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Most current models assume that the perceptual and cognitive processes of visual word recognition and reading
operate upon neuronally coded domain-general low-level visual representations — typically oriented line repre-
sentations. We here demonstrate, consistent with neurophysiological theories of Bayesian-like predictive neural
Reaction times computations, that prior visual knowledge of words may be utilized to ‘explain away’ redundant and highly
MRI expected parts of the visual percept. Subsequent processing stages, accordingly, operate upon an optimized
EEG representation of the visual input, the orthographic prediction error, highlighting only the visual information
relevant for word identification. We show that this optimized representation is related to orthographic word
characteristics, accounts for word recognition behavior, and is processed early in the visual processing stream, i.e.,
in V4 and before 200 ms after word-onset. Based on these findings, we propose that prior visual-orthographic
knowledge is used to optimize the representation of visually presented words, which in turn allows for highly

Handwriting

efficient reading processes.

1. Introduction

Written language — script — developed over the last ~8000 years in
many different variants (Haarmann, 2007). It is a symbolic representa-
tion of meaning, based on the combination of simple high contrast visual
features (oriented lines) that our brains translate efficiently into
linguistically meaningful units. Cognitive models of reading specify the
perceptual and cognitive processes involved in activating orthographic,
phonological, and lexico-semantic representations of perceived words
from such low-level visual-perceptual features (for a review see Norris,
2013). While some models - consistent with other domains of perception
(e.g., Riesenhuber and Poggio, 1999 for object recognition) — indeed
assume oriented line representations as the lowest-level visual feature
involved in visual word recognition (e.g., Coltheart et al., 2001; Davis,
2010; Dehaene et al., 2005; McClelland and Rumelhart, 1981; Perry
et al., 2007; Whitney and Cornelissen, 2008), other cognitive models use
as starting point a more integrated, domain-specific representation, i.e.,
letters (Engbert et al., 2005; Reichle et al., 2003; Sibley et al., 2008).
Interestingly, this does not take into account findings from vision

neuroscience indicating that already the neuronal representation of ‘low
level’ visual feature like an oriented line is an abstraction of the visual
input: For example, the well-established phenomenon of end-stopping
describes that an oriented line (i.e., the frequently-assumed low-level
input into the visual word recognition system) is not represented in the
brain by many neurons with receptive fields along the length of the line,
but by only two neurons that have their receptive fields at the beginning
and end of the line (Bolz and Gilbert, 1986; Hubel and Livingstone, 1987;
Hubel and Wiesel, 1965). While preserving the representation of line
length and angle, this neuronal representation is more efficient (i.e.,
simplified two neurons vs. two plus all neurons along the line) by several
orders of magnitude. Given these results, we hypothesized that early
perceptual stages of visual word recognition should also operate upon
optimized representations of the visual-orthographic input — which is so
far not accounted for by any of the established models of reading and
visual word recognition.

To provide a computationally explicit account for explaining end-
stopping, Rao and Ballard (1999) successfully adapted the computa-
tional principles of predictive coding (Srinivasan et al., 1982). Predictive
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coding postulates that perceived regularities in the world are used to
build up internal models of the (hidden) causes of sensory events, and
that these internal predictions are imprinted in a top-down manner upon
the hierarchically lower sensory systems, thereby increasing processing
efficiency by inhibiting the processing of correctly predicted input
(Friston, 2005; Rao and Ballard, 1999). When sensory input violates
these expectations or is not fully predicted, a prediction error signal is
generated and propagated up the cortical processing hierarchy in a
bottom-up fashion (e.g., Todorovic et al., 2011), where it is used for
model updating and thus serves to optimize future predictions (Clark,
2013; Rao and Ballard, 1999). In the case of line representations and
end-stopping, neurons with receptive fields at the beginning and end of
the line fire and this information is propagated to higher areas where
they activate abstract line representations, which in turn in a recursive,
top-down manner ‘predict away’ the activity of the receptive fields be-
tween the two endpoints of the line (Rao and Ballard, 1999). Predictive
coding has by now received support in many domains of perceptual
neuroscience, from retinal coding (Srinivasan et al., 1982), auditory
(Todorovic et al., 2011; Wacongne et al., 2012) and speech perception
(Arnal et al., 2011; Gagnepain et al., 2012) to object (Kersten et al., 2004)
and face recognition (Schwiedrzik and Freiwald, 2017), indicating that
this framework is likely a generalized computational principle of the
brain.

Most readers can process written language at a remarkably high
speed. We reasoned that the high efficiency of visual-orthographic pro-
cessing necessary for efficient reading makes it likely that the visual
system also optimizes the ‘low-level’ perceptual representations used for
orthographic processing during reading. Inspired by the wide applica-
bility of the principles of predictive coding (see the previous paragraph),
the present model-based study explores whether computational princi-
ples of predictive coding may contribute to the optimization of neuronal
signals at early cortical stages of the perception of written words. In an
influential theoretical paper, Price and Devlin (2011) have proposed that
principles of predictive coding may be involved in visual word recogni-
tion. Their ‘Interactive Account’ model focuses explicitly on ‘inter-
mediate-level’ stages of visual word processing that are attributed to the
left ventral occipito-temporal cortex (IvOT; often also referred to as ‘vi-
sual word form area’; e.g., Dehaene and Cohen, 2011; Dehaene et al.,
2005). The Interactive Account model postulates that at the level of IvOT,
visual-perceptual information that is propagated bottom-up from early
visual to higher areas when reading a string of letters is integrated with
phonological and semantic information fed to IvOT from higher cortical
areas in a top-down manner. Empirical support for this proposal comes,
for example, from a study by Kherif et al. (2011) demonstrating semantic
priming effects between words and pictures of objects in the IvOT.

However, predictive coding as a general model of cortical processing
should, in principle, not be restricted to a specific level of processing, but
rather apply to all sensory-perceptual stages of the reading process —
including also reading-related visual processes in ‘lower level’ perceptual
areas (i.e., that take place before the integrative processes attributed to
the vOT/visual word form area in the Interactive Account model; see,
e.g., also Fig. 2a of Price and Devlin, 2011). We thus hypothesized here
that ‘higher level’ linguistic expectations — either in the form of contex-
tual constraint from preceding input or in the form of our knowledge of
the orthography of a language — should be imprinted upon the early
stages of visual processing. Thereby, ‘optimizing’ pre-lexical perceptual
processing stages that are typically associated with brain processes
located posterior to the visual word form area (y-coordinates < - 60 ac-
cording to Lerma-Usabiaga et al., 2018) and temporally earlier than 250
ms (Grainger and Holcomb, 2009).

A critical indication that one might implement a prediction error
based on feature-configurations of letters or words (i.e., our orthographic
knowledge) is that these linguistic units contain highly redundant visual
characteristics (Changizi et al., 2006). For example, vertical lines often
occurring at the same position (e.g., the left vertical line in E, R, N, P, B,
D, F, H, K, L, M) or letters often positioned at the same location in a word
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(e.g., s or y as final letters in English). As such, redundancies contribute
very little to the identification of letters and words so that removing the
visual-orthographic input for the redundant part of the percept is a
plausible strategy of our brain to reduce the amount of to-be-processed
visual signal — and thereby increasing the efficiency of the neuronal
code that underlies visual word recognition. We accordingly propose that
following the principles of predictive coding, the visual-orthographic
input signal is ‘optimized’ based on our knowledge and expectations
about the redundancies of the respective orthography. In other words, we
propose that our orthographic knowledge of the language is used to
‘predict away’ the uninformative part of visual input during reading. As a
result, the subsequent stages of visual word recognition (as described in
several models of reading; see above and Norris, 2013 for review) can
proceed on the basis of an optimized representation of the input. As this
optimized signal highlights the unexpected (and thus more informative)
part of the stimulus, we termed it the orthographic prediction error (oPE),
in line with the concept of prediction error as used in the predictive
coding framework (e.g., Rao and Ballard, 1999). In the following, we
describe one possible, computationally explicit implementation of this
proposal, which we refer to as the Prediction Error Model of Reading
(PEMOoR). Following this, we report a series of quantitative evaluations of
this model using lexicon-based, behavioral, EEG, and functional MRI
data. To compare our prediction error-based model to word recognition
without top-down predictions and prediction errors, we also conducted
most of the reported analyses for a ‘full’ low-level representation of the
perceived stimuli (based on all pixels of the stimulus image). As a result,
for most model evaluations, we compare two parameters, one reflecting
strictly bottom-up visual processing without a prediction-based optimi-
zation step and one based on a top-down, prediction-based optimization
of the sensory representation of the perceived word.

1.1. The prediction error model of reading

The Prediction Error Model of Reading (PEMoR) postulates that our
brain identifies words not on the basis of the full physical input into the
visual cortex that is contained in a string of letters but rather based on an
optimized (and thus more efficient) neuronal code representing only the
informative part of the percept (while redundant and expected signals are
canceled out; Rao and Ballard, 1999). In the predictive coding frame-
work, this non-redundant portion of a stimulus is formalized as a pre-
diction error. We apply this principle to visual word recognition, and
propose that internal (i.e., knowledge- or context-dependent) visual--
orthographic expectations are subtracted from the sensory input, so that
further processing stages operate upon an orthographic prediction error
(oPE) signal (Fig. 1a). In this first implementation of the PEMoR, the
prediction error signals will be computed at the level of the entire word,
as words are the most salient visual units when reading Latin script
(because they are separated by spaces). Also, it is known from eye
tracking research that critical information about a word (like its length) is
available before the word is fixated, due to parafoveal pre-processing
(Gagl et al., 2014; Rayner, 1975), so that enough information is avail-
able to generate specific predictions about the upcoming input on the fly.
However, we would like to point out that prediction errors can also be
computed based on other levels of representation, i.e., on the level of
letters so that alternative or even complementary implementations can
be tested within the PEMoR framework. It is commonly believed that
higher-level linguistic representations can initiate specific expectations
about upcoming words (DeLong et al., 2005; Kliegl et al., 2006; Nieuw-
land et al., 2018; Price and Devlin, 2011) —e.g., about the class (like noun
or verb) and meaning of the next word in a sentence like “The scientists
made an unexpected ... (discovery)”. The fundamental difference between
these psycholinguistic assumptions about semantic and syntactic pre-
dictions and the proposed visual-orthographic prediction in PEMOoR is that
we postulate predictive processes already at much earlier perceptual
stages of visual word recognition.

Here, we quantitatively test the assumptions of the PEMoR for the
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Fig. 1. Prediction error model of reading (PEMoR). (a) The PEMoR assumes
that during word recognition, redundant visual signals are ‘explained away’,
thereby highlighting the informative aspects of the percept. Subsequent stages of
word recognition and linguistic processing (i.e., accessing abstract letter and
word representations), thus, operate upon an optimized input representation.
This assumption is here tested for single-word reading, i.e., independent of
context, by subtracting a ‘visual-orthographic prediction’ from the input. (b) The
knowledge-based visual-orthographic prediction is implemented as a pixel-by-
pixel mean across image representations of all known words (here approxi-
mated by all words in a psycholinguistic database; only five letters words, as in
most experiments reported here; but see panel (e) of the present figure for
predictions including different word lengths and Supplemental Fig. S1b). The
resulting visual-orthographic prediction, shown on the right, contains the most
redundant visual information across all words. (c) Across multiple languages,
these predictions are very similar, with the exception of the upper-case initial
letter that is visible in the German prediction (because experiments in German
involved only words with an upper-case initial letter which typically indicates
word status as noun). (d) The orthographic prediction error (oPE) is estimated,
for each word, by a pixel-by-pixel subtraction of the orthographic prediction
from the input word (based on their image representations; see Methods for
details). While the two example words have similar numbers of pixels, sub-
tracting the orthographic prediction results in substantially different residual
(i.e., oPE) images. The values underneath the prediction error images represent
a quantitative estimate of the orthographic prediction error, the sum of the gray
values of all pixels per image, and show that the amount of signal reduction (A)
can differ strongly between words. (e) Letter-length unspecific prediction for
German, based on ~190.000 words.
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most frequently investigated paradigm in reading research, single word
recognition. In the absence of sentence context, the redundant visual
information (i.e., the visual-orthographic prediction or, in Bayesian terms,
the prior) is a function of our orthographic knowledge of words. We
approximate this prior knowledge quantitatively as the pixel-by-pixel
mean over image representations of all words derived from a psycho-
linguistic database (Brysbaert et al., 2011; see Fig. 1b and Methods).
Interestingly, the resulting visual-orthographic predictions look similar
across different languages sharing the same writing system (compare
Fig. 1c) and are highly intercorrelated (i.e., correlations based on the
individual gray values of the pixels from the prediction image; r ranging
from 0.95 to 0.99). Crucially, the high correlations show the robustness
of the proposed prediction error representation against such visually
salient differences as the capitalization of the first letter in one of the
three languages (German). We suggest that these high correlations sup-
port the assumption of prediction and prediction error-based word
recognition of an abstract principle of word recognition.

We estimate the orthographic prediction error as a pixel-by-pixel
subtraction of this visual-orthographic prediction (or prior in Bayesian
terms) from each perceived word (Fig. 1d). This step of ‘predicting away’
the redundant part of written words reduces the amount of to-be-
processed signals by up to 51% (on average 33%, 37%, and 31% for
our English, French, and German datasets, respectively; see Methods,
Formula (4)), thereby optimizing the visual input signal in the sense of
highlighting only its informative parts (Fig. 1d). According to the PEMoR,
the resulting orthographic prediction error is a critical pre-lexical stage of
word identification, representing (at least part of) the access code that
our brain uses to activate word meaning.

We test this model by calculating for each stimulus item a numeric
prediction error (oPE) value. This value, i.e., the pre-stimulus sum oPE,
equates the sum of all grayscale values from the prediction error image
resulting from the subtraction computation of the PEMoR. While this per-
item value does not take into account the spatial layout of the stimulus
item, it represents an estimate of the amount of neuronal activation
needed to represent the specific stimulus. Importantly, representing the
oPE as a single value allows us to compare it directly to other typical
word characteristics that are closely tied to different psychological
models, like word frequency (Brysbaert et al., 2011) or orthographic
familiarity (Coltheart et al., 1977; Yarkoni et al., 2008).

Following the comparison of computational models of reading
described by Norris (2013), we consider the PEMoR to be a computa-
tional/mathematical model (as opposed to symbolic and interactive
activation models), that describes a circumscribed component process of
word recognition, i.e., optimization of the perceptual-orthographic rep-
resentations (as opposed to modeling tasks like lexical decision or
reading aloud), and that is based on a rather extensive lexicon. While
current models of visual word recognition (e.g., Coltheart et al., 2001)
typically act on abstracted representations of the word stimuli (i.e., at the
level of lines or letters), the PEMoR operates on the level of the pixels that
make up the visual-orthographic stimulus, reflecting its explicit focus on
relatively ‘low level’ perceptual-orthographic processing that operate
prior to even the earliest processing stages of most other models of visual
word recognition. Lastly, the PEMoR differs from previous models in that
it is (i) explicitly rooted in a neurobiological model of cortical function
(i.e., the predictive coding framework), (ii) has clear assumptions about
the neuroanatomical localization of the respective process in the brain,
and (iii) in that it is accordingly also directly evaluated against neuro-
physiological data.

In the following, we provide empirical support for this model by
demonstrating that our orthographic prediction error (i) is correlated
with orthographic familiarity of words measured as a property of lexicon
statistics, (ii) accounts for lexical decision times in three languages, (iii) is
represented in occipital brain regions, and (iv) electrophysiological sig-
nals from 150 to 250 ms after word onset. As there exists — to the best of
our knowledge — no generally accepted null model against which to
compare the PEMoR (or any other computational model of word
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recognition) and given that no other model of visual word recognition
specifies processes at the level of the first cortical stages of visual pro-
cessing, we also quantified the visual signals contained in each stimulus
item prior to prediction-based optimization, by calculating the sum of all
pixels in each original stimulus image (see left column of Fig. 1d). We
used this pixel count parameter as an estimate of the full bottom-up
signal that would have to be processed in the absence of prediction-/
top down-based optimization of the percept. For most empirical model
evaluations reported in the following, we thus compare the performance
of the orthographic prediction error against the pixel count parameter.

2. Materials and Methods
2.1. Implementation of the prediction error model of reading

The estimation of the orthographic prediction error, as assumed in
PEMoR, was implemented by image-based computations. Using the
EBImage package in R (Pau et al., 2010), letter-strings were transformed
into grayscale images (size for, e.g., 5-letter words: 140x40 pixels) that
can be represented by a 2-dimensional matrix in which white is repre-
sented as 1, black as 0, and gray as intermediate values. This matrix
representation allows an easy implementation of the subtraction
computation presented in Fig. 1a, i.e.,

Shiy ... Shaoy Py ... Puoy oPE, 0PE 4,

0PE\40.40

(€Y

oPE| 4

Sligo .o Shaoao P10 P40

where S, indicates the sensory input at each pixel. Py reflects the
prediction matrix, which is in the present study calculated as an average
across the Sl ,, of all words (or a subset thereof) in a lexical database such
as the example shown in Fig. 1b based on 5896 words of five letters
length from the English SUBTLEX database (Heuven et al., 2014):

Shy ... Shaoa

sils e

Shao .. Shaoao
n

Py .. Puog

2

PI.AU e P140,40

The PEMoR model postulates that during word processing, SI is
reduced by the prediction matrix P, resulting for each stimulus, in an
orthographic prediction error matrix (oPE), as shown above in formula
(1). The resulting orthographic prediction error is, therefore, black (i.e.,
value 0) at pixels where the prediction was perfect and gray to white (i.e.,
values > 0) where the visual signal was not predicted perfectly. As the
last step, a numeric value for the orthographic prediction error of each
stimulus, oPEg,,, was determined by summing all values of its prediction
error matrix. This numeric representation of the prediction error is used
as a parameter for all empirical evaluations.

oPE, ; 0PE 4,
: : =0oPE,, (3)

OPE; 4 OPE 4.4

The amount of signal reduction (Sreqyceq) achieved by this predictive
computation can then be calculated by relating the numeric representa-
tion of the prediction error to an analogous numeric representation of the
respective word’s input image, SIgm:

OPE,,
SISL(W

1 100 = Seduced @

2.2. Participants

35, 54, 39, 31, and 38 healthy volunteers (age from 18 to 39)
participated in the two lexical decision studies (i.e., deciding behavior-
ally if a letter string is a word or not), an fMRI study, an EEG study, and a
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handwriting experiment, respectively, conducted in German. All had
normal reading speed (reading scores above 20th percentile estimated by
a standardized screening; unpublished adult version of Mayringer and
Wimmer, 2016), reported absence of speech difficulties, had no history of
neurological diseases, and normal or corrected-to-normal vision. Partic-
ipants gave written informed consent and received student credit or
financial compensation (10€/h) as an incentive for participating. The
research was approved by the ethics board of the University of Salzburg
(EK-GZ: 20/2014; fMRI study) and Goethe University Frankfurt
(#2015-229; EEG study, lexical decision studies). Behavioral results from
78 English and 975 French readers were obtained from publicly available
datasets of mega-studies (for details see Ferrand et al., 2010; Keuleers
et al., 2012).

2.3. Materials, experimental procedures, and statistical analyses

Lexicon-based Characterization of the Orthographic Prediction Error. We
calculated the number of pixels per word, the orthographic prediction
error as described above, and established word characteristics, i.e., the
Orthographic Levenshtein distance (Yarkoni et al., 2008) and word fre-
quency, for all five-letter words of each language, i.e., 3110 German
words (Brysbaert et al., 2011), 5896 English words (Heuven et al., 2014),
5638 French words (New et al., 2004), and 4418 Dutch words (Keuleers
et al.,, 2010a,b). For the German, we additionally estimated a more
comprehensive set of orthographic word characteristics, including bi-,
tri-, and quadirgram-frequencies (i.e., occurrences of 2, 3, 4 letter com-
binations), and Coltheart’s N (Coltheart et al., 1977); see Fig. 2b.
Orthographic Levenshtein distance and Coltheart’s N were estimated
with the vwr Package in R (Keuleers, 2013).

Accounting for Word Recognition Behavior. German lexical decision task
1: 800 five-letter nouns and 800 five-letter nonwords (400 pronounce-
able pseudowords, 400 unpronounceable non-words/consonant strings)
were presented in pseudorandomized order (Experiment Builder soft-
ware, SR-Research, Ontario, Canada; black on white background;
Courier-New font; 0.3° of visual angle per letter; 21” LCD monitor with
1024 x 768 resolution and 60 Hz refresh rate), preceded by ten practice
trials. Participants judged for each letter string, whether it was a word or
not using a regular PC keyboard, with left and right arrow keys for words
and non-words, respectively. Before stimulus presentation, two black
vertical bars (one above and one below the vertical position of the letter
string) were presented for 500 ms, and letter strings were displayed until
a button was pressed. Response times were measured in relation to the
stimulus onset. German lexical decision task 2 is a replication of this
experiment, but also presenting words and non-words, including visual
noise. In three blocks, items with 0%, 20%, or 40% added visual noise
were presented (140 items per block; 70 five-letter words and 70 non-
words, of which 36 were pseudowords and 34 were consonant clusters).
Visual noise was added by replacing the respective number of pixels (for
details see Gagl et al., 2014).

Linear mixed model (LMM) analysis implemented in the lme4 pack-
age (Bates et al., 2015) of the R statistics software was used for analyzing
lexical decision data, as LMMs are optimized for estimating statistical
models with crossed random effects for items and participants. These
analyses result in effect size estimates with confidence intervals (SE) and
a t-value. Following standard procedures, t-values larger than 2 are
considered significant since this indicates that the effect size +2 SE does
not include zero (Kliegl et al., 2011). For the presentation in Fig. 3a,b,d,e,
g,h,k,l, co-varying effects were removed by the keepef function of the
remef package (Hohenstein & Kliegl, 2014/2017). We considered all
response times below 300 ms as too fast given the minimal physiological
constants (i.e., 70 ms for information arriving in V1), and all response
times above 4.000 ms as too slow, likely due to machine error (e.g., too
soft keypress); these trials were removed from further analyses. After
that, response times were log-transformed, which accounts for the
ex-Gaussian distribution of response times. The orthographic prediction
error and the number of pixels parameters were centered and normalized
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by R’s scale() function in order to optimize LMM analysis. Linear effect
models with crossed random effects of participants and items are fitted
based on single-trial data (i.e., without aggregating prior to statistical
analysis), so those error responses (i.e., by explicitly modeling the effect
of errors as fixed effect) and outliers are accounted for in the model and
do not have to be excluded prior to the analysis (for details see Baayen
et al., 2008).

To assess model fit, we used the Akaike Information Criterion (AIC),
as it penalizes model complexity (Akaike, 1973). Note that we have
explicitly decided against reporting the percentage of variance explained
(which is a commonly used metric for evaluating the contribution of
specific parameters to regression models), as this metric does not take
into account model complexity. Considering model complexity explicitly
is important, as each additional parameter in a model per se increases the
amount of explained variance (up to the extreme case of complete
overfitting), but reduces the interpretability of the model (see Burnham
and Anderson, 2004 for an in-depth discussion). A fair model evaluation,
therefore, requires to relate explained variance to model complexity,
which the AIC assures.

Cortical Representation of the Orthographic Prediction Error. Sixty five-
letter words and 180 pseudowords were presented in a pseudorandom
order (yellow Courier New font on gray background; 800 ms per stim-
ulus; ISI 2150 ms) as well as 30 catch trials consisting of the German
word Taste (button), instructing participants to press the response button.
Catch trials were excluded from the analyses. All items consisted of two
syllables and were matched on OLD20 (Yarkoni et al., 2008) and mean
bigram frequency between conditions. To facilitate estimation of the
hemodynamic response, an asynchrony between the TR (2250 ms) and
stimulus presentation (onset asynchrony: 2150 + 800 ms) was estab-
lished and 60 null events were interspersed among trials; a fixation cross
was shown during inter-stimulus intervals and null events. The sequence
of the presentation was determined by a genetic algorithm (Wager and
Nichols, 2003), which optimized for maximal statistical power and psy-
chological validity. The fMRI session was divided into two runs with a
duration of approximately 8 min each.

A Siemens Magnetom TRIO 3-T scanner (Siemens AG, Erlangen,
Germany) equipped with a 32-channel head-coil was used for functional
and anatomical image acquisition. The BOLD signal was acquired with a
To*-weighted gradient-echo echo-planar imaging sequence (TR = 2250
ms; TE = 30 ms; Flip angle = 70°; 86 x 86 matrix; FoV = 192 mm). Thirty-
six axial slices with a slice thickness of 3 mm and a slice gap of 0.3 mm
were acquired in descending order within each TR. In addition, for each
participant a gradient echo field map (TR = 488 ms; TE 1 = 4.49 ms; TE 2
= 6.95 ms) and a high-resolution structural scan (T;-weighted MPRAGE
sequence; 1 x 1 x 1.2 mm) were acquired. Stimuli were presented using
an MR-compatible LCD screen (NordicNeuroLab, Bergen, Norway) with a
refresh rate of 60 Hz and a resolution of 1,024x768 pixels.

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), running on
Matlab 7.6 (Mathworks, Inc., MA, USA), was used for preprocessing and
statistical analysis. Functional images were realigned, unwarped, cor-
rected for geometric distortions by use of the FieldMap toolbox, and slice-
time corrected. The high-resolution structural image was pre-processed
and normalized using the VBMS8 toolbox (http://dbm.neuro.uni-jen
a.de/vbm8). The image was segmented into gray matter, white matter,
and CSF compartments, denoised, and warped into MNI space by regis-
tering it to the DARTEL template of the VBM8 toolbox using the high-
dimensional DARTEL registration algorithm (Ashburner, 2007). Func-
tional images were co-registered to the high-resolution structural image,
which was normalized to the MNI T; template image, and resulting
normalization parameters were applied to the functional data, which
were then resampled to a resolution of 2 x 2 x 2 mm and smoothed with
a 6 mm FWHM Gaussian kernel.

For statistical analysis, we first modeled stimulus onsets with a ca-
nonical hemodynamic response function and its temporal derivative,
including movement parameters from the realignment step and catch
trials as covariates of no interest, a high-pass filter with a cut off of 1285,
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and an AR(1) model (Friston et al., 2002) to correct for autocorrelation.
The fMRI analysis involved a predictor with item onsets as events of
interest; besides, we introduced a continuous, item-specific predictor
reflecting variation on the orthographic measure of interest. Please note
that we ran separate analyses for the oPE simulations, OLD20, lexicality,
and the oPE by lexicality interaction. The main reason for this procedure
is that regression models for the fMRI analysis, are less flexible than the
crossed-random effect design we applied for the analysis of behavioral
and EEG data. First, i.e., first-level analysis, the BOLD response for the
oPE predictor is modeled across multiple trials for each participant.
Second, i.e., on the second level, statistical tests, for each voxel, are
implemented across participants. This procedure limits the variance to
the inter-subject component as the inter-stimulus component is removed
on the first level of the analysis. Therefore, one is limited with the
introduction of multiple, correlated predictors (e.g., the oPE and OLD
predictors; see Fig. 2b and c), as the amount of variance to be explained is
already limited, to come up with a reasonable result. One benefit of fMRI
is the high number of regions, i.e., voxels, we can estimate our analysis.
Meaning, it is expected that two processes that are described by two
correlated predictors should be implemented in similar regions and vice
versa. Thus, we opted for a single predictor analysis allowing that pre-
dictor to explain as much variance as possible. In case regions overlap, we
compare peak voxel T-values to evaluate which (i.e., the one with the
higher effect size) predictor is adequate. Group level effects are imple-
mented as one-sided t-tests with a voxel-level threshold of p < .001
uncorrected and a cluster-level correction for multiple comparisons (p <
.05 family-wise error corrected). Where peak effects survived voxel-level
family-wise error correction, this is additionally reported. fMRI results
are visualized using ‘glass brain’ figures from the nilearn python package
(Abraham et al., 2014), and anatomical labels for activation clusters were
extracted with the AtlasReader python package (Notter et al., 2019).

Timing of the Orthographic Prediction Error. 200 five-letter words, 100
pseudowords, and 100 consonant strings (nonwords) were presented for
800 ms (black on white background; Courier-New font, 0.3° of visual
angle per letter), followed by an 800 ms blank screen and a 1500 ms hash
mark presentation, which marked an interval in which the participants
were instructed to blink if necessary. In addition, 60 catch trials (pro-
cedure as described for the fMRI study) were included in the experiment.
Stimuli were presented on a 19” CRT monitor (resolution 1024 x 768
pixels, refresh rate 150 Hz), and were preceded by two black vertical bars
presented for 500-1000 ms to reduce stimulus onset expectancies.

EEG was recorded from 64 active Ag/Ag-Cl electrodes (extended
10-20 system) using an actiCAP system (BrainProducts, Germany). FCz
served as common reference and the EOG was recorded from the outer
canthus of each eye as well as from below the left eye. A 64-channel
Brainamp (BrainProducts, Germany) amplifier with a 0.1-1000 Hz
bandpass filter sampled the amplified signal with 500 Hz. Electrode
impedances were kept below 5 kQ. Offline, the EEG data were re-
referenced to the average of all channels. EEG data were preprocessed
using MNE-Python (Gramfort et al., 2014), including high (0.1 Hz) and
low pass (30 Hz) filtering and removal of ocular artifacts using ICA
(Delorme et al., 2007). For each subject, epochs from 0.5 s before to 0.8 s
after word onset were extracted and baselined by subtracting the
pre-stimulus mean, after rejecting trials with extreme (>50 pVv
peak-to-peak variation) values. Multiple regression analysis, with the
exact same parameters as for the behavioral evaluation (orthographic
prediction error, number of pixels, word/non-word, and the interactions
with the word/non-word distinction), was conducted and a cluster-based
permutation test (Maris and Oostenveld, 2007) was used for significance
testing. 1024 label permutations were conducted to estimate the distri-
bution of thresholded clusters of spatially and temporally (i.e., across
electrodes and time) adjacent time points under the null hypothesis. All
clusters with a probability of less than an assumed alpha value of 0.05
under this simulated null hypothesis were considered statistically sig-
nificant. For the presentation of effect patterns (line and box-plots) in
Fig. 6, co-varying effects were removed by the keepef function of the remef
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package (Hohenstein & Kliegl, 2014/2017).

Application to handwriting. To provide a first demonstration that
prediction-based reading can also be generalized to less standardized
situations, we explored whether the oPE of different persons’ hand-
writing is associated with their readability. We obtained handwriting
samples (26 upper and 26 lower case letters; 10 common German com-
pound words, 10-24 letters long) from 10 different writers (see Fig. 6a
and b, for examples). The single letters were scanned and centered within
a 50x50 pixel image. These images were used to estimate, for each
writer’s data separately, pixel-by-pixel predictions for upper and lower-
case letters (see also Fig. 6a and b), analogous to the procedures
described above and in Fig. 1b. Subsequently, these predictions were
subtracted from each letter of the alphabet within the respective writer’s
samples (matrix subtraction; analogous to Formula (1)). We chose this
procedure (as opposed to the word-based calculation of oPEs for the
remaining parts of the study) since the alignment of letters is much easier
compared to words. In contrast to computer fonts, the correlation of the
orthographic prediction error and the particular item’s number of pixels
was high (r = 0.98). We normalized the orthographic prediction error by
a division with the respective pixel count to compensate for this
confound. Based on the mean of the corrected prediction errors per letter,
we obtained two oPE estimates, one for upper and one for lower case
letters, for each handwriting. Readability ratings (5-point Likert scale)
were obtained from 38 participants (27 females; mean age 25 years) by
presenting all ten versions of all ten handwritten words, in addition to the
identical word in the computerized script. We used an LMM analysis to
estimate the effect of the orthographic prediction error (i.e., only fixed
effect) on the readability ratings. Also, we include the random effect of
participants on the intercept of the orthographic prediction error slope.
Besides, to investigate the relationship of input signal of handwritten
letters directly to the predictions and prediction errors derived from the
input signal, we implemented a LMM analysis that correlated the
orthographic prediction error (Fig. 6¢ and d) with the mean prediction
strength (i.e., mean of the values extracted from the prediction matrix),
number of all non-white pixels (both scaled), and letter case. Besides, we
added the random effect on the intercept for each handwriting to the
model.

3. Results
3.1. Lexicon-based characterization of the orthographic prediction error

Cognitive psychologists have developed several quantitative mea-
sures to characterize words (Brysbaert et al., 2011; Coltheart et al., 1977;
Yarkoni et al., 2008), mostly derived from large text corpora and psy-
cholinguistic word databases (like the SUBTLEX database; Heuven et al.,
2014; Keuleers et al., 2010a,b). Fig. 2a describes some of the most
widely-used lexical word characteristics that are relevant for the present
work and gives examples to illustrate them. Abundant empirical research
demonstrates that these lexicon-based word characteristics are predictive
of different aspects of reading behavior (e.g., Balota et al., 2004; Rayner,
2009). Accordingly, understanding how the orthographic prediction
error, derived from the implemented PEMOoR (see Fig. 1), relates to these
measures can provide an important first indication if and how this
optimized and supposedly pre-lexical perceptual signal is involved in
word recognition.

A hierarchical cluster analysis (Wei and Simko, 2017) indicates that
across all words, the orthographic prediction error (i.e., the sum of all
gray values after subtracting the knowledge-based prior from the actual
stimulus image; cf. Fig. 1d and Methods) clusters with several measures
that are commonly interpreted as reflecting orthographic word proper-
ties (Fig. 2b). More specifically, the oPE clusters with widely-used (psy-
cho-) linguistic characteristics reflecting the (non-) uniqueness of words
in terms of their orthographic similarity to other words (i.e., the number
of Coltheart neighbors; Coltheart et al., 1977) or their orthographic
distance (OLD20; Yarkoni et al, 2008; cf. Fig. 2a) and letter
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co-occurrence statistics (i.e., bi-, tri- and quadrigram frequencies; cf.
Fig. 2a). Note that these measures describe the statistics of letters and
letter combinations in all words retrieved from a lexicon database
(Keuleers et al., 2010a,b). In cognitive psychological research, these
measures are consistently associated with the first, i.e., orthographic,
stages of processing written words before lexical access (Coltheart et al.,
2001; Grainger and Jacobs, 1996). The significant correlations between
the oPE and these lexical-orthographic measures are particularly inter-
esting as they demonstrate that a neurophysiologically inspired trans-
formation of the visual stimulus, i.e., the here-proposed orthographic
prediction error (oPE), is meaningfully related to orthographic properties
of words as derived from lexicon-based statistics. Crucially, this is ach-
ieved while (a) reducing the to-be-processed signal by more than 30%
and (b) at the same time retaining the ability of discriminating the word
identities, as indicated by a strong correlation of r = 0.87 between the
representational similarity matrices (Edelman, 1998; Kriegeskorte et al.,
2008) of the word and orthographic prediction error images (Fig. 2d).
This latter result indicates that the representational similarity structure,
or in other words, the discriminability between items, is preserved after
deriving the oPE from the sensory input as proposed by the PEMoR.

In contrast, the orthographic prediction error is not correlated with
the frequency of occurrence of a word in a language (Fig. 2b). The word
frequency effect (i.e., faster response times to more frequently occurring
words) typically indicates the difficulty of accessing word meaning based
on an already decoded orthographic access code (Coltheart et al., 2001).
This dissociation between the orthographic prediction error and word
frequency replicates across languages (Fig. 2c) and is much more pro-
nounced for the orthographic prediction error than for the so-far domi-
nant measures of orthographic similarity (OLD20) and orthographic
neighborhood (Fig. 2b). Only trigram and quadrigram frequency were
significantly correlated with the raw pixel count of words (which rep-
resents an approximation of the full physical signal contained in the
stimuli; Fig. 2b). This dissociation of the correlation structure of the
prediction error and the pixel count provides the first evidence that the
neurophysiologically inspired orthographic prediction error is more
important for a mechanistic understanding of reading than the full
physical input contained in a printed word as assumed in the baseline
model representing the full pixel count of the input image.

3.2. Accounting for Word Recognition Behavior

As a next empirical test of the prediction error model of reading
(PEMoR), we evaluated how well the orthographic prediction error
performs in accounting for behavior in an established and widely-used
word recognition task, i.e., the lexical decision task. Thirty-five human
participants were asked to decide as fast as possible by button press
whether written letter-strings (presented on the computer screen; 1600
items; 5 letters length; language: German) were words or not. Remember
that the orthographic prediction error represents the deviance of a given
letter-string from our knowledge-based orthographic expectation, and
thus the orthographic prediction error represents how unlikely it is that
the given letter-string is a word (i.e., a large error indicates that the
sensory input is very dissimilar our stored word knowledge). Accord-
ingly, participants should be fast in identifying letter-strings with low
orthographic prediction error as words but slow in identifying words
with a high orthographic prediction error, and fast in rejecting non-
words with a high orthographic prediction error.

Fig. 3a shows exactly this pattern of response times, i.e., a word/non-
word by orthographic prediction error interaction (linear mixed model/
LMM estimate: 0.03; SE = 0.01; t = 5.0; see Methods for details on linear
mixed effects modeling and Supplemental Table 1 for detailed results).
No significant interaction or fixed effect of the number of pixels estimate
(i.e., the sum of all pixels contained in a word) was found (Fig. 3b;
Interaction: estimate: 0.00; SE = 0.01; t = 0.0; Fixed effect: -0.01; SE =
0.00; t = 1.8). To directly compare if the response times are more
adequately described by the PEMoR or the baseline model representing
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a

Orthographic measure Example: read Value
Coltheart neighbors (N) real, head, road, lead, rear ... "

Orthographic Levenshtein distance (OLD) real: 1, ready: 1, red: 1, great: 2, bad: 2, ...; Mean distance over the 20 nearest words 1

Bigram frequency re, ea, ad; summed occurrences in lexicon of all bigrams in the word 29951
Trigram frequency rea, ead; summed occurrences in lexicon of all trigrams in the word 4528
Quadrigram frequency read; summed occurrences in lexicon of all quadrigrams in the word 90
Word frequency (WF) Log. occurrences per million in a subtitles text corpus (SUBTLEX) 4.1

b o

Orthographic prediction error

Orthographic prediction error

Coltheart neighbors (N) 0.4 Language
OoLD 0.3 Dutch
Bigram frequency o “ 02 ‘ @ English
Trigram frequency B4 @ French
Quadrigram frequency E German
Word frequency X 00 as o
Number of pixels X M X X X o é- =

d 0
Orthographic prediction error
image similarity

Word image similarity

0.75

0.50

0.25

0.00
0.00 025 050 075 1.00
Word image based similarity [r]

oPE image based similarity [r]

Fig. 2. Comparison of orthographic prediction error to established lexicon-based word characteristics. (a) Overview of established word characteristics, exemplified
for the word ‘read’: Coltheart’s neighborhood size (Coltheart N; Coltheart et al., 1977), orthographic Levenshtein distance (OLD20; Yarkoni et al., 2008), sub-lexical
frequency measures (bi-, tri-, and quadri-gram frequencies, i.e., number of occurrences of two, three, and four-letter combinations from the target word, in the
lexicon), and word frequency as calculated from established linguistic corpora (see Methods for details). (b) Clustered correlation matrix between the orthographic
prediction error, the number of pixels per original image, which represents an estimate of the pure amount of physical bottom-up input in the present study, and the
described word characteristics (cf. panel a for explanations), applied to a set of 3110 German words (all five letters and initial upper case letter; majority are nouns).
Red rectangles mark clusters (obtained from a standard hierarchical clustering algorithm using the dendrogram) and black crosses mark non-significant correlations
(tested at p < .05; Bonferroni corrected to p < .00179). Number of pixels refers to the original stimulus item and is used as a simplified model of the full bottom-up
physical input (Baseline model; see text). (c) Correlations between the orthographic prediction error and number of pixels per word (Npixel), orthographic similarity
(OLD20), and word frequency (WF), for four different languages. (d) Representational similarity matrices (RSM; cf. Kriegeskorte, Mur and Bandettini, 2008) for
original word images (left panel) and orthographic prediction error images (central panel). Each similarity matrix reflects the correlations among the gray values of all
3110 words (in total 9,672,100 correlations per matrix), with words sorted alphabetically (color scale equivalent to the one used in panel b). The right panel shows the
correlation between word- and orthographic prediction error-based RSMs. Each dot represents a position on the similarity matrix, allowing us to assess the relationship
between the similarity values derived from the physical input and from the prediction error image. The high correlation shown here indicates that the similarity
structure, or in other words, the discriminability present in the physical input, is retained in the prediction error images.
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the full pixel count of the input image, we performed an explicit model
comparison (see Methods for details) of four models, i.e., (i) a full model,
including the orthographic prediction error and the number of pixels as
predictors, (ii) a pure orthographic prediction error model, (iii) a pure
number of pixels model, and (iv) a null model without any of the two
predictors. Fig. 3c shows that, in contrast to the null model, the three
alternative models showed higher model fits (all ¥*'s > 9.9; all p’s <
0.007; Bonferroni corrected p threshold: 0.0083), but this increase was
significantly larger for the models including the orthographic prediction
error. In addition, the model including only the orthographic prediction
error explained substantially higher amounts of variance when compared
to the model including only the number of pixels parameter (AIC dif-
ference: 34; X2(0) = 34.2; p < .001) with no substantial further increase
for the combined model (AIC difference: 3; x2(2) = 7.2; p = .02). This
finding indicates that for visual word recognition in German, the baseline
model representing the full pixel count of the input image explains
substantially less variance in word recognition behavior than the PEMoR.

Additionally including orthographic distance (OLD20; Yarkoni et al.,
2008) as predictor improved the model fit further (AIC difference
comparing the full model with and without OLD20: 104; y%(2) = 105.8; p
< .001) but did not affect the significance of the
word/non-word-by-orthographic prediction error interaction (estimate
of the interaction effect after including additional parameters: 0.03; SE =
0.01; t = 5.2). This finding indicates that despite its correlation with
other orthographic measures (Fig. 2b and c), the orthographic prediction
error accounts for unique variance components in word recognition
behavior that cannot be explained by other word characteristics.

We also replicate this interaction when calculating the orthographic
prediction error using a length-unspecific visual-orthographic prediction
(i.e., based on all ~190,000 German words from the SUBTLEX database;
Brysbaert et al., 2011; 2-36 letters length; cf. Fig. 1e; LMM estimate of
interaction effect: 0.03; SE = 0.01; t = 4.5; for replication in English and a
more extensive investigation of the interaction effect for multiple word
lengths see Supplemental Fig. 1a). Interestingly, length-specific and
length-unspecific orthographic prediction errors are highly correlated
(e.g., German: r = 0.97), suggesting strongly that the prediction-based
word recognition process proposed by the PEMoR model is indepen-
dent of word length constraints. This finding is in line with evidence from
natural reading, which shows that one can extract low-level visual fea-
tures like the number of letters from the parafoveal vision before fixating
the word (Cutter et al., 2014; Gagl et al., 2014; Schotter et al., 2012). The
use of a fixed word length in our German lexical decision experiment is
therefore not necessarily artificial since in natural reading, word length is
perceived before fixation. In sum, these results demonstrate that the
orthographic prediction error is meaningfully related to word recogni-
tion behavior and independent of word length. Finally, we also investi-
gated whether the morphology of the words may contribute to lexical
decision performance. To this end, we included the number of mor-
phemes (mean: 1.3; range 1-2) as a further predictor into best-fitting
model (see ii above). The number of morphemes was only weakly
correlated with the oPE (r = 0.16), had an effect on decision times (Es-
timate: -0.03; SE = 0.01; t = 3.5), but did not affect the significance of the
word/non-word-by-orthographic prediction error interaction (estimate
of the interaction effect after including additional parameters: 0.03; SE =
0.01; t = 4.9).

3.2.1. Generalization across languages

The interaction effect between lexicality (word/non-word status) and
orthographic prediction error could be replicated in two open datasets
from other languages, i.e., British English (Keuleers et al., 2012; 78
participants and 8488 five-letter words/non-words: Fig. 3d; estimate:
0.008; SE = 0.002; t = 4.2) and French (Ferrand et al., 2010; 974 par-
ticipants and 5368 five-letter words/non-words: Fig. 3g; estimate: 0.005;
SE = 0.002; t = 2.0); see also Supplemental Fig. 2 for two further datasets
from Dutch and Supplemental Table 1 for detailed results (Brysbaert
et al., 2016). However, in contrast to German, in both datasets we also
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found a significant effect of the number of pixels parameter (Fig. 3e,h;
British: fixed effect: 0.008; SE = 0.001; t = 6.7; French: interaction with
word/non-word status: -0.007; SE = 0.002; t = 3.0). In terms of model
comparison, the pattern derived from German, i.e., the greatest increase
in model fit when including the orthographic prediction error, could not
be recovered for English and French. Rather, we found that the role of the
number of pixels parameter for describing the response times was larger
than in German (see Fig. 3f,i). Still, the combined model showed the best
model fit in all three languages (Fig. 3f,i; oPE only vs. full model: AIC
difference English: 52; X2(2) = 56.5; p < .001; French: 6; x2(2) =10.5;p
= .005; Npixel only vs. full model: AIC difference English: 24; X2(2) =
28.6; p < .001; French: 3; X2(2) = 7.8; p = .02; Bonferroni corrected p
threshold: 0.0083) indicating that both the orthographic prediction error
and the number of pixels parameter are relevant in explaining lexical
decision behavior. To summarize, for English and French, model com-
parisons showed that in addition to the prediction error, the parameter
reflecting more directly the physical stimulus input explained a greater
amount of variance than in German. Nevertheless, in all three languages,
the orthographic prediction error explained unique variance compo-
nents, which further supports its relevance for understanding visual word
recognition. Future research should aim at clarifying the differential
reliance on the bottom-up input itself in different languages (but see also
the next section for a potential explanation).

3.2.2. Word recognition behavior under conditions of visual noise

We speculated that the more significant role for bottom-up input in
the British and French datasets might result from the presence of several
sources of additional perceptual variability. For example, word length
changed from trial to trial (English, 2-13 letters; French, 2-19 letters)
and a proportional font (Times new roman) was used in the English
dataset, while we had used only five-letter words presented in a mono-
spaced font in the German experiment (Fig. 1). Even though such un-
predictable perceptual variation, without any doubt, is not the standard
case in naturalistic reading (i.e., through the integration of visual infor-
mation from parafoveal vision; see above), in a single word reading
paradigm it reduces the ability to predict visual features of upcoming
stimuli and thus unnaturally decreases the performance of our model. For
example, using a proportional-spaced font removes structure (e.g., the
letter separation) both in the sensory input and in the orthographic prior
(e.g., see Supplemental Fig. S2g), which results in less precise predictions
and greater prediction errors. This reduction in prediction strength, in
turn, increases the correlation between the number of pixels in the input
image and the derived orthographic prediction error (cp. Monospace
font: r = 0.05 vs. proportional font: r = 0.49, both in German; see Sup-
plemental Fig. S2g). In the face of this, it is particularly noteworthy that
the orthographic prediction error, as proposed here, remained a highly
relevant predictor in the English and French data set. It should also be
stressed again that in natural reading, low-level visual features like word
length or letter position can be picked up in parafoveal vision, so that the
visual system may be able to dynamically adapt its predictions to the
upcoming word (Schotter et al., 2012). Future work will, therefore, have
to specify in more detail the nature of orthographic priors in naturalistic
reading.

To directly test if visual word recognition relies more firmly on the
bottom-up input when visual word presentation includes unpredictable
perceptual variations, we conducted a second lexical decision experi-
ment. We presented visual word stimuli with an explicit manipulation of
visual noise (0% vs. 20% vs. 40% noise level) to reduce the predictability
of visual features (for details see Methods section). We here applied a
noise manipulation (rather than, e.g., a comparison of different fonts)
since noise levels can be easily manipulated and quantified (i.e., in terms
of the number of displaced pixels). In contrast, a direct comparison of
fonts is more difficult because the contrast of proportional vs. mono-
spaced font is confounded with many other visual differences like total
stimulus width (Hautala et al., 2011; Marinus et al., 2016). In addition,
the 0% noise stimuli allowed us to replicate our original behavioral
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finding. Fig. 3j shows examples of the word stimuli under different noise
levels.

We found, in general, that response times and errors increased with
the amount of noise that was applied to the visual-orthographic stimuli
(0%: response time/RT: 613 ms, 6% errors; 20%: RT: 739 ms, 12% errors;
40%: RT: 1105 ms, 33% errors; compare also Fig. 3k and 1). When no
noise was applied we replicated our first study (cp. Fig. 3k and a) with a
significant interaction between the orthographic prediction error and the
word/non-word factor (estimate: 0.05; SE = 0.02; t = 2.3; see Supple-
mental Table 1 for detailed results). As in the first experiment, no effect
or interaction was found for the number of pixels parameter. With 20%
noise, we still could identify a fixed negative effect of the orthographic
prediction error (estimate: -0.06; SE = 0.02; t = 3.3) however without a
significant interaction pattern. Also, the fixed effect of the number of
pixels was not significant. With 40% noise, however, no significant effect
of the orthographic prediction error could be found, but as expected from
the above discussion of noise effects, we observed now a significant fixed
effect of the number of pixels parameter, as well as an interaction with
word/non-word status (Fig. 3l; estimate: 0.08; SE = 0.03; t = 2.9). A
similar impression can be obtained from the model fit results showing
that including the orthographic prediction error resulted in significantly
higher model fits for 0% and 20% noise conditions compared to models
in which only the number of pixels predictor was included (see Fig. 3m,n;
0% AIC difference: 1; XZ(O) =1; p < .001; 20% AIC difference: 13; XZ(O)
= 13.7; p < .001). With 40% noise, inclusion of the number of pixels
parameter resulted in a higher model fit (see Fig. 30; AIC difference: 13;
XZ(O) = 13.2; p < .001), but including the orthographic prediction error
had essentially no effect.

In sum, the behavioral experiments reported in this section demon-
strate that the orthographic prediction error contributes substantially to
visual word recognition. We find that the PEMoR is highly relevant when
the visual information presented in the lexical decision tasks is restricted
in variability and, therefore, more predictable (i.e., all words with the
same number of letters). Better predictability of visual features results in
greater reliance on the orthographic prediction error compared to the
pure bottom-up sensory input. In contrast, when the perceptual vari-
ability (i.e., complexity) increases, e.g., due to a variation of the number
of letters, proportional fonts (e.g., as in the case of the English study), or
visual noise, the full (i.e., non-optimized) bottom-up signal becomes
more important for explaining visual word recognition behavior. Thus,
the behavioral evidence indicates that efficient neuronal coding is used
when the perceptual properties of the letter strings can be predicted. In
case the perceptual properties are highly variable, predictive processing
is hampered as only weak predictions can be formed, suggesting that the
baseline model representing the full bottom-up signal is a “fallback”
strategy to as an approximation in effortful reading conditions.

3.3. Cortical representation of the orthographic prediction error

The PEMoR assumes that the orthographic prediction error is esti-
mated at an early stage of word recognition, i.e., in the visual-perceptual
system and before word meaning is accessed and higher-level linguistic
representations of the word are activated. We accordingly hypothesized
that brain systems involved in computing or representing the ortho-
graphic prediction error should be driven by this optimized representa-
tion of the sensory input independent of the item’s word/non-word status
(i.e., for words and non-words alike). Localizing the neural signature of
the orthographic prediction error in the brain during word/non-word
recognition, thus, is a further critical test of the PEMoR. Of note, a
strict bottom-up model of word recognition (and perception in general)
would make a different prediction, i.e., that activation in visual-sensory
brain regions should be driven by the full amount of physical signal in
the percept (Goodyear and Menon, 1998; Henrie and Shapley, 2005).
Processes that take place after word-identification, i.e., that involve
higher levels of linguistic elaboration can only operate on mental rep-
resentations of words, so that brain regions involved in these later stages
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of word processing should distinguish between words and non-words.

We tested these hypotheses about the localization of the orthographic
prediction error by measuring BOLD activation changes using functional
MRI, while 39 participants silently read words (German nouns) and
pronounceable non-words (i.e., pseudowords), in randomized order (see
Methods for details). We identified three left- and two right-hemispheric
brain regions in the occipital cortex that showed higher levels of acti-
vation when reading items with higher orthographic prediction error —
both for words and non-words (Fig. 4a and Table 1). Prior research
(Dehaene and Cohen, 2011; Dehaene et al., 2005) has identified a region
in the mid-portion of the left occipito-temporal cortex as critical for
reading: the visual word form area. Consistent with our hypothesis, all
five activation clusters representing the orthographic prediction error are
located posterior to this so-called visual word form area (Dehaene and
Cohen, 2011), which supports our claim of an ‘early’ perceptual role for
the orthographic prediction error signal before word identification. More
recently, Lerma-Usabiaga and collegues (Lerma-Usabiaga et al., 2018),
proposed a distinction of perceptual (i.e., all y-coordinates < - 60) and
lexical processing regions of the left occipito-temporal cortex. All
oPE-related activation clusters were located posteriorly within the
perceptual processing regions (see Table 1). To compare the BOLD results
for the oPE with a more established measure of orthographic similarity,
we conducted the identical analysis with OLD20, rather than the oPE, as a
parametric predictor (Fig. 4b and Table 1). In this control analysis, we
found only one left-hemispheric cluster within these perceptual pro-
cessing regions, and this cluster showed a lower peak activation (i.e.,
lower t value at the cluster’s peak voxel) compared to the oPE clusters.
Importantly, no brain areas showed activity dependent on the pure
amount of bottom-up signal in the percept (i.e., the number of pixels
parameter).

Only brain regions involved in the activation of word meaning and
subsequent processes should differentiate between words and non-
words. We observed higher activity for words than non-words, inde-
pendent of the orthographic prediction error, more anteriorly in the left
temporal and prefrontal cortex (Fig. 4c and Table 1). Third, the left
inferior frontal gyrus (pars triangularis) and the medial portion of the
superior frontal gyrus (mSFG) mirrored the lexical decision behavior
reported above, in that higher prediction errors lead to increased acti-
vation for words but decreasing activation for non-words (lexicality x
oPE interaction; Fig. 4d,e,f and Table 1). The fMRI experiment, thus,
supports our hypothesis that during the early perceptual stages of visual
processing, i.e., presumably before accessing word meaning, an opti-
mized perceptual signal, the orthographic prediction error, is generated
and used as a basis for efficient visual-orthographic processing of written
language. Only at later processing stages (in more anterior temporal and
prefrontal cortices), the brain differentiates between words and non-
words.

3.4. Timing of the orthographic prediction error

While the fMRI results demonstrate a representation of the ortho-
graphic prediction error in presumably ‘early’ visual cortical regions, the
temporal resolution of fMRI precludes inferences concerning the tem-
poral sequence of cognitive processes during word recognition. Across
many studies, the millisecond time resolution of EEG has helped to
consistently attribute the extraction of meaning from perceived words to
a time window of around 300-600 ms post word onset (N400 component
of the event-related brain potential/ERP; Kutas and Federmeier, 2011).
Visual-orthographic processes associated with the orthographic predic-
tion error should thus temporally precede this time window, most likely
to occur during the N170 component of the ERP (Barber and Kutas, 2007;
Carreiras et al., 2014; Grainger and Holcomb, 2009). To test this hy-
pothesis, we measured EEG while 31 participants silently read words and
non-words (including both pseudowords and consonant-only strings).
We fitted a multiple regression model (analogous to the model used for
the analysis of behavioral data) to the EEG data (Linzen and Engemann,
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Fig. 4. fMRI results demonstrating the neuroanatomical localization of orthographic prediction error effects. BOLD activation during silent reading (see Materials and
Methods for further details, and Table 1 for exact locations of activation effects). (a) An analysis demonstrating a positive orthographic prediction error (oPE) effect in
bilateral occipital activation-clusters. This regression analysis used item-specific oPE values as a covariate, independent of stimulus condition, and shows brain regions
with greater activity for letter strings characterized by a higher oPE, independent of stimulus type. (b) The same analysis for the OLD20 parameter (Yarkoni et al.,
2008), which represents an established measure of orthographic similarity. (c) Clusters of higher BOLD activation for words than for non-words. (d) Two frontal
activation clusters showing an oPE by word/non-word interaction, i.e., positive and negative beta weights representing the oPE effect for each subject, separated for
words (W) and non-words (in this case only pseudowords; PW), respectively. Points within the violin figures represent the individual subjects’ beta weights and the
crossed circle symbol represents the mean beta weights (crossed circle) for the peak of (e) the left IFG cluster, i.e., x = —52, y = 32, z = —4, and (f) the left MFG cluster,
i.e., x = —4, y = 48, z = 28; lines connect word and non-word betas from each individual. These values demonstrate a positive oPE effect on BOLD for words and a
negative oPE effect on BOLD for non-words. No effects of the number of pixels per word were found. Threshold voxel-level: p < .001 uncorrected; cluster level: p < .05
family-wise error corrected.
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Reliable activation clusters from the fMRI evaluation with respective anatomical labels (most likely regions from the Juelich and Harvard-Oxford atlases including %

overlap), cluster size (in mm3), and peak voxel coordinates (MNI space).

Cluster  x y z Mean Max Volume Juelich labels Harvard-Oxford labels
T T [mm3]
OPE effect
1 -36 —68 -12 3.9 5.1 1368 53.22% V4 Left; 12.28% V5 62.57% Left Occipital Fusiform Gyrus; 32.75% Left Lateral Occipital Cortex
Left inferior division
2 -24 -90 -12 4.0 6.7 816 56.86% V4 Left; 40.20% V3V 40.20% Left Occipital Pole; 35.29% Left Lateral Occipital Cortex inferior
Left division; 24.51% Left Occipital Fusiform Gyrus
3 -28 -84 6 3.7 4.9 696 16.09% V5 Left 75.86% Left Lateral Occipital Cortex inferior division; 20.69% Left Lateral
Occipital Cortex superior division
4 48 -76  -12 3.7 5.0 584 86.30% V4 Right 72.60% Right Lateral Occipital Cortex inferior division; 24.66% Right
Occipital Fusiform Gyrus
5 34 -64 -14 35 3.9 176 100.00% V4 Right 95.45% Right Occipital Fusiform Gyrus
OLD effect
1 —34 -90 -10 3.8 4.7 792 65.66% V4 Left; 28.28% V3 72.73% Left Lateral Occipital Cortex inferior division; 25.25% Left Occipital
Left Pole
Words > Non-words
1 -36 34 -18 4.0 6.6 10704 54.11% Broca’s area BA45 37.07% Left Frontal Orbital Cortex; 34.68% Left Inferior Frontal Gyrus pars
Left; 14.35% Broca’s area triangularis; 16.52% Left Inferior Frontal Gyrus pars opercularis; 5.16% Left
BA44 Left Frontal Pole
2 -6 52 28 3.8 5.5 3336 46.04% Left Superior Frontal Gyrus; 37.17% Left Frontal Pole; 5.76% Right
Superior Frontal Gyrus; 5.52% Left Paracingulate Gyrus; 5.28% Right Frontal
Pole
3 56 32 10 3.5 4.3 1304 85.89% Broca’s area BA45 60.74% Right Frontal Pole; 24.54% Right Inferior Frontal Gyrus pars
Right triangularis; 14.72% Right Frontal Orbital Cortex
4 —-40 -36 -18 3.8 5.2 976 80.33% Left Temporal Fusiform Cortex posterior division; 18.03% Left
Temporal Occipital Fusiform Cortex
5 60 -34 -2 3.5 4.5 904 24.78% Insula Id1 Right 61.95% Right Middle Temporal Gyrus posterior division; 22.12% Right
Middle Temporal Gyrus temporooccipital part; 15.93% Right Superior
Temporal Gyrus posterior division
6 44 10 28 3.5 4.1 784 70.41% Broca’s area BA44 43.88% Right Precentral Gyrus; 40.82% Right Inferior Frontal Gyrus pars
Right opercularis; 15.31% Right Middle Frontal Gyrus
oPE by Word/Non-word interaction
1 -52 32 —4 3.9 5.4 1000 96.00% Broca’s area BA45 48.00% Left Inferior Frontal Gyrus pars triangularis; 43.20% Left Frontal
Left Orbital Cortex; 5.60% Left Frontal Operculum Cortex
2 —4 48 28 3.7 4.4 720 51.11% Left Superior Frontal Gyrus; 16.67% Right Paracingulate Gyrus;

16.67% Left Paracingulate Gyrus; 15.56% Right Superior Frontal Gyrus

Note. Cluster-level FWE-corrected at p < .05, peak-level uncorrected at p < .001. All clusters with a volume smaller than 100 mm3 (i.e., only lexicality clusters) and all

labels for white matter regions (i.e., from the Juelich atlas) were omitted.

2017) with the orthographic prediction error, the number of pixels,
word/non-word-status, and their interactions as parameters (see Mate-
rials and Methods for details).

Regression-estimated ERPs (see Methods for details) show a signifi-
cant effect of the orthographic prediction error on electrical brain activity
between 150 and 250 ms after stimulus onset (Fig. 5a). In this early time
window, letter-strings characterized by higher prediction errors elicited
significantly more negative-going ERPs over posterior-occipital sensors,
for both words and non-words. In line with the temporal sequence of
processes inferred from their neuroanatomical localizations (i.e., fMRI
results), a significant word/non-word effect then emerged between 200
and 570 ms (Fig. 5b), followed by an interaction between word/non-
word-status and orthographic prediction error at 360-620 ms (Fig. 5c).
In this interaction cluster, higher prediction errors led to more negative-
going ERPs for non-words, as observed for all stimuli in the earlier time
window, but showed a reverse effect for words, i.e., more positive-going
ERPs for words with higher prediction errors (Fig. 5c). This pattern of
opposite prediction error effects for words vs. non-words is analogous to
the effects seen in lexical decision behavior and the frontal brain acti-
vation results obtained with fMRI.

As in the fMRI study, we found no effect of the bottom-up input as
such (pixel count), even though it is well-established that manipulations
of physical input contrast (as determined, e.g., by the strength of lumi-
nance Johannes et al., 1995) can increase the amplitude of early ERP
components starting at around 100 ms. We performed an explicit model
comparison between statistical models, including the orthographic pre-
diction error compared to a model including the number of pixels
parameter (analogous to the analysis of behavioral data), for both time
windows in which the orthographic prediction error was relevant (early
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fixed effect and later interaction). In both time windows the model
including the orthographic prediction error resulted in better fit (AIC
difference: 16 at 230 ms at posterior sensors: %(0) = 16.0; p < .001; and
5 at 430 ms at frontal sensors: XZ(O) = 5.0; p < .001). Even when
investigating the combined models, including both parameters, we found
a tendency for a better fit in the oPE only model (AIC difference: 3 at 230
ms at posterior sensors and 3 at 430 ms at frontal sensors).

To summarize, EEG results converge with behavioral and fMRI re-
sults. They suggest that relatively early on in the cortical visual-
perceptual processing cascade, the amount of perceptual processing
devoted to the orthographic percept is smallest for letter-strings with
highly expected visual features (i.e., low orthographic prediction error).
100-200 ms later, i.e., in a time window strongly associated with se-
mantic processing (Kutas and Federmeier, 2011), the prediction error
effect was selectively reversed for words, and thus started to differentiate
between the two stimulus categories. This finding mirrors behavioral
results and activation patterns in the anterior temporal lobe and pre-
frontal cortex found in the fMRI dataset. In sum, these results support the
PEMOoR’s proposal that orthographic representations are optimized early
during visual word recognition, and that the resulting orthographic
prediction error is the basis for subsequent stages of word recognition.

3.5. Applying the prediction error model of reading to handwritten script

The electronic fonts used for all the above-reported experiments
introduce a highly regular structure that favors some of the PEMoR’s core
processes, like the calculation of the orthographic prediction error (i.e.,
the prior). We showed above that when reducing the high regularity of
computerized script by visual noise, reading performance decreases, and
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Fig. 5. EEG results for silent reading of 200 words and 200 non-words (100 pronounceable pseudowords, 100 consonant strings): Timing of orthographic prediction
error effects. Effect sizes from regression ERPs are presented as time courses for each sensor and time-point (left column; color coding reflects scalp position) with
yellow areas marking time windows with significant activation clusters (see Supplemental Fig. S3 for a more detailed visualization of the significance of spatio-
temporal activation clusters). ERP results are shown for (a) the main effect of the orthographic prediction error (oPE), (b) the word/non-word effect, and (c) the
oPE by word/non-word interaction. Results indicate significant oPE, word/non-word, and oPE by word/non-word effects starting around, 150, 200, and 360 ms,
respectively. The right panel shows the activation patterns related to the significant activation clusters in more detail. Dots represent mean predicted puV across (a,c) all
participants and items separated by oPE and stimulus category, and (b) all items separated by stimulus category, excluding confounding effects (see Materials and
Methods). No significant activation clusters were found for the parameter representing the number of pixels. Boxplots represent the median (line), the data from the
first to the third quartile (box), and +1.5 times the interquartile range (i.e., quartile tree minus quartile one; whiskers). The frontal cluster includes the following
sensors: AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, F7, F8, SO1, SO2, FP1, FP2, Fz. The posterior cluster includes the following sensors: 02, O1, Oz, PO10, PO3, PO4,
PO7, PO8, PO9, POz.

the orthographic prediction error becomes less relevant for describing (Fig. 6¢; linear mixed model statistics: Estimate: -0.05; SE = 0.01; t =
reading behavior. To demonstrate that the PEMoR may be applicable also 7.4), whereby calculating two oPE values per writer (i.e., one for upper
in less constrained settings with less regular visual-orthographic input, and one for lower case letters). Here, we implemented the oPE calcula-
we applied a variant of this model to account for the ‘readability’ of tion by subtracting the respective writer’s handwriting prediction, i.e.,
naturalistic handwritings obtained from 10 different writers. The the mean across all letter images, from each letter sample provided by the
extreme variability of different handwritings strongly influences their same writer. Again the prediction errors are the sum of all grayscale
readability (compare Fig. 6a and b). The visual-orthographic predictions values from the resulting difference images. In the final step, we esti-
which have here (for pragmatic reasons; see Materials and Methods) been mated the mean prediction error for upper and lower case letters,
implemented based on single letters and separately for each handwriting, respectively. Note that the oPE estimate for handwritings was normalized
accordingly vary substantially in strength and precision between indi- (i.e., divided) by the number of black/gray pixels of the letter image since
vidual handwritings (cp. ‘prediction’ of Fig. 6a and b). We define ‘pre- this number differed drastically between scripts (e.g., compare Examples
diction strength’ in terms of the summed darkness of all gray values of the in Fig. 6a and b).

prediction image, i.e., the mean gray value across pixels. We observe that The ‘precision’ of the prediction can be represented by the inverse of
‘stronger’ priors are associated with lower oPEs across handwritings the number of gray pixels included in the prediction image; more precise
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predictions are more focused and less distributed, and also elicit lower
orthographic prediction errors (Fig. 6d; 0.02; SE = 0.01; t = 2.1; see
Supplemental Table 1 for full results). Finally, we obtained the rated
readability of each handwriting based on ten written words and observed
that the readability is higher for handwritings that produce lower pre-
diction errors (Fig. 6e; 38 raters; Estimate: -5.9; SE = 1.0; t = 6.2). These
results demonstrate that (variants of) the PEMoR can account for reading
processes not only in highly formalized stimuli but also in more natu-
ralistic settings.

4. Discussion

Here we investigated if an efficient neuronal code representing the
visual input signal of words, i.e., analogous to the neural representation
underlying the end stopping phenomenon for oriented lines, is the basis
of proficient reading. We found that our Prediction Error Model of
Reading (PEMOoR) is a plausible account. Unexpectedly, since the focus of
the PEMoR is visual processing, the resulting prediction error, i.e., the
non-redundant and thus informative part of the visual percept, represents
not only the visual but also orthographic word information. We
concluded this from the correlations between various lexicon-based de-
scriptors of words that are associated with orthographic stages of visual
word recognition, and the prediction error representation. Our empirical
results also support this conclusion: We found that the orthographic
prediction error (i) accounts for word identification behavior, (ii) ex-
plains brain activation in visual-perceptual systems of the occipital cor-
tex, (iii) explains brain activation as early as 150 ms after the onset of the
letter-string, and (iv) contributes to high-level lexical processing that
underlies word recognition behavior. We inferred the latter from the
finding that both brain activation (i.e., BOLD activation in frontal areas
and the N400 ERP effect) and lexical decision behavior showed compa-
rable interaction effects between lexicality status (word/non-word) and
the orthographic prediction error. Also, the PEMoR provides a quanti-
tative estimate of the reduction of the full bottom-up signal achieved by
the subtraction of the word-knowledge based prediction (i.e., in our data
between 31 and 37% on average depending on language, with an upper
limit of 51% at the level of the individual word). Finally, we have

High oPE scrip
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Fig. 6. Applying the PEMoR to the perception of
handwriting. (a,b) Examples for two (out of 10)
empirically obtained handwritings. Writers provided
samples of single letters, and a (letter-level) ortho-
graphic prediction was estimated based on all 26 let-
ters (here demonstrated for lower-case letters). In
addition, the word Identifikation (identification) is
presented for both handwritings, as an example (out
of 10 words obtained). These words were used to ac-
quire the readability ratings from independent sub-
jects. (c) Relationship between prediction strength
and the mean orthographic prediction error across all
letters for each script. Note that the oPE estimate for
handwritings was normalized by the number of black/
gray pixels of the letter image since this number
differed drastically between scripts (e.g., compare
Examples in a and b). This result is based on a linear
mixed model with 20 observations, i.e., an oPE and a
prediction strength estimate each for lower case and
for upper case letters for each of the 10 writers. (d)
Relationship between the precision of the prediction
and the orthographic prediction error. The color of the
dots reflects each of 10 individual scripts, separately
for upper- and lower-case letters. (e) Readability rat-
ings for each script in relation to the orthographic
prediction error (combined across lower- and upper-
case letters). The blue line reflects the overall rela-
tionship, while thin lines represent the 38 raters.

Prediction

1.4

oPE -

provided initial evidence that the principles of predictive coding may
also apply to more naturalistic reading situations, by demonstrating that
the orthographic prediction error can account for individual differences
in the readability of handwriting. In sum, our findings indicate that the
basis for fast access to the meaning of written words is an optimized
neuronal representation that highlights unpredictable visual-
orthographic word information.

We also found evidence that the reliance on the orthographic pre-
diction error in word recognition is related to the perceptual quality of
the stimulus. We showed that in case the visual occurrence of the stim-
ulus is less predictable, e.g., due to visual noise, behavioral performance
in the lexical decision task is better accounted for by our approximation
of the original bottom-up input (i.e., the pixel count; see above) than by
the optimized prediction error based signal. As described previously (Rao
and Ballard, 1999), efficient coding in a predictive system relies on the
structure present in the stimulus. If the structure is compromised, as is the
case when adding visual noise, the predictive system breaks down as
predictions become weaker and less precise. As a consequence, word
processing relies on less efficient neuronal codes under such conditions.

Most results reported here relied on experiments with fixed word
lengths, while naturalistic reading involves considerably more variability
at the level of the input. However, para-foveal vision provides informa-
tion about word length to the visual system before the actual processing
of the word (Gagl et al., 2014; Schotter et al., 2012) so that it is, in fact,
often possible to dynamically implement best-fitting visual-orthographic
predictions (priors) online during reading. This would, in principle, allow
for optimized sensory processing as described by the PEMoR in natural
reading situations. While this specific hypothesis must be tested in future
studies, it fits well with previous theoretical proposals which have
acknowledged the integration of top-down predictions from multiple
linguistic domains (for example at the phonological, semantic, or syn-
tactic level; DeLong et al., 2005; Eisenhauer et al., 2019; Nieuwland et al.,
2018; Price and Devlin, 2011). Critically, our results go beyond these
earlier models by demonstrating that top-down guided expectations are
implemented already onto early cortical stages of visual-orthographic
processing.

The so-far dominant model of visual word recognition in the brain
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(Dehaene and Cohen, 2011; Dehaene et al., 2005) postulates that words
are ‘assembled’ bottom-up along the visual pathway, starting with sym-
bolic representations of letter features (i.e., oriented lines) up to suc-
cessively more complex higher-order representations. In this and similar
models (including computational accounts of visual word recognition,
e.g., Coltheart et al., 2001), the bottom-up ‘assembly’ of a letter or word
representations is based on the full visual input signal. We have shown
(in Fig. 2d) that the representational similarity space defined by the
images of the word stimuli used in this study (i.e., the visual input) and
the similarity space defined by the optimized orthographic prediction
error images correlate to a high degree. This finding indicates that the
PEMOoR computation preserves the critical information for word identi-
fication in the orthographic prediction error representations. Conse-
quently, we assume that there is a possibility that letter and word
representations are assembled, as assumed in the currently dominant
models, based on the prediction error representation. The Prediction
Error Model of Reading, thus, does, in principle, not contradict other
current models of visual word recognition. In contrast, PEMoR specifies
explicitly and in a testable manner the nature of cortical representations
that are generated early (i.e., prior to lexical access) in the perceptual
process and on which all subsequent processing stages operate.
Prediction-based top-down optimization of the visual-orthographic
input, as proposed here, offers a possible specification of a previously
underspecified aspect of visual word recognition models, i.e., the nature
of representations that are active between visual perception and more
abstract processes of lexical access.

Predictive coding-based theories, in general, assume that ‘higher-
level’ stages of cortical processing aim at prediction error minimization
as a core computation (Friston, 2005; Price and Devlin, 2011). As
described in the Introduction section, such an account would be funda-
mentally different from most assumptions in established models of visual
word recognition. Given the successful empirical evaluations reported in
the present study, a future challenge for model development should be to
incorporate an orthographic prediction error signal into current model
assumptions about orthographic processing. For example, when
conceptualizing word recognition as a process of evidence accumulation
process with the goal of identifying the respective word in the mental
lexicon (similar as previously described in Engbert et al., 2005; Gagl
et al., 2016; Ratcliff et al., 2004; Summerfield and de Lange, 2014), the
orthographic prediction error most likely serves as only one among
several sources of evidence, particularly during natural reading which
only rarely involves the processing of isolated words. Almost inevitably,
contextual constraints will be operative. At the semantic level, it is well
established that word-elicited brain activation (like the N400 component
of the EEG or MEG) decreases if the word is predictable from its semantic
context (e.g., Dambacher et al., 2006; Dimigen et al., 2011; Eisenhauer
etal., 2019; see also Kutas and Federmeier, 2011 for a review). Similarly,
eye fixation durations during natural reading are reduced with increasing
context-dependent word predictability (e.g., Hawelka et al., 2015; Kliegl
et al., 2004; Kliegl et al., 2006). Syntactic-level predictions, in contrast,
were identified as small in recent investigations (Nicenboim et al., 2019;
Nieuwland et al., 2018). Beyond contextual constraints, it is also plau-
sible that phonological information (as proposed by Price and Devlin
(2011) or morphological constraints may be applied in a top-down
manner onto bottom-up visual-orthographic processing. Combined,
these considerations suggest that all relevant levels of linguistic repre-
sentation involved in language comprehension are likely to interact
pro-actively, if possible, during the identification of each upcoming
word. As a result, top-down predictions about expected upcoming words
may in naturalistic situations often be much more specific than lexical
knowledge-based priors investigated here, as they are based on candidate
sets constrained by multiple sources of linguistic expectations. The work
presented here, thus, should be understood as proof of principle under
highly unconstrained conditions, i.e., the recognition of single words in
isolation.

In this study,

we presented evidence for a quantitative
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implementation of orthographic prediction error representations with
stimuli (i) in Courier new, i.e., a monospaced font, (ii) for the effect of
degraded stimuli on the effect of the orthographic prediction error, and
(iii) for a possible application to more naturalistic conditions by using
handwritten stimuli. One possible limitation of the current study is that
we did not include a systematic investigation of different fonts (including
proportional fonts). However, variation in font type is one among several
sources of visual noise in the stimuli, and our investigation of how visual
noise influences the reliance of word recognition processes on the pre-
diction error signal provides a first hint of how font variation (as well as
variations in size, position, etc.) may influence prediction-based word
recognition processes. A systematic investigation of font effects, how-
ever, is an important future step of further exploring the here-proposed
model. For example, it is of interest if and how readers adapt dynami-
cally to new fonts, which might allow providing recommendations to
inform design decisions for written outlets (e.g., for newspapers, or
webpages) on the costs of using multiple fonts (e.g., see Gagl, 2016 for a
recommendation concerning font color).

In sum, we demonstrate that during reading, the visual input signal is
optimized by ‘explaining away’ redundant parts of the visual input based
on top-down orthographic predictions. This study, accordingly, provides
strong evidence that reading follows domain-general mechanisms of
predictive coding during perception (Clark, 2013) and is also consistent
with the influential hypothesis of a Bayesian brain, which during
perception continuously combines prior knowledge and new sensory
evidence (Friston, 2005; Knill and Pouget, 2004). We propose that the
result of this optimization step, i.e., an orthographic prediction error
signal, is the efficient neuronal code on which subsequent, ‘higher’ levels
of word recognition operate, including the activation of word meaning.
These data provide the basis for a new understanding of early, i.e.,
pre-lexical orthographic stages of visual word recognition, rooted in a
strong and widely accepted, domain-general neurophysiological model —
prediction-based perception (Friston, 2005; Rao and Ballard, 1999). At
the same time, our results provide crucial converging evidence in support
of predictive coding theory.
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