashi et al., 2014), emotional scenes (Hanser
et al., 2009a,b) or or human locomotions (Zhang et al., 2021c).
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3 On the Influence of Coreference
Resolution on Word Embeddings in
Lexical-semantic Evaluation Tasks

Henlein, A. & Mehler, A. (2020). On the Influence of Coreference Resolution on Word
Embeddings in Lexical-semantic Evaluation Tasks. In Proceedings of The 12th Language
Resources and Evaluation Conference (pp. 27–33). Marseille, France: European Language
Resources Association

Abstract
Coreference resolution (CR) aims to find all spans of a text that refer to the same entity.
The F1-Scores on these task have been greatly improved by new developed End2End-
approaches (Lee et al., 2017) and transformer networks (Joshi et al., 2019). The inclusion
of CR as a pre-processing step is expected to lead to improvements in downstream tasks.
The paper examines this effect with respect to word embeddings. That is, we analyze the
effects of CR on six different embedding methods and evaluate them in the context of
seven lexical-semantic evaluation tasks and instantiation/hypernymy detection. Espe-
cially in the last task we hoped for a significant increase in performance. We show that
all word embedding approaches do not benefit significantly from pronoun substitution.
The measurable improvements are only marginal (around 0.5% in most test cases). We
explain this result with the loss of contextual information, reduction of the relative oc-
currence of rare words and the lack of pronouns to be replaced.

3.1 Introduction
Many NLP systems use word embeddings as a fast to learn resource that captures im-
portant lexical information (Mikolov et al., 2013b). Once trained, embeddings can be
used in many different tasks, like Coreference Resolution (Lee et al., 2018), Emotion De-
tection (Felbo et al., 2017), Biomedical Natural Language Processing (Wang et al., 2018),
Image Caption Generation (Vinyals et al., 2015) or Text Classification (Uslu et al., 2019).
Most of them rely on local information delimited by context windows or dependency
parents to predict word relations (Levy & Goldberg, 2014). This approach encounters
problems wherever semantic relationships have to be captured, which are expressed by
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Edgar Allan Poe was an American writer.

Poe is best known for his poetry.

comp

comp

nsub

cop

det

amod

root

nsubjpass

auxpass

advmod

nmod

case

nmod:poss

root

Figure 3.1: Dependency trees of two consecutive sentences. The blue arrow from poetry
to Poe indicates the expanded context that is mediated by his.

coreference, as the following example illustrates:

“Edgar Allan Poe was an American writer. Poe is best known for his poetry.”

Based on a context window-based approach of amaximumof five right neighbors, we get
data to examine the relationship of Poe and writer and of his and poetry. But the model
is not informed about a relationship between Poe and poetry when using a too small
window. Obviously, the detour via the use of overly large window sizes (which would
capture wanted as well as unwanted co-occurrences) can be prevented by a coreference
resolution which replaces his with Poe.

The mapping of different linguistic expressions to the same entity is called Corefer-
ence Resolution (CR) (Ponzetto & Poesio, 2009). Previous systems were computation-
ally very intensive and required a large NLP pipeline to calculate the required features
(Clark & Manning, 2015; Wiseman et al., 2016; Clark & Manning, 2016; Poesio et al.,
2016). The currently most modern system (Lee et al., 2018; Joshi et al., 2020) does not
need any of these features, therefore it is now possible to perform CR in a reasonable
time. The resulting state-of-the-art score is 79.6% F1-Score for English. In this paper,
we use CR as pre-processing step for training word embeddings, replace pronouns with
their first mention, and evaluate the final word embeddings on different tasks. There
are several approaches to evaluating word embeddings, which can be divided into ex-
trinsic and intrinsic tasks. Extrinsic is the evaluation on downstream tasks such as POS
tagging. Intrinsic evaluations explore word data about syntactic or semantic relations.
The Word Similarity (WS) task, for example, evaluates how well the dot product of two
word pairs correlates with the scores of human annotations (Jastrzebski et al., 2017). In
this paper, we analyze the influence of resolving anaphoric relations on computing word
embeddings by means of intrinsic approaches. As shown above, anaphoric relations are
usually lost in training, although they manifest important relationships between words.
Our experiments show that none of the embeddings analysed is improved by mention
substitution – in any event, the improvements are only marginal.
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Word Context

poe writer/nsub−1, (poetry/nmod:poss−1)
writer poe/nsub
his poetry/nmod:poss−1

poetry his/nmod:poss, (poe/nmod:poss)

Table 3.1: Example input (reduced) of Levy & Goldberg (2014) based embeddings in-
duced by the example of Figure 3.1. The additional contexts in parentheses
are achieved with the help of CR.

We explain this result with the loss of contextual information, reduction of the relative
occurrence of rare words and the lack of pronouns to be replaced. The paper is organized
as follows: Section 3.2 gives a short overview of word embeddings and of CR. Then we
present our approach to enhancing word embeddings based on CR in Section 3.3 The
experimental setup is described in Section 3.4 The results in Section 3.5 A prospect to
future work is presented in Section 3.6

3.2 Related Work

Pre-trained word embeddings (Mikolov et al., 2013b; Ling et al., 2015; Pennington et al.,
2014; Levy & Goldberg, 2014; Komninos & Manandhar, 2016) are a standard component
of most modern NLP architectures. However, most of these systems are based only
on local word information, such as skip-grams (e.g. Mikolov et al. (2013b) or Ling et al.
(2015)) or dependency relation-basedwindows (e.g. Levy&Goldberg (2014) or Komninos
& Manandhar (2016)).

Only recently, new systems have been introduced which are trained on large contexts
using LSTMs (Peters et al., 2018) or large neural attention systems (Transformers) based
on more complex transfer-learning tasks (Devlin et al., 2019; Liu et al., 2019a) and are
therefore not limited to local information – but at the price of additional computational
complexity. At the same time, the list of proposals for new embedding methods that are
pre-trained on ever larger corpora from more and more areas (genres, registers etc.) of
more and more languages is constantly growing (Grave et al., 2018; Bojanowski et al.,
2017; Radford et al., 2019). In recent years, the impact of various features such as POS-
tags, subword information, semantic relations and in-domain data on word embeddings
have been analyzed (Rezaeinia et al., 2017;Wendlandt et al., 2018; Bojanowski et al., 2017;
Boleda et al., 2017; Gupta et al., 2017) and improved results have been obtained.

In this paper we complement this research and ask about the effects of CR on word
embeddings. This is done by example of six methods of computing word embeddings:
Cbow (Mikolov et al., 2013b), Skip (Mikolov et al., 2013b), Glove (Pennington et al., 2014),
Wang (Ling et al., 2015), Levy (Levy & Goldberg, 2014) and Komninos (Komninos &
Manandhar, 2016).
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3.3 Coreference Substitutions for Enhancing Word
Embeddings

In this section, we briefly introduce a formal apparatus to model coreference. Let

T = (w1, . . . , wi, . . . , wn) (3.1)

be a document with n tokens and words (lemmas) w = L(wi) at position i. To avoid
grammatical issues (especially morphological ones), we lemmatize all tokens in T .

A mention
mi:j = (wi, . . . , wj) (3.2)

is then defined as a continuous segment of tokens of T . Let

M = (m1, . . . ,mp), p ≤ n, (3.3)

be the sequence of all mentions observed in T , sorted by occurrence. A mention mi is
said to be antecedent to a mention mj if both are co-referent (and thus connected by a
co-reference link) and if i < j. We denote this antecedence bymi < mj . Then we define
the function

first(mj) = arg min
mi∈{mi<mj |i∈{1,...,j−1}}

{i} (3.4)

which returns the antecedent of mj of lowest index and write mi � mj ⇔ first(mj) =
mi.

3.3.1 Extending the informational scope of window-based
embeddings

Our approach to extending window-based embeddings by means of CR is the following:
For all pronominal mentions mi, for which first(mi) is not pronominal, we replace:

mi ← first(mi) (3.5)

This means that we replace each pronoun with its lowest index antecedent which in our
case is represented by a corresponding lemma or multiword expression as shown in the
following example:

…his poetry. 7→ …Edgar Allan Poe poetry.

So far, our replacement procedure only considers pronouns. The reason is that we
expect the greatest loss of information from not replacing them. In this way, we avoid
problems that we would get if we replaced phrasal mentions (e.g. more complex noun
phrases) with their phrasal antecedents.
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3.3 Coreference Substitutions for Enhancing Word Embeddings

Type WS Average MEN WS353 SimLex999 RW MTurk-287 Google SemEval2012_2
c p h ph c p h ph c p h ph c p h ph c p h ph c p h ph c p h ph c p h ph

Cbow 2 42.29 42.11 43.37 42.43 67.54 67.02 68.56 67.38 53.87 54.56 55.28 54.32 35.42 34.75 35.09 34.97 25.28 25.31 25.98 24.42 61.63 60.76 61.75 61.23 33.68 34.61 39.20 36.15 18.59 17.77 17.70 18.52
Cbow 5 44.64 44.47 45.80 44.94 70.45 70.21 71.24 70.71 58.24 57.42 58.61 58.52 37.42 37.18 37.78 37.57 24.36 24.32 24.78 24.35 61.60 60.64 62.21 61.89 41.63 43.08 46.37 43.94 18.79 18.45 19.61 17.62
Cbow 10 45.68 45.48 46.37 46.07 72.25 71.93 72.60 72.45 60.70 60.31 60.69 60.72 37.32 37.15 37.61 37.37 25.28 24.70 24.83 24.13 62.24 62.63 63.80 63.88 44.41 45.65 46.97 46.20 17.57 16.00 18.10 17.73
Skip 2 47.58 47.71 48.59 48.13 73.54 73.43 74.35 73.50 66.03 65.57 67.76 66.47 40.92 40.84 41.25 41.81 31.33 31.46 31.95 32.12 61.66 61.88 62.96 61.48 41.53 42.12 42.87 41.94 18.02 18.71 19.03 19.59
Skip 5 49.61 49.15 49.32 49.63 75.44 75.64 75.83 75.55 69.09 68.80 67.98 68.95 40.44 39.69 40.10 40.35 32.43 30.96 31.50 32.04 63.92 63.43 65.34 65.30 48.33 47.96 47.90 48.19 17.63 17.58 16.56 17.06
Skip 10 48.92 48.61 48.64 48.61 76.19 76.25 76.28 76.05 68.14 68.12 68.38 68.08 38.07 38.24 38.03 38.13 30.33 28.37 29.48 29.12 65.89 65.91 65.70 66.04 48.31 48.59 48.40 48.52 15.50 14.82 14.20 14.31
Glove 2 33.94 32.96 34.20 34.00 62.17 61.00 62.95 62.29 43.20 40.73 43.37 41.23 27.47 27.26 28.01 27.55 14.04 13.51 13.99 14.05 51.92 50.02 50.84 50.90 25.28 25.15 25.78 25.98 13.47 13.05 14.47 15.99
Glove 5 38.29 37.28 38.02 38.41 68.47 66.54 68.45 68.84 47.51 45.78 47.10 46.93 29.35 27.18 28.39 28.94 16.56 16.39 16.18 16.64 53.52 53.79 54.18 54.11 37.99 36.93 38.04 37.87 14.61 14.40 13.77 15.54
Glove 10 39.43 38.23 39.06 39.16 70.00 68.16 69.47 69.42 48.04 46.62 47.48 47.38 29.06 27.04 27.86 28.32 16.87 16.53 16.40 16.71 55.14 54.66 55.07 55.57 42.42 41.89 42.42 42.22 14.50 12.74 14.74 14.48
Wang 2 47.26 47.36 47.96 47.46 72.03 71.63 73.34 71.78 65.45 66.74 67.65 66.32 43.22 42.94 43.30 41.99 33.36 32.90 33.27 33.34 59.63 59.37 59.32 59.63 36.89 38.54 38.69 38.22 20.22 19.41 20.13 20.93
Wang 5 48.37 48.04 48.28 48.21 73.03 73.30 73.74 73.48 68.25 67.33 68.64 67.92 41.33 41.02 41.71 42.28 32.68 31.34 32.59 33.05 62.39 60.38 59.93 59.15 42.38 43.78 43.01 42.83 18.56 19.12 18.36 18.75
Wang 10 47.56 48.50 48.38 48.58 73.06 73.89 74.17 73.60 68.10 68.96 68.93 68.79 41.70 41.32 41.21 41.58 32.14 31.61 31.87 32.47 56.89 60.49 58.04 60.28 44.02 45.16 45.59 45.02 16.99 18.05 18.82 18.31
Levy 41.80 - - 41.97 66.54 - - 66.95 60.59 - - 61.76 46.16 - - 46.40 31.64 - - 31.64 54.35 - - 54.70 12.21 - - 12.49 21.11 - - 19.86

Komninos 47.45 - - 47.26 72.68 - - 72.50 62.84 - - 62.68 42.09 - - 41.29 33.73 - - 33.46 61.00 - - 60.80 38.84 - - 40.28 20.97 - - 19.78

Table 3.2: Evaluation of different embedding types with different window sizes. c stands
for the original dataset, p where we replaced only pronouns, h where we only
replaced every mention with the mention head and ph, where we replaced
only pronouns with the corresponding antecedent.

3.3.2 Extending the informational scope of dependency-based
embeddings

For embeddings derived from dependency trees, we choose an approach that explores
the underlying dependency relations. Let

D(w, T ) = {d(wi1), . . . , d(wik)} (3.6)

be the set of all parent tokens d(wih) to which the tokens wih , h = 1..k, of lemma
w = L(wih) are directly dependent in text T . Conversely,

D−1(w, T ) = {wi ∈ T | L(d(wi)) = w} (3.7)

is the set of all tokens that directly depend on some token of lemmaw in T . A tabular rep-
resentation of these sets derived from the text sample of Figure 3.1 is shown in Table 3.1.
The procedure for extending the informational basis for computing dependency-based
embeddings is now as follows: for each lemma for which there is a token that directly
dominates a pronominal anaphoric mention, we add a dependency link from this token
to the non-pronominal antecedent of lowest index of this pronoun. If this antecedent
consists of several tokens, the root node of the corresponding dependency subtree is used
as the target of the link. More formally: for each anaphoric pronoun wk ∈ D−1(w, T )
depending on token d(wk) of lemma w = L(d(wk)) such that there exists a mention
wk = mj ∈ M (pronominal mentions are one-place), we extend the set of dependents
D−1(w, T ) of w as follows:

Ḋ−1(w, T ) = D−1(w, T ) ∪
{r(tree(mi)) | ∃mj ∈M

∃wk ∈ D−1(w, T ) :

wk = mj ∧mi � mj} (3.8)

where r(tree(mi)) denotes the root of the dependency subtree tree(mi) spanned bymen-
tionmi. A dependency tree showing an added link between poetry and Poe is exemplified
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in Figure 3.1. The corresponding extended contexts are indicated by brackets in Table 3.1
By analogy to D−1(w, T ), we extend D(w, T ), so that added links can be processed in
both directions by means of the approach of Levy & Goldberg (2014). Note that we only
consider anaphoric, but not cataphoric references which also allow for adding depen-
dency links.

3.4 Experiments

3.4.1 Data Sets and Models
Our dataset used for training consists of the first paragraphs of 1 000 000 Wikipedia ar-
ticles (effects of smaller datasets are analysed in Section 3.5.4) with almost 300 millions
tokens, of which over 4 million (of almost 5.5 million) pronouns have been replaced or
extended. The models used are the Skip and Cbow variant of Word2Vec (Mikolov et al.,
2013b), Glove (Pennington et al., 2014) and Wang2Vec (Ling et al., 2015), Levy (Levy &
Goldberg, 2014) and Komninos (Komninos & Manandhar, 2016). Word2Vec, Glove and
Wang were trained with a fixed vocabulary of the 400.000 most commonly lemmatized
tokens and Levy and Komninos with all lemmatized tokens that occurred at least 15
times in the data set. We trained all embeddings with a size of 300, standard parameters,
window sizes of 2, 5 and 10, and 25 iterations.

3.4.2 Pre-processing
We used Spanbert-Base of Joshi et al. (2020) for coreference resolution. For the needed
dependency features we used the AllenNLP’s (Gardner et al., 2018) implementation of
Dozat & Manning (2017). For tokenization, lemmatization and POS tags, Spacy (Honni-
bal & Montani, 2017) was used.

3.5 Evaluation

3.5.1 Word Similarity
The first analyses on the generated word vectors ran over various word similarity tasks.
All results are listed in Table 3.2. For evaluation, we used the benchmark tool of Jas-
trzebski et al. (2017)¹ as it computes the accuracy for a lot of important Word Similar-
ity and Analogy Tasks. We used: (MEN (Bruni et al., 2014), WS353 (Finkelstein et al.,
2001), SimLex999 (Hill et al., 2015), RW (Luong et al., 2013), MTurk-287 (Radinsky et al.,
2011), Google (Mikolov et al., 2013b), SemEval2012_2 (Jurgens et al., 2012)). We compare
the unmodified dataset (c-version) with a version, were we replaced pronouns with the
complete antecedent (p-version, described in Section 3.3.1), replaced everything with
the mention-head (h), and replaced only pronouns with the mention-head (ph-version,

¹https://github.com/kudkudak/word-embeddings-benchmarks
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3.5 Evaluation

Ins/Hyp Conc Diff DDSq
(Window) c ph c ph c ph
I-NotInst (10) 81.09 81.09 78.97 80.48 80.73 82.00
I-Inverse (10) 98.79 98.34 99.09 99.24 98.79 99.24
I-I2I (10) 95.80 96.40 92.20 92.80 92.20 92.80
I-Union (10) 84.94 84.41 77.58 76.88 79.77 78.98
H-NotHyp (10) 55.16 55.53 54.32 54.23 72.84 73.12
H-Inverse (10) 81.75 79.56 83.84 82.01 83.76 81.92
H-C2C (10) 69.03 68.57 64.15 64.52 79.23 79.78
H-Union (10) 42.73 42.24 40.79 40.30 52.98 52.26
I-Union (2) 86.25 85.20 77.67 77.50 79.16 78.37
H-Union (2) 45.13 44.36 43.19 41.29 53.61 53.29

Table 3.3: Results on the Instances and Concepts dataset (Boleda et al., 2017) with the
Cbow model.

described for dependency in Table 3.3.2). For most context window-based embeddings,
the results based on the data set containing the co-reference do not differ markedly. It is
noteworthy that the p-version is usually worse than the c-version. The observed reduc-
tions in the case of context window-based approaches can be explained by the effect of
the loss of semantic contexts (see Section 3.5.5). The h- and ph-versions perform there-
fore better. We therefore only consider these versions in further analyses. But still, some
embeddings have a tendency towards slightly better results (e.g. Cbow), while others
tend to get a little worse (Wang2Vec). The best responding test data is by far Google,
with an increasing of 5.52% with Cbow (2). The worst results were obtained on the RW
and MTurk-287 data set. Intuitively, the results for coreference embeddings are better
for small window sizes.

3.5.2 Instances versus Concepts

Next, we tested whether the vectors could better distinguish between instances or con-
cepts. The embedding task including the test dataset was presented by Boleda et al.
(2017). The data set consists of word pairs (x, y) where a linear classifier is used to
decide whether x is an instance or a hyponym of y. As a negative example, the data
set contains various error cases, like swap(x, y) (inverse). Further details can be found
in Boleda et al. (2017). As in the original work, we trained a linear logistic regression
classifier with the concatenation (Conc), the difference (Dif) and the squared difference
(DDSq) of the vectors as input. We used scikit-learn (Pedregosa et al., 2011) for imple-
menting this. The results for the Cbow model are listed in Table 3.3 and for the Levy
model in Table 3.4. Again, the vectors do not seem to achieve any performance improve-
ment. However, with regard to the Union dataset, it appears that the results have tended
to get worse.
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Ins/Hyp Conc Diff DDSq
c ph c ph c ph

I-NotInst 82.96 80.84 81.45 80.54 81.90 80.84
I-Inverse 99.55 99.70 99.70 99.85 99.70 99.85
I-I2I 98.40 98.60 96.01 95.61 96.01 95.61
I-Union 87.16 87.07 80.00 80.17 81.22 80.70
H-NotHyp 56.55 57.66 53.67 53.11 67.69 68.52
H-Inverse 84.37 84.02 85.76 86.46 85.59 86.11
H-C2C 72.45 72.54 66.30 66.02 74.56 73.92
H-Union 44.74 45.06 41.13 41.08 50.25 50.16

Table 3.4: Results on the Instances and Concepts dataset (Boleda et al., 2017) with the
Levy.

3.5.3 Feature Analysis

To analyze the results, we took the classification results of the development and test
dataset from the linear classifier of Section 3.5.2 to decide, which words where classified
better or worse. With this information we trained a Decision Tree (DT) and a Support
Vector Machine (SVM) to predict whether the classification of a word w is improved or
worsened when taking into account the following features: 1. How often did we use
w to replace a pronoun according to Section 3.3 (Replacer), 2. Log-frequency of w in
the corpus (VocabC), 3. Frequency in the test set (inTest) and 4. Character count of w
(WordLen). The generated DT for the Cbow model with window size 10 on the H-Union
dataset is shown in Figure 3.2. One observation is that words that appear more fre-
quently in the corpus become slightly better, whereas words that are already rare tend
to get worse. But as soon as words occur too often, they tend to get worse again. It
seems that the embeddings already contain all necessary neighborhood information in
the case of high-frequency words. Rare words, on the other hand, become even rarer
and therefore their vector representations are worsened. The strongest feature for the
SVM was VocabC and the log of Replacer, so we trained a small version with only these
two features to show their behaviour in a two-dimensional space (see Figure 3.3). The
results are similar to those of DT. However, with the decision boundaries it is recogniz-
able how the word frequencies correlate with the results. The words tend to get better
if they are neither too frequent nor too rare in the training data. The same applies to
the replacement. One possible explanation is that common words already cover all in-
formation. Rare words, on the other hand, are rarely referenced by anaphora and do not
benefit from this procedure. It should be noted that this is not so easy to detect with
smaller window sizes.

26



3.5 Evaluation

Figure 3.2: Decision Tree for classifying the error distribution on the H-Union dataset.
Red nodes stand for word embeddings, which tend to get worse through pro-
noun substitution. Blue nodes tend to get better through pronoun substitu-
tion. Gini is a measure of the probability that a randomly selected element
from the data will be misclassified. Value stands for the division of the sam-
ples into the two classes at this node.

Doc Average
Count c p h ph

100 4.41 5.05 5.00 5.15
1 000 14.92 15.54 15.35 16.13

10 000 29.87 29.79 28.80 29.67
100 000 38.56 38.69 39.54 39.01

1 000 000 43.35 43.54 43.71 43.58

Table 3.5: Average results (see Section 3.5.1) for Cbow with vector size 100 and window
size 10 on different amounts of Wikipedia articles.

3.5.4 Corpus Size

We have also tested different corpus sizes, but have not found any significant effect for
them either. The results are listed in Table 3.5. Doc Count is the randomly selected
number of Wikipedia articles.
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Figure 3.3: Error distribution of the SVMwith log(Replacer) on the x-axis and VocabC on
the y-axis. Cbow (left), Skip (middle), Glove (right) with window size 10. Red
areas stand for word embeddings, which tend to get worse through pronoun
substitution. Blue areas tend to get better through pronoun substitution. The
decision-boundaries reveal, that words that are neither too frequent nor too
rare in the corpus tend to produce better results if they are neither replaced
too often nor too rarely.

3.5.5 Explanation of the results
Loss of Semantic Contexts

Windows-based embeddings achieve their quality by looking at which words appear
together in observed windows. In the example

“[Edgar Allan Poe]1 was an American writer. [Poe]1 is best known for [his]1
poetry.”

⇓
“[Edgar Allan Poe]1 was an American writer. [Poe]1 is best known for [Edgar
Allan Poe]1 poetry.”

the distance between associated words (e.g. writer and poetry) increases so much by
the substitution of his that the system is no longer informed about their association in
this example. This effect is increased by the fact that we always replace pronouns with
possibly longer mentions (experiment p). In this way, we amplify the effect that we
originally wanted to avoid. The example also shows that substituting pronouns is not
a trivial task and can distort the semantics of a sentence. The same may happen with
syntax as shown in the example above.

Word Frequency

Wewere able to show that words that are neither too frequent nor too rare in the corpus
tend to produce better results if they are neither replaced too often nor too rarely. In
contrast, the use of frequent words to replace pronouns tend to noise out their already
well-documented contextual informationwithin the original corpus. And for rarewords,
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the additional context information gained byCR is not detailed enough to calculate better
embeddings for them. However, it should be noted that the replacements have only led
to a minimal increase in the volume of data.

3.5.6 Discussion
Our goal was not primarily to achieve the best results for the evaluation tasks we carried
out, but to investigate the effects of coreference resolution on computing word embed-
dings. Actually, there is an effect, but only a small one. This finding indicates the need
to further elaborate the interplay of pre-processing routines like coreference resolution
and downstream tasks such as training word embeddings. With a more elaborated sub-
stitution function first : M →M than the one implemented here better results might be
achieved. An extension would be, for example, training with both sentences, the ones in
which substitutions are made and the original ones. Replacing with (parts of) nominal
phrases might distort the training as well. The use of only named entities could help
with this problem, but would further reduce the amount of information obtained.

3.6 Conclusion
We experimented with improving word embeddings based on CR as a pre-processing
step. We have shown that word embedding approaches do not tend to benefit signifi-
cantly from pronoun substitution. The measurable improvements were only marginal,
even though we could achieve strong improvements with Cbow on the Google dataset.
In future work, we want to analyze the effect of linking all mentions of the same refer-
ence chain with each other (completely connected graph). In addition, we want to find
out which dependency edges contribute to the information gain by training correspond-
ing classifiers.
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4 Transfer of ISOSpace into a 3D
Environment for Annotations and
Applications

Henlein, A., Abrami, G., Kett, A., & Mehler, A. (2020). Transfer of isospace into a 3d
environment for annotations and applications. In 16th Joint ACL - ISO Workshop on
Interoperable Semantic Annotation PROCEEDINGS (pp. 32–35). Marseille: European Lan-
guage Resources Association

Abstract
People’s visual perception is very pronounced and therefore it is usually no problem
for them to describe the space around them in words. Conversely, people also have
no problems imagining a concept of a described space. In recent years many efforts
have been made to develop a linguistic scheme for spatial and spatial-temporal relations.
However, the systems have not really caught on so far, which in our opinion is due to
the complex models on which they are based and the lack of available training data and
automated taggers. In this paper we describe a project to support spatial annotation,
which could facilitate annotation by its many functions, but also enrich it with many
more information. This is to be achieved by an extension by means of a VR environment,
with which spatial relations can be better visualized and connected with real objects.
And we want to use the available data to develop a new state-of-the-art tagger and thus
lay the foundation for future systems such as improved text understanding for text-to-3D
scene Generation.

4.1 Introduction
Humans have a strong spatial perception. This is reflected not only in how well people
can adapt to new spatial environments, but also in their language (Haun et al., 2011).

In recent years there have been increased efforts to create a linguistic model for these
spatial references. This led to new linguistic models, like ISOSpace (ISO, 2014a) and
SceneML (Gaizauskas &Alrashid, 2019) and new tasks, such as Spatial Role Labeling (Ko-
rdjamshidi et al., 2010) or SpaceEval (Pustejovsky et al., 2015). Nevertheless, these anno-
tation schemes have not really been able to establish themselves in applications so far.
This could be due to the models’ complexity, the availability of annotated training data
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and the lack of automated taggers. There were indeed approaches to apply such models
to image descriptions (Pustejovsky & Yocum, 2014), but to our knowledge there were no
efforts to transfer the corresponding annotation schemes into three-dimensionality. For
the latter, the language model would be particularly interesting, for example, to recon-
struct scenes from speech and text three-dimensionally.

In this paper we present our project plan on a 3D VR framework that addresses the
problems mentioned above and offers a direct application. In Section 4.2 we describe the
models and systemswe refer to in our project, and in Section 4.3 we explain howwe build
on these models to create a framework that supports both annotation and application of
these language models.

His [room]p1, a proper [room]p1 for a hu-
man being, only somewhat too small, lay
quietly [between]ss1 the four well-known
[walls]se1. [Above]ss2 the [table]se2,
[on]ss3 which an unpacked collection of
[sample cloth goods]se3 was spread out,
hung the [picture]se4 which he had [cut
out]m1 of an illustrated [magazine]se6 a
little while ago and [set in]m2 a pretty gilt
[frame]se7.

QSLinK(p1, se1, ss1, between)
QSLinK(se3, se2, ss3, EC)
OLinK(se3, se2, ss3, above)
OLinK(se4, se2, ss2, above)
MoveLinK(m1, se4, se6, se4)
MoveLinK(m2, se4, se4, se7)

Figure 4.1: IsoSpace annotation example. On the left side a (simplified) annotation of an
abridged section of Kafka’s: The Metamorphosis according to the ISOSpace
(2014) scheme. On the right side a 3D representation. Each entity in the text
is linked to the corresponding 3D object from ShapeNetSem and we linked
the two clothing to one object group. The relationship between the table and
the room is not explicitly mentioned, but is implied by the placement of the
table in the room.
p: place, se: spatial entity, ss: spatial signal, m: move event.
QS/OLinK(figure, ground, signal, relation). MoveLinK(move, mover, source,
goal).

4.2 Related Work
In recent years, much work has been spent on the development of linguistic models for
the semantic understanding of language. The largest of these is probably the Semantic
Annotation Framework (SemAF), published under ISO/TC 37/SC 4/WG 2 Semantic An-
notation. This consists of individualmodules that relate to specific semantic units and are
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compatible with each other (Ide & Pustejovsky, 2017, Chapter 4). The most widespread
model of SemAF is ISOTimeML (Pustejovsky et al., 2010; ISO, 2012a), a scheme for the
annotation of time and time dependencies of events based on TimeML (Pustejovsky
et al., 2005a). Such dependencies are important for text understanding, because without
them text contents can hardly be fully understood (Ide & Pustejovsky, 2017, p. 942).
There is also a model that focuses more on spatial and spatial-temporal structures, the
ISOSpace (Pustejovsky et al., 2011a; ISO, 2014a). The focus is on spatial and spatial-
temporal relations between (spatial) entities and the connection via motion events. Spa-
tial Entities are marked and connected to each other via different spatial connections.
QSLinks (Qualitative Spatial Links) are for topological relations, OLinks (Orientation
Links) for non-topological relations and MoveLinks for movements of entities in space.
This scheme was the basis of SpaceEval (Pustejovsky et al., 2015) and was success-
fully applied to image descriptions to differentiate between content and structural state-
ments (Pustejovsky & Yocum, 2014).

ISOSpace in particular is being further improved (ISO, 2020) and serves as a basis
for more specialized models, such as SceneML (Gaizauskas & Alrashid, 2019) for scene
descriptions. In addition, SemAF contains schemata such as Semantic Roles (ISO, 2014b),
Dialog Acts (ISO, 2012b) and other modules are under development, e.g. QuantML (Bunt
et al., 2018).

As the requirements for the annotation of text contexts are constantly changing, flexi-
ble and dynamic annotation environments are required to enable the efficient annotation
of complex situations. This challenge is addressed by TextAnnotatoR (Abrami et al.,
2019a), a browser-based and therefore platform-independent annotation tool for collab-
orative multi-modal annotation of texts. Using TextAnnotatoR, NER annotations can
be created in texts in a short execution time as well as the annotation of rhetorical (Hel-
frich et al., 2018), time, propositional and even argument structures can be graphically
visualised and executed. Furthermore, texts can be linked to ontological resources (e.g.
Wikipedia, Wikidata, Wiktionary) and the annotations are managed in different anno-
tation views based on user and group-based permissions (Gleim et al., 2012). As a re-
sult, TextAnnotatoR is capable of creating a real-time calculation of an inter-annotator
agreement based on classes defined in the annotation task (Abrami et al., 2020c).

Since humans are spatially anchored not only in their actions and perception but also
in their linguistic behavior (Bateman, 2010; Bateman et al., 2010), this led to new efforts
to spatially translate annotations by means of virtual reality. One of these projects is
VAnnotatoR (Spiekermann et al., 2018), a system for the annotation of linguistic and
multi-modal information units, implemented in Unity3D¹. VAnnotatoR is a platform
for use in various scenarios such as visualization and interaction with historical informa-
tion (Abrami et al., 2020b) or the annotation of texts and the linking of texts and images
with 3D objects (Mehler et al., 2018). Since VAnnotatoR integrates TextAnnotatoR
and thus makes the annotation spectrum of the latter available in VR, annotations in
VAnnotatoR can be performed collaboratively (in workgroups) as well as simultane-
ously.

¹https://unity.com/
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Figure 4.2: Workflow for ISOSpace Annotation. Blue borders stand for the original an-
notation steps (Pustejovsky et al., 2015). Red filled for VR support and orange
formachine learning support. Span tagging can be supportedwith a sequence
labeling system. And the link inference engine learns through annotations.

4.3 Our Current Project

ISOSpace is a very expressive model, but its complexity makes it difficult to use it as a
basis for annotation. Work is not made easier when 3D information is annotated on a 2D
surface. This becomes particularly clear in the annotation of spatial relations between
entities, where, e.g., in the case of SpaceEval data, the inter-annotator agreement was
only 33% for QSLinks and 39% (Pustejovsky et al., 2015) for OLinks. These are hardly
values that guarantee high data quality. Here an extended visualization, as our project
aims at, could significantly support these annotation tasks.

To this end, our aim is to integrate ISOSpace and other SemAF models such as ISO-
TimeML into TextAnnotatoR. Since TextAnnotatoR is based on UIMA (Unstructured
Information Management Applications) (Ferrucci & Lally, 2004), its annotation schemes
are defined as UIMA Type System DescRiptoRs (TSD). Before the ISO models can be
used in UIMA, they have to be transferred to TSD. This is the first step towards col-
laborative annotation in a visually supporting interface. The annotation can then be
enriched by TextAnnotatoR embedded into VAnnotatoR. This enables spatial anno-
tations with a 3D interface in VR. In addition, spatial entities can be directly linked to 3D
objects via a large number of categorized objects from ShapeNet (Chang et al., 2015a),
the slightly deeper annotated objects from ShapeNetSem (Savva et al., 2015), objects
annotated using VoxML notation (Pustejovsky & Krishnaswamy, 2016) (under develop-
ment) or via abstract representations (as exemplified in Figure 4.1). Simply by placing
the objects in space, conclusions can be drawn about the relationships between them
(and thus also about QSLinks and OLinks) because the information bandwidth of anno-
tation acts in VR is much larger than with pure text annotation. For example, if a book is
placed on the desk in VR, the corresponding QSLink and OLink can be set automatically
with their relevant attributes. Such concrete pictorial representations are not always
unambiguous, but in conjunction with the corresponding sentence, classifiers can be
trained to solve this (Hürlimann & Bos, 2016). This can also be extended to MoveLinks,
which are set automatically when, for example, the book is carried through the room
and placed on a shelf. Or the annotator can follow a direction described in the text in
the VR environment. Such actions are much more natural and easier for humans to per-
form than abstract annotations in a 2D display. Missing links can thus be more easily
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identified and in some cases automatically predicted and attributed, e.g., by examining
transitive relations. Such support has also been successfully applied to the annotation
of the TimeML standard (Setzer et al., 2005; Verhagen et al., 2006; Verhagen, 2007). The
underlying workflow is shown in Figure 4.2.

A central challenge will be the underspecification of scene descriptions. Related is-
sues concern descriptions containing negations. Though we do not yet have a solution
to solve the problems involved, we assume that by combining spatial experience in VR
with annotation services provided by annotators, for example, underspecified reference
relations can be annotated by exploring additional information with regard to the anno-
tators’ positions in relation to referred objects. In examples such as “There is no book
on the table” a corresponding book object can be highlighted to indicate the negation
(as done, e.g., in WordsEye (Coyne & Sproat, 2001)). In the case of underspecified rela-
tions, as expressed in examples of the sort of “The pencil is next to the book”, there is
the possibility of assigning relative or variable positions to objects (so that they take up
tipping states in the visualization).

The next step is the stepwise extension of our annotation system by further (e.g. ISO-
TimeML) and future (e.g. QuantML (Bunt et al., 2018)) SemAF modules. In this way we
create a multi-modal, virtualized annotation system capable of mapping text to abstract
or concrete spatial representations of a very broad complexity.

The available ISOSpace data will then be used to develop and train taggers that au-
tomatically perform or largely support this annotation. The taggers can support anno-
tators with annotation suggestions, which the annotators then only have to accept or
minimally correct.

TextAnnotatoR is already actively used for annotating historical text data in the
BIOfid project². These annotations (Ahmed et al., 2019) will be extended in the near
future to include ISOSpace, ISOTimeML, SemAF-SR and probably also QuantML.

Such in-depth annotations could form the still missing basis for text-to-3D scene sys-
tems (Coyne & Sproat, 2001), which in turn should be able to provide a much deeper
understanding of spatial language than previous systems that focus primarily on key
words (e.g. (Chang et al., 2017b; Ma et al., 2018). Application areas could be, for exam-
ple: Reconstructing events from multiple texts (based on Twitter, news reports, etc.),
visualizing descriptions of accidents (Johansson et al., 2005) or crime scenes or 3D visu-
alizations of text content to clarify certain relations (e.g. intersections of biographical
life paths). This could also help to identify weaknesses of the ISOSpace model, such as
missing information relevant for spatial annotation. A problem that could occur is that
RCC (Region Connection Calculus) (Randell et al., 1992) for representing topological re-
lations of regions is not sufficient to represent 3D spaces. One reason is that it does not
refer to a specific dimension (Renz, 2002).

²https://www.biofid.de/en/
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4.4 Conclusion
We argued that ISOSpace, despite its expressiveness, has not yet reached the application
density that is essential to provide training data for tools for automatically annotating
spatial language. To fill this gap, we plan to integrate ISOSpace into VAnnotatoR to
enable 3D annotations of spatial language. This will also include other SemAF models in
order to ultimately provide the data basis for the creation of text-to-3D scene systems.
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5 Text2SceneVR: Generating
Hypertexts with VAnnotatoR as a
Pre-processing Step for Text2Scene
Systems

Abrami, G., Henlein, A., Kett, A., & Mehler, A. (2020a). Text2SceneVR: Generating hy-
pertexts with vannotator as a pre-processing step for text2scene systems. In Proceedings
of the 31st ACM Conference on Hypertext and Social Media, HT ’20 (pp. 177–186). New
York, NY, USA: Association for Computing Machinery

Abstract
The automatic generation of digital scenes from texts is a central task of computer sci-
ence. This task requires a kind of text comprehension, the automation of which is tied to
the availability of sufficiently large, diverse and deeply annotated data, which is freely
available. This paper introduces Text2SceneVR, a system that addresses this bottleneck
problem by allowing its users to create a sort of spatial hypertexts in Virtual Reality (VR).
We describe Text2SceneVR’s data model, its user interface and a number of problems
related to the implicitness of natural language in the manifestation of spatial relations
that Text2SceneVR aims to address while trying to remain language independent. Fi-
nally, we present a user study with which we evaluated Text2SceneVR.

5.1 Introduction
Human information processing is strongly spatial, not only in perception but also in
language (Lakoff, 1987). It is not a problem for us, for example, to describe scenes or
mentally reconstruct scenes from linguistic descriptions. Take the following text (Sam-
ple 1): “During my last conference, I stayed in a beautiful hotel room with a red sofa, dark
blue curtains and a breathtaking view of the old town, which was offered to me through my
window beside the desk.” Imagining the scene described by this sentence is no problem
for us, while computers still have fundamental difficulties in visualizing even elemen-
tary aspects of it. In particular, relations that are not directly mentioned, but are part
of general knowledge, for example, are particularly difficult for computers to process
(e.g. the fact that the curtains being mentioned are probably attached to the window).
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Although texts can be processed with various linguistic tools (e.g. Qi et al., 2020; Man-
ning et al., 2014; Akbik et al., 2018; Hemati et al., 2016; Gardner et al., 2018), entities be
recognized and mapped to 3D objects (e.g. Coyne & Sproat, 2001; Ma et al., 2018; Chang
et al., 2017b), we are still very far from understanding such texts on a similar level as
humans.

In this paper we introduce Text2SceneVR, an open hypermedia system for gener-
ating a special type of spatial hypertext, which aims to generate data for the training
of Text2Scene systems (Coyne & Sproat, 2001). The spatial data available so far usually
have no textual description (e.g. SUNCG (Song et al., 2017)), and if they do, they are
rather sparse and only connect complete rooms with generic statements (e.g. Stanford
Text2Scene (Chang et al., 2014b)). There is no assignment between component objects
and the corresponding text sections, which would provide additional information for
training. In this way, the basic problem of such text understanding systems, namely
the lack of sufficiently large, deeply annotated and openly accessible data, is addressed.
This data bottleneck problem currently prevents the effective development of systems
that automatically map texts to computer-based scene representations. By transferring
this annotation problem to virtual reality and thus associating it with 3D, spatial hy-
pertext, we benefit from the extended annotation possibilities offered by such systems
(e.g. Spiekermann et al., 2018). Our approach is to specifically address the problem of
the implicitness of natural language: for this purpose, we allow users to extend input
texts with sentences and text segments which, from their point of view, are related to
the input (by being entailed by it) but not explicitly mentioned. Annotation with Text-
2SceneVR then means to connect segments of the input text with virtual objects or their
spatial relations and to do the very same with entailed descriptions.

The resulting hypertexts can than be used to train systems that are ideally able to do
this themselves.

To generate such systems, we distinguish the following relations:

1. Object recognition: The first task concerns the identification of described objects.
This requires entity recognition methods that recognize successive descriptions of
the same objects, their attributes and relations, in texts.

2. Referential meaning relations: In order to recognize objects correctly one has
to understand the meanings of their linguistic descriptions. This relates to ex-
plicit as well as implicit descriptions. Explicit descriptions are usually manifested
by definite noun phrases (e.g. the red sofa). Implicit descriptions concern under-
specified, possibly contradictory, vague or otherwise informationally uncertain
descriptions. When referring, for example, to a hotel room it can be implicitly as-
sumed that a bed is likely contained in it. But this does not need to bementioned in
its description. In any event, it is expected that the result of an automatic process-
ing of scene descriptions itself is not under-specified or too low in content. With
Text2SceneVR we introduce a tool for generating annotation data for training
systems that automatically interpret under-specified scene descriptions.

3. Part-whole-relations: A related challenge concerns implicit descriptions of part-

38



5.1 Introduction

Argument of relation (object)
Relation explicit implicit

Referential meaning explicit OR1 OR2

implicit OR3 OR4

Part-whole explicit OH1 OH2

implicit OH3 OH4

Topological explicit OM1 OM2

implicit OM3 OM4

Table 5.1: Matrix of arguments and relations.

whole-relations of objects. Depending on the level of detail of the scene descrip-
tion, it may be necessary to additionally refer to components of objects and the
materials of which they consist. In the above text, the visualization of the bed may
include, for example, references to mattresses, sheets, pillows, quilts, covers, etc.

4. Topological relations: Beyond part-whole-relations we have to consider that ob-
jects are topologically arranged - and again, this may not be explicitly expressed
(as in “The printer is placed besides the PC” – left or right?). This also refers to
spatial distance, perspectivation, scaling and contextual relations (such as the left-
right distinction). The following sentence illustrates how scale descriptions can be
underspecified: The big ant is on the little elephant. (Kamp, 1975) We can assume
that the elephant is significantly larger than the ant. That is, the attribute is scaled
relative to the referenced entity. But also the pronoun “on” is ambiguous: in the
sentence “The ant is on the airplane”, on means “inside” and not “on top”.

Based on these preliminaries, we distinguish relations (rows in Table 5.1) and their ar-
guments (columns in Table 5.1) in order to specify 16 sub-tasks of Text2Scene systems.
Given the example “I leafed through my newspaper in my garden in the shade of a tree
while leaning on its root”, Table 5.2 lists sentences that are either explicitly or implic-
itly entailed by this sample and thereby exemplify the cases distinguished by Table 5.1.
Since these cases are usually mixed, it is very difficult to correctly identify object re-
lations expressed in texts and to convert them into scenic representations. This task
of automatically generating scenes based on text descriptions is approached under the
name Tex2Scene. Only humans are currently capable of solving this task. In order to
train Text2Scene systems appropriately, we need both: sufficiently deep and accurate
annotations of texts like Sample 1, but also annotations of the same quality of sentences
and texts entailed by such samples in order to get a better grip on the problem of under-
specified space and object descriptions. Text2SceneVR is dedicated to this task.

Different disciplines have varying views on how to define a scene. In linguistics, the
“narrated space” is often divided hierarchically. These range from the lowest level of
the “spatial framework” in which the current action takes place to the highest level of
the “narrative universe” (Dennerlein, 2009, chap. 2.3), which describes “the world (in the
spatio-temporal sense of the term) presented as actual by the text, plus all the counterfac-
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Type Example

OR1 “Io haver a gardeno.”
OR2 “I leanr with my backo against the rooto.”
OR3 “Io readr the newspapero.”
OR4 “The weathero isr sunnyo.”
OH1 “The rooto is part_ofr the treeo.”
OH2 “The treeo hasr brancheso.”
OH3 “The newspapero consists_ofr pageso.”
OH4 “Leaveso hangr from the brancheso of the tree.”
OM1 “Io am inr my gardeno.”
OM2 “The grasso beneath me is inr the shadowo of the tree.”
OM3 “The newspapero is in_front_ofr meo.”
OM4 “The suno is behindr the treeo.”

Table 5.2: Sentences exemplifying referential meaning, topological, and part-whole rela-
tions as distinguished by Table 5.1. All these sentences are entailed by Sample
(1). Mentions of objects and relations are identified by o and r, with implicit
mentions in bold.

tual worlds constructed by characters as beliefs, wishes, fears, speculations, hypothetical
thinking, dreams, and fantasies (Ryan, 2012, chap. 2.1e)”.

For psychology, a scene is much more object-bound. Thus, in experiments, a scene is
often understood as a set of all objects included by the corresponding scene (e.g. Greene,
2013), or of all objects that are perceived (e.g. Võ et al., 2019) in the scene. Existing scene
synthesis systems interpret objects in a similar way to psychologists and describe scenes
as a series of objects in space arranged in a certain way (Zhang et al., 2019). The creation
of scenes from text are usually realized in three steps: preprocessing/parsing, optimiza-
tion/inference and generation (Zhang et al., 2019; Chang et al., 2017b). The formalisation
is as follows (Chang et al., 2017b):

P (s|u) = P (t|u)P (t′|t)P (s|t′) (5.1)

where u is the original utterance used to generate the scene s, t is the original scene
template and t’ is the optimized one. P(t|u) is therefore the parsing phase in which the
template is generated from the input, P(t’|t) the interference phase in which the template
is optimized and P(s|t’) the generation phase in which the final scene is generated from
the template. The recognition of objects and their direct relationships can be processed
directly in the parsing phase through extensive NLP pre-processing. Usually the prob-
lems arise from the implicit relationships, which can be resolved in the Inference phase.
However, interpretations of meaning representations of objects, part-whole relations and
contiguity relations mostly depend on the respective context and the availability of gen-
eral knowledge. Many systems try to solve the corresponding bottleneck problem by
using knowledge bases like WordNet (Miller, 1995) or ConceptNet (Speer et al., 2017)
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(e.g. WordsEye (Coyne & Sproat, 2001) or SceneMaker (Hanser et al., 2009a, 2010)); alter-
natively they use data-driven methods (e.g. SceneSeer (Chang et al., 2017b) or Ma et al.
(2018)).

It becomes clear that Tex2Scene is a highly challenging task that requires certain con-
ditions for its implementation: A high degree of machine learning is necessary, which in
turn requires the availability of appropriate, deeply annotated training data that contain
a variety of under-specified representations of spatial relationships and explicate these
as far as possible. Our approach is to generate these training data in the form of spatial
hypertexts. Since there is currently no patent solution for this scenario, we extended
VAnnotatoR (Spiekermann et al., 2018; Abrami et al., 2019b) – an open hypermedia
system for the visualisation and annotation of graph structures for the representation of
natural language texts. More specifically, we added the functionality of visualizing and
annotating spatial hypertexts in Virtual Reality (VR). Moreover, the relations described
in Table 5.1 are processed succesively and beside our focus on the generation of training
data for machine learning, the interaction of users with objects can be included in later
stages.

This paper describes an extension of VAnnotatoR as a system for generating spatial
hypertexts, the underlying annotation model, its exemplification and evaluation, the so-
called Text2SceneVR and is structured as follows: Section 5.2 provides an overview of
related work. Section 5.3 describes the annotation environment, the architecture, and
the dataset used for evaluation, while the annotation model is described in Section 5.4.
Afterwards, Section 5.5 presents the evaluation of VAnnotatoR and Section 5.6 outlines
future work. The paper is summarized in Section 5.7.

5.2 Related Work
There are some projects that focus on spatial hypertexts but the aspect of three-dimensionality
is not considered in our knowledge. For this reason this overview is basically functional
and we refer to comprehensive overview articles. Therefore a well overview of these
mostly older projects and the observation of the absence of a common vocabulary re-
garding spatial hypertexts, see (Bernstein, 2011).

The understanding of spatial hypertexts used to consist more in the visualization of
these graph structures. Accordingly, the origins were rather browser-based procedures
with the goal of visualizing the underlying networks (Thüring et al., 1991; Marshall &
Shipman III., 1995). An example for this is the tool VIKI (Marshall et al., 1994). The
system supports the reader by its visual representation through the spatial usability of
relative nodes as well as the writer by means of a visual language. In the following years,
the system was continuously further-developed (Marshall & Shipman III., 1995, 1997).

The Visual Knowledge Builder (VKB) (Shipman III. et al., 2001) considered itself a “sec-
ond generation” of spatial hypertexts. The focus of this system was on long-term coop-
eration and linking through the introduction of processing histories. Since then, many
other applications have been developed and enhanced according to the Spatial Hyper-
text principle, e.g. Wikis (Solís & Ali, 2008), visualization of relevant content (Roßner
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et al., 2019), use of a document store for data storage (Rubart, 2019) or interpretation of
spatial ambiguity (Francisco-Revilla & Shipman, 2005).

Related work also concerns VR-based systems. Since it is impossible to list all rele-
vant VR projects, we highlight selected projects which focus on dynamic virtual envi-
ronments. 3D visualizations of software code that enable immersive “flights” by users,
where classes are represented as virtual solar systems or as cities is described by (Ober-
hauser & Lecon, 2017). Likewise Kett et al. (Kett et al., 2018) introduce resources2city, a
system for visualizing and interacting with file systems represented as cities, while (Wolf
et al., 2017) examine the effects of virtualized architectural structures on users. In addi-
tion, (Nguyen et al., 2017) introduce Vremiere, a video editing tool designed to break the
boundaries of 2D applications by processing and visualizing in 3D environments. There
is also a range of earlier projects that address information management and retrieval us-
ing 3D environments such as (Card et al., 1991, 1996; Benford et al., 1997). All these tools
have in common that they allow for rich object-related annotations in VR making use
of spatial metaphors for information modeling. Our task will be to add the generation
of training data for the automatic recognition of spatial structures to this area.

Applications in VR are also available in different fields of application such as medicine
(Kuehn, 2018)), psychiatry (Benbouriche et al., 2014) and learning (Sampaio et al., 2013;
Naranjo et al., 2017). The first uses VR to develop immersive therapies for patients with
post-traumatic stress disorders. The second investigates the potential of VR in forensic
psychiatry. Thirdly, (Naranjo et al., 2017) describe the use of 3D environments in teach-
ing autistic children. Although there are many projects of this kind, there is no system
that allows to generate training data especially for Text2Scene systems. Text2SceneVR
is being developed to fill this gap.

A second field of related work concerns semiotic analyses of VR, which are rather rare
(see (Barricelli et al., 2016) for a review of this literature). We concentrate on the few arti-
cles that focus on an operative, at least classificatory concept of semiotics. (Marini et al.,
2012) provide a semiotic analysis from the point of view of pragmatics and especially
rhetoric. (Barricelli et al., 2016) extend this approach by considering syntactic, semantic
and pragmatic aspects of classifying VR systems. In doing so, they focus primarily on
visual, iconic signs. (Barricelli et al., 2018) use this classification in a user study of eight
VR systems. In contrast to these approaches, we start with an analysis of linguistic signs
to enter the field of indexical (hyperlinks) and iconic signs (3D simulations).

Furthermore, there are numerous works focusing on the recognition of objects in texts
and their transformation into three-dimensional representations. The first successful
system was WordsEye (Coyne & Sproat, 2001). This has been further developed until
today and is one of the linguistically most flexible Text2Scene systems (Hassani & Lee,
2016) because of the resulting resources like VigNet (Coyne et al., 2011) and Spatial-
Net (Ulinski et al., 2019). WordsEye is largely based on manually annotated rules for
processing input texts.

The StanfordText2Scene (Chang et al., 2015b, 2014a,b) project is based on the Stanford-
NLP pipeline (Manning et al., 2014) and therefore includes awide range of pre-processing
tools. Since the placement of objects is based on statistically learned spatial knowledge
and the system enables interaction with the user, StanfordText2Scene learns from user
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behavior, improving both the selection and placement of objects. In more recent works,
the focus continues to be on the realistic representation of rooms and groups of objects,
rather than on language analysis (e.g. (Ma et al., 2018)). In general, most Text2Scene
systems lack sufficient linguistic pre-processing or the ability to post-correct generated
scenes or rooms manually (Hassani & Lee, 2016).

There are efforts to learn from human corrections (e.g. Chang et al., 2014a) or map cer-
tain linguistic expressions to spatial references, such as VigNet (Coyne et al., 2011) (an
extension of FrameNet (Baker et al., 1998)) or SpatialNet (Ulinski et al., 2019), but these
only refer to individual linguistic phenomena and the data is not publicly available. In
the meantime, efficient systems have been developed that map linguistic descriptions to
images (Zitnick et al., 2013; Tan et al., 2019) or generate descriptions for images (Vinyals
et al., 2015). But even these try to avoid the problems mentioned above by using ever
larger neural end-to-end systems, which require even larger large data sets, such as
COCO (Lin et al., 2014) or Conceptual Captations (Sharma et al., 2018). However, these
datasets are not yet available for 3D. More specifically, in the present context, end-to-end
learning means that the entire model is differentiable so that it can therefore be trained
via gradient descent. Since these models often consist of millions of parameters that
are trained via training data, correspondingly large amounts of data are required (Glas-
machers, 2017). Note that end-to-end learning has established itself as a state-of-the-art
method in many NLP areas such as coreference resolution (Lee et al., 2017) or speech
recognition (Hannun et al., 2014).

5.3 From VAnnotatoR to Generating and Annotating
Virtual Rooms

For the generation of spatial hypertext it is necessary to learn topological as well as part-
whole relations from texts. For this, the implementation of a system for the generation
spatial hypertexts has already been the object of previous work (Mehler et al., 2018), the
so-called VAnnotatoR (Spiekermann et al., 2018). VAnnotatoR allows for creating,
visualizing and interacting with multimedia data (texts, images, segments of texts and
images, geo-coordinates, video and audio files, URLs (by means of virtual browsers) and
3D models of objects and especially of (virtual reconstructions of) buildings. For this
purpose, 3D glasses (HTC Vive¹ and Oculus Rift²) are used as VR devices, while Google’s
ARCore³ is used as a platform forAugmented Reality (AR) devices (Mehler et al., 2018). In
addition to visualization and interaction with objects, annotation, i.e. the explicit rela-
tion of signs and objects, is an essential feature of VAnnotatoR. This functionality de-
pends on the type of the object: texts and images can be segmented with VAnnotatoR,
for example, links are processed with its virtual browser and video files are processed
using a virtual viewer. Beyond that, VAnnotatoR includes a variety of methods for the

¹https://www.vive.com/de/product/#vive_series
²https://www.oculus.com/rift/
³https://developers.google.com/ar
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Figure 5.1: The software landscape into which VAnnotatoR is embedded: on the left
side, several web applications are displayed. This includes TextImageR (pro-
viding NLP pipelines for automatic text processing), TextAnnotatoR (en-
abling the multi-user-based annotation of texts), WiKidition (Mehler et al.,
2016b) (providing a wiki-based user interface) and VAnnotatoR. In the mid-
dle of the diagram, the infrastructure of TextImageR is presented. It offers
NLP pipelines used by VAnnotatoR via TextAnnotatoR. TextImageR’s
backend (see TextImager Service Repository) processes a number of input
formats also available via ResourceManager (top right). The DUCC (Chal-
lenger et al., 2016) component (right side) serves for the horizontal and verti-
cal distribution of processes to enable the processing of large amounts of text
data. Finally, CalamaRi is a database based on Blazegraph (Systap LLC, 2015)
which enables the management of ontological knowledge which is currently
extracted from Wikidata, Wikipedia and other resources or areas in which
the present architecture has been applied. The colors of the elements allow a
clearer differentiation.
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interaction with 3D content:
• Highlighting: links between objects can be highlighted by the user to get an
overview or to create reminder marks.

• Looking ahead: remote objects linked to an object can be visualized with a pre-
view function, especially if they are out of sight in virtual space. This preview
serves as a preparation step for what we call teleportation.

• Teleportation: in order to bridge the spatial distances between objects, portals
can be created which visualize a preview of the target and, when used (selected
or entered), provide a virtual transportation to the remote object (Mehler et al.,
2018).

The automatic generation of scenes in VR based on text descriptions makes it necessary
to train suitable machine-learning models, which in turn are bound to the sufficient
availability of training data. To this end, we implemented and tested an annotation
model (see Section 5.4) which is based on the core technology of VAnnotatoR. The
annotation model is exemplified by virtual rooms. Thus, the present paper describes the
extension of VAnnotatoR for generating and annotating virtual rooms as a means to
generate annotation data for training Text2Scene systems.

5.3.1 VAnnotatoR’s Core Functionality
VAnnotatoR⁴ was developed as a virtual research platform for the visualization, anno-
tation and processing of multimedia content. VAnnotatoR processes a wide range of
content objects: this includes (segments of) texts, images, videos and audio streams as
well as 3D representation of buildings or places (Mehler et al., 2018). Figure 5.1 shows
the software landscape in which VAnnotatoR is embedded (c.f. Spiekermann et al.,
2018; Abrami et al., 2019b; Kett et al., 2018; Kühn et al., 2020). By integrating TextAn-
notatoR (Abrami et al., 2019a), a platform-independent annotation tool, VAnnotatoR
allows for annotating texts on various levels of text structuring (Kett, 2020). Amongst
other things, this includes anaphoric relations, propositional structures, argument struc-
tures and rhetorical text structures (Abrami et al., 2019a). TextAnnotatoR operates on
texts using the UIMA (Götz & Suhre, 2004; Ferrucci et al., 2009) format. In this way, exter-
nal NLP tools can be easily integrated and, conversely, the output of TextAnnotatoR
can be exchanged interoperably (Ide & Suderman, 2009). In fact, any UIMA document
that is serialized and interchangeable via XML can be processed with TextAnnota-
toR in this way. Thanks to the additional integration of TextImageR (Hemati et al.,
2016), VAnnotatoR dispenses with the need to manually annotate documents virtually
in raw format on all levels. That is, a wide spectrum of language levels is automatically
pre-processed and annotated using the NLP pipeline (including tools for tokenization,
named entity recognition, relation extraction, semantic role labeling, etc.) of TextIma-
geR. In addition, by means of DUCC (Challenger et al., 2016)⁵, TextImageR allows for

⁴For videos introducing into VAnnotatoR see https://tinyurl.com/w4jctvv
⁵Distributed UIMA Cluster Computing
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Figure 5.2: VAnnotatoR resources window. VAnnotatoR gives access to vari-
ous external resources, whereby its users can choose between different
sources: resources can be selected from the local computer, the Stolperwege
server (Mehler et al., 2017), the ResourceManager (Gleim et al., 2012), or from
ShapeNetSem (Savva et al., 2015).

processing large amounts of text data in a horizontally and vertically distributed server
landscape. TextImageR generates UIMA documents, which are managed by the so-
called ResourceManager and the UIMA Database Interface (UIMA-DI) (Abrami & Mehler,
2018). UIMA-DI is a database solution for the document-based approach of UIMA and
enables the real-time use of UIMA documents for annotation processes. Annotations of
UIMA documents are defined by means of annotation schemes, that is, so-called UIMA
Type System Descriptors. With the help of ResourceManager (Gleim et al., 2012) UIMA
documents can be given user and group related access rights. In addition to these doc-
uments, VAnnotatoR can process a number of other resources, as shown in Figure 5.2.

The communication between VAnnotatoR and TextAnnotatoR takes place via a
web socket. This 1-to-1 connection of both tools enables direct interaction between dif-
ferent users without time-consuming requests for changes (Abrami et al., 2020c). Text-
AnnotatoR allows the simultaneous annotation of the same text by several users (Abrami
et al., 2020c). To this end, views are generated so that texts can be annotated by different
users in a collaborative manner or logically and contextually separated from each other.
And since the views are provided with access rights, a very flexible use is guaranteed.
In addition, the real-time evaluation of different views of the same documents in terms
of the inter-annotator agreement allows their selection for training machine learning
systems from a quality perspective (Abrami et al., 2020c).
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Figure 5.3: VAnnotatoR text window. Text pre-processed by TextImageR is made ac-
cessible to VAnnotatoR via TextAnnotatoR and displayed in an annota-
tion box. Only one sentence is displayed at a time; however, users can switch
between the sentences.

5.3.2 VAnnotatoR’s Text2SceneVR
Up to this point already existing features of VAnnotatoRwere described. The following
enhancements of VAnnotatoR is about creating spatial structures based on their textual
descriptions (see Table 5.1) to arrive at annotation data for training Text2Scene systems,
each annotation task begins with an input text as illustrated in Figure 5.3: the text is pre-
processed by TextImageR, loaded via TextAnnotatoR and visualized in an annotation
box of VAnnotatoR, in which words are separated on the token level. Within the
box, tokens can be merged to map multi-word expressions and to relate them to spatial
objects created by the user (see Section 5.5). After a connection to TextAnnotatoR
has been established, a spatial hypertext can be generated from the input text with V-
AnnotatoR’s so-called Text2SceneVR. For this purpose, references to the 3D objects
created by the user and their contents must be generated from the text and its segments.
In addition, textual relations manifested in the text must be mapped to corresponding
spatial relations; in other words: spatial configurations must be created that correspond
to these textual relations (see Section 5.1). Finally, the user may generate additional
sentences that are entailed by corresponding sentences of the input text from his point
of view and process them according to the same procedure. In this way, the relational
spectrum described in Section 5.1 is mapped in such a way that the respective input text
and its user-dependent text extensions are interwoven with the user-generated object
space and its spatial arrangement. This is what we call a spatial hypertext in VR. To
generate such hypertexts, the following operations are available for users:

1. Creating rooms: the first step for creating a spatial hypertext in VR is to create
a room. For this purpose there is a menu item in the annotation box that allows
to draw the room’s dimensions on the floor as a grid (Figure 5.4). The dimensions
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Figure 5.4: VAnnotatoR room creation. Virtual rooms are created by first defining their
dimensions.

between the corners of the room, which need not be square, are then visualized.
The grid spacing can be freely configured, so that a flexible design of rooms is
possible. After the outlines of a new room have been defined, it can be configured
in detail (Figure 5.5).

2. Creating windows, doors and use textures: the rooms can be equipped with
doors and windows (Figure 5.6) and also textured (Figure 5.7). The rooms can be
placed and arranged as desired in the virtual environment. It is possible to arrange
them next to each other, to connect them and to form room ensembles (Figure 5.7).

3. Object placement: further functions include the selection and configuration of
room contents and their spatial arrangement. As shown in Figure 5.8, objects as
provided by ShapeNetSem (Savva et al., 2015) can be placed anywhere in the virtual
environment. Besides positioning, objects can be scaled, rotated and clustered into
organizational groups.

We distinguish four usage settings (see Figure 5.9):

• Document: the document tab provides access to the text to be annotated (see Fig-
ure 5.3) and allows for switching between its sentences, creatingmulti-token units,
and linking text segments to 3D objects (see Section 5.5).

• Rooms: with the room tab users can create new rooms (Figure 5.4), edit existing
rooms, dimensionalize them and apply suitable textures to walls/floors/ceilings.

• Objects: With the object tab, 3D objects (furniture, artifacts etc.) can be created
to fill the rooms or existing objects can be modified (see Figure 5.9). In addition,
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Figure 5.5: VAnnotatoR wall creation. After defining the corners of a room, its walls
are created, whose height depends on the user settings.

doors and windows can be created and placed. Furthermore, objects selected from
ShapeNetSem can be placed within the rooms, scaled, rotated or adapted to exist-
ing surfaces (see Figure 5.8).

• Other The other tab offers additional settings such as size settings for the grid.

An important step in generating spatial hypertexts is the specification of objects,
which are explicitly or implicitly mentioned in the texts, and their placement as con-
tents of the previously generated rooms (see object tab). To this end, a wide range of 3D
objects and textures are available. Objects are taken from ShapeNetSem (Savva et al.,
2015), a sub-project of ShapeNet (Chang et al., 2015a), which includes more than 12 000
3D objects from 270 categories. Each of these objects is annotated with semantic fea-
tures such as scaling, orientation, estimated weight and volume. Textures are taken from
3dtextures.me⁶. About 700 textures from 45 main categories and 200 subcategories are
available. VAnnotatoR thus has a large number of degrees of freedom for creating
rooms and their contents⁷.

Text2SceneVR is currently being used by students as part of a practical course at the
Goethe University Frankfurt. Until now, twelve paragraphs have been annotated and
virtual rooms have been created with Text2SceneVR, which forms a corpus of anno-
tated romms. In addition, two students separately used Kafka’s “The Metamorphosis” as
a basis for modeling and annotating the corresponding apartment with an average of 45
objects (without walls, windows and doors).

⁶https://3dtextures.me/
⁷For the demonstration of the use of VAnnotatoR for the creation of spatial hypertexts see our YouTube
videos (https://tinyurl.com/y87wtveq).
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Figure 5.6: VAnnotatoR doors and windows. Freely configurable doors and windows
are positioned on the walls of a room. If two rooms are next to each other, it
is possible to create a passage between them.

Figure 5.7: VAnnotatoR texturing. Virtual rooms can be provided with textures that
reflect information contained in the underlying text. All textures are taken
from 3dtextures.me.
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Figure 5.8: VAnnotatoR evaluation annotation example. A look at the annotation from
our evaluation. The room described in the input text was created, textured,
objects were placed and positioned and the multi-word unit “old high-legged
chair” was linked to the chair-object (annotation). The representation of the
chair does not fully correspond to the object mentioned in the text; this is
because a corresponding object does not exist in ShapeNetSem. The blue line
visualizes the pointing gesture (Kühn et al., 2020) used to create the annota-
tion; the green line visualizes the annotation of the chair in the room by a
segment of the input text.

5.4 Text2SceneVR’s Annotation Model

In order to map spatial objects to linguistic expressions, a data model is required that
is flexible, extensible and interoperable by using known formats. For this purpose, we
developed a data model, which is largely based on UIMA type system descriptors. The
data model is shown in Figure 5.10. Though we implemented this model by means of
ShapeNetSem, it can be extended to include related object models as generated, for ex-
ample, with VoxML (Pustejovsky & Krishnaswamy, 2016).

Our data model requires that annotations are selected in the input text and anchored
with a so-called RoomObject. Our model does not require that an object specified in this
way is a concrete object that can be mapped to ShapeNetSem; rather, it can also be an
abstract object that is composed of several sub-objects. In any event, the entire scene
described by the input text itself is considered a RoomObject (e.g. a kitchen scene).

The walls of a room are saved as a sorted list of nodes and assigned to the correspond-
ing room object as attributes, as shown in Figure 5.4. This approach enables not only
the hierarchical structuring of the scene representation, but also the linking of text seg-
ments with groups of objects. This regards, for example, the modeling of quantifiers (e.g.
all glasses) or of expressions that denote groups of objects (e.g. seating group). Finally,
room objects that are not mentioned directly in the input text are classified as parts of
object groups (partly with reference to decoration purposes) and assigned to the overall
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Figure 5.9: VAnnotatoR control window. VAnnotatoR uses a control window for vi-
sualizing and annotating spatial structures. It allows for accessing and mod-
ifying the input text (document tab), the properties of rooms (room tab) and
objects (object tab). With the help of the object tab, doors, windows and other
objects are created, scaled or rotated.

text.
A representation of the examples from Table 5.2 is shown in Figure 5.11. Implicit

referential meaning is resolved by the selection of objects, implicit part-whole relations
by child links and implicit topological relations by the spatial placement of objects.

5.5 Evaluation
We conducted a user study to evaluate Text2SceneVR. Starting from a text sample,
the task of the test persons was to create a room, select and place objects within this
room and to annotate the objects by assigning them to corresponding text segments
(see Figure 5.8 for a snapshot of this evaluation task). In addition, a UMUX test (Finstad,
2010) (Usability Metric for User Experience) was carried out following the annotation task.
The UMUX test included the following questions, which had to be answered on a scale
of 1-7, where 1 means that one strongly disagrees and 7 that one strongly agrees:

1. Using VAnnotatoR to annotate spatial structures is a frustrating experience.

2. The functions in VAnnotatoR, to annotate spatial structures, meets my require-
ments.

3. VAnnotatoR is easy to use.

4. The creation of spatial structures in 3D environments are easy to perform with
VAnnotatoR.
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Figure 5.10: Text2SceneVR’s data model for the annotation of 3D scenes.
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Figure 5.11: Example scene according to the example in Table 5.2. Arrows mark the
child/part of relationship and the objects linked to the text are blue. The
other objects are derived and the spatial arrangement is based on a 3D rep-
resentation.
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5. The annotations of text to spatial structures in VAnnotatoR are easy to perform.

Each participant created an individually designed room with partly different objects
placed in it. This is due to the fact that each test person imagines the room somehow
differently, while the text sample is somehow under-specified with regard to all spatial
details. This relates, for example, to the choice of objects, their positioning and design.
For this reason, a comparison between the individual annotations is only possible to a
limited degree.

Therefore, an analysis was performed to compare how much time the annotators
needed per object to recognize them in the text, select them from the database and af-
terwards placing them in the room. Because individual participants have created the
rooms in various degrees of detail, only the concrete object creation and placement pro-
cess is used for comparison. The results are shown in Figure 5.12, where the participants
needed on average 3.2 minutes to create and place an object. Unfortunately two partic-
ipants could not be evaluated because of problems with motion sickness. With state-of-
the-art VR hardware and alternative movement options, this problem could be solved in
the future. The participants spent most of their time looking for suitable objects in the
database. Since the database did not contain a suitable 3D object for all object descrip-
tions, sometimes long searches were the result and the next suitable object was selected.
This shows that the selection process for objects must be optimized. For example, pro-
posals can be generated based on selected tokens in a text and their textual contexts.
But as the UMUX test results of Figure 5.13 show, the participants were mostly satisfied
with the usability of VAnnotatoR. The greatest frustration was caused by getting used
to the controls and unfamiliarity with VR. But the participants got used to them after
annotating 1-2 objects. This also explains the slightly worse results for Question 3. On
the other hand, Question 4 and 5, and thus the focus of our tool, were rated best, which
speaks for its handling.

5.6 Future Work
There is a growing need in computational linguistics to extract spatial and temporal
relations from texts (Pustejovsky et al., 2011b). This led to linguistic schemes such as
ISOSpace (ISO, 2014a; Pustejovsky et al., 2011a), which serve to model spatial relations
of the referents of linguistic expressions. We aim to map the spatial model of VAnno-
tatoR directly to ISOSpace. This will facilitate the recognition and learning of links
between expressions and spatial relations. Further, by using SemAF-ISO (Semantic An-
notation Framework) (Ide & Pustejovsky, 2017, chap. 4.2), we plan to map our model to
ISOTimeML (ISO, 2012a) in order to annotate temporal structures and to connect them
with spatial annotations. Furthermore, our model currently only allows the annotation
of entire objects or groups of objects by linking them to text segments. To overcome this
bottleneck, we plan to integrate PartNet (Mo et al., 2019). This will make it possible to
annotate components of objects.

A transformation of ShapeNetSem into VoxML (Pustejovsky & Krishnaswamy, 2016) is
desirable as soon as its development has progressed sufficiently and thus farmore objects
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Figure 5.12: The results of the time measurement with 15 participants of which two par-
ticipants could not be analysed. On average it took each of the 13 partici-
pants 3.2 minutes to place each object. Time includes: recognizing objects
in the text, searching for suitable objects from the database and finally plac-
ing them in the room.
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Figure 5.13: The average results of the UMUX test with 15 participants.

are available than up to now. VoxML is a modeling language that represents semantic
knowledge about 3D objects and links it to representations of actions. A final task will
be to speed up the process of selecting 3D objects by recommending candidate objects
as soon as a token or multi-word expression is selected in the input text.

5.7 Summary

We introduced Text2SceneVR, a VAnnotatoR-based tool for generating spatial hyper-
texts that can be used as training data for Text2Scene systems. It uses TextAnnotatoR
to link texts with spatial objects. The resulting hypertexts can be used to train Text2-
Scene systems that automatically generate virtual scenes from textual descriptions. In
this way we expect to make a significant contribution to solving the bottleneck prob-
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lem of Text2Scene systems regarding the lack of training data. Based on the analysis
of textual manifestations of spatial content, we distinguished three types of object rela-
tions and gave examples of when these are explicitly or implicitly expressed linguisti-
cally. In this way we distinguished 12 tasks for Text2Scene systems, which we address
with Text2SceneVR. By using existing databases such as ShapeNetSem and 3dtextures,
Text2SceneVR already achieves a high degree of freedom in modeling scene descrip-
tions. In an evaluation, we successfully tested the usability of Text2SceneVR. Future
work will deal with the integration of ISOSpace, ISOTimeML and PartNet to increase
the expressiveness of Text2SceneVR by far.

Text2SceneVRwill be published inGitHub (https://github.com/texttechnologylab/
VAnnotatoR) under the AGPL license.
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ing, teaching and collaboration in an era of ubiquitous quarantine. In L. Daniela & A.
Visvizin (Eds.), Remote Learning in Times of Pandemic - Issues, Implications and Best Prac-
tice chapter 3. Thames, Oxfordshire, England, UK: Routledge

Abstract
Circumstances surrounding the COVID-19 pandemic have serious implications for a
multitude of areas of life. Alongside a decrease in the state of health of a considerable
number of people, this global crisis also shows that society – both civil and professional,
regardless of the sector - is now facing new technological challenges. Furthermore, due
to the extensive quarantine measures and the associated closure of educational institu-
tions, a considerable number of deficits have become apparent in the educational sec-
tor, which is particularly evident in communication, collaboration, and teaching. These
circumstances show above all that in the fields of digital and non-stationary learning,
teaching, and collaboration, there is an enormous amount of untapped potential, which
- with regard to the existing tools and methods – is far from being explored. This chapter
provides an in-depth review of existing practices and tools for digital and virtual teach-
ing, learning, and collaboration, as well as the necessary conditions and strategies to
make the best use of technological opportunities in the future. Turning to the future,
this chapter focuses on solutions and strategies for three-dimensional, virtual environ-
ments and applications. In addition to existing tools, we demonstrate the possibilities
in the field of virtual and three-dimensional teaching and learning environments by the
example of the so-called VAnnotatoR.

6.1 Introduction
Theglobal outbreak of the COVID-19 pandemic has left countries, companies, and people
unprepared, and if nothing now changes technologically at the global level, the process
that accompanies it could be a pattern for further future pandemics (Afelt et al., 2018;
Frutos et al., 2020). The restrictions resulting from such a pandemic, e.g. contact restric-
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tions and quarantine (Hellewell et al., 2020), represent a major challenge for companies
and people in general, as it is more difficult to coordinate in teams in the home office or
maintain social contacts. Quarantine also has significant psychological effects on people
as reflected by traumatic stress symptoms or depressions, which can last even longer af-
ter quarantine (Brooks et al., 2020). Psychological effects can continue even years after a
pandemic (Lam et al., 2009). Suggestions to mitigate the consequences of the quarantine
are to “[r]educe the boredom and improve the communication” (Brooks et al., 2020, p.
918). For this reason, the first apps and chatbots have already been developed to support
people during this time (Ouerhani et al., 2020).

How can these and related problems in quarantine periods be countered? The fast and
extensive lockdown made it necessary, especially for companies and educational insti-
tutions, to reuse existing applications. In this context, priority was given to the dis-
semination and distribution of data. Since there are many different existing technical
“solutions”, this has resulted in an extremely heterogeneous approach, even within the
same organizations. Video conferencing systems such as Zoom, Vidyo, Jitsi, Blue But-
ton, Skype, and Microsoft Teams as well as Dropbox, ownCloud, iCloud, Google Drive,
OneDrive, and other data distribution services were used. In terms of data security, flex-
ibility, homogeneity, data protection, and functionalities supporting collaboration, these
platforms have different capabilities. But does their use offer a suitable solution to the prob-
lems outlined above? Evidently, none of these tools is equipped with the most promising
technology for overcoming isolation and supporting cooperation under the given cir-
cumstances: virtual Reality (VR). VR systems can be a solution for the problems under
consideration because they support a much greater variety and range of interactions.
Thus, if social isolation, lack of communication, and cooperation due to quarantines or
lockdowns are to be prevented, VR systems could be starting points for new technologies
that help dampen negative consequences of pandemics. Of course, working and com-
municating in VR is not per se a substitute for social interaction in the real world, but it
can offer additional or alternative possibilities to traditional communication channels:

• According to Gigante (1993, p. 3), VR conveys the illusion of participating in a
synthetic environment rather than the observation of such an environment from
an external perspective.

• VR enables many possibly remote users sharing the same virtual place (Gigante,
1993, p. 14). In the words of Gigante: “VR can improve the quality of life for
workers in hazardous or uncomfortable environments and may eventually impact
on the whole of society” (Gigante, 1993, p. 14).

The perception and interaction with these synthetic environments are often supported
by appropriate tools, such as head-mounted 3D displays and hand tracking systems.
Even though the technology has been around for a relatively long time (with the first
known head-mounted display developed by Sutherland (1968)), only in recent years has
the technology reached broad segments of the population. This is due to the development
of affordable consumer market devices with VR headsets such as Oculus Rift and HTC
Vive. Modern smartphones can also be used as VR headsets with the help of simple
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cardboard tools such as Google Cardboard (Fabola et al., 2015). Moreover, Educational
Virtual Environments (EVEs) were developed early on (e.g. Psotka (1995)) and are now
actively used in many areas, such as Medicine (Li et al., 2017), Tourism (Guttentag, 2010),
or Video Games (Bozgeyikli et al., 2016). Not only VR equipment has become more
popular but also tools for developing suitable applications for these technologies, thanks
to systems like Unity3D and Unreal Engine (Martín-Gutiérrez et al., 2017; Indraprastha
& Shinozaki, 2009).

The potential of VR to alleviate the problems associated with epidemics has already
been recognized by companies like Ford, which has constructed its latest racing car en-
tirely in VR (Foote, 2020). Another example is the 6th International Conference of the
Immersive Learning Research Network (iLRN 2020) which ran completely in VR over ViR-
BELA and AltSpaceVR: conferences of this sort are not only virtual but also take place
in VR. The potential of VR has not only been recognized by manufacturers and confer-
ence organizers but also museums are now offering virtual tours (e.g. Arts & Culture
from Google) through historical places (e.g. VersaillesVR); furthermore, concerts (Stir-
ling, 2019) can now be visited in VR while music festivals (like Wacken World Wide) are
streamed with mixed-reality enhancements.

In general, there are several concepts of VR, which differ in their capabilities and
requirements (Riva, 2006; Martín-Gutiérrez et al., 2017; Abrami et al., 2020b) when it
comes to supporting such applications:

• (Fully) immersive VR is probably the best-known variant in which the real world
is replaced by an artificial one with the help of head-mounted displays. The user
is able to move in such artificial worlds and interact with them via controllers or
by means of hand and body movement tracking (Riva, 2006). Since this is the most
widespread variant, we will focus on it in this chapter. So when speaking about
VR, we mean immersive VR.

• Semi-immersive VR is created by projecting virtual environments onto real en-
vironments (Martín-Gutiérrez et al., 2017). The most prominent example is given
by CAVE applications, in which the virtual environment is projected onto the sur-
rounding wall (Riva, 2006).

• Non-immersive VR means the traditional methods of representing a virtual en-
vironment, e.g. via a monitor. Sometimes non-interactive head-mounted devices
such as Google Cardboard or Samsung Gear VR are included (Riva, 2006; Abrami
et al., 2020b).

• InAugment Reality (AR), the real world is not hidden but enrichedwith additional
information. This is usually done by means of smartphone apps (Butchart, 2011).
Examples aremobile games (PokémonGO or Ingress), applications to support home
furnishings (IKEA Mobile App), or virtual MakeUp applications (L’Oréal Makeup
App).

• In Mixed Reality (MR), the real world and the virtual world are merged. The col-
lective term for all three approaches (AR, MR, VR) is XR. The best-known example
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of MR devices is Microsoft HoloLens and Magic Leap One.

Although the latter terms are well defined in technical terms, this is not true for the
underlying concepts of perception and interaction; this should be considered in future
work. In this chapter, we address the question of what practices and tools are needed
for digital and virtual teaching, learning, and collaboration. We will also ask about the
conditions and strategies necessary to make the most of technological opportunities in
the future. First, we analyze what types of (fully immersive) VR learning environments
exist andwhat requirements they should meet. From this, we derive a basic functionality
that these tools should provide in order to best meet these requirements (Section 6.2).
For this purpose, we present existing VR systems from different application contexts
(Section 6.3) and evaluate them with respect to the previously derived set of require-
ments (Section 6.4). Finally, the significance of the results is discussed (Section 6.5) and
a conclusion is drawn based on the current status in order to better predict future devel-
opments (Section 6.6).

6.2 VR environments: requirements analysis
The potential of VR for teaching was investigated very early on. In this context, Psotka
(1995) investigates immersion as a component of VR.The advantages of VR were already
recognized then and what steps would be necessary to ensure its implementation. For
example, teaching staff would have to be trained at an early stage and digital libraries
would have to open up for VR offers. Obviously, we are still far from implementing these
and related steps.

In addition to VR, there has been a lot of research on 3D Virtual Learning Environments
(VLE) over the last 20 years (e.g. Dalgarno & Lee, 2010; Mikropoulos & Natsis, 2011;
Girard et al., 2013). Dalgarno & Lee (2010) present a model for 3D VLEs and discuss
their benefits for learning. Their proposal consists of two components: Representation
Fidelity and Learning Interaction. VLE-related fidelity can be achieved through (visually
and behaviourally) realistic environments, user avatars, and spatial audio sources that
allow the learner to interact with the environment, either through direct actions or by
adjusting parameters and scripts. The resulting Sense of Presence, Construction of Identity,
and Co-presence with other participants lead to the following learning benefits (Dalgarno
& Lee, 2010):

• Development of enhanced spatial knowledge representation.

• Facilitation of (otherwise impractical or impossible) experimental learning tasks.

• Increasing intrinsic motivation and engagement.

• Improved transfer of knowledge and skills.

• More effective collaborative learning.
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Not all these points are equally important. This is shown in studies in which spatial
audio rarely plays a role and even less often haptic feedback, as the corresponding tools
are expensive and inaccessible and therefore unsuitable for regular applications (Martín-
Gutiérrez et al., 2017). Thus the visual part andwith VR especially the immersion come to
the fore. In any case, the question remainswhether fidelity and interactivity are sufficient
for a good teaching environment.

Fowler (2015) follows this critical stance and shows that in the works mentioned, the
technical perspective predominates while the pedagogical one is almost completely left
out. To address this deficit, Fowler (2015) extends the framework of Mikropoulos &
Natsis (2011) by means of the pedagogical approach of Mayes & Fowler (1999). They
refer to the notion of immersion to link both worlds. According to Dalgarno & Lee
(2010) and Hedberg & Alexander (1994), immersion results from the interplay between
fidelity and interaction. In contrast to this, another concept of immersion arises from the
interplay of different pedagogical concepts, that is conceptualisation, construction and di-
alogue (named coursware by Mayes & Fowler, 1999). Conceptualization (or primary cour-
sware) refers to the presentation of the concept to be learned to the learner, for example
through textbooks, presentations or models. Construction (or secondary coursware) is
the more detailed examination of the topic by the learner, where the learner controls
the information and receives feedback. In the Dialogue Phase (or tertiary coursware) the
learner tests his acquired knowledge in dialogue or discursive interaction with other
learners, e.g. in tutorials.

Both models (the pedagogical model by Fowler (2015) and the technical model by
Mikropoulos & Natsis (2011)) are combined to meet the Intended Learning Outcomes
(ILO), which are “what learners are expected to know, understand and be able to do by
the end of the learning experience (Biggs, 2011)” (Fowler, 2015, p. 417). This is achieved
through a so-called Design for Learning. For this purpose, the Learning Requirements
and Task Affordances must be recognized and thus the learning specifications be de-
fined (which is anything but trivial) so that as a final product the Learning Outcomes
are achieved. At the same time, Fowler (2015) fears that the systems will only imitate
old patterns instead of developing new, better methods that are now within reach with
VR, and that much more research is needed in this direction. At the same time it has
to be considered that the requirements analysis depends on the area of application (see
e.g. Abrami et al. (2020b) for special requirements in the field of historical education).

Before analyzing and comparing VR systems, this section describes the requirements
for a suitable teaching and collaboration environment based on VR and the technical
functions required for its implementation. To keep the learning concepts as general as
possible and not to focus on specific topics, the aim is to define a basic functionality for
all systems. This should allow for evaluating different systems in different application
contexts. VR has many advantages, e.g. as a result of “learning by doing”, which makes
it possible to simulate teaching situations without having to resort to expensive mate-
rials or exposing people to risk, as is the case with surgery training (Gurusamy et al.,
2009). According to Allcoat & von Mühlenen (2018), many other positive effects can
be observed compared to classical learning with textbooks or videos, like an enhanced
mood and better test results. But which points contribute to a better learning experience

61



6 Digital learning, teaching, and collaboration in a time of ubiquitous quarantine

in general and how can they be implemented in VR?

Representation Fidelity

Dalgarno & Lee (2010) discuss arguments in support of representational fidelity. This
concerns, for example, the representational realistic and smooth representation of en-
vironments and the coherent reconstruction of object behaviour, both visually (e.g. by
designing light effects and textures) and physically. Smoothness is particularly impor-
tant since lagging behind can lead to motion sickness (Akizuki et al., 2005). On the
other hand, realistic representations are application specific: it is certainly important
for medical simulations, but one can also imagine abstract applications that simulate
what-if situations beyond what is realistic. We leave both criteria out of our evaluation:
representational realism because of its context dependency and smoothness, because it
concerns rather hardware limitations. Other criteria concern user representation, spatial
audio, and feedback. Avatars (concerning the criterion of user representation) and spatial
audio facilitate immersion and interaction with other people. We refer to this scenario
by the avatar requirement and the spatial audio requirement. Kinetic or haptic feed-
back, on the other hand, is not yet mature as a technology and is therefore not discussed
further in this chapter. What is important, however, is how freely users can move in VR.
This can range from fixed (but changeable) seating positions through free movements in
space to the simulation of flights. We refer to this requirement scenario by means of the
movement requirement.

Learner Interaction

If different users work together, they should be able to communicate with each other.
Themost intuitive way is voice chat, as speech is better suited to conveying emotions and
moods (Fussell, 2002) than text messages (Hancock et al., 2007). But avatars also enable
communication through facial expressions (Osgood, 1966) and hand movements (Mc-
Neill, 2016). This scenario is subsumed under the notion of the communication require-
ment.

Learner interaction means not only the interaction between individual users (regard-
ing the so-calledmulti-user requirement), but also with the virtual environment. One of
the most important prerequisites for creating a good teaching atmosphere is that the vir-
tualized environment meets the teaching requirements. There is a lot of work to be done
on the topic of what an ideal learning environment should look like, especially since
it depends on the application context (Land & Jonassen, 2012; Moreno & Mayer, 2007;
Moore et al., 2011; Lage et al., 2000; Fraser & Goh, 2003; Abrami et al., 2019a). For exam-
ple, different requirements must be met for primary school children than for vocational
training. To ensure an ideal teaching and learning environment for all application sce-
narios, users must be given the opportunity to design their own learning environment
(world-building requirement). Depending on the scope of the underlying software, it
may not be sufficient for more specific learning purposes. It should therefore always be
possible to change or extend it. This can be achieved through application programming
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Requirement  ○␣ + ++

Avatar no exists customisable image
reconstruction

Spatial audio no some objects /
background

avatars ’every’ object

Communication no writing speech hand and face
Multi-user no (1)
Worldbuilding no extern intern intern (dynamic)
Adaptability no changeable object

attributes
API Open Source

Permission-orientation no predefined classes individual
permissions

group-based
permission

User & Group management no = 2 restricted group
management

group management

Content sharing no data sharing screen sharing interactivity
Information organisation no 2D 3D + linking
Feedback no user feedback

(emotes)
metrics-based real-time

Multi-view no − − yes
NoVR no − abstract Full 3D
Data protection no − server E2E
Platform independence one system important systems most systems +mobile
Movement fixed seat position moving moving + teleport flying

Table 6.1: Evaluation table for Section 6.3 based on the requirements of Section 6.2.
Legend:  (not fulfilled),○␣ (partly fulfilled),+ (well fulfilled),++ (completely
fulfilled).

interfaces (APIs), or better, by having all codes open source (adaptability requirement).
Users can be distinguished according to their roles (teacher, student, audience, etc.). This
should be reflected in their user rights. For example, presenters should be able to mute
other users or give them permission to speak while conference participants should not
be able to change settings (permission-orientation requirement). This includes group-
ing participants so that they can work in small groups or hold their own sessions for
example (user & group management requirement) (Table 6.1).

Conceptualisation

To exchange ideas, introduce or present concepts, approaches, methods, or theories,
there should be the possibility of oral communication. However, additional methods
of content sharing should also be available (content sharing requirement). Examples
include the sharing of repositories or individual documents, the ability to hold one’s own
presentations, drawing on whiteboards, collaborative writing, or even collaborative 3D
modelling.

Construction

In the construction phase, it is important that learners have the opportunity to gather
and structure relevant knowledge (information organization requirement). Further-
more, the learning process should be supported by appropriate evaluationmetrics (feedback
requirement). Since different users can edit the same documents at the same time, an im-
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plementation of multi-view functionality is required (multi-view requirement). Finally,
it is desirable that the construction process is supported by active learning (Settles, 2009)
or reinforcement learning (Sutton& Barto, 2018) components so that recurring processes
are automated to support the learner. This is a means forMachine Learning (ML) to enter
educational technologies in a way that supports interpretability of ML results.

Dialogue

In the dialogue phase, all the requirements mentioned so far come together to enable a
lively exchange among learners. This concerns not only direct communication but also
the common usability of content sharing and group management functions.

Other

Last but not least, care must be taken to ensure that no one is excluded who does not
have suitable VR equipment. Therefore, the whole system should also run on standard
desktops (NoVR requirement). Following Abrami et al. (2020b), we add two more re-
quirements: the data protection and the platform independence requirement. Users
must always have full control over their data. This is important for institutional and pri-
vate users. And given the rapid development of VR systems, different users of different
systems should be able to work together seamlessly. To ensure this, standards have been
developed (e.g. OpenVR and OpenXR) that should be met.

6.3 Related Work
We now review VR systems that are designed for collaboration, learning, and social
exchange. Further, we evaluate them regarding the requirements analysis of the previous
section. We consider most of the tools described in Harfouche & Nakhle (2020) and
by Lang (2020). We divide these tools into three main application areas (taken from Lang
(2020)):

1. Social VR Platforms: Tools for group events and activities.

2. Education & Training: Tools for education, teaching and larger presentations.

3. Team Collaboration & Presentation: Tools for presentations, discussions and pro-
ductivity.

A list of all tools considered here including their technical specifications is given in
Table 6.2. Table 6.3 shows the evaluations according to the requirements analysis of Sec-
tion 6.2(a more detailed breakdown of our rating system is given in Table 6.1). It should
be noted that all these systems are still under development so that they can be expanded
with new functions and old ones can be discontinued. We will leave out the first two
requirements, representational realism and smoothness (see Section 6.2, Representation
Fidelity). If a system does not run smoothly on the software side, we will nevertheless
mention this.
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VR Platform Domain Pricing Supported OS Supported VR Website

AltSpaceVR Social VR Plat-
form

Free  HTCVive, Oculus,
WMR

altvr.com

Bigscreen Virtual Desktop Free  HTCVive, Oculus,
WMR, Valve Index

bigscreenvr.com

Engage Education &
Training

Free,  , () HTC
Vive/Cosmos,
Oculus, WMR,
Valve Index

engagevr.io

FrameVR Collaboration &
Education

Free  Browser framevr.io

Immersed Collaboration &
Virtual Office

Free,  , ,  Oculus Quest, Go immersedvr.com

Mozilla Hubs Social VR Plat-
form

Free  Browser hubs.mozilla.com

Rumii Collaboration &
Virtual Office

Free , , () HTC Vive, Ovu-
lus, WMR, Valve
Index

www.dogheadsimulations.com/rumii

Softspace Collaboration &
Virtual Office

Free  HTCVive, Oculus,
WMR

www.soft.space

Spatial Collaboration &
Virtual Office

Free,  , () Oculus Quest,
HoloLens, Magic
Leap

spatial.io

vSpatial Collaboration &
Virtual Office

Free ,  HTCVive, Oculus,
WMR, Valve Index

www.vspatial.com

Wonda VR Education &
Training

Free,  ,  HTCVive, Oculus,
WMR

www.wondavr.com

Table 6.2: Overview VR platforms: the systems were selected from Harfouche & Nakhle
(2020) and roadtovr. Legend:  (Windows),  (Linux),  (Android),  (Mac),
 (Browser),  (paid feature).

6.3.1 VR Platforms
AltSpaceVR offers a virtual “meeting space”. The platform hosts daily events on var-
ious topics: from stand-up comedy, language or specialist courses, self-help groups to
entire conferences. An available SDK allows for customizing virtual environments ac-
cording to the users’ needs. Compared to other tools, the room size of up to 70 people is
noteworthy. Private rooms and worlds can unfortunately only be created and modified
with the SDK and not directly in VR. The focus is on social exchange, but no documents
can be exchanged or collaboratively edited.

Bigscreen is a virtual desktop environment for watching movies or playing video
games. However, its screen-sharing function also makes it possible to work on joint
projects in virtual offices. The room size is rather limited with 12 persons. One can
choose from a set of predefined environments, but these cannot be changed afterwards.

Engage describes itself as an education and training platform which also supports
meetings and events. The platform regularly hosts events and offers additional features
for selling live training courses. In terms of pure functionality and presentation, Engage
is probably the most advanced tool due to its strong educational and training focus.
Avatars can be generated from images. And not only visual media can be placed in the
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room, but also e.g. sounds and the existing 3D objects have animations. The legal system
is more extensive than in most other systems; lectures can be recorded and exchanged
internally, and there are various functions for “controlling” participants, such as “putting
everyone in their seats” or “collecting them at specific points”. Due to the extensive
functionalities of Engage, other education-related VR systems are also based on it, e.g.
VictoryXR.

FrameVR runs completely in the browser and thereforeworks on all browser-compatible
devices (including desktop VR headsets). A special feature is that different frames can
be created in parallel, between which users can switch back and forth, but still see each
other.

Immersed provides a virtual workbench to increase the user’s productivity. It also
allows for collaborating with other users via telepresence, screen sharing, and white-
boards.

Mozilla Hubs is browser-based like FRameVR and the only application considered
here that is Open Source. Objects, GIFs, videos, and images can be dynamically loaded
into the given scene so that one can interact with them. With the additional online tool,
Spoke rooms and environments can be created to interact and cooperate with users.
However, the authorization system is very limited and only differentiates between users
and administrators.

Rumii focuses more on presentations and thus on education and training. API support
has not yet been released, but is planned for the future. However, Rumii offers many
possibilities to design rooms, from abstract 3D objects to 3D drawings and concrete
objects.

Softspace offers an empty, white space that can be filled with multimodal content
that can be grouped into cubes or frames. Moving in Softspace does not work with
a thumbstick as with the tools mentioned so far, but by “grabbing the space” with the
hands and pulling or pushing off the corresponding grip point. In addition, the size of
the avatar representing the user can be changed so that the virtual space can be spatially
structured on the micro and macro levels. Finally, Softspace also allows for viewing
rooms ‘from outside’.

Spatial is characterized by its AR support (based e.g. on HoloLens), but the range
of supported VR headsets is somewhat limited. Spatial aims to provide a collabora-
tive XR work environment supported by screen and media sharing and by loading self-
constructed 3D objects.
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vSpatial is a virtual work or desktop environment. is a virtual work or desktop envi-
ronment. The virtual desktops and files can be shared for collaboration, team formation,
and presentations.

WondaVR has a greater focus on situation training and live tours. Different scenes
can be logically linked together to simulate different situations. Triggers can be used to
trigger them or to start other events. The integration of quizzes and scorecards makes it
possible to react to feedback. Most of the functionality is implemented via the browser
while the live implementation runs via VR.

Honorable Mentions: There are many such tools of the just mentioned kind for re-
lated purposes, whose discussion would go beyond the scope of this chapter. This refers
to tools with an industrial focus that are not freely available or for which no free trial ver-
sion is available so that they cannot be tested (e.g. Glue, MeetinVR or meetingRoom).
Other tools that we have excluded are those with a strong technical focus with respect to
medicine (e.g. OxfoRdMedical Simulation or Acadicus) or engineering (e.g. NVIDIA
HolodecK). These tools are often fee-based, and we did not have the domain back-
ground to evaluate them. The third category, which we excluded, concerns tools with
a primarily focus in gaming or Second Life. This includes programmes like VRChat or
Somnium Space. The latter is particularly interesting because of its approach based on
block chains (Swan, 2015). However, this is primarily used for a virtual marketplace to
sell virtual products, such as in-game properties.

6.3.2 VAnnotatoR
A tool, now considered in detail, is the so-called VAnnotatoR (Spiekermann et al., 2018)
which is developed in Unity3D. VAnnotatoR is designed as a framework for the visu-
alization of and interaction with virtual 3D environments. Within these environments,
multimodal content such as texts, images, videos, audios, websites and 3D reconstruc-
tions of (e.g. historical) buildings can be visualized and annotated (Mehler et al., 2018).
By using VR headsets, VAnnotatoR allows for navigating in fully immersive virtual
environments so that virtual learning environments are created (Abrami et al., 2020b).
This fully immersive capability allows users to move freely in the virtual space. In this
way, the Movement requirement is met (see Table 6.3).

Besides the visualization and interaction with multimodal objects, their annotation
(e.g. regarding sign/object relations) is an essential feature of VAnnotatoR. The type
and range of the annotation functionalities depend on the type of the object: texts and
images can be segmented with VAnnotatoR, e.g. links are edited with a virtual browser
and video files with a virtual viewer. Beyond that, VAnnotatoR includes a variety of
methods for the interaction with 3D content:

1. Highlighting: relations between objects can be highlighted to provide overviews.

2. Look ahead: distant objects connected to an item can be visualized with a preview

67



6 Digital learning, teaching, and collaboration in a time of ubiquitous quarantine

function, especially if they are out of sight in virtual space. This preview serves as
a preparatory step for virtual “teleportations” (see Figure 6.1).

3. Teleportation: To bridge spatial distances between remote objects, portals can be
created that display a preview of the target object and, when used (selected or
entered), perform a virtual transport to this target (Mehler et al., 2018).

4. Virtual surfaces: to use virtual environments flexibly, it is not only important to
be able to arrangemultimodal objects and interact with them. What is additionally
required is the ability to enrich objects with content, annotate them or link them to
content. For this purpose VAnnotatoR uses virtual surfaces (Figure 6.4), which
can be inserted into virtual rooms analogous to portals or attached to existing
objects (e.g. room walls).

5. Virtual boxes: The processing of complex information and the division of tasks in-
volvedmakes the usability of nestable (vertical structuring) and spatially separated
information processing sequences (horizontal structuring) necessary for master-
ing learning and teaching processes. To meet this requirement, VAnnotatoR
extends the concept of virtual surfaces by enabling the creation of virtual boxes.
These boxes are containers of multimodal objects that are created and modified by
the user at runtime. Boxes form virtual portals to separated virtual rooms, that
is, to rooms within rooms, between which users move to perform room-specific
tasks (Figure 6.2, 6.3 and 6.4). In this way, hierarchical structures of tasks can be
mapped recursively and corresponding task completion responsibilities can be as-
signed (divide-and-conquer approach). Since portals and teleportations can be used
within this structure to additionally link arbitrary subrooms, a so-called general-
ized tree (a networkwith a kernel hierarchical structure; cf. Mehler 2009 is created.
This creates a very powerful format for the representation of tasks, the objects and
tools affected by them, and of the corresponding responsibilities of users.

These functions serve to make virtual environments more flexible for different learn-
ing scenarios. VAnnotatoR goes beyond simulations of virtual classrooms by incor-
porating methods for the spatial organization and structuring of knowledge. Using
Unity3D, it enables multiple users to jointly interact with 2D and 3D content.

Furthermore, by integrating external infrastructures, such as TextAnnotatoR (Abrami
et al., 2020c), it enables the simultaneous as well as collaborative annotation of learning
objects and thus fulfills themulti-user and content sharing requirement (see Table 6.3).
By using TextAnnotatoR, which is based on UIMA (Ferrucci & Lally, 2004) for data
description and storage, it is possible to annotate objects across platforms and technolo-
gies (Unity3D, browser, mobile app) (platform independence requirement). And since
VAnnotatoR is open source, it also meets the adaptability requirement. Since complex
annotation processes involve several annotators, VAnnotatoR enables the simultane-
ous and collaborative processing of data: users, represented as virtual avatars (avatar
requirement), can communicate (via voice chat; Abrami et al. 2020b) and interact with
each other (communication requirement).
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Figure 6.1: Example of a multimodal hypertext created with VAnnotatoR (Abrami et al.,
2019c). It shows a reconstructed building in the background and multimodal
annotated objects in the foreground as well as a portal (bottom left) which
shows a preview of the apartment in the building. By entering or activating
the portal, the user reaches the displayed destination (Abrami et al., 2020b).

VAnnotatoR shares all features of TextAnnotatoR for annotation, task manage-
ment, evaluation (feature feedback requirement), sharing and editing resources. Ob-
jects, object relations and annotations are organized in annotation views that are as-
signed access rightswith respect to (groups of) users using eHumanitiesDesKtop (Gleim
et al., 2012) so that the requirements of permission-orientation, user & group manage-
ment and multi-view are met. Furthermore, the requirement multi-view is realized
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Figure 6.2: An example of a Networked Hierarchical Room (NHR) visualized as a General-
ized Tree (GT) (cf. Mehler, 2009). NHR is a format of room formation as sup-
ported by VAnnotatoR, whose data model is based on GTs. Dashed lines
depict network-forming relations (i.e. hyperlinks between different rooms
connected by portals). We distinguish three types of such relations and cor-
responding links: Down Links (DL), Up Links (UL) and Lateral Links (LL).
Straight lines depict inclusion relations (in the sense that dominating nodes
contain dominated ones). Colors of vertices are selected by analogy to the
colors of rooms (boxes) in Figure 6.3.

by the combined use of eHumanities DesKtop and TextAnnotatoR (Abrami et al.,
2020c). To be usable in different scenarios, the so-called EnviRonmentBuildeR of V-
AnnotatoR is provided, which allows for creating virtual environments, the positioning
of objects, their nesting, and linkage (Abrami et al., 2020a) (information organization
and worldbuilding requirement). In addition, databases of 3D objects can be searched
to select objects, e.g. furniture (Abrami et al., 2020b). This results in generating vir-
tual rooms as spatial multimodal hypertexts that support collaboration and interactive
learning. An example of such a hypertext generated with the help of VANNOTATOR is
shown in Figure 6.1.

Although the requirements of Section 6.3 are currently not fully met by VAnnota-
toR, its extensions indicate a potential for further development (Kett et al., 2018; Kett,
2020; Kühn et al., 2020).
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Figure 6.3: Visualization of the Networked Hierarchical Room depicted as a generalized
tree in Figure 6.2. Link anchors (possibly starting from portals) are repre-
sented by circular symbols.

6.4 Analysis

We now take a look at the tools of Section 6.3.1 using the evaluation criteria of Sec-
tion 6.2. These tools are all under development, some of them only in beta stage, so
that their functional range may change in the near future. It is also possible that some
of their functions are hidden behind a payment wall without being documented online.
Nevertheless, a trend can be deduced in which direction the programs (will) go. The
provision of avatars applies uniformly to all tools. Except from Softspace and VAnno-
tatoR, the avatars can be edited; in Engage and Spatial, they can even be generated
from images. The same applies to spatial audio sources, which are usually supported by
the 3D engines. Furthermore, speech is a standard for communication between users.
Many tools support hand movements and gestures, such as mouth movements displayed
using avatars. The tools differ with regard to the maximum number of supported users.
Not all tools make it clear how many users are supported; the number may depend on
the number of supported VR headsets or may be limited by the payment model. In gen-
eral, however, social platforms support significantly more users than systems that focus
on collaborative office. Differences also concern worldbuilding. Many tools allow for
placing and moving objects directly in VR. Others outsource this functionality to the
browser or to additional APIs. Some tools only offer a pre-selection of environments.
Only few tools are adaptable and open source, including Mozilla Hubs and VAnnota-
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Figure 6.4: VAnnotatoR surface example. The example shows a building on which V-
AnnotatoR has detected surfaces. These surfaces can be provided with ar-
bitrary multimodal objects to transmit corresponding information. In this
example an image is projected into the left area of the picture. The middle
area shows a virtual box, which can contain any number of additional ob-
jects; virtual boxes represent virtual rooms in virtual environments, which
can be arranged recursively (Abrami et al., 2020b) and networked with each
other to generate generalized trees of virtual rooms (Mehler, 2009), as de-
picted in Figure 6.2 and Figure 6.3.

toR. With few exceptions, the ability to manage permissions and groups is limited in
most tools. In general, only admins and participants (or guests) are distinguished with-
out allowing fine-tuning group assignments. Most tools support screen sharing features
that are visible to anyone using 2D screens in VR. In most cases, there are also white-
boards that can be written with a virtual pen. Sometimes, one can create 3D drawings
(e.g. in Rumii). But very few tools support document sharing. And when they do, the
choice of supported file formats is very limited. The (spatial) organization of information
(beyondwhat is provided by browsers) works withmost tools. Softspace also allows for
grouping information objects into cubes and frames. But only VAnnotatoR supports
the linkage of content units. Feedback is underrepresented due to the purposes of most
tools, especially in the case of virtual social media platforms. The focus of WondaVR
on situation training includes the implementation of questionnaires and scorecards to
give feedback to trainers. VAnnotatoR, on the other hand, uses a multi-view approach
to determine the Inter Annotator Agreement among annotators; this is done to compare
them or assess them against a gold standard. FRameVR also implements this multi-view
approach, but on a room rather than document basis. Users are located in different spa-
tial environments while remaining visible to each other.

About half of the tools have a NoVR mode with desktop plug-ins or browser sup-
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AltSpaceVR + ++ ++ 70 ○␣ + + + ++/
○␣

 ○␣  ++ ? + ++

Bigscreen + ++ ++ 4-12   ○␣ ○␣ ++/
○␣

○␣ ○␣   peer-to-peer + 

Engage ++ ++ ++ 50 ++  + ○␣ ++ + ○␣  ++ ? ++ +
FrameVR + ++ + ∼15-20 (○␣)  ○␣ ○␣ ++ +  ++ ++ ? ++ +
Immersed + + + ?     ++/

○␣
    ? ○␣ 

Mozilla Hubs + ++ ++ 50 ++ ++ + ○␣ ++/
○␣

+ ○␣  ++ data-encryption ++ ++

Rumii + + + 5-40 ++ (+) ○␣ ○␣ ++ + ○␣  ++ ? ++ +
Softspace ○␣ + + 12 ++ ○␣ ○␣ ○␣ ++/

+
(++)    ? + (++)

Spatial ++ ++ ++ 30 ++    ++ + ○␣   ? ○␣ +
vSpatial + ○␣ + ?     (++) +    ? ○␣ 

Wonda VR + ++ + 15 ○␣  + ○␣ (++)  +  +? ? + +

VAnnotatoR ○␣ + ++ 2+ ++ ++ ++ ++ ○␣ ++ +/++++ + / ++ +

Table 6.3: Overview of the functionality of VR platforms: the list of evaluation criteria
is shown in Table 6.1. A slash (/) indicates that the right part is excluded
(e.g. Content sharing++/○␣: Screen sharing but no Data sharing). Brackets
indicate that the function is partially but not completely fulfilled.
Legend: / (user and group based permissions),  (not fulfilled), ○␣
(partly fulfilled), + (well fulfilled), ++ (completely fulfilled), ? (not clear).

port while offering full functionality. Sometimes, webcam recordings are used instead
of avatars for user representation. Data security is a big challenge for the tools. It is
largely unknown how the user data is transmitted, e.g. whether it is encrypted. When
information on data security is given, this usually only applies to one aspect, such as
user data. However, data security affects many more aspects, such as telemetry, room
configurations, uploaded files, voice, and chat data. How this data is handled is rarely
known, and if it is, then often only by a simple reference to the EU General Data Protec-
tion Regulation. In times of big data (Bertino & Ferrari, 2018; Zhang, 2018), this topic is
widely discussed and should not be underestimated. Most tools support a variety of VR
headsets. Only a few, like ImmeRsed, have chosen one or two headsets (mostly Oculus
Quest because of its stand-alone feature). AR, and thus HoloLens, is only supported by
Spatial. Movement usually works as expected. Some office applications that claim to
simulate workstations have no movement functions (e.g. BigscReen, vSpatial), while
others allow free vertical movement (flying) (e.g. Mozilla Hubs, Engage). Interesting
is Softspace, where one grabs into the space and pushes or pulls away from the cor-
responding point with arm movements; this works well after a short period of getting
used to it.
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6.5 Discussion

Once a system has been tried out, it is easy to recognize that the premonition of Fowler
(2015) has come true and that much effort has been put into “emulate[ing] current prac-
tices” but not “to innovate new, pedagogically sound practices” (p. 416). A closer look at
the analyses from Section 6.4 shows that important functional foundations for general
pedagogical approaches are generally missing. This is particularly noticeable in the con-
struction phase, whose basic functions such as information organization, feedback, and
multi-views are hardly or not at all available. Instead, there is a focus on spatial fidelity.
There are always exceptions, such as VAnnotatoR, whose multimodal hypertext ap-
proach covers some pedagogical aspects, or Softspace with its more artistic approach,
but here too, functions are missing or limited, such as an avatar editor. A direct com-
parison of all tools is not always fair since some of them address different target groups
and not all functions are equally relevant to them. Furthermore, our evaluation does not
extend to subjective judgements regarding, for example, the intuitiveness of the user
interface, the visual appearance of the graphics, control elements, or more specific func-
tionalities (e.g. opening multiple desktop windows). In any event, the tools tend to offer
many related functions.

It should also be clear that VR environments are no substitute for real meetings or
can currently be. It is therefore certainly a very, very long way to virtual schools. For
example, a significant portion of regular school education would suffer when using VR
learning platforms: the school break on the playground, where the pupils aremore active
than during the rest of the day (Dessing et al., 2013). Such activities increase student
performance (Loucaides et al., 2009) and would be missed in purely VR-based teaching.
So-called Re-Energizer are also used outside school (e.g. in professional seminars and
workshops) (Chlup & Collins, 2010). And finally, many other non-verbal communication
channels (Mehrabian, 1972) cannot yet be implemented in VR. This ranges from detailed
facial expressions to body movements and posture, such as shoulder position.

6.6 Conclusion

In this article, new challenges for the use of virtual learning environments are high-
lighted by the current Covid-19 pandemic and the resulting quarantine regulations. For
this purpose, technical evaluation criteria for VLEs were defined, which were derived
from the work of Dalgarno & Lee (2010) and Fowler (2015), in order to analyze current
VR systems with regard to their functionality, to identify conceptual problems and to
specify development perspectives for further VLEs. We have developed these criteria
in such a way that they cover all the pedagogical and technical aspects of the prepara-
tory work, but are still fundamental enough to be applied to a large number of VLEs
with different focuses and fields of application. As a result, the weaknesses of 12 VLEs
were identified and a perspective for future functional enhancements was formulated.
However, the results of this analysis show that most systems aim to simulate familiar
learning environments such as lecture halls, offices, seminars, or classrooms without
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developing new pedagogical approaches that could be implemented in VR. Hardly any
attention is paid to the construction phase. Supporting functions would be the place-
ment, linking, and grouping of multimodal content and user-specific edits and views.
One reason for this strategy may be that VR technology has only been made available
to a broader target group in recent years and therefore concrete applications have only
recently been developed. Furthermore, from the point of view of commercial market-
ing, it is much more interesting to offer a product where customers initially feel more
comfortable with familiar visualizations, although alternative concepts might be more
appropriate. Independent of VR, there are many other approaches for technology-based
learning that should be considered and could be integrated into VR (see e.g. Visvizi et al.,
2019; Daniela et al., 2018). For example, analytical methods could be used to evaluate
users and thus improve the learning environment and feedback (Visvizi et al., 2020; Se-
drakyan et al., 2020).

According to these results, our future work will consider the following tasks: first, a
more in-depth analysis based onmore specific applications and requirements is required.
Furthermore, only general concepts for VLEs have been considered, but situations out-
side of VLEs must also be analyzed. These can be networking situations at conferences,
chance encounters in corridors or streets, or the short exchange during lunch breaks.
As far as we know, these types of short and spontaneous learning or exchange environ-
ments in connection with VR have not been considered in any way so far. Last but not
least, an in-depth analysis of the language used by the different actors through the dif-
ferent communication channels would be very interesting. Depending on the channel
(live, audio, video, VR, etc.) this could be very different, which allows conclusions about
optimal communication conditions.
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Appendix

Technical References

System URL

Acadicus https://acadicus.com/
AltspaceVR events https://account.altvr.com/events/featured/
EU General Data Protection Regulation https://gdpr.eu/
Glue https://glue.work/
Ikea Mobile App https://www.ikea.com/ca/en/customer-service/mobile-apps/
Ingress https://www.ingress.com/
MeetingRoom https://meetingroom.io/
MeetinVR https://meetinvr.com/
Nvidia Holodeck https://www.nvidia.com/en-us/design-visualization/technologies/holodeck/
OpenVR https://github.com/ValveSoftware/openvr/
OpenXR https://www.khronos.org/openxr/
Oxford Medical Simulation http://oxfordmedicalsimulation.com/
PokemonGo https://pokemongolive.com/de/
SomniumSpace https://somniumspace.com/
VictoryXR https://www.victoryxr.com/
Virbela https://www.virbela.com/
VRChat https://www.vrchat.com/
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7 What do Toothbrushes do in the
Kitchen? How Transformers Think
our World is Structured

Henlein, A. & Mehler, A. (2022). What do toothbrushes do in the kitchen? how trans-
formers think our world is structured. In Proceedings of the 2022 Annual Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL 2022).
accepted

Abstract
Transformer-based models are now predominant in NLP. They outperform approaches
based on static models in many respects. This success has in turn prompted research
that reveals a number of biases in the language models generated by transformers. In
this paper we utilize this research on biases to investigate to what extent transformer-
based language models allow for extracting knowledge about object relations (X occurs
in Y ; X consists of Z ; action A involves using X). To this end, we compare contextual-
ized models with their static counterparts. We make this comparison dependent on the
application of a number of similarity measures and classifiers. Our results are threefold:
Firstly, we show that the models combined with the different similarity measures differ
greatly in terms of the amount of knowledge they allow for extracting. Secondly, our
results suggest that similarity measures perform much worse than classifier-based ap-
proaches. Thirdly, we show that, surprisingly, static models perform almost as well as
contextualized models – in some cases even better.

7.1 Introduction
Fewmodels have recently influenced NLP asmuch as transformers (Vaswani et al., 2017).
Hardly any new NLP system today is introduced without a transformer-based model
such as BERT (Devlin et al., 2019) or GPT (Radford et al., 2019). As a result, static models
such as word2vec (Mikolov et al., 2013b) are increasingly being substituted. Neverthe-
less, transformers are still far from being fully understood. Thus, research studies are
being conducted to find out how they work and what properties the language models
they generate have.

During training, transformers seem to capture both syntactic and semantic features
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(Rogers et al., 2020). For example, dependency trees can be reconstructed from trained
attention heads (Clark et al., 2019), syntactic trees can be reconstructed from word en-
codings (Hewitt & Manning, 2019), and these encodings can be clustered into represen-
tations of word senses (Reif et al., 2019). BERT also seems to encode information about
entity types and semantic roles (Tenney et al., 2019). For an overview of this research
see Rogers et al. (2020).

Since BERT and other transformers are trained on various data crawled from the in-
ternet, they are sensitive to biases (Caliskan et al., 2017; May et al., 2019; Bender et al.,
2021). In practice, instead of reproducing negative biases, they are expected to allow
for the derivation of statements, such as that toothbrushes are spatially associated with
bathrooms rather than living rooms. In this line of thinking, approaches such as the
popularization of knowledge graphs can be located (Yao et al., 2019; Petroni et al., 2019;
Heinzerling & Inui, 2021). Our paper is situated in this context. More specifically, we
examine the extent to which knowledge about spatial objects and their relations is im-
plicitly encoded in these models. Since the underlying texts are rather implicit regarding
such information, it can be assumed that the object relations derivable from transformers
are weakly encoded (cf. Landau & Jackendoff, 1993; Hayward & Tarr, 1995). Reading,
for example, the sentence:

“After getting up, I ate an apple”

one may assume that the narrator got up from his bed in the bedroom, went to the
kitchen, took an apple, washed it in the sink, and finally ate it. The apple is also likely
to have been peeled and cut. Equally, however, nothing is said in the sentence about a
bedroom or a kitchen. Nevertheless, it is a well known approach to explore the usage
regularities of words, currently most efficiently represented by neural networks, as a
source for knowledge extraction (see, e.g. Zhang et al., 2017; Bouraoui et al., 2020; Shin
et al., 2020; Petroni et al., 2019).

In this work, we use a number of methods to identify biases in contextualized models
and ask to what extent they can be used to extract object-based knowledge from these
models. To this end, we consider three relations:

1. Spatial containment of (source) objects in (target) rooms: e.g. a fridge probably be-
longs in a kitchen, but not in a living room;

2. Parts (source) in relation to composite objects (target): e.g. a refrigerator compart-
ment is probably a part of a fridge;

3. Objects (source) in relation to actions (target) that involve them: e.g. reading involves
something being read, e.g., a book.

Regarding these relations, we examine a set of pre-trained contextualized and static word
representation models. This is done to answer the question to what extent they allow
the extraction of instances of these relations when trained on very large datasets. We
focus on rather common terms (kitchen, to read etc.) as part of the general language.
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It is assumed that (static or contextualized) models implicitly represent such relations,
so that it is possible to identify probable targets starting from certain sources. That is, for
a word like fridge (source), we expect it to be semantically more strongly associated with
kitchen (target) than with words naming other rooms, since fridges are more likely to
be found in kitchens than in other rooms, and that certain word representation models
reflect this association. We also assume that this association is asymmetric and exists to
a lesser extent from target to source (cf. Tversky & Gati (2004)).

The paper is organized as follows: Relatedwork is reported in Section 7.2. The datasets
we use are represented in Section 7.3 and ourmethod in Section 7.4. Our experiments are
presented in Section 7.5 and discussed in Section 7.6. Section 7.7 provides a conclusion.
All used data, scripts and results are open source on GitHub¹.

7.2 Related Work
Biases in NLP models are not a new problem that appeared with BERT, but affect almost
all models trained on language datasets (Caliskan et al., 2017). As such, there aremethods
for measuring social biases in static models such as word2vec (Mikolov et al., 2013b).
One of the best known approaches is WEAT (Caliskan et al., 2017). Here, two groups of
concepts are compared with two groups of attributes based on the difference between
the sums of their cosine similarities (see Section Section 7.4). This approach already
points to a methodological premise that also guides our work: Relations of entities are
tentatively determined by similarity analyses of vectorial word representations.

However, a direct comparison of word vectors is not possible with contextualized
methods such as BERT, where the vector representation of a word varies with the con-
text of its occurrence (cf. Ethayarajh, 2019). Efforts to transfer the cosine-based ap-
proach from static to contextualized models have not been able to recreate similar per-
formances (May et al., 2019). Therefore, new approaches have been developed based
on the specifics of contextualized models. For example, BERT is trained using masked
language modeling, where the model estimates the probability of masked words in sen-
tences (Devlin et al., 2019). The probability distribution for a masked word in a given
context can then be used as information to characterize candidate words (Kurita et al.,
2019). Section 7.4.3 describes this approach in more detail. An alternative approach is to
examine the interpretability of models (Belinkov & Glass, 2019; Jiang et al., 2020; Petroni
et al., 2019, 2020; Bommasani et al., 2020; Hupkes et al., 2020), which goes beyond the
scope of this paper. In any event, both approaches share the same basic ideas, e.g., the
probability prediction of mask tokens (cf. Kurita et al., 2019; Belinkov & Glass, 2019).

Work has also been done on how BERT represents information about spatial objects.
For example, BERT has problems with certain object properties (e.g. cheap or cute) or
implicit visual properties that are rarely expressed (Da & Kasai, 2019). Problems are
also encountered with extracting numerical commonsense knowledge, such as the typ-
ical number of tires on a car or the feet on a bird (Lin et al., 2020). More than that,
the models seem to allow for extracting some object knowledge, but not with respect to

¹https://github.com/texttechnologylab/SpatialAssociationsInLM
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properties based on their affordance (e.g. objects through which one can see are trans-
parent (Forbes et al., 2019)). Even though these results seem to question the use of BERT
and its competitors for knowledge extraction, these models still perform better in down-
stream tasks than their static competitors (Devlin et al., 2019; Liu et al., 2019a; Brown
et al., 2020; Da & Kasai, 2019). Bouraoui et al. (2020) compared these models using dif-
ferent datasets and lexical relations. These include relations similar to those examined
here (e.g. a pot is usually found in a kitchen), but beyond the level of detail achieved in
our study.

What will become increasingly important is the so-called grounding of languagemod-
els (Merrill et al., 2021): Here, the models are trained not only on increasingly large text
data, but also, for example, on images thus enabling better “understanding” of spatial
relations (Sileo, 2021; Li et al., 2020). In this paper, we focus on models without ground-
ing.

7.3 Datasets Used for Evaluation

7.3.1 Spatial Containment
The NYU Depth V2 Dataset (Silberman et al., 2012) consists of video sequences of numer-
ous indoor scenes. It features 464 labeled scenes using a rich category set. We use this
dataset as a basis for evaluating the probability of occurrence of objects in rooms (e.g.
kitchen, living room, etc.). That is, we estimate the conditional probability P (r | o) of a
room r (target) given an object o (source). In this way, we aim to measure the strength
of an object’s association with a particular room as reflecting the corresponding spatial
containment relation. At the same time, we want to filter out objects such as window
that are evenly distributed among the rooms studied here. In our experiments, we con-
sider the ten most frequently mentioned objects in NYU to associate with the five most
frequently mentioned spaces. This data is shown in the Table 7.4 (appendix).

The advantage of NYU over other scene datasets such as 3D-Front (Fu et al., 2021a) is
that it deals with real spaces and not artificially created ones. In addition, NYU’s object
category set is relatively fine-grained (we counted 895 different object names) and uses
colloquial terms. This is in contrast to, for example, SUNCG (Song et al., 2017) (with
categories like “slot machine with chair”,“range hood with cabinet”, “food processor”)
and ShapeNetCore (Chang et al., 2015a) with only 55 object categories or COCO (Lin
et al., 2014) with 80 object categories. This makes NYU more suitable for our task of
evaluating word representation models as resources for knowledge extraction starting
from general language.

7.3.2 Part-whole Relations
Weuse a subset of the object descriptions fromOnline-Bildwörterbuch². This resource de-
scribes very fine-grained part-whole relations of objects expressed by colloquial names,

²http://www.bildwoerterbuch.com/en/home
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in contrast to, e.g., PartNet (Mo et al., 2019) where one finds labels such as seat single
surface or arm near vertical bar. The list of objects from Online-Bildwörterbuch used in
our study and their subdivisions is shown in Table 7.5. The selected objects were chosen
by hand, provided that the chosen examples are general enough and the subdivision is
sufficiently fine.

7.3.3 Action-object Relations

To study entities as typical objects of certain actions, we derive a dataset from How-
ToKB (Chu et al., 2017) which is based on WikiHow³. In HowToKB, task frames, tempo-
ral sequences of subtasks, and attributes for involved objects were extracted from Wik-
iHow articles. Some changes were made to the knowledge database, including a newly
crawled version of WikiHow. In addition, the pre-processing tools have been updated
and partially extended (see Table 7.6).

Related Datasets

For evaluating static models, there are datasets and approaches to measuring lexical
relations, such as DifVec (Vylomova et al., 2016), BATS (Gladkova et al., 2016) or BLiMP
(Warstadt et al., 2020). Although these datasets are also used to evaluate BERT (Bouraoui
et al., 2020), they represent only an unstructured subset of the data we used and are thus
not appropriate for our study.

7.4 Approach

We now present the static and contextualized models used in our study. Table 7.7 in
the appendix lists these models and their sources. We also specify the measures used
to compute word associations as a source of knowledge extraction, and describe how to
use classifiers as an alternative to them.

7.4.1 Static Models

Probably the best known static model is word2vec (Mikolov et al., 2013b). Its CBOW
variant is trained to predict words in the context of their surrounding words. The word
representations trained in this way partially encode semantic relations (Mikolov et al.,
2013b), making them a suitable candidate for comparison with the corresponding infor-
mation values of contextualized word representations. In addition to word2vec, we con-
sider GloVe (Pennington et al., 2014), Levy (Levy & Goldberg, 2014), fastText (Mikolov
et al., 2018) and a static BERT model (Gupta & Jaggi, 2021). Unlike window-based ap-
proaches to static embeddings, Levy embeddings are trained on dependency trees.

³https://www.wikihow.com/
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7.4.2 Contextualized Models

Unlike static models, the vector representations of (sub-)word (units) in contextualized
models depend on the context in which they occur so that tokens of the same type may
each be represented differently in different contexts. All contextual models we evaluate
here are pre-trained and come from the huggingface models repository⁴. We evaluate two
types of contextualized models:

Masked Language Models (MLM) are trained to reconstruct randomly masked words
in input sequences. We experiment with BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), ELECTRA (Clark et al., 2020) and ALBERT (Lan et al., 2019). The models differ in
training, training data, andmodel size. BERT is trained usingmasked languagemodeling
and next sentence prediction. RoBERTa omits the second task, but uses much more
training data. Two models are trained for ELECTRA: one on masked language modeling
(generator) and a second one that recognizes just these replaced tokens (discriminator).
Since many of our evaluations need mask tokens, we only use the generator model for
the evaluations. Finally, ALBERT is trained to predict the order of pairs of consecutive
text segments in addition to masked language modeling.

Causal Language Models (CLM) are trained to predict the next word for a given input
text. From this class we experiment with GPT-2 (Radford et al., 2019), GPT-Neo (Gao
et al., 2021; Black et al., 2021) and GPT-J (Wang & Komatsuzaki, 2021). GPT-Neo and
GPT-J are re-implementations of GPT-3 (Brown et al., 2020) where GPT-J was trained
on a significantly larger data set named The Pile (Gao et al., 2021) (cf. Table 7.7 in the
appendix).

7.4.3 Similarity Measures

To compute similarities of word associations based on the models studied here, we make
use of research on biases in suchmodels. These approaches calculate biases between two
groups of concepts with respect to candidate groups of attributes. To this end, associa-
tions are evaluated by computing the similarities of vector representations of concepts
and attributes. We adopt this approach to investigate our research question. However,
as we consider knowledge extraction starting from source words (e.g. toaster, shower) in
relation to target words (e.g. kitchen, bathroom), we modify it as described below.

Cosine and Correlation Measures

Based on the human implicit association test (Greenwald et al., 1998), WEAT (Caliskan
et al., 2017) is originally designed to compare the association between two sets of con-
cepts (X and Y ) and two sets of attributes (A and B). The degree of bias is calculated as

⁴https://huggingface.co/models
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follows:

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y, A,B) (7.1)

s(w,A,B) =
∑
a∈A

cos (w, a)−
∑
b∈B

cos (w, b) (7.2)

Since we are considering source words in relation to target words, we use the following
variant:

s(X,A) =
1

|X||A|
∑
x∈X

∑
a∈A

cos (x, a) (7.3)

For contextualized models, we adopt the approach of May et al. (2019), that is, we gen-
erate sentences such as “This is a {x}.” or “A {x} is here”. All templates used in our
study are listed in the appendix Table 7.8. However, instead of using the BERT token
[CLS] (the default token at the beginning of an input sequence, which often serves as
the default representation of the entire sequence), we use the maximum of the vector
representations of all subwords of the expression. This approach is suitable for models
like RoBERTa that do not use the [CLS] token for training, or the GPT models that do
not have this token at all. In addition, we also achieved slightly better results on regular
BERT models using this approach. We explain this with the fact that our focus is actu-
ally only on single tokens and that the vector representation of the [CLS] token often
focuses only on a few dimensions (Zhou et al., 2019). Our approach results in a set of
contextualized representations for each source and target word, which are then com-
pared using Equation 7.3. We were able to obtain better results in our experiments with
this representation than with those generated via the [CLS] token. For static models, if
there is no vector representation for a potential multiword expressions (MWE)⁵, the av-
erage of the vectors of their components is used. This representation yielded the largest
bias in the work of Azarpanah & Farhadloo (2021). For the static models, we also experi-
mented with distance correlation (Székely et al., 2007), Pearson correlation (Benesty et al.,
2009), Spearman correlation (Kokoska & Zwillinger, 2000), Kendall’s tau (Kendall, 1938)
and Mahalanobis distance (Mahalanobis, 1936) – cf. Torregrossa et al. (2020); Azarpanah
& Farhadloo (2021) – of the word vectors. Due to space limitations, only the values
of the distance correlation and Kendall’s tau are shown (see Table 7.1); the other cor-
relation measures behave similarly. Moreover, the values for these measures tend to
perform worse for contextualized models. This observation is consistent with findings
of Azarpanah & Farhadloo (2021) where the Mahalanobis distance measure performed
worst.

Increased Log Probability

The cosine measure has shown to be problematic for assessing bias in contextualized
models such as BERT (May et al., 2019; Kurita et al., 2019). Kurita et al. (2019) have

⁵Word2Vec contains vectors for MWE’s.
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therefore developed a new approach for models trained using masked language model-
ing. Theyweight the probability of a targetword in a simple sentence template, assuming
that an attribute is given or not:

score(target, attribute) = log P ([MASK] = [target] | [MASK] is a [attribute])
P ([MASK1] = [target] | [MASK1] is a [MASK2])

Experiments show that the values of this measure correlate significantly better with
human biases.

Since this measure is based on the context sensitivity of models, it cannot be applied
to static models. For contextualized models, we use the probability of the last token
(e.g. curtain in the case of shower curtain) for source-forming MWEs and the first token
(e.g. living in the case of living room) for target-forming MWEs. We also performed
experiments with multiple masks, one for each of the components of a MWE. However,
this did not produce better results. We adapt this approach for causal languagemodels as
follows: Instead of a complete sentence, we use incomplete sentence templates such as
“A(n) {object} is usually in the …” or “In the {room} is usually a/an …”. The model should
then predict the next token. Instead of masking the seed word, a neutral equivalent is
used for calculation:

A(n) {object} is usually in the …
⇓

This is usually in the ….

Instead of performing the analysis in only one direction, we determine the score for both
the target and the source given the other.

Classifier-based Measures

In addition to the previously described measures, we experiment with classifiers. To
this end, we train three classifiers on the model representations of the source word to
determine the associated target word as a class label (e.g. predict kitchen, given the
vector of frying pan). We generate the set of source word representationsX in the same
way as in the case of the cosine measure (see Section 7.4.3) and average them before
classification:

target = Classifier

(
1

|X|
∑
x⃗∈X

x⃗

)
The training runs on a leave-one-out cross-validation repeated 100 times. The target
vector was then generated from the counted predicted classes (see Figure 7.2b in Ap-
pendix). We trained a k-nearest neighbors classifier with k = 5 (KNN), an SVM with a
linear kernel and a feed-forward network (FFN). A small hyperparameter optimization
was performed for the FFN, which resulted in the following parameters: Adam Opti-
mizer (Kingma & Ba, 2014) with a learning rate of 0.01 over 100 epochs and one hidden
layer of size 100 and ReLU as activation function.
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Word2Vec GloVe Levy fastText static-BERT
cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn

Ro
om

bathroom 0.37 0.37 0.37 0.39 0.62 0.82 0.38 0.39 0.38 0.57 0.93 0.93 0.39 0.40 0.39 0.14 0.34 0.37 0.53 0.53 0.52 0.73 0.67 0.90 0.54 0.50 0.50 0.25 0.66 0.70
bedroom 0.20 0.20 0.20 0.13 0.49 0.70 0.31 0.29 0.30 0.28 0.66 0.45 0.21 0.21 0.21 0.10 0.25 0.11 0.30 0.31 0.32 0.26 0.44 0.59 0.28 0.27 0.27 0.35 0.33 0.35
kitchen 0.35 0.34 0.35 0.20 0.55 0.53 0.37 0.40 0.41 0.52 0.65 0.81 0.17 0.17 0.18 0.09 0.32 0.30 0.38 0.36 0.34 0.41 0.66 0.76 0.40 0.41 0.41 0.45 0.53 0.68
living room 0.23 0.23 0.24 0.06 0.33 0.35 0.30 0.27 0.28 0.10 0.49 0.51 0.24 0.24 0.23 0.40 0.16 0.25 0.25 0.26 0.24 0.09 0.36 0.60 0.19 0.19 0.19 0.00 0.10 0.46
office 0.28 0.28 0.26 0.51 0.51 0.55 0.14 0.31 0.35 0.51 0.59 0.64 0.25 0.27 0.28 0.40 0.36 0.25 0.25 0.30 0.33 0.45 0.32 0.63 0.40 0.44 0.45 0.10 0.21 0.32
CONC 0.23 0.23 0.23 0.22 0.50 0.60 0.27 0.31 0.32 0.37 0.67 0.67 0.16 0.15 0.15 0.15 0.11 0.23 0.30 0.31 0.31 0.40 0.45 0.70 0.31 0.31 0.31 0.18 0.39 0.48

Pa
rt

bed 0.41 0.41 0.40 0.64 0.56 0.56 0.38 0.51 0.51 0.56 0.76 0.84 - - - - - - 0.42 0.51 0.52 0.69 0.61 0.67 0.47 0.48 0.46 0.16 0.59 0.54
dishwasher 0.19 0.23 0.23 0.06 0.37 0.27 0.33 0.32 0.30 0.03 0.19 0.32 - - - - - - 0.35 0.33 0.33 0.06 0.13 0.23 0.17 0.17 0.17 0.13 0.28 0.31
door 0.12 0.11 0.11 0.54 0.75 0.75 0.19 0.23 0.22 0.48 0.81 0.85 - - - - - - 0.25 0.27 0.24 0.36 0.55 0.84 0.24 0.25 0.25 0.36 0.73 0.67
mortise lock 0.15 0.16 0.16 0.16 0.50 0.54 0.22 0.26 0.28 0.45 0.74 0.68 - - - - - - 0.11 0.17 0.20 0.68 0.55 0.68 0.20 0.21 0.21 0.14 0.49 0.47
refrigerator 0.44 0.46 0.46 0.51 0.47 0.52 0.53 0.57 0.56 0.55 0.55 0.66 - - - - - - 0.54 0.58 0.58 0.28 0.40 0.55 0.50 0.50 0.50 0.56 0.56 0.53
toilet 0.28 0.28 0.28 0.01 0.49 0.55 0.33 0.33 0.32 0.31 0.63 0.60 - - - - - - 0.37 0.34 0.33 0.55 0.50 0.72 0.24 0.23 0.23 0.34 0.57 0.58
CONC 0.25 0.27 0.26 0.28 0.52 0.53 0.30 0.34 0.34 0.39 0.60 0.65 - - - - - - 0.28 0.33 0.33 0.35 0.43 0.61 0.29 0.29 0.29 0.23 0.54 0.52

Ve
rb

eat 0.79 0.79 0.77 0.89 0.89 0.89 0.77 0.86 0.80 0.89 0.89 0.92 0.46 0.45 0.45 0.66 0.87 0.87 0.73 0.80 0.79 0.69 0.89 0.89 0.83 0.84 0.83 0.61 0.89 0.87*
listen to 0.54 0.64 0.56 0.21 0.38 0.46 0.59 0.70 0.65 0.06 0.53 0.49 0.28 0.22 0.23 0.20 0.38 0.52 0.42 0.53 0.63 0.21 0.42 0.40 0.54 0.56 0.53 0.00 0.39 0.50
play 0.64 0.69 0.64 0.60 0.66 0.60 0.65 0.80 0.73 0.43 0.45 0.45 0.44 0.45 0.43 0.41 0.50 0.57 0.63 0.69 0.68 0.28 0.66 0.66 0.56 0.56 0.54 0.00 0.49 0.63*
read 0.43 0.52 0.48 0.38 0.59 0.61 0.51 0.60 0.59 0.48 0.53 0.50 0.31 0.31 0.31 0.49 0.31 0.50 0.54 0.56 0.59 0.42 0.50 0.59 0.48 0.52 0.48 0.00 0.31 0.47
wash with 0.53 0.54 0.53 0.48 0.61 0.63 0.48 0.57 0.53 0.66 0.66 0.62 0.37 0.34 0.35 0.41 0.66 0.62 0.45 0.51 0.49 0.67 0.66 0.66 0.39 0.40 0.40 0.11 0.55 0.61
wear 0.76 0.78 0.76 0.88 0.84 0.88 0.80 0.87 0.84 0.88 0.83 0.85 0.56 0.52 0.50 0.82 0.85 0.85 0.77 0.80 0.79 0.59 0.93 0.92 0.78 0.82 0.80 0.72 0.81 0.84
CONC 0.58 0.60 0.57 0.56 0.64 0.67 0.59 0.68 0.65 0.55 0.65 0.65 0.34 0.32 0.31 0.46 0.59 0.65 0.51 0.58 0.58 0.43 0.66 0.68 0.54 0.55 0.54 0.15 0.56 0.65

Table 7.1: All results of the static models. cos: Cosine Measure, dist: Distance Corre-
lation, kend: Kendall’s Tau, knn: K-Nearest Neighbors, svm: Support Vector
Machine, fnn: Feed-Forward Network. The gap in Levy is due to its small
training set and the corresponding small vocabulary. (A gray cell indicates
significant values at p < 0.01)

7.4.4 Scoring Measures and Classifiers
Given a word representation model, we compute the final score for the measures and
classifiers to estimate how well they reconstruct the original probability distribution
of the source entities relative to the target entities (see Table 7.4, 7.5, and 7.6). This is
computed by the distance correlation (Székely et al., 2007) between the target-source
probability distributions and the corresponding association distributions of the respec-
tive measure or classifier. The advantage of the distance correlation over the Pearson
correlation is that it can also measure nonlinear relations. This was calculated both for
all targets individually (correlation of all sources to one target) and then concatenated
for all targets together; we denote this variant by CONC. Therefore, CONC does not
correspond to the average of the individual distance correlations.

7.5 Experiments
Using the apparatus of Section 7.4, we now evaluate the classes of word representation
models (static, MLMs and CLMs) in conjunction with the similarity measures and classi-
fiers. The results for the static models are shown in Table 7.1, for the MLMs in Table 7.2
and for the CLMs in Table 7.3. Figure 7.2, 7.3 and 7.4 in Appendix show a visualization
of the associations computed by means of cosine, masked-target & masked-source in-
creased log similarity measures and the FFN classifier based on BERT-Large using the
different datasets. An experiment was also conducted with word frequencies via Google
Ngram⁶ (see Section 7.7 in the appendix).

⁶https://books.google.com/ngrams
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BERT-Base BERT-Large RoBERTa ElectraGen Albert
cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn

Ro
om

bathroom 0.57 0.13 0.52 0.72 0.87 0.93 0.65 0.30 0.59 0.78 0.93 0.93 0.21 0.24 0.52 0.55 0.83 0.88 0.58 0.32 0.34 0.49 0.72 0.73 0.24 0.18 0.39 0.52 0.75 0.90
bedroom 0.48 0.33 0.43 0.53 0.66 0.77 0.44 0.41 0.44 0.44 0.87 0.78 0.23 0.18 0.36 0.17 0.53 0.60 0.32 0.31 0.37 0.37 0.37 0.39 0.23 0.22 0.47 0.31 0.44 0.68
kitchen 0.56 0.25 0.58 0.62 0.81 0.83 0.43 0.24 0.54 0.72 0.77 0.79 0.39 0.27 0.59 0.16 0.62 0.73 0.34 0.24 0.36 0.48 0.34 0.39 0.25 0.17 0.30 0.05 0.56 0.69
living room 0.30 0.37 0.26 0.51 0.78 0.79 0.23 0.38 0.24 0.57 0.49 0.66 0.13 0.38 0.28 0.49 0.74 0.65 0.26 0.48 0.33 0.15 0.27 0.26 0.15 0.35 0.54 0.20 0.29 0.40
office 0.46 0.39 0.28 0.40 0.59 0.61 0.40 0.37 0.31 0.25 0.52 0.71 0.14 0.37 0.38 0.18 0.74 0.63 0.17 0.37 0.23 0.42 0.27 0.36 0.23 0.22 0.42 0.45 0.66 0.81
CONC 0.43 0.26 0.33 0.54 0.73 0.78 0.34 0.26 0.36 0.55 0.72 0.78 0.19 0.22 0.31 0.28 0.69 0.71 0.22 0.30 0.27 0.38 0.40 0.43 0.19 0.15 0.23 0.25 0.53 0.69

Pa
rt

bed 0.55 0.41 0.51 0.51 0.69 0.79 0.49 0.41 0.55 0.56 0.69 0.69 0.20 0.42 0.62 0.49 0.52 0.60 0.37 0.31 0.43 0.44 0.44 0.43 0.26 0.40 0.54 0.36 0.66 0.71
dishwasher 0.22 0.16 0.22 0.27 0.31 0.28 0.30 0.18 0.31 0.29 0.17 0.18 0.16 0.19 0.19 0.13 0.24 0.17 0.26 0.19 0.21 0.01 0.23 0.36 0.17 0.18 0.25 0.26 0.25 0.23
door 0.19 0.32 0.20 0.34 0.65 0.63 0.13 0.28 0.39 0.47 0.60 0.62 0.15 0.33 0.27 0.52 0.42 0.51 0.14 0.20 0.17 0.41 0.57 0.60 0.13 0.29 0.21 0.36 0.50 0.54
mortise lock 0.12 0.14 0.09 0.16 0.26 0.28 0.14 0.23 0.11 0.19 0.26 0.35 0.07 0.29 0.12 0.08 0.18 0.28 0.16 0.18 0.15 0.39 0.59 0.39 0.09 0.27 0.22 0.16 0.31 0.39
refrigerator 0.44 0.21 0.40 0.48 0.47 0.54 0.38 0.21 0.54 0.42 0.51 0.50 0.18 0.38 0.45 0.49 0.43 0.49 0.37 0.33 0.43 0.46 0.45 0.53 0.44 0.27 0.51 0.66 0.51 0.61
toilet 0.18 0.16 0.29 0.16 0.34 0.45 0.25 0.16 0.26 0.36 0.55 0.50 0.22 0.34 0.41 0.45 0.51 0.51 0.34 0.26 0.42 0.26 0.41 0.46 0.24 0.23 0.25 0.22 0.31 0.46
CONC 0.20 0.20 0.24 0.33 0.45 0.49 0.22 0.21 0.28 0.39 0.46 0.46 0.07 0.29 0.29 0.39 0.39 0.43 0.21 0.19 0.23 0.32 0.45 0.47 0.08 0.23 0.27 0.35 0.42 0.49

Ve
rb

eat 0.78 0.65 0.67 0.89 0.84 0.90 0.65 0.58 0.72 0.80 0.89 0.90 0.26 0.66 0.81 0.65 0.87 0.86 0.62 0.64 0.76 0.74 0.79 0.79 0.53 0.61 0.74 0.57 0.84 0.85
listen to 0.46 0.53 0.51 0.42 0.52 0.57 0.50 0.52 0.50 0.43 0.55 0.52 0.30 0.53 0.55 0.23 0.49 0.54 0.57 0.47 0.59 0.00 0.36 0.39 0.23 0.47 0.51 0.07 0.44 0.57
play 0.63 0.58 0.69 0.54 0.58 0.61 0.55 0.60 0.73 0.54 0.64 0.66 0.37 0.64 0.65 0.38 0.53 0.59 0.64 0.53 0.69 0.64 0.64 0.65 0.37 0.42 0.52 0.45 0.60 0.62
read 0.42 0.46 0.65 0.34 0.73 0.65 0.30 0.42 0.66 0.42 0.77 0.59 0.26 0.29 0.59 0.21 0.44 0.44 0.41 0.43 0.63 0.51 0.68 0.69 0.31 0.19 0.57 0.35 0.63 0.60
wash with 0.49 0.46 0.33 0.49 0.66 0.63 0.42 0.53 0.45 0.61 0.62 0.60 0.30 0.56 0.30 0.23 0.60 0.59 0.42 0.50 0.35 0.52 0.40 0.41 0.33 0.42 0.32 0.18 0.46 0.51
wear 0.66 0.64 0.76 0.88 0.90 0.92 0.62 0.57 0.74 0.79 0.90 0.85 0.24 0.64 0.77 0.36 0.72 0.79 0.53 0.62 0.74 0.90 0.84 0.83 0.30 0.61 0.77 0.61 0.77 0.86
CONC 0.53 0.53 0.38 0.59 0.69 0.71 0.37 0.50 0.44 0.60 0.73 0.68 0.20 0.55 0.37 0.28 0.59 0.64 0.49 0.51 0.37 0.60 0.61 0.62 0.15 0.40 0.26 0.29 0.62 0.67

Table 7.2: All results of the contextual masked-language models. cos: Cosine Mea-
sure, m-s: Masked-Source Log Score, m-t: Masked-Target Log Score, knn:
K-Nearest Neighbors, svm: Support Vector Machine, fnn: Feed-Forward Net-
work. (A gray cell indicates significant values at p < 0.01)

GPT2 GPT-Neo GPT-J
cos p-s p-s-l p-t p-t-l knn svm ffn cos p-s p-s-l p-t p-t-l knn svm ffn cos p-s p-s-l p-t p-t-l knn svm ffn

Ro
om

bathroom 0.52 0.20 0.38 0.50 0.37 0.31 0.95 0.95 0.30 0.22 0.51 0.36 0.25 0.53 0.89 0.91 0.50 0.26 0.60 0.66 0.48 0.35 0.89 0.92
bedroom 0.26 0.31 0.23 0.47 0.38 0.26 0.61 0.54 0.19 0.33 0.21 0.53 0.48 0.55 0.49 0.57 0.24 0.32 0.23 0.62 0.48 0.33 0.70 0.64
kitchen 0.34 0.41 0.45 0.69 0.60 0.53 0.82 0.83 0.31 0.49 0.67 0.70 0.57 0.38 0.51 0.81 0.33 0.36 0.52 0.83 0.70 0.70 0.82 0.83
living room 0.21 0.43 0.26 0.41 0.33 0.16 0.27 0.46 0.26 0.57 0.39 0.60 0.44 0.28 0.13 0.48 0.21 0.50 0.47 0.67 0.45 0.46 0.40 0.63
office 0.13 0.21 0.43 0.37 0.23 0.31 0.44 0.73 0.33 0.30 0.43 0.46 0.34 0.24 0.53 0.72 0.23 0.36 0.53 0.49 0.39 0.37 0.52 0.69
CONC 0.26 0.23 0.30 0.46 0.35 0.30 0.61 0.72 0.15 0.34 0.44 0.44 0.35 0.40 0.52 0.71 0.23 0.32 0.42 0.56 0.41 0.42 0.66 0.74

Pa
rt

bed 0.36 0.30 0.51 0.67 0.45 0.55 0.59 0.70 0.32 0.38 0.46 0.77 0.70 0.66 0.78 0.88 0.46 0.38 0.36 0.81 0.68 0.71 0.83 0.84
dishwasher 0.11 0.34 0.22 0.25 0.23 0.18 0.21 0.28 0.06 0.23 0.30 0.30 0.29 0.15 0.15 0.24 0.09 0.26 0.30 0.44 0.38 0.12 0.15 0.32
door 0.23 0.07 0.14 0.20 0.28 0.20 0.65 0.66 0.27 0.10 0.17 0.35 0.42 0.20 0.44 0.66 0.15 0.13 0.12 0.37 0.41 0.25 0.67 0.77
mortise lock 0.07 0.34 0.43 0.17 0.18 0.27 0.63 0.65 0.11 0.49 0.42 0.30 0.22 0.27 0.49 0.61 0.15 0.43 0.43 0.47 0.31 0.04 0.63 0.66
refrigerator 0.42 0.41 0.24 0.53 0.52 0.47 0.39 0.51 0.29 0.33 0.33 0.47 0.55 0.44 0.47 0.57 0.46 0.51 0.41 0.57 0.63 0.55 0.53 0.63
toilet 0.29 0.36 0.44 0.20 0.17 0.16 0.49 0.54 0.27 0.42 0.50 0.25 0.26 0.23 0.50 0.58 0.32 0.45 0.48 0.32 0.37 0.26 0.53 0.62
CONC 0.14 0.24 0.28 0.28 0.25 0.29 0.47 0.54 0.12 0.30 0.34 0.37 0.36 0.32 0.46 0.57 0.16 0.34 0.32 0.42 0.43 0.33 0.54 0.62

Ve
rb

eat 0.49 0.82 0.65 - - 0.82 0.87 0.87 0.45 0.86 0.66 - - 0.76 0.87 0.88 0.48 0.68 0.74 - - 0.63 0.89 0.89
listen to 0.22 0.57 0.51 - - 0.29 0.50 0.58 0.22 0.47 0.47 - - 0.20 0.42 0.55 0.21 0.60 0.56 - - 0.29 0.52 0.60
play 0.40 0.64 0.62 - - 0.62 0.61 0.59 0.32 0.66 0.61 - - 0.20 0.55 0.62 0.34 0.66 0.70 - - 0.37 0.67 0.67
read 0.32 0.63 0.30 - - 0.32 0.45 0.45 0.32 0.61 0.34 - - 0.29 0.52 0.49 0.40 0.63 0.41 - - 0.20 0.59 0.49
Wash with 0.39 0.77 0.51 - - 0.57 0.61 0.63 0.28 0.66 0.52 - - 0.39 0.41 0.60 0.23 0.69 0.52 - - 0.66 0.61 0.64
wear 0.44 0.38 0.72 - - 0.76 0.84 0.87 0.16 0.39 0.66 - - 0.68 0.79 0.85 0.21 0.38 0.62 - - 0.87 0.84 0.87
CONC 0.31 0.52 0.53 - - 0.51 0.64 0.66 0.19 0.49 0.52 - - 0.40 0.59 0.66 0.23 0.50 0.56 - - 0.48 0.68 0.69

Table 7.3: All results of the contextual causal-language models. p-s: Predict Source
Score, p-s-l: : Predict Source Log Score, p-t: Predict Target Score, p-t-l: Pre-
dict Target Log Score. The gap for the verb p-t score is due to the lack of an
easily applicable sentence templates in this direction. (A gray cell indicates
significant values at p < 0.01)
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7.5 Experiments

7.5.1 Model-related Observations

The basic expectation that the cosine measure would generally perform the worst and
the FFN classifier the best was met (see Table 7.1–7.3). Interestingly, cosine is also out-
performed by distance correlation in almost all cases.

Among the static models, GloVe and fastText performed best in most cases, especially
on the room and part dataset (Table 7.1). Although Levy performs by far the worst in the
room dataset, it keeps up with all classification results in the verb dataset. One reason
for this could be the dependency-based learning strategy, which seems to work very well
for verb associations, even though it was trained on a much smaller data set.

Among themasked-languagemodels, BERT-Base surprisingly performed the best (Ta-
ble 7.2). BERT-Large achieved the better Increased Log Probabilities, but the FFN classi-
fier still worked better with the vector representations of the Base variant. This suggests
that although associations are represented in amore fine-grainedmanner in BERT-Large,
they are more difficult to retrieve due to the size of this model.

Among themasked-languagemodels, GPT-J (whichwas trainedwith by far the largest
training data) performs best (Table 7.3). Context-based models generally seem to de-
termine the target given the source (P (target | source)) more easily than the reverse
(P (source | target)). With verbs, on the other hand, the reverse effect occurs. The GPT
models show that the results for sources are better when weighted, while for targets the
results are better without weighting.

In general, the SVMperformed surprisingly well, even though only a linear kernel was
used. But also the KNN method mostly performed better than the similarity measures.
However, FFN performs best in all cases, outperforming cosine (worst case) by increases
in the interval [6%, 52%] and outperforming the KNN approach (worst classifier) in each
case by increases in the interval [2%, 43%].

7.5.2 Dataset-related Observations

In terms of rooms, bathroom scores the best, while living room or office usually score
the worst. This may be because many bathroom objects are related to specific bathroom
activities (e.g., toothbrush, bathtub), while objects that used to be located in the living
room are increasingly found in other rooms (e.g., television in the bedroom). This would
also explain why the results for kitchen are also better.

On the part dataset, the static models actually performed significantly better than the
contextualizedmodels. This relates especially to GloVe and fastText which outperformed
almost all contextualizedmodels. Thus, staticmodels are in some cases a good alternative
to their contextualized counterparts. However, the more technical the objects become
(here mortise lock and dishwasher), the worse the results become.

On the verb dataset, the contextualized models perform minimally better. As men-
tioned earlier, these models can associate objects with verbs more easily than the other
way around. Here, the largest difference in performance is observed in the case of Levy,
where the results are almost equal to those of the other models, probably due to the
learning strategy based on dependency trees.
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Figure 7.1: Small relation evaluation of BERT-large after the method of Kurita et al.
(2019).

In summary, knowledge extraction using language models, whether static or contex-
tualized, is more effective using classifiers than using similarity measures commonly
used in the field of bias research: there is potential for this type of knowledge extrac-
tion, but at the price of training classifiers – if one uses similarity measures instead, this
knowledge is mostly out of reach.

7.5.3 Relation Observation

All previous evaluations only examined associations between instances and concepts,
but notwhether themodels represent their true relations. To fill this gap, we repeated the
experimental setup of Kurita et al. (2019) for the room and part dataset on BERT-large,
but this time masked the relation. The results are shown in Figure 7.1. Our selection
of relations does not claim to be exhaustive, but serves as an illustration. It shows that
while BERT-large is still very good at assigning objects in rooms, the dominant relation
predicted for parts is used by. This suggests that BERT has problems correctly assigning
object parts, an observation that could explain its poorer results while being consistent
with findings of (Lin et al., 2020) (e.g., regarding counting parts).

7.6 Discussion

As good as the results obtained using classifiers are, they must be viewed with caution.
One can attribute their success to the fine-tuning of numerous parameters (and ulti-
mately to overfitting); however, one can also attribute this success to nonlinear struc-
turing of the information encoded in language models. In other words, these models
appear to encode object knowledge, but require a sophisticated apparatus to retrieve it.
Thus, they should not be considered as an alternative to unsupervised approaches.
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7.7 Conclusion

Another issue is that our experiments do not yet allow for a comparison of model ar-
chitectures, as the models studied differ significantly in terms of the size of their param-
eter spaces and training data. Our experiments do suggest that certain smaller models
come close to or even outperform the results of larger models. However, a comparison
of model architectures would require controlling for these parameters. Nevertheless, the
results we have obtained are, in part, promising enough to encourage such research.

Finally, our experiments show that static models can perform better than contextu-
alized models to some extent. This finding is conditioned by our experiments and their
context of application. These observations that older models perform better on certain
tasks are consistent with other work (e.g. LSTMs on small datasets for intent classifi-
cation (Ezen-Can, 2020) or definiteness prediction (Kabbara & Cheung, 2021). At this
point, a much broader analysis is needed (considering more areas and object relations),
which also exploits contextual knowledge represented in contextualized models more
than has been done here and in related work. Nevertheless, it is generally difficult to ob-
tain data for such a broader analysis, and our experiments are already broader in scope
and consider finer relationships than similar approaches.

7.7 Conclusion

We evaluated static and contextualized models as potential resources for object-related
knowledge extraction. To this end, we examined three datasets (to identify typical ar-
tifacts in rooms, objects of actions, or parts of objects). We also experimented with
different similarity measures and classifiers to extract the information contained in the
language models. In doing so, we have shown that the models in combination with the
measures differ greatly in terms of the amount of knowledge they allow for extract-
ing. There is a weak trend that BERT-Base is the best performer among contextualized
models, and GloVe and fastText among static models. Secondly, our results suggest that
approaches based on classifiers perform significantly better than similarity measures.
Thirdly, we have shown that static models perform almost as well as contextualized
models – in some cases even better. This result shows that research on these models
needs to be advanced. In future work we will also investigate how grounded language
models perform on such datasets. However, as noted above, this requires a significant
expansion of bias research, such as that conducted here to enable knowledge extraction.

Appendix

A tabular breakdown of the datasets used can be seen in Table 7.4, 7.5 and 7.6. The exact
models used are listed in Table 7.7. The heatmap visualizations for the other two datasets
are in Figure 7.3 and 7.4.
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Word Frequency
We also conducted an experiment to correlate the scores with their frequency. For this
purpose, the corresponding objects of each target were selected. And then the distance
correlation between the scores and the corresponding word frequency was calculated
based on the average of the last 10 years of Google Ngrams. The results are shown in
Table 7.9. The correlations are not particularly significant (mostly p ≥ 0.1), but it is
noticeable that especially the cosine score depends strongly on the word frequency. The
classifiers are generally less sensitive.

bathroom bedroom kitchen living room office
object score object score object score object score object score

toilet 1.00 dresser 1.00 drying rack 1.00 coffee table 0.94 whiteboard 1.00
bathtub 1.00 night stand 1.00 kitchen island 1.00 ottoman 0.93 room divider 0.94
toothbrush
holder

1.00 headboard 1.00 pot 1.00 fireplace 0.87 stapler 0.92

toothpaste 1.00 bed 0.97 frying pan 1.00 dvd player 0.69 cork board 0.92
shower curtain 1.00 alarm clock 0.97 spice rack 1.00 sofa 0.68 file 0.88
toothbrush 0.97 laundry basket 0.86 cutting board 1.00 decorative plate 0.61 keyboard 0.85
towel rod 0.96 hat 0.74 blender 1.00 tv stand 0.57 mouse 0.84
toilet paper 0.96 doll 0.70 knife 1.00 blanket 0.55 pen 0.83
squeeze tube 0.95 stuffed animal 0.60 stove 0.98 television 0.53 computer 0.82
faucet handle 0.82 pillow 0.56 dishwasher 0.97 remote control 0.50 column 0.81

Table 7.4: Statistics generated from ScanNet using NYU categories: score is the condi-
tional probability P (room | object) of the room given the object based on the
frequencies observable in NYU.

bed dishwasher door mortise lock refrigerator toilet
object score object score object score object score object score object score

pillow 1.00 drain hose 1.00 lock 1.00 ring 1.00 switch 1.00 valve seat shaft 1.00
bolster 1.00 overflow protec-

tion switch
1.00 cornice 1.00 keyway 1.00 refrigerator com-

partment
1.00 tank lid 1.00

mattress cover 1.00 tub 1.00 hanging stile 1.00 cotter pin 1.00 egg tray 1.00 conical washer 1.00
leg 1.00 pump 1.00 entablature 1.00 spring 1.00 shelf channel 1.00 lift chain 1.00
box spring 1.00 gasket 1.00 top rail 1.00 rotor 1.00 magnetic gasket 1.00 seat 1.00
headboard 1.00 water hose 1.00 middle panel 1.00 cylinder case 1.00 storage door 1.00 shutoff valve 1.00
mattress 1.00 heating element 1.00 bottom rail 1.00 key 1.00 freezer door 1.00 trip lever 1.00
pillow protector 1.00 rack 1.00 panel 1.00 faceplate 1.00 guard rail 1.00 ball-cock supply

valve
1.00

elastic 1.00 cutlery basket 1.00 jamb 1.00 dead bolt 1.00 crisper 1.00 toilet bowl 1.00
footboard 1.00 wash tower 1.00 doorknob 1.00 cylinder 1.00 glass cover 1.00 flush handle 1.00

motor 1.00 threshold 1.00 stator 1.00 butter compart-
ment

1.00 wax seal 1.00

detergent dis-
penser

1.00 weatherboard 1.00 strike plate 1.00 thermostat control 1.00 tank ball 1.00

slide 1.00 lock rail 1.00 freezer compart-
ment

1.00 float ball 1.00

leveling foot 1.00 shutting stile 1.00 ice cube tray 1.00 filler tube 1.00
insulating material 1.00 header 1.00 meat keeper 1.00 waste pipe 1.00
spray arm 1.00 door stop 1.00 seat cover 1.00
rinse-aid dispenser 1.00 shelf 1.00 cold-water supply

line
1.00

dairy compart-
ment

1.00 overflow tube 1.00

door shelf 1.00 trap 1.00
refill tube 1.00

Table 7.5: A subset of part-whole relations extracted from Online-Bildwörterbuch. All
parts have a value of 1.00 in our data set, because they only occur with this
object.
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7.7 Conclusion

eat listen to play read wash with wear
object score object score object score object score object score object score

food 0.13 music 0.22 game 0.27 book 0.08 soap 0.29 clothing 0.07
diet 0.08 song 0.03 music 0.06 label 0.06 water 0.29 glove 0.06
meal 0.07 body 0.03 note 0.04 instruction 0.05 vinegar 0.04 shoe 0.05
breakfast 0.04 side 0.02 sport 0.03 review 0.04 solution 0.03 clothes 0.05
balanced
diet

0.03 partner 0.02 chord 0.02 body lan-
guage

0.02 detergent 0.03 shirt 0.02

fruit 0.03 child 0.02 song 0.02 rule 0.02 baking soda 0.03 makeup 0.02
vegetable 0.03 perspective 0.02 video game 0.02 example 0.02 cream 0.02 gear 0.02
plenty 0.03 response 0.02 card 0.02 complaint 0.01 shampoo 0.02 boot 0.02
protein 0.03 parent 0.02 role 0.02 law 0.01 towel 0.02 dress 0.02
snack 0.02 people 0.02 video 0.02 story 0.01 cold water 0.02 sock 0.02

Table 7.6: A subset of verb-object relations extracted from an updated version of How-
ToKB.

Model Specification Dimension Parameters Dataset Size
(T ; S)

URL

word2vec GoogleNews-vectors-negative300 300 - 100B ; - https://code.google.com/archive/
p/word2vec/

Glove Common Crawl - glove.840B.300d 300 - 840B ; - https://nlp.stanford.edu/
projects/glove/

Levy Dependency-Based Words 300 - English
Wiki (∼ 2B
tokens)

https://levyomer.
wordpress.com/2014/04/25/
dependency-based-word-embeddings/

fastText crawl-300d-2M-subword 300 - 600B ; - https://fasttext.cc/docs/en/
english-vectors.html

static-BERT bert_12layer_sent 768 - +1.28B ; - https://zenodo.org/record/5055755

BERT-Base bert-base-uncased 768 ∼ 110M 3.3B ; 16GB https://huggingface.co/
bert-base-uncased

BERT-Large bert-large-uncased 1024 ∼ 336M 3.3B ; 16GB https://huggingface.co/
bert-large-uncased

RoBERTa roberta-large 1024 ∼ 336M - ; 160GB https://huggingface.co/
roberta-large

ELECTRA electra-large-generator 256 ∼ 51M https://huggingface.co/google/
electra-large-generator

ALBERT albert-xxlarge-v2 4096 ∼ 223M 3.3B ; 16GB https://huggingface.co/
albert-xxlarge-v2

GPT2 gpt2-large 1280 ∼ 774M - ; 40GB https://huggingface.co/gpt2-large
GPT-Neo gpt-neo-2.7B 2560 ∼ 2.7B 420B ; - https://huggingface.co/

EleutherAI/gpt-neo-2.7B
GPT-J gpt-j-6B 4096 ∼ 6B - ; 825GB https://huggingface.co/

EleutherAI/gpt-j-6B

Table 7.7: Model overview. Mostly only the token quantity (T) or the dataset size (S) was
given.
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Task Model Data Templates

Cosine Score
&

Classification
MLM & CLM

Room & Objects & Parts

This is a/an {x}.
That is a/an {x}.
There is a/an {x}.
Here is a/an {x}.
A/An {x} is here.
A/An {x} is there.

Verbs

I {x} something.
I {x} anything.
I {x}.
You {x} something.
You {x} anything.
You {x}.

Increased
Log Probability

MLM
Room & Object A/An {obj} is usually in the

{room}.
Object & Part A/An {part} is usually part of

a/an {obj}.
Verb & Object I usually {verb} this {obj}.

CLM

Room & Object A/An {obj} is usually in the …
In the {room} is usually a/an …

Object & Part A/An {part} is usually part of a
…
In the {obj} is usually a/an …

Verb & Object I usually {verb} this …

Table 7.8: Templates for calculating scores regarding Masked Language Models (MLM)
and Causal Language Models (CLM). For more details, see Section 7.4.

Word2Vec GloVe Levy fastText static-BERT
cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn

Ro
om

bathroom 0.73 0.75 0.78 0.31 0.31 0.22 0.53 0.56 0.57 0.23 0.00 0.23 0.65 0.67 0.68 0.25 0.00 0.32 0.65 0.67 0.70 0.00 0.00 0.00 0.74 0.75 0.76 0.56 0.41 0.47
bedroom 0.55 0.53 0.56 0.00 0.36 0.35 0.72 0.72 0.69 0.50 0.35 0.57 0.51 0.51 0.50 0.00 0.00 0.37 0.58 0.54 0.53 0.66 0.55 0.35 0.45 0.44 0.44 0.68 0.35 0.36
kitchen 0.51 0.52 0.51 0.35 0.49 0.42 0.37 0.34 0.34 0.29 0.35 0.33 0.46 0.46 0.46 0.20 0.00 0.20 0.33 0.36 0.40 0.30 0.20 0.37 0.46 0.46 0.46 0.20 0.31 0.42
living room 0.63 0.61 0.61 0.36 0.46 0.50 0.48 0.62 0.63 0.44 0.29 0.30 0.53 0.57 0.57 0.41 0.41 0.54 0.39 0.57 0.59 0.28 0.29 0.27 0.52 0.54 0.53 0.00 0.30 0.52
office 0.65 0.65 0.58 0.38 0.26 0.37 0.52 0.57 0.56 0.38 0.43 0.47 0.66 0.66 0.65 0.27 0.50 0.50 0.45 0.43 0.41 0.58 0.35 0.30 0.37 0.40 0.40 0.57 0.17 0.42

BERT-Base BERT-Large RoBERTa ElectraGen Albert
cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn

Ro
om

bathroom 0.40 0.35 0.30 0.23 0.23 0.23 0.52 0.34 0.50 0.23 0.23 0.24 0.61 0.47 0.42 0.43 0.23 0.35 0.58 0.66 0.39 0.35 0.35 0.40 0.69 0.56 0.36 0.34 0.36 0.39
bedroom 0.61 0.47 0.41 0.45 0.28 0.37 0.63 0.36 0.37 0.42 0.19 0.36 0.67 0.56 0.33 0.42 0.28 0.41 0.41 0.53 0.62 0.68 0.55 0.50 0.54 0.58 0.36 0.18 0.31 0.47
kitchen 0.34 0.60 0.35 0.30 0.23 0.43 0.38 0.73 0.45 0.75 0.75 0.62 0.65 0.38 0.49 0.46 0.34 0.24 0.48 0.37 0.37 0.25 0.44 0.43 0.43 0.75 0.38 0.35 0.22 0.45
living room 0.52 0.57 0.56 0.25 0.20 0.32 0.47 0.47 0.54 0.36 0.36 0.39 0.43 0.51 0.45 0.51 0.27 0.27 0.41 0.36 0.45 0.44 0.49 0.47 0.38 0.54 0.47 0.19 0.30 0.34
office 0.68 0.56 0.64 0.35 0.44 0.56 0.64 0.75 0.67 0.26 0.58 0.45 0.48 0.49 0.53 0.27 0.28 0.47 0.50 0.70 0.55 0.59 0.55 0.25 0.72 0.54 0.61 0.58 0.37 0.36

Table 7.9: Distance Correlation calculated on the word frequencies of Google Ngram. (A
gray cell indicates significant at p < 0.1)
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(a) Cosine Score (b) FFN Classify Score

(c) Mask Object Score (d) Mask Room Score

Figure 7.2: Heatmap of source-object associations based on BERT-Large and the room
dataset. The objects (sources) on the y-axis are grouped by the room in which
they are most likely to be located according to the NYU Depth V2 Dataset.
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Figure 7.4: Association heatmap of BERT-Large on the verb dataset. The objects (sources)
on the y-axis are grouped by the room in which they are most likely to be
located according to the HowToKB Dataset.





8 Grounding Human-Object
Interaction to Affordance Behavior
in Multimodal Datasets

Henlein, A., Gopinath, A., Krishnaswamy,N.,Mehler, A., & Pustejovsky, J. (2023a). Ground-
ing human-object interaction to affordance behavior in multimodal datasets. Frontiers
in Artificial Intelligence, 6

Abstract
While affordance detection and Human-Object interaction (HOI) detection tasks are re-
lated, the theoretical foundation of affordances makes it clear that the two are distinct.
In particular, researchers in affordances make distinctions between J.J. Gibson’s tradi-
tional definition of an affordance, “the action possibilities” of the object within the en-
vironment, and the definition of a telic affordance Pustejovsky (2013), or one defined by
conventionalized purpose or use. We augment the HICO-DET dataset with annotations
for Gibsonian and telic affordances and a subset of the dataset with annotations for the
orientation of the humans and objects involved. We then train an adaptedHuman-Object
Interaction (HOI) model and evaluate a pre-trained viewpoint estimation system on this
augmented dataset. Our model, AffordanceUPT, is based on a two-stage adaptation of
the Unary-Pairwise Transformer (UPT), which we modularize to make affordance de-
tection independent of object detection. Our approach exhibits generalization to new
objects and actions, can effectively make the Gibsonian/telic distinction, and we show
that this distinction is correlated with features in the data that are not captured by the
HOI annotations of the HICO-DET dataset.

8.1 Introduction
Introduced by Gibson in the 1970s, the concept of an “affordance” describes the func-
tional and ecological relationship between organisms and their environments (Gibson,
1977). Gibson formulated the concept as a measure of what the environment “offers the
animal” in terms of action possibilities of the object. In modern AI, particularly as it
pertains to problems of perception in robotics (Horton et al., 2012) and grounding lan-
guage to vision (McClelland et al., 2020), to say an object “affords” an action is to say
that the object facilitates the action being taken with it. Gibsonian affordances are those
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behaviors afforded due to the physical object structure, and can be directly perceived by
animals. For example, if a cup has a handle, it affords grasping and lifting by that handle.
Pustejovsky, following from his Generative Lexicon theory (Pustejovsky, 1995) subse-
quently introduced the notion of a telic affordance, or behavior conventionalized due to
an object’s typical use or purpose (Pustejovsky, 2013). For example, a cup’s conventional
purpose is for drinking from and a book’s is for reading. These conventionalized afforded
behaviors are correlated with certain specific configurations between human and object;
e.g., a chair must be upright with its seat clear to be sat in. These conditions (or habi-
tats) form a precondition to the satisfaction of the intended use of the object; if those
conditions are satisfied, the act of sitting on the chair will lead to the expected result of
the chair supporting the human (i.e., its Telic qualia role according to Generative Lexi-
con theory). If not (e.g., the chair is upside down), the human will not be appropriately
supported.

On the question of multimodal grounding, the computer vision and natural language
processing (NLP) communities have drawn closer together, such that datasets originat-
ing in computer vision (e.g., (Goyal et al., 2017; Damen et al., 2018; Boggust et al., 2019))
now have demonstrated utility as benchmarks for NLP grounding tasks (e.g., (Gella &
Keller, 2017; Huang et al., 2020; Xu et al., 2020)). One such popular challenge is ground-
ing words to actions in images and video (e.g., (Radford et al., 2021)). As such actions
often involve humans interacting with objects, datasets specialized to not just actions
(running, jumping, walking, etc.) but to human-object interaction (HOI) have also pro-
liferated in recent years (Chao et al., 2018; Krishna et al., 2017; Gupta & Malik, 2015).

Knowledge of how a human interacts with an object, however, is not always revealed
through a single modality (language or image), and often even the alignment of multi-
modal annotations (e.g., bounding box and linguistic caption) does not adequately en-
code the actual HOI in a situation. For many HOIs, conventional descriptions used to
caption them often fail to draw out significant aspects of the interactions that are impor-
tant for creating visual embeddings. For example, it would be expected that an image
with the caption “person driving a car” would share certain visual correlations with im-
ages of tools held in the hand, but there is usually no linguistic expression present in the
caption to explicitly evidence that the driver is holding a steering wheel, etc.

Humans most often learn about affordances (e.g., “cups contain things”, “spoons are
used for stirring”) by using objects or watching them in use (Tomasello, 2004); hence
there is a natural alignment between affordance reasoning and various kinds of HOI
tasks.

However, it must be noted that affordances and HOIs are not identical. Returning
to Gibson’s original formulation of the concept, he expands on it by stating that an
affordance “implies the complementarity of the animal and the environment”. That is
to say that the Gibsonian affordance, one afforded by an object’s structure, is not just
any action which can be taken with an object, but an action that is somewhat specific to
that object and that agent in that environment. For example, the hollow geometry of a
bottle affords containing liquids, while the opening affords releasing them. An image of a
human drinking from a bottle, with it raised to the mouth, implies both the structure and
the purpose of the bottle, even though neither is made explicit from the collocation of
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the object bottle and the action drink_from. It is this type of intentionality information,
or identification of the relation between the object and human that is largely missing
from grounded HOI datasets.

In this paper, we address the question of whether HOI models can distinguish the
intentionality behind telic affordances from Gibsonian exploitation of an object.

Our novel contributions are as follows:

1. We present an augmentation of the HICO-DET (Chao et al., 2018) dataset that is
annotated to distinguish Gibsonian from telic affordances at the visual and lin-
guistic levels.

2. We developedAffordanceUPT, an adapted andmodularized version of UPT (Zhang
et al., 2021a) that is trained over this novel data and can generalize to certain novel
objects and actions.

3. We evaluate PoseContrast, a SOTA object orientation model, over the augmented
dataset and find that PoseContrast tends to exhibit a strong bias toward the most
frequent or default orientation, rather than the appropriate orientation for the
action.

AffordanceUPT trained over the augmented HICO-DET dataset is able to accurately
distinguish active intentional use from simple Gibsonian exploitation, and we find that
the way objects cluster when the model is trained for the Gibsonian/telic distinction
exposes additional correlations to the visual features of the specific images themselves.

8.2 Related Work
There has been considerable interest in how encoding affordances might be used to im-
prove the accuracy of HOI recognition and scene understanding models (Hassanin et al.,
2021), as well as in downstream reasoning tasks in cognitive models of HOI or compu-
tational models of HRI. Psychological studies have shown that humans respond faster
when objects are observed in canonical configurations (or habitats (Pustejovsky, 2013))
for their typical affordances (Yoon et al., 2010; Borghi et al., 2012; Natraj et al., 2015).
Roboticists are particularly interested in affordances to model human-like interactions
with objects, and work from that community has demonstrated that in order to success-
fully interact with an object, a robot need not know the object’s name, but only perceive
its function (Myers et al., 2015) or object affordances (Kim & Sukhatme, 2014; Saponaro
et al., 2017). Affordances have also been recognized as implicating broader decisions for
planning and inference (Horton et al., 2012; Antunes et al., 2016; Beßler et al., 2020).

The NLP community has made significant contributions in extracting object-oriented
knowledge from language data. Multimodal datasets have been used to associate lin-
guistic descriptions to visual information from action images, e.g., IMAGACT (Russo
et al., 2013; Moneglia et al., 2018). Other research has explored integrating different de-
scriptions of affordance information coming from language and visual datasets (Chao
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et al., 2015; Saponaro et al., 2017). Several approaches have identified objects’ functional
roles and factors involved with their creation using standard distributional techniques
reflecting PPMI between action verbs and object types (Cimiano &Wenderoth, 2007; Ya-
mada et al., 2007). These correlate with the telic (function) and agentive qualia (creation)
a la Pustejovsky.

Recently it has become clear that not all modes of interacting with an object involve
an affordance, while not all relevant object affordances are actually involved in the inter-
action the human is shown engaging in in an image (Beßler et al., 2020; Hassanin et al.,
2021). To address this, Pustejovsky (Pustejovsky, 2013) defines a habitat as the precon-
dition for an action to take place. Namely, a habitat is a conditioning environment or
context that facilitates the enactment of an afforded behavior, such as how a bottle must
be held to be drunk from. A primary component of habitats is object orientation, and
therefore a potentially useful multimodal method for habitat detection is pose detection.

Pose detection has applications ranging from autonomous driving (Caesar et al., 2020),
to robotics (Tremblay et al., 2018), and language grounding (Thomason et al., 2022).
Consequently, available datasets are also diverse and specialized (more details in Sec-
tion 8.3.3). Only recently has object orientation has been introduced into HOI Detection
(e.g. D3D-HOI (Xu et al., 2021) or BEHAVE (Bhatnagar et al., 2022)). So far, the focus
has been mainly on human pose (e.g. Yao & Fei-Fei, 2010) or object size and positioning
(e.g. Li et al., 2020).

8.3 An Approach to Detecting Affordances

8.3.1 Theory

When we identify and label objects, we not only perform a categorical type assignment
(e.g., cup), but more often than not, we understand an entire set of object attributes as
well as a network of relations concerning how the object participates in the situation
under discussion. Many of these involve human-object interactions (HOIs), and our
knowledge of things is predicated on an understanding of how we interact with them.
Osiurak et al. (2017) provide a clear operationalization of this mechanical knowledge of
affordances in the domain of tool use. In this domain, Norman (Norman, 2002) divided
Gibson’s formulation into physical and learned affordances, and Young (Young, 2006)
specified the notion of the functional affordance. These specifications divide affordances
into hand-centered and tool-centered, and the divisions map relatively straightforwardly
to Gibson’s affordances and Pustejovsky’s telic affordances, but do not per se address
the question of object orientation to the human.

For example, there is a conventional presupposition that the orientation of the cup
exposes the concavity of the interior to enable the functioning of the cup (Freksa, 1992).
Assuming that an object such as a cup, typed as a container, is asymmetric across the
plane bisecting it horizontally, but otherwise a symmetrical cylindroid, it would appear
that orientation information is critical for enabling the use or function of the object qua
container. In fact, only when the cup’s orientation facilitates containment can the func-
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tion be “activated”, as it were. This references two notions that are critical for reasoning
about objects and HOI generally: we encodewhat the function associated with an object
is (its affordance) (Gibson, 1977), but just as critically, we also identify when it is active
(its habitat) (Pustejovsky, 2013). Therefore, as given by Pustejovsky’s original definition
of the telic affordance, in this study we consider telic as a proper subset of the Gibsonian
affordance, that overrides it; a telic affordance necessarily exploits the structural prop-
erties of the object, but does so in a way that selects for a conventionalized configuration
to activate a conventionalized function.

To capture object type and human-object interaction potential, we adopt conventions
used in themodeling languageVoxML (Pustejovsky&Krishnaswamy, 2016), where habi-
tats, including orientation, are modeled as preconditions on affordances, that is, the situ-
ational information about when/how an object is used. This allows modeling contextual
and common-sense information about objects and events that is otherwise hard to cap-
ture in unimodal corpora, e.g., balls roll because they are round.

Hence the task of extracting dependencies between object habitats and affordances
is consequential for tasks like automatic annotation of VoxML or Text-to-3D Scene ap-
plications (Chang et al., 2015a). The current study focuses on adapting HOI models for
affordance type classification using the Gibsonian/telic distinction and object orienta-
tion.

8.3.2 Annotation

Image Context Annotations

Our dataset consists of images taken from HICO-DET, a benchmark for HOI detection
(Chao et al., 2018). Every image contains annotations for each HOI instance—bounding
boxes for the humans and the objects with labels for the interactions. We annotated
120 images taken from 10 object categories for a total of 1,200 images. The 10 object
categories are apple, bicycle, bottle, car, chair, cup, dog, horse, knife and umbrella, chosen
for being representative of the full set of HICO-DET object categories, which includes
animals, vehicles, and household objects. Using a modification of the VIA tool (Dutta
et al., 2016; Dutta & Zisserman, 2019) as shown in Figure 8.1, each image was annotated
for the action, affordance class (Gibsonian/telic), and direction of front and up orientation
of the objects therein. Action and affordance were annotated for all the relevant humans
in an image, and orientation fields up and front were annotated for both the objects and
the humans. Additionally, fields is_part_of and changes? were used to track whether an
item being annotated was part of another annotated item and whether any changes were
made in the annotations (new object or action) from those specified in the HICO-DET
dataset respectively.

The possible options for the field affordance are None, Gibsonian (G) and telic (T).
The affordance is marked as G when the action performed is by virtue of the object’s
structure and T if by virtue of the object’s conventionalized use or purpose (see Sec-
tion 8.3.1). The fields action and obj name are chosen from the list of actions and object
names respectively provided in the HICO-DET dataset. Front and upward orientations
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x

y

z

Figure 8.1: Example image context annotation. The image shows a telic affor-
dance between horse (10) and person (7) and both with orientation:
front(−1, 0, 1) up(0, 1, 0).

Object Action Affordance

bicycle ride T
bicycle hold G
bottle hold G
bottle drink_with T
cow milk T
cat feed T
banana carry G
skis pick_up G
knife cut_with T

Table 8.1: A small subset of text annotations. G stands for Gibsonian and T for telic.

are selected from the world orthogonal axes [x, y, z]. When viewing an image face-on,
+x is to the right of the screen, −x is to the left, +y is upward and −y is downward,
while +z extends out of the screen toward the annotator and −z is pointing away from
them into the screen. This assumed a standard right-hand coordinate system as shows
in Figure 8.1. Axes can be combined. If the front of the human or object faces both left-
ward and forward (out of the image), then the front orientation is −x + z, and +x + z
if turned halfway towards the right. If no clear front or top was apparent (e.g., for a
ball), it was annotated as [0, 0, 0]. In this paper we denote orientation using the notation
front_up with each vector represented as (x, y, z). The horse in Figure 8.1 would be
denoted [−1, 0, 1]_[0, 1, 0], because its forward vector is facing toward the left (−x) and
out of the image (z) while its intrinsic up vector is pointing up (y).

These annotations were later used to evaluate Object Pose Detection (see Section 8.3.3)
and to evaluate the overall Habitat Extraction approach (Section 8.4.4).
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Text Annotations

Each of the 600 object-verb pairs in the HICO-DET dataset were also annotated with
the affordance (G for Gibsonian or T for telic). Table 8.1 shows a few examples. In
HICO-DET, people and objects are often associated with multiple verbs (e.g., a person
sits, rides, and races a motorcycle). If only one action of such a set has been defined
as telic, we define this as a telic action as telic affordances are considered to supercede
Gibsonian affordances—see Section 8.3.1). These text-only annotations have the advan-
tage of rapidly generating data for training HOI models, while lacking some additional
contextual information that may be provided by an image, as in Section 8.3.2. These
annotations were later used to train and evaluate the AffordanceUPT Model (see Sec-
tion 8.3.3).

Image and text annotationwere each performed by a dif- ferent person. The calculated
IAA is listed in appendx (Table 8.5).

8.3.3 Models
Human-Object-Interaction

We adapted the UPT (Unary-Pairwise Transformer ; Zhang et al., 2022) model as the ba-
sis for Gibsonian/telic affordance classification. UPT is a two-step transformer-based
(Vaswani et al., 2017) HOI classifier and its authors demonstrate that it is compara-
tively performant and memory efficient compared to other state-of-the-art HOI mod-
els (e.g., Tamura et al. (2021); Zhang et al. (2021b)). In the first step, it determines all
relevant entities and in the second step their relations (in contrast to single-task mod-
els, where entities and relations are considered together in multi-task learning (Zhang
et al., 2021a)). UPT is therefore composed of two parts: a cooperative transformer, which
operates on unary tokens to generate a representation of entities, and a competitive trans-
former, which subsequently operates on pairwise tokens to represent their relations.

Moreover, the two-step approach enables the analysis of both representations of ob-
jects (unary tokens) and of their interactions (pairwise tokens) (see Section 8.4).

To utilize UPT for affordance detection, we changed the classification from a variable
number of verbs to a two-label Gibsonian/telic classification. We also modularized UPT
to make the affordance detection independent of object detection based in DETR (Detec-
tion Transformer ; Carion et al., 2020), which uses ResNet (He et al., 2016) as a backbone.
That is, we replaced the pre-trained, inflexibly implemented DETR variant (supporting
80 object types) with a modular variant from Huggingface¹ (supporting 90 object types)
and froze all DETR/ResNet weights. This makes our UPT variant independent of the
object detection module, so that it can be replaced by models that support other object
types. We will refer to the model as AffordanceUPT in the remainder of this paper. The
performance of AffordanceUPT on unknown objects and actions is also part of our eval-
uation (see Section 8.4.1). Our approach to affordance detection shows how methods
such as UPT can be applied to this and related tasks in multimodal semantics.

¹https://huggingface.co/facebook/detr-resnet-50
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Figure 8.2: AffordanceUPT evaluation regarding object types and training data size. The
bottom axis lists the object labels. The left axis and associated bar graphs
show the number of Gibsonian (blue), telic (orange), and general object oc-
currences (green) in the HICO-DET training subset. The right axis and cor-
responding line graph show the mAP for each object. Dashed lines donete
overall mean values for the two affordance types. The objects are sorted by
the ratio between G and T training samples.

Object Pose Estimation

To estimate object orientation, we use PoseContrast (Xiao et al., 2021). This model has
the advantage of not requiring additional information such as CAD references or class
information, while still providing strong results (cf. Xiao et al., 2019; Dani et al., 2021;
Nguyen et al., 2022). We retrained the model on the ObjectNet3D dataset (Xiang et al.,
2016), which is still one of the largest datasets for this task with 100 object categories
and over 90 000 images. Other common datasets are still very limited in their domain or
object categories (see Table 8.4 in appendix).

Training

AffordanceUPT was trained for 20 epochs on 2 GeForce RTX 8000 devices with a batch
size of 8 per GPU—an effective batch size of 16. Hyperparameter optimization was per-
formed using W&B (Biewald, 2020). The resulting parameters are listed in Table 8.6
(appendix). The respective HICO-DET dataset, annotated with Gibsonian/telic labels
as described in Section 8.3.2, served as training and test data. Images without Gibso-
nian/telic text annotations were removed, resulting in a dataset size of 33 593 training
images and 8 527 testing images. In addition to training with the regular HICO-DET
split, we also trained variants to evaluate generalization to unknown objects and actions
(see Section 8.4.1).

PoseContrast was trained on one GeForce RTX 8000 with default parameters. Dif-
ferent hyperparameters and additional methods of augmenting the training data were
tested, but did not result in significant improvements.
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Model Subset mAP x 100

AffordanceUPT test all 27.58

ob
je
ct

w/o bicycle all bicycle 35.74
AffordanceUPT test bicycle 46.69
w/o car all car 20.44
AffordanceUPT test car 33.54

ve
rb

w/o wield all wield 32.99
AffordanceUPT test wield 37.23
w/o drive all drive 21.40
AffordanceUPT test drive 26.05

ob
j+
ve

rb w/o book+read all book+read 24.11
AffordanceUPT test book+read 31.46
w/o car+drive all car+drive 15.63
AffordanceUPT test car+drive 22.63

Table 8.2: UPT Results on the Gibsonian/telic text annotated HicoDet Test dataset. The
first column denotes the model, where AffordanceUPT stands our default
model trained on the regular Gibsonian/telic HicoDet dataset. w/o denotes
models that have been trained without the respective object/verb (e.g. bicy-
cle).

8.4 Evaluation & Analyses

8.4.1 Evaluation of AffordanceUPT
For the evaluation of AffordanceUPT see Table 8.2 and Figure 8.2. The results show that
HOI models can also be used for affordance detection with a few adjustments, as shown
in the example of UPT. The mAP values are within ∼1–5 mAP) of HOI detection on
the regular HICO-DET dataset (cf. Zhang et al. (2022); Tamura et al. (2021); Hou et al.
(2021b)). The differences are for a few reasons:

i) The distributions of our target classes are much more complex in nature, subsum-
ing multiple diverse actions;

ii) HICO-DEThas separate bounding boxes for each action, and these can varywidely,
resulting in multiple boxes for the same object or person;

iii) Not every affordance in HICO-DET is always annotated but AffordanceUPT de-
tects them anyway;

iv) Our object detection model is not trained on HICO-DET, so there can be major
deviations for the boundary boxes that cannot be merged.

A few examples can be found in the appendix (see Figure 8.15). These do not signficantly
affect training and inference, but are reflected in the evaluation score since the problem
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primarily concerns the boundary boxes and not the affordance label itself. We deliber-
ately decided against alternative datasets like V-COCO (Lin et al., 2014; Gupta & Malik,
2015) or VisualGenome (Krishna et al., 2017), as V-COCO has a very limited set of verbs
(26) and VisualGenome is too unstructured for now.

To evaluate AffordanceUPT on novel objects, we examine a few specific examples,
specifically: the nouns bicycle and car, the verbswield and drive, and the HOIs book+read
and car+drive. We re-split HICO-DET such that for each example, the test set comprised
all images containing the example the training data comprised all remaining images
(i.e., for car+drive, images of boats being driven or cars being washed were omitted from
both training and evaluation). These results were then compared against the results of
the normal AffordanceUPT model on the objects/verbs in the regular HICO-DET test
dataset.

Table 8.2 shows that AffordanceUPT can detect affordances on novel objects, albeit
with an appreciable drop in mAP (e.g., ∼10–13%). The effect is less strong for unknown
actions such as driving (only a drop of around 5%). AffordanceUPT can even generalize
to some extent to novel objects and actions (e.g. detecting that driving a car is a telic
affordance, despite never seeing a car or a driving action). Meanwhile, regular HOI
models generalize only on unknownHOI combinations (e.g. Hou et al., 2021b; Shen et al.,
2018) or on unknown objects (e.g. Hou et al., 2021a; Wang et al., 2020), not both.

Because each re-split requires retraining, the evaluation could not be carried out for
all combinations due to runtime reasons. However, the tendencies are clearly apparent.

The generalization on display here is only made possible by our abstraction to the two
affordance types that point to specific kinds of action classes that can be contained under
the same label. This means affordance detection supports a higher level of generalization
due to greater abstraction, and makes affordance detection interesting for applications
where the exact action does not need to be detected, but a distinction of intentional use
is sufficient.

Such situations could be, for example,

i) monitoring an object’s active usage time (e.g., is a knife likely to be getting dull
from continued use?).

ii) for autonomous driving (e.g. whether a pedestrian is distracted by the active use
of an object and therefore more caution is required (Papini et al., 2021)).

iii) language grounding applications, such as grounding for robotics (Ahn et al., 2022),
visual question answering (Antol et al., 2015) or image captioning (Nguyen et al.,
2021)—specifically in cases where the verb implies one kind of affordance but the
image indicates the other (e.g., an image of someone driving a car captioned as
“riding”.).

8.4.2 Evaluation of PoseContrast
We used the 1 200 image annotations of HICO-DET from Section 8.3.2 to evaluate PoseC-
ontrast. Since PoseContrast outputs object rotation as Euler angles, but the annotations
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* * * * * *

Figure 8.3: PoseContrast orientation predictions on the 1 200 annotated HICO-DET im-
ages for 9 object classes. Predicted orientations with a frequency of < 5 were
filtered out. * marks objects that are also in ObjectNet3D.

Model apple bicycle bottle car chair cup dog horse knife person umbrella

[0, 0, 1]_[0, 1, 0] 0.18 0.13 0.57 0.19 0.27 0.72 0.20 0.21 0.01 0.40 0.73
Most Frequent 0.65 0.41 0.57 0.38 0.31 0.72 0.21 0.41 0.18 0.40 0.73
PoseContrast 0.83 0.44 0.67 0.51 0.58 0.75 0.31 0.25 0.08 0.44 0.67

Table 8.3: PoseContrast results on the image annotated HicoDet dataset. The object
names in bold are also represented in ObjectNet3D.
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Figure 8.4: ObjectNet3D dataset mapped to main orientations. Scores are weighted for
every object. An interesting example is “bottle” (red box), which occurs al-
most exclusively in upright position in the dataset. Other interesting exam-
ples include “fire extinguisher” and “rifle”, which also exist in the dataset in
stereotypical pose (cf. Barbu et al., 2019), but which for these objects means
that the front of the object points to the side of the image.
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Figure 8.5: AffordanceUPT token-pair visualization using t-SNE (left) and PaCMAP
(right). The vehicle images above and below are “ride” images from the
HicoDet dataset and classified as telic by the model. The images in the top
row are in the red cluster and the images in the bottom row are in the blue
cluster.

indicate the major axis orientation, the PoseContrast output was mapped to these axes.
The evaluation scores thus describe the accuracy with which the objects were aligned
with the correct major axes. We compare PoseContrast with two baselines: one, in
which the object is always predicted to be facing forward and upright ([0, 0, 1]_[0, 1, 0]),
and a second, which always predicts to the most frequent orientation in the HICO-DET
annotations (Most Frequent). The results are listed in Table 8.3. PoseContrast appears
to generalize very poorly on the HICO-DET dataset. Notably, the default orientation
[0, 0, 1]_[0, 1, 0] is predicted for almost all objects (see Figure 8.3), including for object
classes in the training set. Examining the ObjectNet3D dataset, we find that it almost ex-
clusively contains objects in this orientation (e.g., upright bottles, forward-facing TVs),
rather than in orientations where they are manipulated by humans (i.e., Gibsonian or
telic affordances) (see Figure 8.4). Rotating the image is used as an augmentationmethod
during training but is of limited use, e.g., if only side views of weapons are available, it
is not possible to generate views from the front or back. We also tried additional aug-
mentation methods such as blur filters and dpi variations, but they did not produce sig-
nificantly better results. Further analyses can be found in the appendix (see Figure 8.10
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Figure 8.6: Habitats based on the 1 200 image annotations. The colors here represent the
relative alignments in relation to the person.

and Figure 8.9).

8.4.3 Analysis of AffordanceUPT Tokens
To show how AffordanceUPT distinguishes between Gibsonian and telic affordances, in
Figure 8.5 we visualize the token-pair representations for the 10 test categories using
t-SNE and PaCMAP (Wang et al., 2021b). We see that objects that are interacted with
in a similar way and have similar affordances appear closer together. For example, the
occurrences of bottle and cup (i.e., containers to drink liquids from) are strongly over-
lapping. Also, bicycles and horses, both rideable, are placed close to each other when
considering telic affordances. Gibsonian interactions with horses, on the other hand, are
closer to those with dogs (and do not occur in the large Gibsonian bicycle cluster). In
addition, all objects (e.g., apple, bottle, cup, knife) that imply interaction primarily with
the hand are in the same region, which includes some images of cars (blue marked clus-
ter), an initially rather unintuitive observation. But a look at the different images for
“ride” in the two car clusters, explains this. In the blue cluster (closer to the hand-held
objects), the interactions of the hand with the car (e.g. steering wheel) are more clearly
visible, while in the red cluster the people (and therefore hands) are less visible, and the
images focus more on the entire car and the actual “driving” aspect. The same apparent
HOI action class (in this case, “ride”), as given by the original labels in HICO-DET, in
fact divides into distinct clusters based simply on how the model is trained to repre-
sent the two-way affordance type distinction (Gibsonian and telic). Such information
is essential for accurately grounding visual human-object interactions to language, and
thus leads us back to the motivation from the introduction. This work paves the way for
systematically extracting such visual information and linking it to language. Complete
visualizations of the unary tokens are in the appendix (Figure 8.12 and 8.13).

8.4.4 Automated Habitat Annotation
As automatic determination of object orientation is still limited, we analyze habitats
based on our HICO-DET image annotations. We converted object orientations in world
space to be relative to the interacting person (e.g., the person’s front is now +z). In
Figure 8.1, the horse would have the orientation [0, 0, 1]_[0, 1, 0], since it is oriented in
the same direction as the person. Figure 8.6 depicts the resulting statistics, and shows
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the relationship between affordance and object orientation as a habitat condition. The
orientation of objects like bicycles, cars, chairs, horses, and dogs is relatively independent
of their affordances, but these objects are often aligned in the same way as the person in
the case of a telic scenario. Bottles and cups, on the other hand, show a strong relative
increase in orientation to [0, 0, 0]_[0, 0,−1], indicating that the object’s upward is ori-
ented opposite to the person’s front (typical orientation when drinking). Knives, on the
other hand, can be held in any orientation, however the majority of orientations (green
segment plus orange segment) indicate that knives are often held with the blade facing
down, away from the person.

Figure 8.6 shows the interdependence of affordance and orientation (as a subcondition
of habitat): affordances presuppose certain orientations, and conversely, certain object
orientations make certain affordances possible in the first place. Therefore, both vari-
ables should be considered in relation to each other (in relation to HOI as a whole) and
not as independent phenomena.

8.5 Discussion and Conclusions
We presented AffordanceUPT, an adaptation of UPT to distinguish between Gibsonian
and telic affordances. With some augmentations to HICO-DET and modularization of
UPT, we can alter a powerful HOI detection model to detect distinctions in affordances
specifically. This greater level of abstraction lends itself to generalization that was not
possible before from a forced-choice HOI detection model, and in the process we un-
covered properties of the data that have important implications for grounding images to
language.

We found that how AffordanceUPT clusters objects indicates what can be detected
by automatic entity and intention detection. Such distinctions are useful for (semi)
automatically populating a multimodal representation like VoxML Pustejovsky & Kr-
ishnaswamy (2016) by inferring possible affordances for an object and their precondi-
tions. AffordanceUPT also shows promise in generalization for novel objects and ac-
tions, meaning it could also infer partial information about novel objects or events for
such a representation.

8.5.1 Future Work
In future work, we plan a comprehensive analysis of AffordanceUPT’s performance on
novel entities with respect to which training conditions must be fulfilled for the model
to classify which attributes.

Results and interpretations like Figure 8.5 apply to a manageable subset of data. Fur-
ther analysis could determine how our method scales when dealing with big data, using
automated analysis techniques.

The division into Gibsonian and telic affordances can also be further refined. For
example, the act of “repairing a car” is not a telic affordance, but an act of maintaining
telic functionality.
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Successful habitat detecton depends on improving performance on the remaining
challenge of object orientation detection. In the future, we plan to test our approach
on a larger scale and expand the dataset for this purpose. This may involve combining
AffordanceUPT with grounded language models e.g., CLIP (Radford et al., 2021).

Appendix
Annotation

(a) Example of human annotation.

(b) Example of object annotation.

Figure 8.8 shows few sample object orientations. The front orientations are (a) +z
(b) -x+z (turned halfway towards the left) (c) +x+z (turned halfway towards the right) .
Since the object has two pairs of identical edges (parallel edges), we can ignore the up
orientations or mark it n/a in this case. In Figure 8.7a, the human (inside the red dots
- with id 7) exhibits actions no_interaction, no_interaction, ride with respect to objects
with ids 8, 9 and 10 (Figure 8.1). The affordances for the actions are None, None and telic
respectively. The front side of the human is pointed towards the -x+z direction and the
top in the +y direction. In Figure 8.7b, the object (the horse - object id 10) is oriented in
the -x+z direction (front) and in the +y direction (top).

PoseContrast

Since PoseContrast uses ResNet for feature generation, we visualized a random subset
of each 2 000 random images from HICO-DET and ObjectNet3D using t-SNE (Van der
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Maaten & Hinton, 2008; Van Der Maaten, 2014) (see Figure 8.10). We additionally an-
alyzed the correct prediction as a function of object size (in pixels) and blur factor,
but could not find any particular correlation (see Figure 8.9). Newer posture predic-
tion models seem to handle unknown objects even better, but are currently not open
source (Goodwin et al., 2022; Liu et al., 2022). Based on the underlying training data
(e.g. CO3D (Reizenstein et al., 2021)), where the objects are again mainly in rest po-
sitions, it is unlikely to provide sufficient improvement for our application. Table 8.4
contains a small selection of pose datasets to illustrate the diversity of the data sets. And
Figure 8.11 shows a selection of example images for different objects to illustrate the
difference between HICO-DET and ObjectNet3D again.

Dataset Domain Obj Classes Images / Videos

300W (Sagonas et al., 2013) Faces 1 600 Images
Animal-Pose (Cao et al., 2019) Animals 5 4 000 Images
BEHAVE (Bhatnagar et al., 2022) HOI 20 321 Videos
CO3D (Reizenstein et al., 2021) Objects 50 1.5M Images
COCO (Lin et al., 2014) Human Pose 1* 66 808* Images
D3D-HOI (Xu et al., 2021) HOI 8 256 Videos
IKEA (Lim et al., 2013) Furniture 8 800 Images
KITTI-360 (Liao et al., 2022) Traffic 37 320 000 Images
Linemod (Hinterstoisser et al., 2012) Houshold Objects 15 1 100 Images
MPII (Andriluka et al., 2014) Human Pose 1 25 000 Images
NOCS (Wang et al., 2019) Tabletop Scenes 6 14 Real, 300K AR
ObjectNet3D (Xiang et al., 2016) Objects 100 90 000 Images
Objectron (Ahmadyan et al., 2021) Objects 9 15K Videos, 4M Images
Pascal3D+ (Xiang et al., 2014) Objects 12 36 000 Images
Pix3D (Sun et al., 2018) Indoor 9 10 000 Images

Table 8.4: Selection of object orientation datasets with information about their size and
domain coverage. COCO is a subset with pose information for the persons.

Figure 8.8: Example Object Orientation.
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Obj Category Cohen’s Kappa

apple 0.6028
bicycle 0.6105
bottle 0.6411
car 0.4234
chair 0.0
cup 0.6321
dog 0.0451
horse 0.4226
knife 0.4785
umbrella -0.0080

Table 8.5: Calculated IAA between the image and text annotations. The low kappa values
for some classes can be explained by the fact that the language in the caption
may not capture the unique telic affordance that is present in the image (e.g.,
“standing under an umbrella”), so the caption annotation alone would mark
this as G, which still allows T.

(a) object size (in pixel) (b) blur

Figure 8.9: PoseContrast Object orientation determination considering image size (a) and
blur (b). Blur was calculated with the variance of Laplacian (Bansal et al.,
2016). A higher value means a sharper image.
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Figure 8.10: t-SNE visualization of ResNet features for 2 000 images each from Object-
Net3D and HICO-DET. While the densities of the two datasets differ signifi-
cantly, ObjectNet3D finds complete overlap with HICO-DET (in two dimen-
sions) as the number of samples increases.

Figure 8.11: Examples from HICO-DET (upper row) and ObjectNet3D (lower row). The
selection is biased because there are also images of bikes being ridden in
ObjectNet3D, but these are in the minority.

115



8 Grounding Human-Object Interaction to Affordance Behavior in Multimodal Datasets

AffordanceUPT
The optimized hyperparameter are listed in Table 8.6. We used HDBSCAN (McInnes
et al., 2017) to determine the main clusters for the t-SNE variant from Figure 8.5 with
HDBSCAN. The result is shown in Figure 8.14.

Figure 8.12 and Figure 8.13 show the visualizations of the unary tokens. It can be seen
that these probably represent mostly class information. And in Figure 8.13 it can be seen
that only from the representation of the person no affordance can be derived either.

Figure 8.15 shows some more examples of boundary box distinguished between Af-
fordanceUPT and HICO-DET.

(a) t-SNE (b) PaCMAP

Figure 8.12: UPT Object Unary Token Visualization. Labeled according to their classes
and in which affordance was determined for this object.

(a) t-SNE (b) PaCMAP

Figure 8.13: UPT Person Unary Token Visualization. Labeled according to their affor-
dance and interacted object.
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Figure 8.14: HDBSCAN results with minimal cluster size: 50 and maximal cluster size:
1 000 on Figure 8.5. Homogeneity: 0.603; Completeness: 0.675; V-measure:
0.637; Adjusted Rand Index: 0.436; Adjusted Mutual Information: 0.634.
Points with label -1 were classified as noise.

Hyperparameter Value

learning rate 1.3e-4
weight decay 4.7e-4
learning rate drop 82
gradient clip 0.18
loss alpha 0.25
loss gamma 0.85

Table 8.6: Hyperparameter for AffordanceUPT.
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(a) The right person is not part of the HICO-DET annotation.

(b) Different bounding boxes for the same objects, which are unmergable.

(c) Cell phone is not part of the HICO-DET annotation

(d) The rear left horse was not annotated as a “ride”, which is why it shows up in the dataset
as Gibsonian.

Figure 8.15: Various error cases of AffordanceUPT based onHICO-DET annotations. The
left images are the original HICO-DET annotations, the middle images are
the merged variants with Gibsonian (yellow) and telic (blue) connections
and the right images are the predictions by AffordanceUPT.
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Abstract
We introduce Semantic Scene Builder (SeSB), a VR-based text-to-3D scene framework
using SemAF (Semantic Annotation Framework) as a scheme for annotating discourse
structures. SeSB integrates a variety of tools and resources by using SemAF and UIMA
as a unified data structure to generate 3D scenes from textual descriptions. Based on
VR, SeSB allows its users to change annotations through body movements instead of
symbolic manipulations: from annotations in texts to corrections in editing steps to
adjustments in generated scenes, all this is done by grabbing and moving objects. We
evaluate SeSB in comparison with a state-of-the-art open source text-to-scene method
(the only one which is publicly available) and find that our approach not only performs
better, but also allows for modeling a greater variety of scenes.

9.1 Introduction
Humans are able to describe visual scenes linguistically and, conversely, to generate
visual representations, e.g., in their mind’s eye or on a sheet of paper, on the basis of
linguistic descriptions (Sadoski et al., 1990; Sadoski & Paivio, 2013). These modality
changes require mental capabilities in the area of multimodal fusion and fission (Dumas
et al., 2009). From a computational point of view, the second of these capabilities is
modeled in terms of text-to-scene systems (e.g. Tan et al., 2019), namely when it comes
to generating 3D scenes from text descriptions (e.g. Coyne & Sproat, 2001).

While language-assisted image generation has received a lot of attention recently (e.g.
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(1)
Spatial

expectations

(2)
Temporal

expectations

(3)
Cultural

expectations

(4)
Conceptual
expectations

(5)
Require.-related
expectations

(6)
Process-related
expectations

Figure 9.1: Areas of contextual expectations that are relevant for scene generation.

Ramesh et al., 2021, 2022; Saharia et al., 2022; Ding et al., 2022; Alayrac et al., 2022), 3D
scene generation from language has not been explored that much (Hassani & Lee, 2016;
Ma et al., 2018;Wang et al., 2021a). Image-generatingmodels benefit immensely from the
advances in grounded language modeling (like CLIP; Radford et al., 2021) and the sheer
amount of data available (cf. LAION-5b¹ which provides 5,85 billion image-text pairs).
This amount of data is currently unthinkable for text-to-3D scene applications. There
are large-scale 3D object datasets like ShapeNet (Chang et al., 2015b) or 3D-FUTURE (Fu
et al., 2021b), and large-scale 3D scene datasets, like Matterport3D (Chang et al., 2017a),
3D-Front (Fu et al., 2021a) or SUNCG (Song et al., 2017, which is currently not available
due to license problems). But non of these datasets is annotated with textual descrip-
tions. As a result, recent work increasingly emphasizes generating ever more realistic
scenes (c.f., Scene Synthesis; Zhang et al., 2019), where the use of language is increas-
ingly reduced to imposing constraints on the generated scenes so that the alignment of
natural language and scenes takes a back seat. This is exemplified by Ma et al. (2018)
where language processing does not go beyond pattern matching of dependency trees
and keywords. That is, the quality of the generated scenes is primarily achieved via
co-occurrence patterns of objects in already modeled scenes.

Yet human language is so versatile and flexible in describing events, often based on
elliptical or underspecified constructions, which, however, are perfectly understandable
by exploring knowledge shared by speakers and listeners, i.e., their common ground
(Clark, 1996; Garrod & Pickering, 2004): Hearing, for example, a sentence like

“After eating my croissant, I read the newspaper.”

the listener is likely to assume that the speaker is describing an event in which he ate
a croissant in the kitchen or dining room, that the croissant was eaten with a coffee,

¹https://laion.ai/
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that the event took place in the morning, etc. But none of these common ground-related
expectations are expressed in the sentence – although they are relevant to the imagina-
tion of a sufficiently complete scene. The breadth and depth of such expectation-driven
understanding of scene descriptions is contrasted with a lack of data that make them ex-
plicit and link them to image representations. Figure 9.1 lists ranges of such information
implied by scene descriptions concerning

(1) expectations about spatial relations regarding, e.g., the placement of objects (e.g.
piece of cake on a plate) (Chang et al., 2014b),

(2) temporal relations and epoch-related expectations (e.g. a medieval kitchen com-
pared to today) (Baden-Powell, 2006),

(3) cultural expectations (e.g. a classic German vs. a French breakfast) (Gibney et al.,
2018),

(4) expectations about conceptual relations and object affordances (e.g., chairs are for
sitting) (Pustejovsky & Krishnaswamy, 2016),

(5) requirements-related expectations (e.g. eggs are needed to make omelets) (Sap
et al., 2019),

(6) and process-related expectations (in terms of what has been processed so far or
will likely happen next) (Pustejovsky et al., 2005a).

These domains are interrelated and give rise to complex expectations about, e.g., courses
of events (Anderson, 1983). Thus, there is a large body of work dealing with descriptive
models of contexts (e.g. Mainwaring et al., 2003; Neumann & Möller, 2008; Marszalek
et al., 2009; Oliva & Torralba, 2007; Dennerlein, 2009; Tosi et al., 2020).

Much has been done to generate realistic scenes, but the range of linguistic descrip-
tions of such scenes is far from exhausted. We argue that this is mainly due to the
lack of available data and a computational framework for its generation, processing and
maintenance. We present Semantic Scene Builder (SeSB), a VR-based² text-to-3D scene
framework to fill this gap. Its interactive approach, based on VR and a unified data
model, allows the system to be used for every step of text-to-3D scene generation, from
annotation of data to integration of individual specialized tools to complete end-to-end
models. For each of its processing steps we implemented 1-3 modules based on state-
of-the-art tools, including a self-trained BERT (Devlin et al., 2019) model for extracting
spatial entities and relations, and a dataset for processing associations between actions
and objects. For evaluation, we generated scenes with SeSB and with the system of Ma
et al. (2018) and compared them regarding two criteria: naturalness and plausibility.

The paper is structured as follows: Section 9.2 describes current text-to-3D scene sys-
tems and their limitations. We review the range of linguistic variants of scene descrip-
tions and outline IsoSpace and SemAF. Section 9.3 presents the functionality of SeSB

²VR here stands for fully-immersive virtual reality, supported by hand tracking and head-mounted dis-
plays (Riva, 2006).
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and Section 9.4 its implementation. Section 9.5 evaluates SeSB in comparison to a state-
of-the-art text-to-3D scene system. Section 9.6 describes future work and Section 9.7
gives a conclusion.

9.2 Related Work

9.2.1 Text-to-3D Scene
One of the first successful text-to-3D scene systems isWordsEye (Coyne & Sproat, 2001).
To date, thanks to various additions, it is one of the linguistically most comprehensive
systems (Hassani & Lee, 2016). The basic version already supported representations of
actions, avatars, negations and of proverbs. This functionality was later extended by
means of frame semantics (VigNet, Coyne et al., 2011) and SpatialNet (Ulinski et al.,
2019), a hand-annotated resource for spatial relations. These manually created and non-
open-source resources allow to disambiguate and resolve ambiguous prepositions and
verbs.

Another well known text-to-3D scene system is that of Chang et al. (2014a,b, 2015a),
meanwhile referred to as SceneSeer (Chang et al., 2017b). It creates a scene s given an
utterance u using a conditional probability:

P (s|u) = P (t|u)P (t′|t, u)P (s|t′, t, u)
= P (t|u)P (t′|t)P (s|t′) (9.1)

That is, P (s|u) is decomposed into the product of the parsing probability P (t|u), the in-
ference probability P (t′|t) and the generation probability P (s|t′). t stands for the scene
template given utterance u, while t′ is the completed scene template. Thismodel assumes
that s is independent of t and u, and t′ is assumed to be independent of u – a weakness
that Chang et al. (2017b) already noted, but most systems retain to this day. There is also
a transformer-based (Vaswani et al., 2017) end-to-end approach (SceneFormer; Wang
et al., 2021a), but the text-conditioned model has not been published yet.

In the parsing step, u is preprocessed and the objects and relations mentioned in u are
mapped to elements of the scene template t. In the inference step, objects and constraints
implied by t (and optimally from u) are inferred to generate the expanded template t′.
This is done using coincidence probabilities learned a priori from spatial datasets. Finally,
in the generation step, the output scene s is produced starting from t′. s can be adjusted
by the user to allow the system to continue learning.

Few systems actively use external language resources in addition to pre-configured
rooms to enable more diverse language inputs (Hassani & Lee, 2016). At first glance,
these systems generate very realistic scenes from scene descriptions, but are rather ap-
plication scenario specific. Thus, while they learn, e.g., from large 3D corpora (like,
SUNCG (Song et al., 2017) and 3D-FRONT (Fu et al., 2021a)) how a kitchen is typically
set up and that a pan is usually placed on the stove, the same is not true for expressions
that express ambiguous linguistic relations (Herskovits, 1986; Feist & Gentner, 1998).
Take the following examples
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(1) “I am on the wall.”

(2) “The mirror is on the wall.”

(3) “I am on the airplane”.

which illustrate three different meanings of on³. WordsEye, for example, tries to resolve
such ambiguities by means of SpatialNet. However, the underlying system is not open
source and thus not extensible. Such problems can be solved with the help of IsoSpace
(see below).

There are many other systems that address the creation of 3D scenes, which are based,
e.g., on images (Kermani et al., 2016), relation patterns (Zhao et al., 2016) and scene cate-
gories (Li et al., 2019). Since we focus on text-based scene generation, we do not consider
this approach. The same applies to text-based generations of avatar movements (Petro-
vich et al., 2022) or 3D objects (Chen et al., 2018).

Value Description Example

DC disconnected [Europe] - [America]
EC externally connected the [book] on the [table]
PO partial overlap the [light switch] on the [wall]
EQ equal [The White House] - [1600 Pennsylvania Avenue]
TPP tangential proper part the [windows] of the [house]
NTTP non-tangential proper part the [heart] of the [city]
IN disjunction of TTP and NTTP the [table] in the [room]

Table 9.1: The list of RCC8+ (Region Connection Calculus) relations (ISO, 2020).

9.2.2 SemAF & IsoSpace
IsoSpace (Pustejovsky et al., 2011a; ISO, 2020) is part of the Semantic Annotation Frame-
work (SemAF; Ide & Pustejovsky, 2017, p. 128), “an annotation scheme for the markup of
spatial relations, both static and dynamic, as expressed in text and other media” (Ide &
Pustejovsky, 2017, p. 989). SemAF is a further development of Spatial Role Labeling (Ko-
rdjamshidi et al., 2010, 2011) and consists of two main components: entities marked di-
rectly in the text and links that relate these entities to each other. According to IsoSpace,
entities are divided into

(i) spatial entities, such as objects, persons or places,

(ii) signal words, mostly prepositions,

(iii) events, mostly verbs, and

(iv) measures.

Entities can be provided with attributes (e.g., type, dimensionality and cardinality) and
linked by

³https://dictionary.cambridge.org/dictionary/english/on
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“[I] was [laying] [on] the [couch] [reading]
when suddenly my [cat] [came running] [into] the [living room].”

Input Parsing

InferenceGeneration

se1: I
se2: couch
se3: cat
l1: living room
e1: laying
e2: reading
sr1: on
sr2: into
m1: came running
srL1: (se1, e1, ARG0)
srL2: (se2, e2, ARG0)
qsL1: (e1, se2, EC)
qsL2: (e2, se2, EC)
qsL3: (se2, l1, IN)
oL1: (e1, se2, ABOVE)
oL2: (e2, se2, ABOVE)

se4: TV
se5: TV table
se7: book
l2: [outside of l1]
l3: [inside of l1]
ep1: l2 → l3
mvL: (se3, ep1)
srL3: (se7, e2, ARG1)
qsL4: (l2, l1, DC)
qsL5: (l3, l1, IN)
qsL6: (se4, se5, EC)
qsL7: (se5, l1, IN)
oL3: (se4, se5, ABOVE)
oL3: (se5, se2, FRONT)

se: SpatialEntity, l: Location, sr: sRelation, e: Event, m: Motion, ep: EventPath,
qsL: QSLink, oL: OLink, mvL: MoveLink, srL: SemanticRoleLink.

Figure 9.2: Example of an IsoSpace-based, user-supported text-to-3D scene result gen-
erated with SeSB (not all attributes are displayed as, e.g., trigger references
to the sRelations for the IsoSpace links; the list of IsoSpace links is only dis-
played in part). The images show the complete text-to-3D scene process, from
the initial scene description to the final scene. Start and end points of the cat
were added manually by the user during the processing steps. In the last im-
age (Generation), the links have been omitted for clarity. Main points: (1)
Entities not explicitly mentioned in the text are added [e.g. se4 and se5]. (2)
Implicit Semantic Role Labeling [srL3] is annotated. (3) Entity movements
are also annotated. For this purpose, an EventPath is created that describes
the path [ep1] and is linked to the moving entity via a MoveLink [mvL1]. (4)
Beyond entities, events are linked using IsoSpace links. For dynamic scenes,
this allows the acting entity to not be directly linked to objects and therefore
perform actions in different areas [qsL1, oL1]. (5)Though not being shown in
this example, SeSB allows for annotating (sub-)coreferences and partonymy
relations using MetaLinks.

124



9.3 Semantic Scene Builder

(i) Qualitative Spatial Links (QSLinks, representing topological RCC8+ relations (Ran-
dell et al., 1992); see Table 9.1),

(ii) Orientation Links (OLinks, denoting all other spatial relations; e.g. in front of,
north, across),

(iii) Movement Links (MoveLinks regarding movements of entities in space), and

(iv) Measure Links (MLinks, used to represent sizes and distances, e.g., 2m, 4l).

We also use the SemAF specifications for semantic roles (SrLinks, ISO, 2014b) and
coreference annotation (MetaLinks, ISO, 2014a). In the case of MetaLinks, we use the
type value Part to indicate meronymy and holonymy relations, a relation not covered
by IsoSpace by default. The links distinguished so far allow, for example, for resolving
ambiguous prepositions:

(1) “I am on the wall.”
→ QSLink(EC), OLink(ABOVE)

(2) “The mirror is on the wall.”
→ QSLink(EC), OLink(FRONT)

(3) “I am on the airplane”.
→ QSLink(IN)

For a second example of using SemAF for disambiguation see Figure 9.2.
IsoSpace does not claim to cover all aspects of spatial language; however, it is still

the most comprehensive annotation model of this sort. IsoSpace is not limited to spatial
descriptions but can also be used for representing tasks such as (ISO, 2020):

(a) creating routes based on route descriptions;

(b) tracking moving objects based on motion descriptions;

(c) conversion of viewer-centered descriptions into other-oriented descriptions or de-
scriptions based on absolute coordinates.

Related work concerning the transfer of IsoSpace into VR environments is presented
by Henlein et al. (2020). However, this work focuses primarily on annotations, while we
focus on their application for text-to-3D scene systems.

9.3 Semantic Scene Builder
To date, there is no extensible open source system that integrates comprehensive SemAF-
related annotations to generate data for training text-to-3D scene systems. We propose
SeSB, to fill this gap. SeSB implements the following features:
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1. Its SemAF-based data model allows for modeling a wide range of semantic rela-
tions. In this way, not only spatial objects but also events and movements can be
represented.

2. SeSB is not distributed across a number of heterogeneous, proprietary, barely in-
teroperable systems. Rather, SeSB integrates its functionality into a single system
that is freely accessible and extensible.

3. Users maintain control at all times and can adjust scene generation according to
their needs. Changes to data representations can be made in the course of scene
generation, so that SeSB can be used as an active learning environment (Settles,
2009).

SeSB stores all data (e.g., input texts, entity labels, links, object placements) in a UIMA-
based (Ferrucci & Lally, 2004) XMI format based on SemAF. We now describe the mod-
ules of SeSB by distinguishing four steps of generating text-to-3D scenes (for the first
three steps cf. Section 9.2.1), that is, parsing, inference, generation and annotation. In this
way, we stepwise generate a scene s starting from a given scene description u.

9.3.1 Parsing
For preprocessing of scene description u (including, e.g., tokenization, sentence split-
ting, POS tagging and lemmatization) we use the Stanza (Qi et al., 2020) interface to
CoreNLP (Manning et al., 2014). For semantic role labeling, we use the AllenNLP (Gard-
ner et al., 2018) implementation of Shi & Lin (2019).

We use a two-step approach for detecting objects and their relations in u: first we
extract entities and links with IsoSpaceSpERT (see below), and then augment and correct
them with a rule-based model.

Rule-based Model

As a baseline, we reimplemented the rule-based approach of Ma et al. (2018). That is,
anything recognized as a noun by POS tagging is labeled as a spatial entity. Attributes
and relations are assigned using hand-generated dependency rules, whichwe transferred
to the QS-/OLink schema: e.g. “The cat is in front of the table.” is mapped onto (cat,
in_front_of, table) and OLink(cat, table, front).

IsoSpaceSpERT

Since no open source models are yet available for IsoSpace tagging (Shin et al., 2020;
Nichols & Botros, 2015; D’Souza & Ng, 2015; Salaberri et al., 2015), we trained IsoSpaceS-
pERT based on SpERT (Eberts & Ulges, 2019), which in turn is based on BERT (Devlin
et al., 2019) using the data from SpaceEval (Pustejovsky et al., 2015). We also con-
ducted experiments with REBEL (Huguet Cabot & Navigli, 2021) and PL-Marker (Ye
et al., 2022). However, both models performed significantly worse – probably due to the
limited amount of training data.
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SpRL-
CWW

S-BERT Prec Rec F1

Place 74.7 86.8 81.4 82.6 82.0
Path 61.7 94.9 81.0 76.4 78.7
Spatial entity 80.8 89.9 79.7 87.6 83.5
Motion 76.9 94.3 79.2 87.4 83.1
Motion signal 78.6 90.7 84.4 88.8 86.6
Spatial signal 70.9 85.9 76.1 83.6 79.6
Measure 79.1 98.3 88.6 91.2 89.9
Non-motion 56.4 89.4 59.4 63.3 61.3
average 74.6 90.0 78.7 82.6 80.6

QSLink - - 58.2 40.8 48.0
OLink - - 35.5 32.4 33.9
average 3.0* - 46.9 36.6 41.0

Table 9.2: Evaluation of IsoSpaceSpERT. *: Evaluated on (figure, ground, trigger,
rel_type) and MoveLinks.

Since no link annotationswere published for the SpaceEval test data, we addedQSLink
and OLink annotations, arriving at 92% of the data reported in the official statistics for
each of these types (all these data are made publicly available via this publication). For
annotation we used the Multi-purpose Annotation Environment (Stubbs, 2011) that was
originally used for generating the SpaceEval data⁴. We deleted files in the test data that
also appeared in the training data and did not consider empty entities and their links.

We trained IsoSpaceSpERT to detect the type of spatial relation that connects entities:
e.g., for QSLinks RCC8+ relations are tagged. Note that S-BERT (Shin et al., 2020) and
SpRL-CWW (Nichols & Botros, 2015) focus on finding relation triples (figure, ground,
trigger) and therefore do not predict relation types. In addition, S-BERT only consid-
ers relations manifested by prepositions. These differences make it difficult to directly
compare our results with previous work on QSLink and OLink detection.

Table 9.2 shows the results of evaluating IsoSpaceSpERT. The results of hyperparam-
eter optimization using wandb (Biewald, 2020) are shown in Table 9.3 (appendix). We
trained separate models for QSLinks and OLinks, as this resulted in significantly better
link detection results, even though entity detection benefits from joint training. The re-
sults for entity detection are generated by the QSLink model. We achieve an F1-Score of
41% for QSLinks (48%) and OLinks (33.9%). There is one dominant error due to our model
architecture: since the prediction of relations between two entities only takes into ac-
count the context that lies between them, the model has problems with statements like:
“On x is y”, where the preposition is to the left of x and y.

⁴http://jamespusto.com/wp-content/uploads/2014/07/SpaceEval-guidelines.pdf
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9.3.2 Inference

SeSB contains two mechanisms for inferring contextual information for expectation-
driven understanding (see Figure 9.1). This relates to aspects of spatial and process-
related expectations.

Spatial or Room-related Inference

To exploit knowledge about rooms, we estimate the conditional probability P (r | o)
of a room r given an object o. P (r | o) estimates, e.g., the probability of objects like
bathtubs being typically located in bathrooms. To this end, we use the NYU Depth V2
dataset (Silberman et al., 2012). It contains 464 labeled real-world scenes and nearly 900
different object labels, and therefore significantly more than, e.g., COCO (Lin et al., 2014)
with only 80 object categories. Using NYU Depth V2 to estimate P (r | o), we add the
five most strongly associated objects to the scene. Note that using P (r | o) to determine
these associations generated the better results, because of filtering out uninteresting
objects (like ceiling or curtain), while selecting objects that are interesting for a room
type (e.g. bed→ bedroom). This is done for each room label occurring in the input scene
description u detected by the parsing module.

Process- or Task-related Inference

To insert objects inferred from described actions into the scene s, we use a version of
HowToKB (Chu et al., 2017). HowToKB represents task-related knowledge along with
attributes for the parent task, the preceding and the succeeding subtask. This knowledge
is extracted fromWikiHow⁵ articles by means of OpenIE (Etzioni et al., 2011). HowToKB
also contains information about tools and objects required to perform a task, if they are
explicitly listed in a separate section of the original article.

We created a new crawl of WikiHow and updated the whole pipeline based on How-
ToKB. We also performed WordNet-related (Miller, 1995) Word Sense Disambiguation
(WSD) using LMMS (Loureiro & Jorge, 2019; Loureiro & Camacho-Collados, 2020) and
updated task clustering to include disambiguation as well. Using WSD, we expanded
the number of objects extracted from WikiHow articles and added to task-specific lists
of required objects (increasing the amount of labeled objects involved from 1.4M to 2.2M).
To to process queries, we imported HowToKB into Neo4J.⁶

For each event e described in the input description u, we then search our extended
knowledge base for all object-event combinations that contain e. For each such entry,
the corresponding object is finally inserted into the scene s if it is missing there.

In futurework, wewill experimentwith systems such as COMET-ATOMIC 2020 (Hwang
et al., 2021), ConceptNet (Speer et al., 2017) or TransOMCS (Zhang et al., 2020) to provide
SeSB as an application for evaluating commonsense systems.

⁵https://www.wikihow.com/
⁶https://neo4j.com/
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9.3.3 Generation
The next step is to select 3D objects for all the objects detected so far and place them
in the scene s in a meaningful way (taking into account constraints mentioned in u).
For this purpose we use the scene generation tool of Ma et al. (2018). This tool creates
a scene from all extracted objects and extends it with objects and relations that are still
missing (e.g., a given plate implies a table on which it is placed). The models that Ma
et al. trained for this purpose were created using various annotated scene resources, that
is, SUNCG (Song et al., 2017), SceneSynth (Fisher et al., 2012) and SceneNN (Hua et al.,
2016). This includes

(1) the support model for adding matching supports of objects (e.g. a plate as a sup-
port under a piece of cake).

(2) the co-occurrencemodel for adding relevant objects based on co-occurrence prob-
abilities (e.g. a mouse next to keyboard).

(3) the pairwise model to predict the relative positioning between two objects.

(4) the group model for handling with group relations (e.g. “messy table”).

(5) and the relative model to handle conflicts between explicit relations specified in
the input record and implicit relations specified by existing objects.

This approach is originally based on Fisher et al. (2012). It shows that modules do not
have to strictly adhere to the succession of parsing, inference, and generation, since
objects and relations can also be inferred and added during generation.

9.3.4 Annotation
Based on VR, SeSB allows users to make changes at each processing step. These can
be changes to the final scene by grabbing objects and repositioning, rotating, or scaling
them. It may also concern the placement of inferred objects into the scene or deleting
them. Furthermore, it is possible to interact with the input text u by means of a text
window to annotate entities, set their attributes or insert links between them. In this
way, the user has full access to SeSB’s data structure. In this way, SeSB provides a 3D,
VR-based annotation environment for SemAF and 3D scenes.

9.4 Implementation
SeSB is based on VAnnotatoR, which builds on TextAnnotatoR⁷. SeSB is imple-
mented in Unity3D⁸ and can be used by means of 3D glasses. VAnnotatoR creates a

⁷VAnnotatoR, TextAnnotatoR are TextImageR are synonyms to comply with the guidelines for au-
thor anonymity.

⁸https://unity.com/
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virtual 3D environment in which scenes can be visualized and modified, with both op-
erations provided by TextAnnotatoR. TextAnnotatoR is a platform-independent,
WebSocket-based multi-user annotation framework which enables collaborative, simul-
taneous annotations based on UIMA (Ferrucci & Lally, 2004). Thus, different users can
annotate the same scene s at the same time. To this end, scenes are modeled as UIMA
documents, which are annotated with TextAnnotatoR. Any change to a scene (e.g.,
by creating, moving, scaling, texturing, or relating objects) is interpreted as an annota-
tion instruction that is communicated to each annotator of the same scene to update her
or his view. To this end, all representations of object, their attributes and relations are
modeled as annotation objects.

Since the representation of 3D objects is an essential part of scene generation, we use
ShapeNetSem (Savva et al., 2015), a sub-project of ShapeNet (Chang et al., 2015b), to
visualize 3D objects. Through ShapeNetSem, it is possible to access 12 000 semantically
annotated objects, which allows SeSB to create and annotate a wide range of concrete,
visualizable objects in addition to abstract objects such as cubes, planes and spheres.

All tools from Section 9.3 are included into VAnnotatoR via a Python implementa-
tion of TextImageR and work directly on UIMA documents; this is enabled by means of
dkpro-cassis (Klie & de Castilho, 2020).

9.5 Evaluation
We compare SeSB with the system of Ma et al. (2018), the only related system that is
freely available. We used both systems to generate scenes from 21 different scene de-
scriptions. These descriptions each contain 1-3 sentences from the following three cat-
egories:

(a) original descriptions from the appendix of Ma et al. (2018),

(b) room name-based descriptions (e.g. “I ate an apple in the kitchen.”), and

(c) action-based descriptions (e.g. “I like to make music.”).

Examples of the generated scenes can be found in the appendix (Figure 9.5).
The annotators employed for our comparative evaluation were assigned a three-part

task: each annotator was asked to determine for each pair of images the better scene
representation produced either by Ma’s approach or by SeSB. Furthermore, each of the
images was to be assigned a value between 0 and 5 for naturalness and plausibility. This
approach follows the evaluation method of Ma et al. (2018). Which image of which sys-
tem was displayed on which side of the screen was randomly selected; however, the
images shown always referred to the same input description. The results of our evalua-
tion are shown in Figure 9.3a and 9.3b; they are based on a total of 22 participants.

Figure 9.3a shows that SeSB performs slightly worse for concrete spatial descriptions.
But when the spatial description is tagged with a room label or an action is described,
scenes generated by SeSB are clearly preferred by annotators. We hypothesize that the
initially poorer results are due to the integration of additional systems (such as SpERT
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in particular) that interfere with room generation, as these systems produce increased
noise. However, this integration allows SeSB to ultimately process more complex input
texts (as Figure 9.5 (appendix) shows). Our findings are also reflected in the natural-
ness and plausibility ratings (Figure 9.3b), where we perform slightly worse regarding
concrete descriptions, but better in the other two scenarios. We hypothesize that the
plausibility of SeSB was rated somewhat lower than the naturalness of its action repre-
sentations because we do not yet have the data to place the objects involved appropri-
ately. That is, although objects are generally placed meaningfully in a room according
to the annotators’ ratings, they are not necessarily always relevant to the action being
described.

(a) Comparative evaluation of Ma et al.’s (2018)
approach and SeSB.

(b) Rating of generated scenes regarding their
naturalness (left) and plausibility (right).

9.6 Discussion & Future Work
While it is possible to create 3D scenes from less constrained or more natural descrip-
tions using SeSB, the possibilities offered by natural languages for scene descriptions are
far from exhausted. This becomes clear when looking at Figure 9.1. While the system
of Ma et al. (2018) covers aspects (1) and (4), we extended aspect (4) by including addi-
tional spatial room concepts and partially consider aspect (5) as well. However, with the
restriction that the positioning of objects is not conditioned by the described activity.
Aspects (2) and (3) of Figure 9.1 are still not considered. While considering these two
aspects could generate a manageable amount of work, the true complexity comes from
combinations of the aspects (1-6):

“A person listens to music in the 50s.”

Starting from the token “listens” (aspect 5) and the time expression “50s” (aspect 2), a
tube radio or a record player (aspect 4) seems more likely as the instrument involved.
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This instrument is then more likely to be found in a living room (aspect 1), while it can
vary greatly in design (aspect 3) depending on the assumed region of the speaker (aspect
1). Obviously, text-image systems also have problems with such examples (Marcus et al.,
2022), regardless of the ever-increasing training datasets available to them. This is ex-
emplified in the appendix (Figure 9.4a and 9.4b) by means of DALL·E Mini (Dayma et al.,
2021)⁹. Approaching this complexity will be part of future work and is unlikely to be re-
alistically accomplished without active learning and far more sophisticated approaches
to human computation (McClelland et al., 2019; Bisk et al., 2020; Kumar, 2021).

9.7 Conclusion
We presented Semantic Scene Builder (SeSB), a VR-based text-to-3D scene framework
that generates 3D scenes based on scene descriptions. It uses SemAF and UIMA as un-
derlying data structures and integrates a wide range of resources such as HowToKB and
IsoSpaceSpERT to cover more complex scene descriptions. By enabling annotations in
VR and the expressive power of SemAF that SeSB covers, SeSB is usable to generate
training corpora for text-to-3D scene systems. This is important because this area of
language understanding is still in its early stages and relevant data sets are therefore
rare. We evaluated SeSB against a state-of-the-art open-source text-to-scene method
(the only one publicly available yet) and found that our approach not only performed
better, but also allowed us to model a wider variety of scenes.

⁹https://huggingface.co/spaces/dalle-mini/dalle-mini
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Appendix

Parameter QSLink-SpERT OLink-SpERT

BERT bert-base-cased
Epochs 30
Batch size 10
Negative entity count 300 320
Negative relation count 80 15
Learning rate 6.0e-5 6.3e-5
Weight decay 0.0082 0.0085
Relation filter threshold 0.44 0.23
Size embedding 60 45

Table 9.3: IsoSpaceSpERT Hyperparameter

(a) Images generated by DALL·E Mini
for the sentence: “After eating my
croissant, I read the newspaper”.

(b) Images generated by DALL·E Mini
for the sentence: “A person listens
to music in the 50s”.
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Today I went into the
living room to read a
book on the couch.

Since I only have one
room, the living room
is also my bedroom.
The bed is next to the
couch.

I ate an apple in the
kitchen. The kitchen
table was messy from
last night.

For my birthday to-
day,
I will bake an apple
pie. I have already
bought the apples for
it.

In my free time I
would like to make
music. But I never
find time for it.

Input Text Ma et al. (2018) SeSB

Figure 9.5: Generated examples scenes from the evaluation.
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10.1 Summary

The contributions of this dissertation can be divided into four main points.

Analysis & Evaluation of LanguageModels Wewere able to show that static word
embeddings do not significantly benefit from pronoun substitution as a reprocessing
step and explained the results that we ended up with exactly what we were trying to
prevent with the approach: the loss of contextual information.
On the other hand, we were able to show that purely text-based models contain knowl-
edge about object relations. The various models (whether static or contextualized) differ
significantly in how much knowledge they allow to extract, with the static models actu-
ally performing sometimes better than the transformer-based contextual models.

Grounding of Human-Object Interactions We introduced a self-annotated exten-
sion of HICO-DET to include Gibsonian and telic affordances. On this data, we trained
a variant of UPT adapted by us, named AffordanceUPT, and could show for this model
that it can effectively distinguish between Gibsonian and telic affordances in images. Af-
fordanceUPT also learns other correlations in the data to make such distinctions, which
are important for grounding these objects.

SeSB We presented SeSB, a VR and SemAF-based text-to-3D scene system, and its cor-
responding preliminary work. The system supports both the annotation of semantically
expressive spatial data via IsoSpace and the automatic generation of 3D scenes. For the
latter, several modules have been improved and implemented that allow solving both
spatial and requirement-related contexts and evaluated against another state-of-the-art
tool. We were able to show that our approach not only performs better but also allows
the modeling of a wider variety of scenes.

VR as a Tool for Digital Learning We reviewed existing practices and tools for dig-
ital and virtual teaching and learning based on derived rules and were able to show that
the possibilities of VR are far from exhausted, as most applications only attempt to em-
ulate reality rather than build and improve on it. Complementing the existing tools, we
show the possibilities in the area of virtual and three-dimensional teaching and learning
environments using the example of VAnnotatoR.
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Figure 10.1: Adaptation of Figure 1.1 for futurework. Green stands for contexts that have
already been solved well, and the redder the box, the more problematic it is.

10.2 Future Work

With models such as SeSB and AffordanceUPT, we have created systems that will enable
even more realistic text-to-3D scene generation in the future and are already showing
initial success with the resources that have been integrated. But Figure 10.1 shows that
we are still a long way from the quality that humans are capable of.

10.2.1 Spatial expectations

Standing alone, this is probably the best-solved point of all. Scene Synthesis models are
already very good at generating realistic scenes, based only on the spatial relationships
between objects (cf. Li et al., 2019; Wang et al., 2021a). However, these are still very
domain restricted. SceneFormer (Wang et al., 2021a) only supports bedrooms and living
rooms and this also applies to other work that supports outdoor scenes (e.g. Karacan
et al., 2016; Yang et al., 2021). And there is still the problem of actively incorporating
these models into text-to-3D scene pipelines, as it is not simply enough to create a real-
istic kitchen. The kitchen must also correspond to the description from the text, which
is why we still resort to such basic systems as that of Ma et al. (2018).

10.2.2 Temporal expectations

The time factor is not yet considered in this work. By implementing SemAF as a data
structure it should not be a problem in the future to extend the function by IsoTimeML
(see Section 2.1). Systems such as HeidelTime (Strötgen & Gertz, 2013; Kuzey et al.,
2016), for example, can then be used to mark the temporal relationships within a text.
This would then also make it possible to hide objects that are no longer part of the scene,
or are yet to become part of the scene, or to display scene changes over time.
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10.2.3 Cultural expectations
The cultural aspect has also not yet been addressed. To our knowledge, there is simply
not enough data to expand on this aspect. The first step would probably be to build
an interior scene database that maps kitchens, living rooms, bedrooms, etc. in different
cultural spaces and label them as well. Accordingly, the data sets with 3D objects, such
as ShapeNetSem, would also have to be adapted so that appropriately labeled 3D objects
also appear there (so that, for example, not only beds but also sofa beds are included and
annotated).

10.2.4 Conceptual expectations
For this point, the groundwork was done with Henlein et al. (2023a) and AffordanceUPT.
In the future, these analyses need to be extended to a larger scale and tested for wetting
subdivisions other than Gibsonian and Telic. In addition, some work needs to be done
on object orientation detection in images with human-object interactions. This should
later make it possible to generate large-scale affordances and habitats and thus VoxML
descriptions for 3D objects. Grounded language models such as CLIP could also help
with this (Radford et al., 2021).

10.2.5 Requirements-related expectations
To this end, we have shown preliminaryworkwith the update, improvement, and expan-
sion of HowToKB (Chu et al., 2017). However, it needs to be evaluated in more detail
and provided with further filtering mechanisms to filter out unwanted objects. There
are also many more “common sense reasoning datasets”, such as: COMET-ATOMIC
2020 (Hwang et al., 2021), ConceptNet (Speer et al., 2017) or TransOMCS (Zhang et al.,
2020). These should also be evaluated and included for text-to-3D scene applications to
create a richer dataset.

10.2.6 Process-related expectations
This point consists on the one hand of the improvement of themodels implemented so far
and extension by new ones. Of the models implemented so far, this applies in particular
to IsoSpaceSpERT. The model can benefit significantly from more training data and an
architecture designed for SemAF links in the future. In the future, this will lead to a
SemAF model that indexes not only IsoSpace but all SemAF-relevant entities and links,
thus benefiting from the combination of the different tasks (multi-task learning; Chen
et al., 2021; Bingel & Søgaard, 2017).

The second main point is processing contexts over a long time. It is much easier to
process 2-3 sentences for a model than complete documents or scripts. This was a bigger
problem with RNN- and LSTM-based methods with phenomena like gradient vanishing
or explosion (Hanin, 2018; Pascanu et al., 2013). Regular transformer models, on the
other hand, cannot process long sequences because of their self-attention mechanism.
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There are adapted variants, like Big Bird (Zaheer et al., 2020) or Longfromer (Beltagy
et al., 2020) which in turn only benefit if such long sequences occur in the training data.
Accordingly, the task will be to generate just such training data, e.g., using book scenes
or theater scene descriptions.

10.2.7 Annotation
As described in Chapter 9, SeSB can also be used for annotation purposes via the VR
controller. The possibilities offered by VR have not yet been exhausted. Future work
could use the user’s movements and hand gestures as additional annotation input, which
would further speed and simplify it. Thus, the characters’ movements could be generated
via the direct movements of the person commenting, or the direction of gaze could be
used as another interaction medium.

10.2.8 Combination
The last goal is to bring all these contexts and expectations together. Starting from sin-
gle pairs (e.g. Spatial + Temporal −→ Kitchen in the Middle Ages) until finally there are
enough resources and corresponding models that can connect everything. In the fu-
ture, it will be possible to describe e.g. birthday scenes with only a few words, because
the system can process the contexts independently (age of the person, cultural setting,
appropriate gifts, guest clothes, …).
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Appendix: Zusammenfassung
Menschen können räumliche Szenen mit Hilfe von Sprache beschreiben und umgekehrt
Szenen auf der Grundlage von sprachlichen Beschreibungen rekonstruieren. Die derzeit-
igen State-of-the-Art Systeme kommen jedoch nicht einmal annähernd an die Komplex-
ität des Menschen heran, wenn es darum geht, eine Szene aus einem gegebenen Text zu
erzeugen. Auch die immer weiter fortschreitende Entwicklung immer besserer trans-
formerbasierter Sprachmodelle konnte dabei bisher nicht helfen. Diese Aufgabe, die au-
tomatische Generierung einer 3D-Szene auf der Grundlage eines Eingabetextes, wird als
Text-to-3D Scene Generierung bezeichnet. In den letzten Jahren haben sich die Arbeiten
im Bereich der Text-to-3D Scene Generierung zunehmend darauf konzentriert, immer
realistischere Szenen auf der Grundlage vorhandener Szenendatensätze zu erzeugen. Die
eigentliche Sprachverarbeitung ist zunehmend in den Hintergrund getreten. Sie dient
nur noch dazu, konkrete Relationen (parsbar durch vordefinierte Dependency Regeln)
für die Szenengenerierung bereitzustellen (e.g Ma et al., 2018; Chang et al., 2017b). De-
mentsprechend bleiben aus linguistischer Sicht viele Aufgaben ungelöst (Hassani & Lee,
2016). So müssen alle relevanten Entitäten (welche sind relevant und welche nicht) in
einem Text erkannt, Anaphern aufgelöst und schließlich räumliche Beziehungen und se-
mantische Rollen identifiziert werden. Dies erfordert eine umfangreiche Tool-Pipeline
von nicht immer homogenen Werkzeugen, die hier zusammenarbeiten müssen. Die
meistenModelle basieren auf vortrainiertenWortvektoren oder Sprachmodellen, die nur
auf Text trainiert wurden, und es ist daher nicht klar, wie gut diese räumliche Beziehun-
gen erfassen können. Erschwerend zu der Tatsache, dass die benötigten Daten nicht
in ausreichender Menge zur Verfügung stehen, kommt hinzu, dass es keine geeignete
Annotationsumgebung gibt, die die Generierung dieser Daten unterstützt.

Weiterhin reicht es nicht aus, nur auf in denen im Text vorhandenen expliziten Infor-
mationen zuzugreifen, sondern esmüssen verschiedenen zusammenhängenden Beziehun-
gen und Kontexte aufgelöst werden. Für die meisten impliziten Informationen, die in
Szenenbeschreibungen enthalten sein können, fehlt es aber an notwendigen Ressourcen.
Und schließlichmüssen die sprachlichen Einheitenmit 3D-Objekten verknüpft und diese
in der Szene sinnvoll angeordnet werden. Auch hier kann es notwendig sein, der Szene
zusätzliche Objekte hinzuzufügen, um diese realistischer aussehen zu lassen.

Diemeisten der bisherigenArbeiten sind zudemnicht open-source, so dass es schwierig
ist, auf die einzelnen Punkte einzugehen und die Ergebnisse zu vergleichen, ohne direkt
ein komplett neues Text-to-3D Scene System zu entwickeln und zu implementieren.

Schließlich stellt sich die Frage, ob solche Systeme in der VR auch für andere Anwen-
dungen als die Erstellung einfacher Szenen geeignet sind, etwa für die digitale Bildung.

Im folgenden Abschnitt wird nun erörtert, wie diese Dissertation zu den verschiede-
nen Herausforderungen beiträgt.
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(a) Analysen, wie gut aktuelle Sprachmodelle räumliche Informationen verstehen,
wie statische Einbettungen imVergleich dazu abschneiden und ob sie durchAnaphora-
Auflösung verbessert werden können.

(b) Automatisierte Ressourcengenerierung für Kontexterweiterung und Grounding,
die bei der Erstellung realistischer Szenen helfen können.

(c) Schaffung eines VR-basierten Text-to-3D Scene Systems, das als Annotations- und
aktive Lernumgebung verwendet werden kann, aber auch leicht mit zusätzlichen
Funktionen erweitert werden kann, um in Zukunft weitere Kontexte auflösen zu
können.

(d) Analysieren von bestehende Praktiken undWerkzeuge für digitales und virtuelles
Lehren, Lernen und Kollaboration sowie Bedingungen und Strategien im Kontext
von VR.

Die Zuordnung der verschiedenen Arbeiten zu den Schwerpunkten befinden sich hinter
den Namen der Arbeiten.

On the Influence of Coreference Resolution on Word
Embeddings in Lexical-semantic Evaluation Tasks (a)

StatischeWordvektorenwieWord2Vec oder transformerbasierte Sprachmodellewie BERT
sind ein wesentlicher Bestandteil jeder modernen NLP-Anwendung. Mit der wach-
senden Beliebtheit dieser Modelle wächst auch derWunsch, dieQualität dieser Grundla-
gen zu verbessern. Obwohl statische Wordvektoren zunehmend durch kontextbasierte
Varianten ersetzt werden, haben sie immer noch ihre Berechtigung, da ihre Anwendung
viel schneller, ressourceneffizienter und einfacher zu interpretieren ist (Gupta & Jaggi,
2021).

Ziel der Koreferenzauflösung (CR) ist es, alle Teile eines Textes zu finden, die sich
auf dieselbe Entität beziehen. Die F1-Scores bei diesen Aufgaben wurden durch neuen-
twickelte End2End-Ansätze (Lee et al., 2017) und Transformer-Netzwerke (Joshi et al.,
2019) stark verbessert. In dieser Arbeit wurde dieser Effekt in Bezug auf Wortvek-
toren untersucht, d.h. die Hypothese, dass die Einbeziehung von CR als Vorverarbei-
tungsschritt zu Verbesserungen bei nachgelagerten Aufgaben führt. Konkret wurden die
Auswirkungen von CR auf sechs verschiedene Einbettungsmethoden analysiert und im
Kontext von sieben lexikalisch-semantischen Evaluationsaufgaben und der Instanzen- /
Hypernymerkennung bewertet. Insbesondere bei der letzten Aufgabe erhofften wir uns
eine signifikante Leistungssteigerung. Wir zeigten, dass alle Ansätze nicht signifikant
von der Pronomen-Ersetzung profitierten. Die messbaren Verbesserungen waren nur
marginal (etwa 0,5 % in den meisten Testfällen). Die Ergebnisse lassen sich dadurch
erklären, dass wahrscheinlich genau das erreicht wurde, was der Ansatz zu verhindern
versuchte: der Verlust von Kontextinformationen.
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Transfer of ISOSpace into a 3D Environment for Annotations and
Applications (c)

Ausgehend aus der Motivation aus der Einleitung beschreibt diese Arbeit ein Projekt zur
Unterstützung der räumlichen Annotation. In den letzten Jahren wurden viele Anstren-
gungen unternommen, ein sprachliches Schema für räumliche und raum-zeitliche Beziehun-
gen zu entwickeln. Allerdings haben sich die Systeme bisher nicht wirklich durchge-
setzt, was wahrscheinlich an den komplexen Modellen liegt, auf denen sie beruhen,
und am Mangel an verfügbaren Trainingsdaten und automatischen Taggern. Die Er-
leichterung der Annotation sollte durch eine VR-Umgebung erreicht werden, mit der
räumliche Beziehungen besser visualisiert und mit realen Objekten verbunden werden
können. Als Objektdatenbank diente dazu ShapeNetSem (Savva et al., 2015). Alleine
durch das Platzieren der Objekte sollten dabei z.B. entsprechende IsoSpace Links gesetzt
werden, die die räumliche Relation zwischen den Objekten beschreiben. In dieser Arbeit
wurden damit die erstenAnsätze und Funktionalitäten des später so genannten Semantic
Scene Builders (SeSB) beschrieben.

Text2SceneVR: Generating Hypertexts with VAnnotatoR as a
Pre-processing Step for Text2Scene System (c)

In dieser Arbeit wurde Text2SceneVR vorgestellt, ein VAnnotatoR-basiertesWerkzeug
zur Erzeugung von räumlichen Hypertexten. Das Hauptziel dieses Projekts war die
Entwicklung eines Tools, das den Engpass der fehlenden Daten für die Generierung
von Text-zu-Scene-Daten beseitigt. Text2SceneVR erlaubt seinen Nutzern dafür räum-
lichen Hypertext in VR zu erstellen. Als Grundlage dient dazu der VAnnotatoR. Text-
2SceneVR verfügt dabei über folgende Funktionen:

1. Erstellung von Räumen: Der erste Schritt zur Erstellung eines räumlichen Hy-
pertextes in VR ist die Erstellung eines Raumes. Dabei kann der Benutzer die
Eckpunkte des Raums frei einzeichnen, wodurch die Wände erzeugt werden, die
später mit weiteren Details versehen werdem können.

2. Anlegen von Fenstern, Türen und Verwendung von Texturen: Die Räume kön-
nen mit Türen und Fenstern ausgestattet und auch texturiert werden. Die Räume
können beliebig in der virtuellen Umgebung platziert und angeordnet werden. Es
ist möglich, sie nebeneinander anzuordnen, sie zu verbinden und Raumensembles
zu bilden.

3. Objektplatzierung: Weitere Funktionen umfassen die Auswahl und Konfigura-
tion von Rauminhalten und deren räumliche Anordnung. Objekte werden wie bei
der vorherigen vorgestellten Arbeit aus ShapeNetSem bereit gestellt und können
überall in der virtuellen Umgebung platziert werden. Neben der Positionierung
können Objekte auch skaliert, gedreht und in organisatorischen Gruppen zusam-
mengefasst werden.
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Das Datenmodell selbst ist auf Einfachheit und Flexibilität ausgelegt. Evaluiert wurde
das Ganze mit Hilfe einer Benutzerstudie.

Digital learning, teaching, and collaboration in a time of
ubiquitous quarantine (d)

In dieser Arbeit geht es umdieAnwendung vonVR-basierten Systemen für digitale Lern-
und Lehrzwecke. Ein Punkt, der vor allem in den letzten Jahren durch die Quarantäne-
und Corona-Regelungen an Bedeutung gewonnen hat, da z.B. die umfangreichen Quar-
antänemaßnahmen und die damit verbundene Schließung von Bildungseinrichtungen
erhebliche Defizite im Bildungsbereich sichtbar wurde. Basierend auf der Arbeit von
Fowler (2015); Mikropoulos & Natsis (2011); Mayes & Fowler (1999), haben wurden
mehrere Anforderungen an pädagogische VR-Anwendungen abgeleitet und analysieren
eine Vielzahl aktueller Programme, um zu prüfen, in wie weit diese erfüllt werden. Die
Analysen zeigten, dass die meisten Systeme darauf abzielen, vertraute Lernumgebungen
wie Hörsäle, Büros, Seminare oder Klassenzimmer zu simulieren, ohne neue pädagogis-
che Ansätze zu entwickeln, die in VR umgesetzt werden könnten. Das betrifft besonders
Funktionen wie das Platzieren, Verknüpfen und Gruppieren von multimodalen Inhalten
sowie benutzerspezifische Bearbeitungen und Ansichten von Informationen. Funktio-
nen, die Teilweise schon im VAnnotatoR implementiert sind.

What do Toothbrushes do in the Kitchen? How Transformers
Think our World is Structured (a)

Transformator-basierte Modelle sind heute im NLP vorherrschend. Sie übertreffen An-
sätze, die auf statischen Modellen basieren, in vielerlei Hinsicht. Leider leidet die Inter-
pretierbarkeit dieser Modelle dabei stark. Im Hinblick auf die Generationen von Szenen
stellt sich daher die Frage, in wie weit bei transformerbasierte Sprachmodelle die Extrak-
tion vonWissen über Objektbeziehungenmöglich ist. Um dies zu analysieren nutzenwir
diverse Ansätze aus der Bias-Forschung, um zu untersuchen, in wie weit transformator-
basierte Sprachmodelle es ermöglichen, Wissen über Objektbeziehungen zu extrahieren
(X kommt in Y vor;X besteht aus Z ; Aktion A beinhaltet die Verwendung vonX). Dabei
kamen folgende Ergebnisse heraus: Erstens zeigen wir, dass sich die Modelle, die mit
den verschiedenen Ähnlichkeitsmaßen kombiniert werden, in Bezug auf die Menge des
Wissens, das sie zu extrahieren erlauben, stark unterscheiden. Zweitens deuten unsere
Ergebnisse darauf hin, dass Ähnlichkeitsmaße viel schlechter abschneiden als klassifika-
torbasierte Ansätze. Und zu guter Letzt, dass statischeModelle überraschenderweise fast
genauso gut abschneiden wie kontextualisierte Modelle - in einigen Fällen sogar besser.
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Appendix

Grounding Human-Object Interaction to Affordance Behavior in
Multimodal Datasets (b)
Diese Arbeit stellte einen Ansatz zur automatischen Erkennung von Objekt-Affordanzen
vor. Im Gegensatz zu Aktionen, die mit Objekten durchgeführt werden, beschreiben
Affordanzen die Natur dieser Aktion. Dabei wird zwischenGibsonian (Gibson, 1977) und
Telische Pustejovsky (2013) Affordanzen unterschieden. Gibsonian Affordanzen sind
jene Verhaltensweisen, die aufgrund der physischen Objektstruktur ermöglicht werden
und von Tieren direkt wahrgenommen werden können. Telische Affordanz bezeichnet
imGegenzug ein Verhalten, das durch den typischenGebrauch oder Zweck eines Objekts
konventionalisiert wird.

Wir ergänzten den HICO-DET-Datensatz (Chao et al., 2018) mit Annotationen für
Gibsonsche und Telische Affordanzen und eine Teilmenge des Datensatzes mit Anno-
tationen für die Orientierung der beteiligten Menschen und Objekte. Mit diesen Daten
wurtde dann ein angepasstesMensch-Objekt-Interaktionsmodell (Human-Object-Model;
HOI) trainiert und ein vortrainiertes Object-Orientierungs-ErkennungsModell evaluiert.
Unser Modell, AffordanceUPT, basiert auf einem Unary-Pairwise Transformer (UPT;
(Zhang et al., 2021a)), das wir modularisierten, um die Erkennung von Affordanzen un-
abhängig von der Objekterkennung zu gestalten. Das Model in der Lage ist, die Gibson-
sche/Telische Unterscheidung effektiv zu treffen und dass unser Modell andere Korre-
lationen in den Daten lernt, um solche Unterscheidungen zu treffen (z.B. das Vorhan-
densein von Händen im Bild). Die Erkennung der Objektorientierung gestaltet sich aber
weiterhin als schwierig.

Semantic Scene Builder: Towards a context sensitive Text-to-3D
Scene Framework (c)
In dieser Arbeit stellten wir nun schließlich Semantic Scene Builder (SeSB) vor, ein VR-
basiertes Text-to-3D Scene Framework, das SemAF (Semantic Annotation Framework)
als Schema für die Annotation von Diskursstrukturen verwendet. In SeSB eind eine
Vielzahl von Werkzeugen und Ressourcen integriert. Als Grundlage dient dazu SemAF
und UIMA als einheitliche Datenstruktur, um 3D-Szenen aus textuellen Beschreibungen
zu generieren. Dazu gehören ein selbst trainiertes BERT-Modell auf IsoSpace Daten,
diverse Ressourcen zum Auflösen von Raumnamen (z.B. Wohnzimmer→ Sofa) und ob-
jektbezogene Handlungen (z.B. Musik machen→ Keyboads) und der kompletten inte-
grationen eines schon existierenden Text-to-3D Scene Systems (Ma et al., 2018). Die
VR-Umgebung ermöglicht SeSB seinen Nutzern eine intuitive Erstellung und Annota-
tion der Sezene: vonAnmerkungen in Texten über Korrekturen in Bearbeitungsschritten
bis hin zu Anpassungen in generierten Szenen, all dies geschieht durch das Greifen und
Bewegen von Objekten. Wir evaluierten SeSB gegen ein anderes State-of-the-Art Text-
zu-Szene System und konnten zeigen, dass unser Ansatz nicht nur besser abschneidet,
sondern auch die Modellierung einer größeren Vielfalt von Szenen ermöglicht.
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