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Two equations for the macroscopic part W of the statistical operator are considered: 

1. the master equation W = — MW, t 
2. the exact equation W = — J K(t — r) W (r) dr. 0 

It follows from the physical equivalence of the solutions together with a stability assumption 
and the assumption that there is a time r* after which also the derivatives of the solutions are 
equivalent, that r* is the life-time of the kernel K and that M — f K(T) dr. Conversely, the equiv-6 
alence of the solutions follows from assumptions on the life-time of the kernel K together with 
a stability assumption and a smoothness assumption on the initial statistical operator 1F(0). 

I. Introduction 

It is the aim of this paper to investigate the 
validity of the master equation for finite systems. 
Thus all limiting processes are to be excluded from 
the considerations. This investigation is of interest 
within the framework of the theory of dynamical 
critical phenomena, where some of the assumptions 
discussed in this paper may break down. 

Our starting point (II) is a definition of "validity". 
It is well-knowrn that a master equation cannot 
hold in a mathematical sense, this follows from the 
reversibility of the underlying microscopic theory 
(quantum mechanics or classical mechanics). Hence 
a weaker definition of validity must be introduced 
which — furthermore — takes into account the 
recurrence theorem. The validity only can be 
demanded for finite times of the magnitude of the 
relaxation time. We introduce the meaning of the 
physical equivalence of two ensembles by compar-
ing the expectation values of a given set of macro-
scopic observables. This comparison depends on 
the measurement devices and their scales, thus a 
constant e measuring the accuracy of the scales 
will appear in all considerations. The choice e = 0 
yields a much more simple definition but this 
definition is without physical sense. Now wre assume 
quantum mechanics to be true and then we get by 
well-known projection techniques an exact equation 
of motion for the macroscopic part of the statistical 

t 
operator: W= — f K(t — r) W(r) dr. This equation 

o 
is a nonlocal reversible equation while the master 
equation W = — M W is a local irreversible equation 

with semigroup property. Starting with identical 
initial ensembles wre get an equation for the 
difference of the two solutions leading to a formal 
operator identity (III). This identity is the basis of 
the following considerations. In Part IV we at first 
list some relations which are used as presuppositions 
for our proofs. Such presuppositions must be 
introduced, because we only make use of the form 
of the exact equation, that means of the existence 
of the kernel K. Thus we give no "derivation" of 
the master equation from first principles. Instead 
of that we investigate the conclusions from the 
physical equivalence of the solutions and con-
versely discuss some assumptions which lead to 
that equivalence. It turns out that four groups of 
assumptions must be introduced. The first group 
contains assumptions on the finite life-time T* of 
the kernel K. If these assumptions are not valid for 
all operators A e being the space of the 
macroobservables, then wre can define sets of 
operators by these properties. Then the second 
group contains closure assumptions for these sets. 
The third group consists of stability assumptions 
for the basic equations and the last group contains 
assumptions on the properties of the initial 
statistical operators, these are smoothness assump-
tions. 

The main result is that a certain combination of 
these assumptions leads to the physical equivalence 
of the solutions, while physical equivalence of the 
solutions together with the physical equivalence of 
the temporal derivatives of these solutions for 
times t^T* , an additional closure property and an 
additional stability property yield some finite 
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life-time properties of the kernel K and 
T* 

M ^ j K ( r ) d r . 
o 

Furthermore we get a condition of nonergodicity 
following from the form of the kernel K. 

A very similar combination of assumptions 
together with a temporal smoothing process yield 
the result that the smooth part of the exact 
solution obeys a master equation. If in addition a 
smoothness property for IF(0) is valid, then the 
equivalence of the solutions follows. 

From a physical point of view the assumptions 
of stability must be fulfilled. If this were not the 
case, the basic equations would be without physical 
sense. These equations govern the behaviour of 
ensembles, not of single systems. 

The conditions of finite life-time depend on the 
relations between the Hamiltonian H and the 
macroscopic observables and on the choice of the 
energy shell The investigation of these relations 
would be part of a complete theory of macroscopic 
observables. 

II. Physical Equivalence 

Let us consider a microcanonical energy shell § : 
<q — {(pv\Hcpv = ev(pv,E — AE <ev< E). (1) 

H is the Hamiltonian. 
§ can be regarded as a finite dimensional Hilbert 
space, dim Ho = d. Let be 2 the space of the linear 
operators on $ a subspace of macroscopic 
observables. £ becomes a Hilbert space again by 
introduction of the trace product [1]: 

= (2) 

We assume that & is spanned by a basis of projection 
operators P$ onto orthogonal subspaces 

n c dim r* = d{. (3) 

Then the projection W — GU of the statistical 
operator U onto ft always is a positive operator 
(Appendix A). This latter property is essential for 
the linearity of the equations of motion for the 
expectation values (Ai } , Ai e ft [2], Furthermore 
we assume that Pö e ft. 

Let us now consider two different equations of 
motion. The first equation is a master equation: 

W = - M W , I F e f t . (4) 

The eigenvalue problem is: MOi = Xi Oi. We 
assume that 

1. The Oi form a basis in ft, 
2. Re Xt ^ 0 , (5) 
3. Re Xi = 0 => Xi = 0, Oi = yP$. 

The second equation is the exact equation: 

JF=- jK(t-T)W(T)&T, 
0 

K(t) = GL(1 — G) (6) 
•exp|>'(l — G)L( 1 — G) t] (1 — G) LG . 

This equation is derived with the help of the 
Zwanzig projection technique [3, 4] and the 
assumption that GU(0) = U(0). The latter assump-
tion requires that G£7(0)>0. Now, the question 
arises under which circumstances the solutions of 
Eq. (4) and Eq. (6) do agree. Of course there cannot 
be an exact equality. Therefore we must introduce 
a new definition. The statistical operators W\, W2 

are called physically equivalent, W±~W2, if the 
corresponding ensembles cannot be discriminated 
by macroscopic measurements. That means: 

|Sp[(JFi- W2)Ai] \ 

where r\i is the scale length of the corresponding 
apparatus rji. Thus we get the following sufficient 
condition for physical equivalence: 

I Sp[(JFi — W2) Ai] | = \(W1-W2;Ai)\ 
^\\Wi— W2\\ \\Ail ^ r]i. 

So we are led to the following stronger definition: 
Wi ~ W2, if \\Wi- W2\\ 
£ = minr]il\\Ai\\ . (7) 

The norm \\X\\ is defined by ||Xp = Sp(X+Z). 
We emphasize that "physical equivalence" does 
not imply an equivalence relation. And a second 
remark: From ]| W || 1 it follows that 

|| Wi - W2\\ ^ e 1 => Wi ~ W2. 

Now the solutions of Eqs. (4), (6) agree, if 
W(t)~W{t) for t e[0, T] = J , 

where Te(i ^T <^Tr, Te(i being the relaxation time 
defined in Appendix B, Tr the recurrence time. 

If the solutions do agree, we write in a short 
notation: 

W ^ W . (8) 

It is crucial that this equivalence only can be 
demanded for the finite time interval J. 
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III. An Operator Identity 

In order to investigate the relations between the 
solutions we introduce first some abbreviations and 
definitions. Let us choose IF (0) = lf(0) . Then we 
write: 

1. W -W = N(t)W(0), 
t 

2. \K{r)eMrdT = R(t), 
6 
t 

3. \e~Mr dr = X{t). 
o 

We consider the solution of Eq. (4): 

W = e~mW(0) 

and insert it into Equation (6). Then we get: 

(9) 

W=[- SK(t-r) - M r dr 

+ ^K(t-T)N(T)dr] IF(0). 
o 

After integrating this equation we get with the 
definitions (9): 
W(t) - l f (0) 

t 
= - [R(t) X{t) - J K ( T ) eMr X ( T ) dr] If (0) 

o 
t T 

+ fdr f K{r - r') iY(r') dr' IF(0). 
ö o 

Let be 9JJ the space spanned by the eigenvectors Oi 
with Xi 4= 0. Hence we have W (0) - X We(* + W' (0) 
and lf '(0) e 9J? and therefore X=l. Then Ave get: 

W{t) = If'(0) + Ifeq + iV(0(If'(0) + Ifeq) 
t T 

+ f d r J K ( T - T') iV(r') dr'(IF(0) + If 
o o 

t 
~[R{t)X(t)~ $K(T)eMrX(T) dr]( l f ' (0) + Ife(i). 

o 
Now we have 

K(*)lfeq = 0, X { t ) W ^ = t W ^ , 
N(t) Ife (i = 0 . 

Thus we get: 
t r 

[1 + N{t) + fdr Jdr' K(r - r') JV(r') dr' 
ö ö 

t 
- R ( t ) X ( t ) + J X ( T ) e M z X ( t ) d r ] L F ' ( 0 ) 

o 
= e~Mt If'(O). 

Now M can be inverted on 302. Thus we get with 
X(t) = (1 - e ~ m ) M - i and the definition (9): 

t T 

[1 + TX{t) + Jdr Jdr' K(r - r') N(r') 
o o t 

+ R(t) e~Mt M i - J K(r) M i dr - e~Mt] If'(0) 

= 0 . ° (10) 

This identity is valid for all vectors e (Appen-
dix C). Then, using that 0 e 2)? => MO e 9ft we get 
the following identity on ,Tl: 

t T 
M + N(t) M + Jdr JX(r - r') N(r') M 

o o 
t 

+ R(t)e~m - jK{r)dx - e~m M (11) 
o 

= 0. 
If N(t) = 0 — we already mentioned, that this 
cannot be perfectly true because of the recurrence 
theorem — we get after a short calculation: 

t 
M = J K ( T ) dr 

o 
or 

t 
J K ( T ) dr = 0 for 0 < r'. 
r' 

Therefore K(x) must contain a <5-like singularity: 

(Fi) K(r) = Md(r). (12) 

Thus we have 

N(t) = 0 o (F0 . (13) 

This result of course can be obtained immediately 
by comparison of the Laplace transforms of If, W, 
W = W. But this argument hides the real physical 
problem for finite systems. Therefore we must give 
a careful investigation. Now the question arises in 
which way (Fi) must be weakened in order to get 
physical equivalence of the soultions of the Eqs. (4) 
and (6). 

IV. Conditions of Finite Life-Time and Stability 

Let us investigate some features of Eq. (6). Let 
be W[0]{t) the solution of Eq. (6) with lf [ 0 ](0) = 
l f (0) and W[h]{T) the solution of Eq. (6) with 
W[h](0)= W[0](h). 

Then we have 
W[h](T) + Wl0](tl + T). (14) 
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Proof: 

W[tl](r)=W[0](h + r) => 
dW[h]ld r = dWmldt => 

- j K ( r - r^W^in)dn 
o 

h+T 
= - JX(« i + T - T i ) W [ 0 ] ( n ) d r i 

o 
11 

=> [K(£i + T — ri) W[0](TI) dri = 0 
o 

for all r. 
This latter relation is wrong. Of course, this 

result stems from the fact that microscopic infor-
mation U — GU generates in time — this is the 
source of the irreversibility. The inequality (14) 
apparently contradicts the temporal locality — or 
semigroup property — of Equation (4). We have 

W[h](r) = e~M(h + T) JF(0) 

This contradiction disappears, if (Fi) is valid. Let 
us therefore formulate a weaker condition (F2). 
Before doing this, let us list some relations which 
are needed as presuppositions in the subsequent 
analysis. All relations concerning the finite life-time 
of the kernel K are characterized by (F), all relations 
concerning closure properties of sets by (C) and all 
relations concerning the stability of the Eqs. (4) 
and (6) by (S). We define 

E= {W\ W e f t , TF(0) = W (0) => W^ W}, (16) 

T= {V\3t, WeE, W{t)= F o r W{t) = V}. (17) 

E is the set of the "allow ed" initial W, T is the set 
of all V, which can occur in equivalent histories. 
Then we formulate 

(Ci) E= { I f I IF e ft} . (18) 

(Ci) means the validity of the master equation on ft 
without any restrictions. 
(F2) There is a time T* with 

T* 
VeT => || ( M - jK(r )dr )F|| ^e\\MV\\ 

0 
and 

t 
|| jK{r)drV\\ ^ e 1 MF|| for f e [ r* , T]. (19) 
' T* 

Therefore we have: 
T* 

(F2), (Cl) => II ( M - fX(r)dr)F|| ^e\\MW\\ , 
0 
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t 
|| \K(x)&TW\\ ^e\\MW\\ 

T* 
for all IF e f t , t e [ r * T], 

and, with X e ft => X = ^XiPi, 

(F2), (CI) => I ( M -
0 

di I MPi/di || . 

This relation is discussed in Appendix E. Let us 
denote the relations 

T * 

(F 3 ) II ( M - j K ( r ) d r ) W\\ ̂  e\\MW\\ , 
0 

t 
I \K(r)drW\\ ^ e\\MW\\, t e [r*, T] (20) 

r* 

for all W, by (F3). 

(C2) WEE => W{t)eE. (21) 

(C3) WeE => W(t) E E(t), where (22) 
E(t) = { W(0) I W{r) - W(r), t e [0, T - t]}. 

Now let us turn to some stability conditions 

(51) || JFi(O) - W2{0) || ^ e => 
I Wi{t) - W2(t) || ^ e, t E J . (23) 

(52) ||Wi(0) - Tf2(0)H => 
II Wi(t) - W2(t) II ^ e, tEJ. (24) 

(Si), (S2) mean that Eqs. (4), (6) are stable with 
respect to small initial disturbaces. 

We shall formulate some more relations in the 
course of our considerations, when we better can 
understand their physical meaning. Now (F2) is a 
weaker relation than (Fi). Let us therefore investigate 
its properties. Let us define 

T * 

Q = { X I X e ft, I ( M - JK(T)dr)X|| 
0 

t 
^ e I MX 1, 1 j K ( r ) d r X | | 

T* 

^ e I MX ||, te[x*,t]} 

and let us define 

(C4) l e f i n l => e~mX, M-iXeQnW. (25) 

$0? is defined in Section III. 
We define 

t 
J K ( T ) dr = K(t). (26) 
0 
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Then we get for t e [r*, T] 
t 

R(t) = K(t) em - fdr K(r) eMr M 
b t 

= K{ r* )e M l + \K(r)drem 

T * 

- Jdr K(t) eMr M - f dr K(r) eMx M. 
0 T * 

Thus we get from Eq. (11) for X e 2R: 
t T 

[N{t) + Jdr Jdr' K(r - r') iV(r') 
o o 

+ 1 - K(t*) M _ 1 

t 
+ f (K(r ) - K ( T * ) ) e - M ( ' - T ) d r 

T » 

- e~m + K(r*) M-ie~m (27) 
T * 

- Jdr K(r) e~M(t~x) M i 
o 

+ X(T*)e~M < M - i ] X = 0 . 

The last two terms yield 
T * 

[ - jdrK{r)e-M^-T) M i 
o 

+ K(r*)e~m M-i] X 
T » 

= - Jdr K(t) [eMr - 1] M 1 X . 
o 

Therefore we have finally 
t T 

[iV(0 + Jdr Jdr' K(t - r') iV(r')] X 
o o 

< 
= [1 - K(t*) M - i + f [K(t) - K(r*)] e-M«-T>dT 

T * 

- e~M< + K(t*) M-ie~Mt]X (28) 
T * 

- Jdr K(t) [eMr - 1] M-i e~m X . 
o 

Now let be IF'(O) e f i - therefore If'(0) e Q n 9H. 
Furthermore we have 

TT(0)e 2K => e" M < IT'(O) e 9W, 
M - i If'(0) e 2R . 

If r* 
(SMi) || - )*dr K(r) [eMr — 1] M _ 1 If'(0) || ̂ e , 

0 (29) 
this is the essential smoothness condition on If'(0) 
to be discussed in Part V, then we get 

I [N(t) + fdr fdr' K(r - r') JV(t')] If'(0) || 
o ö 

t 
^e(||lf'(0)|| + f I e~ M ( < _ r ) M If '(0) || dr (30) 

T * 

+ 1 e~Mt If'(O) I + 1). 

It can be shown (Appendix F) that the term 
t 

JLL E-MT-T) MW'(0) I DT 

T * 

remains sufficiently small in time. If the left hand 
side of (30) is small of order e, we can, however, not 
conclude that the single terms are small of order e. 
Let us suppose that || N(t) If '(0) || > e. 
Then we have from (30) 

W'(t) - l f ' (0) - (W'{t) - lf ' (0)) 
t T 

+ Jdr J d r ' X ( r - T')(If ' (r ' ) - If ' (r ' ) ) = A (t), 
0 0 || 4 ( f ) || = 0 ( e ) . 

Thus we get: The integral equation 
t r 

X ( 0 - X(0) + Jdr J X ( r - r') X ( r ' ) dr' = 0, 
o o 

which is equivalent to Eq. (6) is not stable with 
respect to a small disturbance A(t). If this is the 
case, that Eq. (6) is without physical sense — there 
is no experimental test of it. Thus we formulate 

(Ss) II [iV(0 + J d r J d r ' K(r - r ' ) N(t')] W'(0)|| ^ e 
o o 

=> || JV(0 IF'(0) I ^ e , (31) 

without investigating the mathematical aspect of 
this relation. Thus we finally have 

W'{0)eQ, (SMO, (C4), (S8) => IF = If. (32) 

If Q = 51, we have 

(SMi), (S3) => W ^ W . 

Now let us investigate the reversion. Let us again 
start with Eq. (10) and let || N{t) W'(0) || ^ e. 
Again we must investigate the expression 

t r 
[IV(0 + fdr fdr ' K(r - t ' ) I\(t')] If'(O) = F. 

o o 
We have 

F = W'{t) - If '(0) - ( l f ' ( 0 - lf ' (0)) 

+ f d r fdr ' K(r - t ' ) (IF'(t ' ) - If ' (r ' )) 
ö o 

t T 

= W' - lf ' (0) + Jdr Jdr' K(r - r') IF'(r'). 
o o 



632 

If the two histories W', I f ' are physically equivalent 
and if ^ w e must conclude that two 
equivalent histories do not both fulfill the integral 
equation which defines one of the histories. This 
again would be without physical sense. Again we 
do not discuss the mathematical aspect. Instead of 
that we presuppose 

(S4) || iV(r) If'(O) I ^ e, 0 ^ r ^ t => 
t r 

|| Jdr fdr ' K(r - r') I\(r') IF'(O) || ^ m e. (32) 
o ö 

We have 

( 1 ^ ( 0 1 (S3)} => (S4), 
{\\N(t) TT(0)|| ^ e , ( S 4 ) } => 

or {||iV(0IF'(O)|| (S4)} => (S8) . 

Note that (S4) becomes trivial for ||iV(0 JT(0)|| = 0 . 
Thus we get 

lf(0) g Z, (S4) 
=> ||[1 + R(t)e~mM-1 (33) 

t 
- f K(r) M i dr - e~m] If ' (0) || 

ö 
^ ( r a + 1) e. 

There is no obvious connection between the half-
group property (15) and (S4). Let us therefore 
investigate the validity of a weaker halfgroup 
property of Equation (6). 

We want to obtain 

W[h](x)~ W[0](h + T) 

in order to ensure the approximative halfgroup 
property of Eq. (6). Let be If (0) e Z. Therefore we 
have 

W[0](h + r) ~ e~M(<i+T> If (0) = e~Mx e~Mh If (0) 
and 

= W W 0 ) ~ e - M < 1 ^ ( 0 ) -

Now let us assume the validity of (C2), (S2) ((21), 
(24)). Then we get I f [ f l ] (r ) - F f< l ](r) where V[h](r) 
is the solution of Eq. (6) with V[h] (0) = e~Mtl W (0). 
Thus we get with (C2): 

V[tl]{z) ~ e-Mre~MtlW{0), or 

II W [ t l ] ( r ) ~ W W < I + T)I (34) 

Therefore we get by use of 
/ T 

W (t) - If (0) = - Jdr f dr ' K(r - r ' ) W{t) 
0 o 
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after some calculation 

|| Jdr ' f K ( r ' - r " ) Jf[o](^l + T " ) d r " 
o - h 

+ J d r ' j K ( r ' - r " ) (35) 
0 0 

•[W[H](R")-W[0](H+ T")]DR"\\ 

This latter relation implies some properties of the 
kind (F) provided, that there are stability properties 
of the kind (S) concerning the second term. We 
must, however, use additional assumptions in order 
to get (F2). Let us therefore return to (33). Let us 
assume after a time r* not only If (t) ~ If (t) but 
also If ~ If . That means, together with a stability 
property: 

(D) || [R(t + T * ) e~M(-t+r*) - M r M ( i + I , ) ] If'(0)|| 
^e\\MW'{t + T*)\\ , (36) 

If (0) e Z, T> 0 . 

We demand this property to be valid for 

2"' = {M-1 If '(0), If (0) = If ' (0) + IF eq £ Z}. (37) 

Thus we get 

|l R(t) e~Ml M - i If ' (0) - e~m If ' (0) || 
^£||e -^ l f ' ( 0 )|| , 

and thus 
t 

|| [1 - j K ( r ) M 1 dr] lf'(0)|| 
0 
<(m + 1)£ + e|| If ' (01 =0(e). 

Hence we have the following result: 

(S4), If (0) e r , (D) valid on Z' => 

|| [ 1 - j K ( r ) M _ 1 ] IF'(0) I = 0(e) 

a n d 

|| J K ( t ) M - I If'(0)|| = O(e) (38) 
where 

If (0) = l f ' (0) + W ^ e Z , O^T^T 
or T* 

M = J-K(r) dr, K(r) = 0, r ^ r*, (39) 
0 

as a more striking — but more unprecise — formu-
lation. 

Let us consider the reversion 

(S4) , W(0)EZ, 
T * 

II [ 1 - \ K(r) M - 1 dr] lf'(0)|| = 0(e), 
0 
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T • + / 

|| f K ( r ) M - i IF'(0)|| = 0(e) => 
T * 

|| [R(t)e~Mt M1 — e~Mt] W'(0)|| = 0 (e ) , 
T* . 

This corresponds to (D). 
Let us now give a remark. We assume for the 

moment that || K(t) IF(0) || = 0(e) for all IF(0) and 
t T e a . That is stronger than Equation (38). 
On the other hand we have from Eq. (6), putting 

exp [i (1 - G) L (1 - G) t] = V(t), 
T » 

J K(x) dr = i GL (1 - G ) [ ( l - G ) L ( 1 - G)]~i 
o 

• (1 — G) LG — i GL (I — G) F(r*) 
• [(1 - G) L(1 - G)]-i (1 - G) LG 

^ M . 
Now the eigenvalues of M cannot be pure imaginary 
for reasons of irreversibility. But the operator 

GL(1 - G)[(l - G) L( 1 - G)]-i (1 - G) LG 

is selfadjoint. Hence we must conclude that the 
operator 

- i GL (I - G) F(r*)[(l - G) L(1 - G)]-i 
• (1 - G)LG 

cannot be neglected. 
If the equation 

[(1 - G) L(1 - G)]-i V(t*) (1 - G) LGW 
= V{t){\-G)LGW (40) 

has a nontrivial solution, W being a statistical 
operator, then we get 

— i GL(1 — G) V(t*) 

• [(1 - G) L(1 - G)]-i (1 - G) LGW 
= — i GL (I — G) V(t) (1 - G) LGW 
= 0(e) 

after presupposition. That means 
T * 

JX(T ) dr W ^ i GL (1 — G) [(1 - G ) L ( 1 - G)]~i 
• (1 — G) LGW 

= iSW, 
where S is selfadjoint. Hence, by putting 

T * 

J JSC(r) drW = iSW, 
o 

we would be led to a solution without tend to 

equilibrium. This conclusion of course depends on 
the magnitude of the nonhermitian part M' of M. 
We have assumed that \\M'W{0)\\ > 0 ( e ) . There-
fore we may conclude: The equation (40) is not 
allowed to have a nontrivial solution. This corre-
sponds in a certain sense to a condition of non-
ergodicity. In fact there must be some Z e S Q ® , 
which cannot be reached by any 

V{t)(l -G)LGW, t 
Z = [(1 - G) L(1 - G)]-i V(t*) (1 - G) LGW. 

V. Smoothing in Time 

Let us consider Eq. (6) 
t 

V = - jK{t - r) V(r) dr, V = W - Wea. 
ö 

Let us "renormalize" the kernel K: K(t) = 0 for 
t ^ Teti. Then we define the temporal smoothing 
Q[Q] by 

1 
Q[Q]V= V1{Q,t)=-]— \f(oi)e-^Ato, 

1 00 

V (co) = f V {t) eicot dt. (41) 
]/In o 

We put V(t) = Fi (t) + V2(t). 
After a short calculation we have 

Fi = Q[Q] F + (sinÜtlTtt) F(0) . (42) 

We look for an equation for Fi, hence we must 
consider V. We have 

t 
V = - jK(t - T ) F I (r) dr 

o 
t 

- \ K ( t - T ) I72 (T ) dr . 
b 

From the definition of it follows that 
t 

Q[Q] jK(t - r) V2(r)dr = 0 . 
o 

Thus we are left with 

Q [ Q ] V = - Q [ Q ] j K ( t - r) F i ( r )dr . 
o 

Now we have 
t T * 

jK(t - T ) F I ( T ) dr - jK{r) dr \\(t - r) 
o o 

t 
+ J K(r) dr Fi{t - r) . 
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We now assume the validity of (F3) (20). Then we 
have a first condition for Q. Q must be chosen so 
small that 

T » 

(SM2) 1 f K(r) dr V\(t — r) 
ö 

-]K(r)drV1(t)\\=0(e) 
0 

I JK (r)dr Fi (t - r) (43) 
T* 

t 
- f K ( r ) d r Fi (t) || = 0(e) . 

T * 

Hence we get from (F3) 
t 
$ K ( t - r) Fi(r) dr 

= X(t)D(t)+ |X( t )dr Vi(t) - f 0(e) 
0 

where 
X(t) = f l , O ^ ^ T * ] 

[0, else 
* T * 

D ( 0 = f K(< — r) Fi (t) dr — j K(r) dr V^t). 
0 0 

T * 

Thus we get with f K(t) dr = M: 
0 

Q[Q] F = — MVi — Q[Q](xD) + 0(e) 

Now we impose a second condition on Q: 
(SM,) Q[Q](XD) = 0(e). (44) 
We get 

/n 1 
yD(co) = -Jir-\D(T)e^dT => 

1 sinß(< — t ) 
71 q t — r 

Thus we have 

\\Q[0](XD)\\ ^ ß / ^ M a x ||D(r)|| t* , 

and (SM2) is fulfilled, if 

£) r* Max ||D(T)|| ^ e . 
71 [0,T*] ' 

Hence we get from Eq. (42) 
sin Q t 

Fi = - MFi + -7— F(0) + 0(e) 7lt 
sin Qt 

= _ M F i + X(t) — ~ F(0) 
jit 

sin Qt 

Our third condition on Q reads 

( S M 4 ) sin Qt*/tit* ^ e , (45 ) 

yielding 
sin Qt 

Fi = - MFi + X(t) 7 - F(0) + 0(e) ( t ) . 
7lt (46) 

(S5) Now we must assume that Eq. (4) is stable 
with respect to the disturbance 
0(e)(t). 

Hence we get 

V1(Q,t)=e~m 
1 V ™ sin Q r Fi (0) + — f e r F (0) 
71 J r 

+ 0(e), t ^ r * . 

Furthermore we have 

I f sin Qt 
VI(Q, 0) = — f V(t) dt 71 J 

With (45) we get 

(47) 

t 

1 T* sin Qt 
V!(Q,0) = - J v(t)——dt + 0 (e ) , 

71 o t 
yielding 

Fi (Q,t) = e-Ml 
1 T* sin Q r 

- J d r — — (F(T) 
71 0 T 

„ M r 

0(e), 

F(0)) 

(48) 

This means: The smooth part \\(Q, t) of F obeys 
a master equation Fi = — MFi for t^t r*. 

Fi (r*) is given by (49) 

Fi (r*) = e" M i » 1 T* sin ß r 
- f dr (F(r) + eMr F(0)) 
71 g r 

Note, that ß must fulfill several conditions. Now 
we have Fi(f) = V(t) + 0(e), if F(0) is spanned by 
slowly varying operators = 
This result of course is closely related to those in 
[5], [6]. If the solution W of 

t 
W = — j K ( f - t) W(r)dr 

0 
is smooth in intervals of length r* ,then it agrees 
with IF. Q[Q] W obeys a master equation for 
t ^ T * . 

YI. Conclusions and Discussion 

The simple argument which yields complete 
agreement between the solution of the master 
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equation and the exact equation is 
(Fi): K(r) = Md(r). 

Of course, (Fi) cannot be valid exactly. Hence we 
look for a weaker form (F2), hoping that 

If ^ If o (F2). 

We have seen that additional assumptions must be 
made in order to get such a result. First of all we 
must have in mind that the master equation 
possibly is not valid for all W. Hence we must 
introduce assumptions concerning the set of the 
allowed initial If (0). Given relations of the kind (F) 
defining a set Q (25), we must demand: 

1. an additional smoothness property (SMi) for 
If (0) (29), 

2. a closure property (C4) for Q and 
3. a stability property (S3). 

Then we have (32): 
(SMi), If (0) - W**eQ, (C4), (S3) W. 

Conversely we have (38): 
If ^ If, (S4), (C4), D valid on M i(27) 
=> M - i If'(0) e Q . 

Furthermore we have 

(S4), I f ( 0 ) eT , M _ 1 If'(0) e Q 
=> D valid on M~ 1 (27), (50) 

and from Section V 
(SM2), (SM3), (SM4), (S5), Fa => W ^ W . (51) 

Let us discuss these relations. If If (0) is spanned 
by operators which vary slowly in time and if 
lf '(0) EÜ, which means that 

T* 
MW'{0) ~ fK(r)dr lf'(0) 

0 
and if Ü is closed (C4) and if the stability property 
(S3) holds, then W^W. Conversely: If W^W, 
then under the condition (S4) and the equivalence 
of the equations of motion (not only of their 
solutions), lf '(0) G Q. It turns out that this latter 
property is equivalent to the equivalence of the 
equations, if (S4) is valid and If (0) G 27, or: If the 
stability property (S4) is valid and if If = If, then 
the equivalence of the equations for t ^ r * is 
equivalent to 

T » 

M l f ' ( O ) ^ JK(T) dr l f ' (O) . 
0 

Regarding the result of Section V, we see that 
there is another set of presuppositions which yield 
If = If. But we see again that we must use smooth-
ness conditions, conditions of finite life-time and 
conditions of stability. 

Of course, we are not sure that the sufficient 
conditions for the proofs are necessary, too. The 
stability properties seem to be weak, if these 
stability properties would not hold, all our equa-
tions would be without physical sense. We must 
have in mind that these equations govern the 
behaviour of ensembles and not the behaviour of 
single members of these ensembles. Hence turbu-
lence-like phenomena can — and must — be 
described by stable equations of motion for the 
corresponding ensembles. Our considerations are 
simplified, if the master equation is assumed to be 
valid for all initial If (0). This is of interest with 
respect to critical phenomena occuring in special 
energy shells. It is beyond the aim of this paper to 
investigate this question. 

Appendices 

A. Proof of: GU > 0 
We have GU = ^Xi Pi. Hence 

(PjGU) = (GPr,U) = (Pj;U)^0 

and Xj = (GU- ,P j ) ld } ^ 0. 

B. Definition of Tec1 

We define 
Tea = inf { T j t > T 

=> || e~Mt If (0) — If ei|| e for all If (0)}. 

Thus 
Teq = inf{T|f > T => \\e~m lf'(0)|| ^ e } . 

Now we have If'(0) = ^ y i O i (5), therefore 

II e~m If'(0) ||2 = °l) • 

This expression is difficult, thus we simplify: 

IIe-Mt j p ( 0 ) | ^2\yi\e~rtt, 

because || Oi || = 1, Xi — ri + is t . Now we have 

II e -M t ^ ' (0 ) || 2 ^ 2 H 2 2 e " 2 n < -

On the other hand: 

II w' (o) |2 = 2 r i * w ( 0 i ; o , ) 
= 2tyi*yjQij = {y\Q\y). 
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Q is selfadjoint, hence (y\Q\y) ^co 2 | yi |2. Thus 
we get 

2 H 2 ^ lTF'(0)||«/u>, 
to being the minimal eigenvalue of to > 0. 
Therefore we get 

1 e~Mt IF'(O) ||2 ^ (I If '(0) p /u , } q e~2rt, 

where q - dim r = min rj. 
Now || IF'(O) l2 ^ 1/d - 1/d with d = min dt 

(Appendix D). Hence we have 
|| e-Mt ||2 ^ d)e~2rt. 

Therefore we get 

(g/w d) e~2rt ^ e2 => t > Ted 
or 

log £ 1 
^eq _ log(^/o> d)1 / 2 

r r 

= ( l / r ) l o g 4 / e , A = (qI to d)1!2 . 

A better estimation can be obtained, if the are 
assumed to be orthogonal. Then we get 

I e-m ||2 = ^ e~2rti | yi |2 

^e~2rt || IF'(0)||2 

^ e ~ 2 r t l d . 

In order to get measurable changes, we must 
demand 

1 / d - 1/d^E2. 

C. Proof of Equation (10) for X e WI 

l e i => x = 2nOi. 

Now rj can be found in such a manner that 

IFeq v Oi = V 

fulfills all properties of a statistical operator. It 
follows from the properties (5) that 

S p Oi = (Oi;P$) = 0 . 

Hence S p F = l . We must demand that F > 0 . 
This can be fulfilled with a sufficiently small rj. 
Therefore Eq. (10) is valid for W'{0) = r]0i, hence 
for Oi itself and therefore on 9ft. 

D. Properties of M, Proof of: || IF'(0) ||2 ^ 1/d - 1/d 

The formal solution of Eq. (4) is W(t) = e~m IF(0). 
Two questions arise: 

1. W{t)=W+(t)i. 
2. W(t) > 0 ? 

O. Seeberg • The Master Equation for Finite Closed Systems 

We have 

W(t) = W** + ^yie~MOi, 
W+{t) = HTeq + ^ yt* e~li*1 Oi+ . 

Let be S the operator with eigenvalues Aj* and the 
eigenvectors 0j+: 

SOi+ = h*Oi+, SPsq = 0 , 
MOi = fa Oi, MP$ = 0 . 

It is easily seen that (Pr; SPi) = (Pr; MPt)*. Now, 
if IF+ = IF, we have 

[e~Mt — e~Sl] IF(0) = 0 => M = S => 
(Pr-MPl) = (Pr-,MPl)*. 

Thus: A necessary and sufficient condition for 
W = W + is, that the matrix elements ( P r , M P i ) 
are real numbers. Now let us answer the second 
question. We can write 

w(t) = z m P i -

Hence 

2'XiPi= -M^XjPi => 

Ay = - 1 fdj J Mji h , Mji == (Pf, MPi) . 

Let be t the first time with 

4 0 = 4 ( 0 = •••4(o = o , 
all other Xj(t) > 0. 
Then we get 

4 = - l fd^M^Xr. 

Therefore all Xi remain positive in time, if My 0 
for i =j= j, and this yields 1F(£)>0. 

From S = M we get: If 0 is an eigenoperator 
of M, then 0+ too, if X is an eigenvalue of M, then 
A* too. 

Proof of: I IF'(0) ||2 ^l/d-l/d 

We have 

II IF'(0) I2 = Sp((]> Wi Pi — P$ld)2) 
= J^(Wi-\fd)2di 

and 

2 wt di = 1, 0 Wi l /di . 

The usual formalism yields an extremum wi = l/d 
or 1F'(0) = 0. 

Hence the maximum must be on the boundary 
of the set 

B = { (w i . . . we) | 2 wt di = 1, 0 ^ Wi ̂  1 fdi}. 
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If, for instance, Wj = 1 /dj all other wi vanish. Let us 
therefore consider the case that some of the wt — 0, 
while the remaining Wj are free variables. 

Then we get by differentiation 

Wj = 1 jd', d' = 2'd], 

hence 
|| I f ' (0)|| 2 = (1 Id' - 1 Id)* d' + (1 /d)2(d - d') , 

or 
|| If ' (0) 12 ^ l/d-l/d 

where d is the minimal dimension di. 

E. Proof of a Lemma 

Let be 
T * 

|| ( M - j K ( r ) d r ) W\\ ^e\\MW || 
o 

for all W. 
Then we get 

T* 
1 (M- Jtf(r) dr) X1 

o 
= || DXI <e\\M\\ \\X\\(dd)^l2, 

d = ^l/di, d = rZmax . 

Proof: 

\\Z*«DW4 || M|| 2 (Tall Wall; 

<x ß 
= [2ka| 2 «3 ] i /2 ; 

a 

||DX|| ^ e 1 M|| IX|| (dd)1!2 . 

t 
F. Estimation of J || e~M(t~T) MW'(0) || d r 

T * 

We have 

\\e~M«-r) MW'{0)\\ 
^ || M|| [j fF'(0)|| 
^ I M|| (Qf<o d)1/2 e ~ r ( < _ T ) , 

hence 
t 

J1 e-M«-r) MW'(0) J] d r ^ || M|| (g/co d) 1 / 21/r , 
T» 

or, with the better estimation in Appendix (B): 
t 
J I e-M«-T) MW'(0) [I dr ^ || M|| (l/d)i/2 1/r. 

T * 
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