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During collisions of heavy ions with heavy targets below the Coulomb barrier, adiabatic 

molecular orbitals are formed for the inner electrons. Deviations from adiabaticity lead to coupling 
between various states and can be treated by time-dependent perturbation theory. For high charges 
( Z 1 + Z 2 60) the molecular electrons are highly relativistic. Therefore, the Dirac equation has to 
be used to obtain the energies and wave functions. The Dirac Hamiltonian is transformed into the 
intrinsic rotating coordinate system where prolate spheroidal coordinates are introduced. A set of 
basis functions is proposed which allows the evaluation of all matrix elements of the Dirac Hamil-
tonian analytically. The resulting matrix is diagonalized numerically. The finite nuclear charge 
distribution is also taken into account. Results are presented and discussed for various charac-
teristic systems, e. g. Br—Br, Ni—Ni, I — I , Br—Zr, I — A u , U —U, etc. 

I. Introduction 

The formation of molecular electronic states for 
inner electrons in light ion collisions was first re-
cognized and interpreted as such by Fano and 
Lichten 1 in connection with the so-called promotion 
model for ionization. This was applied to account 
for large ionization cross sections of certain elec-
tronic states during a, collision that could not be ac-
counted for by pure Coulomb ionization. The pro-
motion mechanism was later extended to asymmetric 
collisions by Barat and Lichten 2, and a theoretical 
justification of the diabatic molecular states was 
given by Smith 3 (see, however, the paper of Gabriel 
and Taulbjerg 3 ) . 

Independently, and stimulated by the nuclear 
molecular phenomena4a and by the nuclear two 
center shell model4 b , the idea of intermediate elec-
tronic molecular states formed in the collision of 
heavy ions was put forward in connection with pos-
sible tests of fundamental problems like quantum 
electrodynamics of strong fields5-8 and possible 
direct measurements of vacuum polarization in super-
heavy systems 5~7 . For the Russian work in the field 
cf. Ya. B. Zeldovich and Popov 9 . Besides positron 
autoionization in overcritical fields (decay of the 
vacuum), one expected particularly also radiative 
transitions between molecular states if the lifetime 
of the states is not very much shorter than the elec-
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tromagnetic transition time. Estimates show that the 
collision time is on the order of 1 0 - 1 8 s e c whereas 
the 2p — Is transition time is about 1 0 - 1 6 s e c for a 
system like Br —Br. Hence roughly \% of the K-
vacancies created in such a collision should give rise 
to molecular radiation. 

In fact, the molecular X-rays have meanwhile 
been observed by several experimental groups: Saris 
et al. for the system Ar —Ar 1 0 , Mokier, Stein, and 
Armbruster for I —Ab 1 1 , MacDonald et al.1 2 a for 
1 2 C - 1 2 C , Meyerhof et al. for B r - B r 1 2 b , Burch et 
al. for C l - P b 1 3 , Kaun et al. in the system 
Ge — Ge 14a, and, most convincingly, Greenberg and 
Davis for Br — Br and Ni — Ni 1 5 . The Yale group 15 

showed beyond any doubt the very existence of 
molecular X-rays in heavier ion collisions by in-
vestigating and proving the existence of induced 
radiative transitions, which occur only for radiative 
molecular transitions (see later). 

As mentioned earlier, molecular X-rays are not 
only an interesting phenomenon in itself but they 
become a necessary experimental means when the 
electronic spectra of superheavy elements ( Z > 1 0 5 ) 
are concerned. These elements are of considerable 
interest in field theory, particularly in Quantum 
Electrodynamics of Strong Fields. Firstly, the usual 
perturbative expansion of all QED effects in terms 
of the coupling constant Z a becomes more than 
doubtful when Z approaches a~1 « j 137. A pertur-
bation expansion in a seems still possible, but not 
in Z a. But proper calculations based on self-con-
sistent field equations as proposed by Reinhard et 
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al.16 should be carried out1 7 to check the validity of 
perturbation theory5 '1 T . This theory and its pre-
dictions need experimental verification which should 
be feasible since the QED effects grow much faster 
with Z a than the electronic transition energies; 
particularly the vacuum polarization becomes the 
dominating part of Lamb shift in very strong fields 
(for estimates see Refs. 5, 17) . 

Secondly, there is a point where perturbation 
theory breaks down with certainty, viz. when the 
lowest bound state (the ls-state) becomes degenerate 
with the negative energy continuum states of the 
Dirac equation5'6'"1. This happens around Z ^ 170, 
the value with greatest confidence being Z c r = 172 18. 
Then the lowest stable ground state of the system, 
i. e. the vacuum, is no more an unoccupied K-shell, 
but a doubly occupied K-shell which is imbedded 
into the negative energy continuum. This new 
vacuum, the overcritical vacuum is doubly 
chargedGb*7. Whenn an undercritical system 
with vacant ls-state is rendered overcritical 
by increasing the central nuclear charge, the 
decay of the neutral vacuum shows up by emission 
of positrons whose energies correspond to the 
binding energy of the ls-state minus 2m0c 0a b. This 
should be observable in collisions of, e .g . U — U, 
where at distances smaller than 35 fm the two 
nuclei act combined as source of an overcritical 
electric field. The expected cross sections for 
positrons have been calculated by Peitz et al. 8 and 
with inclusion of the non-adiabatic effects in a heavy 
ion collision by Smith et al.19 . Cross sections of up 
to 1/100 barns can be expected. 

As no nuclei with a charge Z > Z c r do exist, the 
experiment has to be done with two colliding heavy 
ions. For a calculation of the molecular X-ray spec-
tra as well as the expected positron distribution the 
energy of the molecular states has to be known as a 
function of the internuclear distance R. This leads 
us to the wave equation for an electron in the field 
of two Coulomb centers. For the nonrelativistic 
equation of the H2+-molecule Heitler and London 20 

gave the first approximate solution. Exact methods 
were derived soon after by Teller21, Hylleraas22 

and Jaffe23, by expanding the wave functions in 
terms of a suitable set of basis functions. The equi-
valence of their methods was shown by Helfrich and 
Hartmann24 who also published extensive calcula-
tions on the non-relativistic one-electron problem 2a. 
Many electrons were also taken into account using 

Hartree-Fock procedures. We quote only Larkin's 
calculations of the Ar — Ar system as an example 26. 

All these calculations are inappropriate for a 
system of very heavy ions, the total charge of which 
is larger than 100. Relativistic effects have to be 
taken into account. This may be done for light 
systems, again Z < 9 0 , by including relativistic cor-
rections in perturbation theory (expansion in terms 
of Z a) 27. As Z a approaches 1 this method be-
comes invalid69 and breaks down completely for 
Z a ^ > l . In particular the nonrelativistic calcula-
tions do not yield negative energy states, which are 
of fundamental importance for Z > Z c r . 

In addition to the relativistic two center problem, 
the dynamic aspect of the binary encounter problem 
in a heavy ion collision is of great importance. Be-
cause of the large masses involved, the heavy ion 
paths can be described classically. The intrinsic 
(molecular) coordinate system is thus changing as 
a function of time and hence additional interactions, 
such as the Coriolis force, will act on the molecular 
electrons. A semiclassical effect of this will be given 
in the next Section (II) while Section III deals 
with the proper covariant transformation of the 
Dirac equation to rotating frames. No anomaly 
of the spin with respect to its interaction with the 
Coriolis field is observed, which would be analogous 
to the interaction of the spin with a magnetic field 
(anomalous ^-factor). 

Sections IV —YII treat, respectively, the technical 
problems of transforming the two-center-Dirac-
equation to elliptical coordinates, elaborating and 
discussing the constants of motion and — connected 
with that — the separation of the wavefunctions 
and the choice of the basis set for the diagonaliza-
tion procedure. For point charge centers all matrix 
elements are calculated analytically. All bound state 
solutions of the two center Dirac equation for single 
electrons are obtained by diagonalization. The treat-
ment of the finite nuclear dimensions and the nu-
merical procedures are discussed in the next two 
Sections, VIII and IX. The general features of the 
level diagrams for both symmetric and asymmetric 
systems are presented (Section X) and the level-
crossing phenomena are discussed (Section XI I ) . In 
the next two Sections XIII and XIV, we apply the 
results to determine the "diving point*' of the ls-
level (break down point of the neutral vacuum) and 
present the fully relativistic two center level dia-
grams. 
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II. Classical Approximation of the Nuclear 
Motion 

In any heavy ion collision below the Coulomb 
barrier the relative velocity of target atom and 
projectile ion is smaller than cj 10. Therefore, the 
relative motion of the nuclei of these ions can be 
treated non-relativistically with a less than \% error. 
Then the total Hamiltonian of the system is given 
by 

# = ( 2 7\-n + 1 2 Vinjn) + ( 2 Di. +1 2 Vuu) 
in hi * hi h + 

+ !Vinh. (2.1) 

Here the term enclosed in the first parentheses 
denotes the kinetic and potential energy operators 
for the subsystem of the nucleons, the second term 
in parentheses denotes the relativistic kinetic and 
potential energy operators for the electron subsystem 
and the last term describes the interaction between 
nucleons and electrons. An extensive discussion of 
a completely quantum mechanical treatment of this 
Hamiltonian can be found in the article of Smith 
et alias28. As, however, the solution of the full 
problem does neither seem to be practically feasible 
at the moment nor worthwhile, we restrict ourselves 
to cases in which the nuclear part of (2.1) can be 
dealt with classically. 

This is the case if the nucleons can be distributed 
into two clusters, the two nuclei, and no particle ex-
change is possible between the clusters. Moreover, 
we require that the internal wavefunctions of the 
two nuclei remain unchanged during the whole pro-
cess. Then, whenever the Sommerfeld parameter 29 

y] = ZxZ,e-lhv> 1 , (2.2) 

a classical treatment of the nuclear motion is pos-
sible. For all ion-atom collisions below the Coulomb 
barrier and Zx, Z*> 5 this condition is fulfilled; 
for an U —U collision at the Coulomb barrier one 
has, e.g. r\ > 500. Only in scattering of very light 
projectiles (e. g. H+ , a-particles) the approximation 
is not always allowed, but even then the classical 
trajectories may be used, if the distance of closest 
approach is larger than about 100 fm. 

The assumption of two non-overlapping rigid 
nuclear clusters leaves us with the simplified Hamil-
tonian 

t\ 
2 MredW 

H = P r' 
2 M + 

red 
+ M Ä ) He(R) , 

(2.3) 

where the term in brackets describes the two naked 
nuclei (without regard of the influence of the elec-
trons), and HC(R) governs the motion of the elec-
tronic cloud and, of course, depends on the relative 
position of the two nuclei. 

The Hamiltonian (2.3) is already denoted in the 
center-of-mass system. The classical approximation 
is introduced as follows. The nuclear part of the 
Hamiltonian (in brackets) is replaced by its clas-
sical analog 

11 „ +VK(R) , (2.4) I F class 
" nucl 

_P It" 
2 M r e d 2Mrcd R-

where the classical quantities pn and L are sub-
stituted for the operators pn and L of relative 
nuclear motion. The classical Hamiltonian (2.4) 
can be solved for a Coulomb trajectory R(t) which 
then is used to eliminate the dynamical variable R 
from the electronic Hamiltonian Hc. 

Unfortunately, L is not a conserved quantity since 
angular momentum may be transferred from the 
nuclei to the electrons or vice versa. Only the total 
angular momentem 

I = L + JC (2.5) 

is conserved during the scattering process. Hence 
we are forced to modify the decoupling scheme of 
the nuclear variables. We express L by L = I — jc in 
expression (2.3) and take / as a classical quantity 
I. Then we obtain the classical Hamiltonian func-
tion for the relative motion of the ions 

tj' class Pit 
« nucl + <r +rs(R) (2 .6) 2 Mrcd 2 Mrcd R2 

and the electronic Hamiltonian plus rotational cou-
pling terms: 

I'h 
MIcdR(t)* 2MrcdR(tV- ' 

(2.7) 

The second term indicates the Coriolis coupling be-
tween the electrons and the total angular momen-
tum. The third term in (2.7) is a centrifugal poten-
tial which is small compared to the Coriolis coupling 
as mostly (jc) ^ / . The derivation of the rotational 
coupling terms given in this chapter is not rigorous 
because we have made use only of the non-relativistic 
kinetic energy operator of the nuclear motion. A 
rigorous treatment demands to write down the 
relativistic Hamiltonian for the electrons in a ro-
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tating coordinate system, whose z-axis is given by where £ucim denotes the totally antisymmetric Levi-
the connecting line of the two nuclei. 

III. The Dirac Equation in a Rotating 
Coordinate System 

In order to derive the coupling between rotation 
and electronic motion from the standpoint of co-
variance of physical laws, we have to make use of 
the formulation of the Dirac equation in arbitrary 
coordinate systems. The generalization of Rieman-
nian space to include spinor variables was deve-
loped by Tetrode 30 and by Fock and Ivanenkov 31. 
In the notation of Schmutzer 32, the general covariant 
form of the Dirac equation is 

ie . \ mec 
k c A t V + h V = 0 -

Civita tensor. The terms 3 ^ y + T^ i ' can be con-
sidered as the covariant derivative of the spinor y. 

The metric tensor in a rotating coordinate system 
is given by 

9uc = 

ar 
c2 

1 0 0 
(O 

0 1 0 
0) — X c 

0 0 1 0 
0) 
cy 

ft) 
— X c 0 - 1 + ! 

and its inverse by 
(3.5 a) 

>* h g r + J V 
(3 .1) 

The y are the Dirac matrices obtained by the com-
mutation relations 

yiyk + ykyi==2gik (3 .2) 

and the F/c are the spinor connections ( i . e . the 
generalized Christoffel symbols) determined by 

A = 3 /(TILK - {IK} 7i) -rh trace (y f y{!ft) y \ 

gik = 

1 - 1 (o \ 2 OJ* 
1 -

\~c V ) c2 
X1J 

or 
1 -

(CO 
c2 

X1J 1 -
IT 

0 
(/J 

0 
CO 

~cy c X 

0 — 
c 

0 * 
c 

1 0 

0 - 1 

(3.5 b) 

Here again use has been made of the abbreviation 

Here the z-axis is chosen to be the axis of rotation. 
Denoting by y,- the Dirac matrices associated with / R, R, X O J / « 

^ " ' this rotating intrinsic frame of reference and by J'; 
those of the ordinary Lorentz metric, one finds from 

7 = i i eikim / y k y l r m , (3 .4) (3.2) 

Ü) ID 
7i — \ 7i,72,y3,r*+ -xy o - y 7\ 

CO 
y,7i+\— xr]-y\, 

OJ CO 

7l = \ Yi - y n, 72 + * 7i, 73' - 74 \ = \ Y + x r 7 4 , 7& 

where also the three dimensional vector notation has been used. 
With these preliminaries one can straightforwardly evaluate the connections (3.3) and finds 

- t^ 1 w , v 1 I™ \ 7krk= -- 7i - - • ( y X y ) - 4 ( c2 x r j - y 

(3.6 a) 

(3.6 b) 

(3.7) 

where, again, vector notation was applied to express the result. For all details of the calculation we refer 
to Appendix A. 

WTe substitute this result into the Dirac Eq. (3 .1) and find 
CO 

(yv) v + yA — xr - V y - 7 4 
dy 

" 3 7 
+ 74 A4 y 

i e 
h c y + 

CO 
x r 74 

, 1 w , \ 
+ , 7 4 — • ( 7 X y)y 

4 c 

A 

mP c 
y — 0. (3.8) 

Multiplication of Eq. (3.8) by - i h c j'4 and use of the definitions yx y = a and — i 74 = ß gives 

at 
c a - ( p - A J + V + ß me c2 y - ( w x r ) • ( p - — A] y co • a y + x r j -ay. 

(3.9) 
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In our notation we have V = — e Ai . 
The first term in Eq. (3.9) is just the Dirac equation in an inertial frame of reference. All additional 

terms vanish to ' co | — 0 and have thus to be attributed to the rotation. Again, the terms 

- (a>xr) • ( p - (e/c)A) ip — hco-a ip = - co-[(rxp) + £fccr]t/ ' + (e/c) (co x r) -Aip (3.10) 

can be interpreted as the Coriolis coupling of elec-
tronic and rotational motion. The first term is the 
same as the interaction in (2 .7 ) . It is interesting to 
note that the spin couples in the same way to the 
rotation as the orbital angular momentum does. If, 
instead of a rotation we would introduce a magnetic 
field B the equation would read: 

i h dxp/dt = [c a • (p - (e/2 c) (B x r ) ) +ß me c 2 ] \p 

(3.11) 

which in the nonrelativistic limit reduces to 

i h 
3 xp p2 e 
~3 2 m0 2 mec 

(Bxr) 2 m,. c 
a B V 

(3.12) 

whereas the free Dirac equation with rotation re-
duces to 

i h 3rp/dt ~ [p2/2 mc - (co x r) - (ft/2) cf • co] xp. 
(3.13) 

The identification co = (e/2 mc c) B equates Coriolis 
and Lorentz force in (3.12) and (3 .13) , but the 
coupling to the electron spin differs by a factor 
two. This seems to destroy the analogy between a 
field of rotation and a uniform magnetic field for 
particles with spin. However, it is easy to see that 
the Coriolis coupling must be ( — co-j) to the total 
angular momentum j. If xp is a solution in the iner-
tial reference frame, then it should be 

t// = exp {(i/fl)0-j}rp (3.14) 

in the rotated (rotating) frame. This is actually true 
since: 

i h 
3 

dt 
Ö-jxp ih^y/= cxp{(i/h)j-0} 

= exp{(i/h)j-0}[HLllh-co-j],p 

= [ # L a b - < » • / ] < / (3.15) 

provided the Hamiltonian commutes with O j . Thus 
the rotated wave function is a solution to the wave 
equation in the rotating frame. This is not a trivial 
result, since (3.14) was only derived for time in-
dependent rotations (Lorentz-transformations) and 
not for rotations with constant angular velocity. 

We also want to point out, that the expectation 
values for stationary states 

{•ip I i h 3/3«J y) =E, {xp I - ih V I y) = P (3.16) 

form a covariant four-vector. The contravariant 
energy-momentum vector ( n , E') instead is seen 
to be 

E' = E+ (co x r) -p , n = p - (oo/c2) xr. 

(3.17) 
These quantities transform between the rotating and 
the laboratory system as expected: 

Lab = '-J rot •> ^Lab = ^rot + me (CO X r) . (3.18) 
The coupling to the electromagnetic field 

#rad= — e A4 — e a-A + (e/c) (wxr) A (3.19) 
can be understood from the general minimal cou-
pling prescription y* Ax and the special form of the 
y" matrices (3.6 b ) . The last terms in Eq. (3.19) was 
interpreted by the authors as an additional "in-
duced" coupling to the radiation field33' 34. How-
ever, one has to bear in mind that the Ay-field in 
(3.19) is the one seen in the rotating system. If 
the radiation field is quantized in the transverse 
gauge in the lab system 

A1ah = {eeik-X,0} , e k = 0 (3.20) 
then in the rotating system 

Ax={eeik", £• {co/cx r) eik x] , (3.21) 

and the resulting coupling is simply 

#rad= -eaeeikx, (3.22) 
and no additional contribution from the rotation is 
left. 

IV. Constants of Motion 

In order to find analytic or semi-analytic solutions 
of a wave equation and to reduce the degrees of 
freedom, it is important to know the constants of 
motion, i. e. the operators that commute with the 
Hamiltonian. From now on we deal with the Hamil-
tonian 

H = ca-p + ßm0c2 + V1(r1)+V,(r2) (4.1) 
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where the two central potentials Vx and V 2 may be 
different. Obviously, (4.1) has cylindrical symmetry 
and therefore one would expect the projection of 
the angular momentum J = (L + (h/2) on the 
z-axis to be a constant of motion. One easily finds: 

[H, ß J Z]- = [V1 (rj + V2 (r 2) ,ß JA- (4.2) 

= [Vt (r),ßjz]_ + [V2(r2),ßJz]_ = 0, 

because ß Jz commutes with each of the two central 
potentials. The essential assumption is that both V1 
and V2 have their centers on the z-axis which is the 
projection axis of Jz . This is not fulfilled for Jx 

and Jy . Hence the total angular momentum operator 
does not commute with H. 
However, for the corresponding nonrelativistic 

Hamiltonian, 

Hnonrel = p2/2me+V1(ri) + V,(r2) (4.3) 

it is possible to construct an operator which can 
replace the total angular momentum operator for 
certain potentials V1 and V 2 . The general form 
of the potential which permits this construction 
Jg 35, 36 

= g A ; r 1 2 - Z 1 e2 /rj + const) 

V2 (r:>) = I ^ r22 — Zo e2/r2 + const] ' 

The oscillator part is trivial, since for equal k the 
two oscillators add up to a single oscillator with 
strength h ]/2 and located at the center between the 
two original potential origins. For the part with 
physical relevance 

VAri)+V2(r2) = -Zie2/rl-Z2e2/r2 (4.5) 

ihe constant of motion was first given by Erikson 
and Hill3 5 (see Fig. 1) 

A = ±(L1-L2 + L2-L1) (4.6) 

— 2 mc R (Zi e2 cos &1 — Z2 e2 cos @ 2 ) , 

where 2 R is the distance between the centers, 01 

and 02 the angles between rx and the z-axis resp. 
r2 and the z-axis. L 1 and L 2 are the angular mo-
mentum operators with respect to the two centers. 
It was stated by Coulson and Joseph33 that an 
analogous operator cannot be constructed for the 
relativistic case, but to our knowledge this has not 
been proven before. It is difficult to show that the 
construction is impossible. However, one can show 
that all straightforward generalizations of (4.6) fail 
to commute with the Hamiltonian (4.1) : Certainly, 
the orbital angular momentum L has to be replaced 

by the total angular momentum j. Then we con-
sider 

A = h [ J i - J 2 + J 2 - J 1 ] (4.7) 
= I[Lj• Lo + L,-Lj] + ^ h a - [ L l + L.,] + f h 2 . 

One easily sees that A commutes with 

D = ca-p + ßmGc2 (4.8) 

since this holds for ß j , and ßJ2 each. An elemen-
tary calculation gives 

[A, V1(rl)] = 2h2RVi'(r1) cos 6t 

+ ih2 Ro - (ezxV)V1(r1) 
= ihR(aza-p + Pz)V1(r1). (4.9) 

Now one would have to find an operator /^(^i ) 
which commutes with V1(r1) and 

[ ö , F 1 ( r 1 ) ] = [ ^ , F 1 ( r 1 ) ] . (4.10) 

A simple function / 1 ( r 1 ) = F 1 ( r 1 ) is not a suitable 
choice since then 

[D,f1(r1)]=ca-Vfl(r) . (4.11) 
In order lo account for the az factor in (4.9) one 
would like lo choose 

Fi(ri) = «2 /1 (r 1) 

but ihen additional commutators like [a, a z ] _ (rA) 
•p occur. If one tried to eliminate the disturbing a2 

already in Eq. (4.9) one has tot take az A instead of 
A, but then one faces [a2 A, D] _ 4= 0. Thus every 
possible construction of a constant of motion in the 
relativistic problem fails. 

For a special class of two center problems, there 
is, however, an additional symmetry. Whenever the 
two central potentials are alike, i. e. whenever we 
deal with identical nuclei, the relativistic parity 
operator, ß P, commutes with H (4 .1) . That ßP 
commutes with D (4.8) is well known3 7 . Further-
more, we have 

P(r t ) = - r 2 and P(r2) = - r l (4.12) 

if the center of the inversion is taken to be the 
median point of the line connecting the two poten-
tial centers (which in the case of symmetry happens 
to be the center-of-mass). For V1 = V2 it follows 
that 

[Vt (r1)+V,(r2),ßP]„=ß[V1(r1)-V,(ri) (4.13) 
+ = 0 . 

Accordingly, the relativistic molecular orbitals can 
be classified with respect of the quantum number m 
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of jz' 

jzVm(r) = mip( r) (4.14) 

and in the case of symmetric system also with 
respect to parity, i. e. we have either "gerade" 
states of even or "ungerade" states of odd parity. 
The value of m is commonly denoted by Greek let-
ters o, Ji, ( $ , . . . for m = ± ± | , ± | , . . . ; the 
parity by an index g or u. States of same cylindrical 
symmetry and parity are identified by the quantum 
numbers of the asymptotic atomic state they tend to 
when the nuclear separation vanishes, e.g. Is j / 2o g , 
3 p 3 ^ u , etc. 

V. Transformation to Spheroidal Coordinates 

The appropriate coordinate system for a two 
center problem is defined by prolate spheroidal co-
ordinates rj, <p, which are connected with Carte-
sian coordinates via the equations 

x = R V(£2-l) ( l - r j 2 ) cos<p, 
(5.1) 7j = R V ( r - - l ) ( l - r ] 2 ) sin cp, 

Z = R$7], 

and especially £ and r) are defined as (Fig. 1) 

f = ( r , + r 8 ) / 2 Ä , r}^\r1-ri)f2R. (5.2) 

Fig. 1. The connection between Cartesian and elliptical 
(spheroidal) coordinates. 

The coordinates are defined in the region 

l ^ £ < c o , - 1 ^ 5 ^ + 1 , 0 < ; < p < 2 ? i . 

(5.3) 

According to the general rule the quantization has 
to be carried out in Cartesian coordinates and only 
afterwards transformation into curvilinear coordi-
nates is permitted. We start from the Dirac equation 
without coupling terms 

{ca p + ß m . c - - / ^ e2/rx - 1 , e2/r2 - E ) xp{r) = 0 , 

(5.4) 

and use the following representation of Dirac's 
matrices 38 

a = 
0 a 

a 0 ß = 

for the Pauli matrices 

of = 
0 1 

1 0 

0 - i 
i 0 

I 0 
0 - / 

and for the momentum operator 

3 3 
P i h V i h 

3 z ' 3 y 
3 

3 z 

(5.5) 

(5.6) 

(5.7) 

In the prolate spheroidal coordinate system with 
the orthogonal unit vectors II ; , U„, Uv the gradient 
operator reads 39 

v = U i | 3 3 + u 3 _ 

e; I d£ en or] ev d„ 

where the normalization factors are given by 

et 
3 r 
31 
3 r 

3 r] 
3 r 
3 <p 

p - r j 2 W 2 

£ 2 - l 

1-7]2 

= R V(l2-l)(l-V2) 

(5.9) 

A vector a obtains the form 

a = fls Ui + an Url + arf U,r 

with the new components 

a 
3 r 
3 1 

etc. 

(5.10) 

(5.11) 

After these preliminaries one easily calculates the 
Dirac operator of kinetic energy in spheroidal co-
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ordinates to be 

at 3 
a - V = 

+ 

, 3 , a^ 3 __ (aa;cos9? + aj/sin99)| W(g,t]) +azr](j2-l) 3 

, 3f en dV + 3<p " ^ ^ ( r ' - r ) " " 3f 

— {axcos(p +ay sin <p) r]W{t;,ri) +azl-(I —if) 3 — sin <p + ay cos 99 3 

a p 

+ 7' n ,. = 

Using the representation of the «-matrices (5.5) 
given above, we find 

0 0 pz px-ipy" 
0 0 p x + i p y —Pz 

Pz Px—iPu 0 0 
<Px+iPy —Pz 0 0 

(5.13) 
with the momentum operator components 

ihe±irp . / 3_ 3\1 
d£~Vdrj 

± ^ 7 7 

Px^'Pv 
R(Z2-V2) 

Pz 
— ih 

R(t2-ri2) 31 

3 >] 

(5 .14) 
In Eqs. (5.12) and (5.14) the abbreviation 

r(£,V) = ejR = [ ( I 2 - 1) ' (1 - r ) ] * / 2 (5 .15) 
was introduced. 

Finally, we have to transcribe the potentials. For 
the special case of two point charges Zx e resp. Z2 e, 
which we choose to be the foci of the spheroidal 
coordinate system we obtain 

Z9 V O 

1 e~ Z 2 e~ 
r1 ~ r2 (5 .16) 
e2 (Z1 + Z 2 ) f + C Z g - Z Q i y 

f ( r ) = 

3 >7 
+ (5 .12) 

d<p 

The common feature of all operators (5.14) and 
(5.16) is that they have a denominator — rf). 
In prolate spheroidal coordinates the volume ele-
ment is given by 39 

d3x = R3 (|2 - d £ dt] dtp. (5 .17) 

Therefore, in all matrix elements with any of the 
above operators the denominator is cancelled and 
only polynomials remain. This will allow analytical 
integration of these matrix elements in Section VII. 

VI. Reduction to a Two Dimensional Problem 

We have shown in Sect. IV that the cylindrical 
symmetry of the two center problem implies that the 
angular momentum projection ] z is a good quantum 
number of the molecular states. Therefore, it is pos-
sible to represent the wavefunctions in the 99-variable 
by a suitable combination of exponentials. Besides, 
the wave Eq. (5.1) has singularities at all points 
with s = l9 i-e. at the two foci and all intermediate 
points. If we include the singular behavior, the 
appropriate form of the wavefunctions for a parti-
cular m = (Jz) is 

y,<p) 
( H _ l ) J | m - l | exp {i(m-l)(f} y>t (£, rf) " 
( f * _ l ) l | m + ll exp {£ (m-H)9? } y 8 ( | , i ? ) 

i ( | * _ l ) l l « - l | e x p { i ( m - h ) c p } [ ' 

The Ansatz (6.1) is in analogy to the wavefunctions used in the nonrelativistic problem 2 2 ' 2 3 and allowance 
was made for the different coupling between spin and orbital angular momentum in the various spinor com-
ponents. One easily verifies that (6.1) in fact is an eigenfunction to Jz = Lz + h h oz: 

J z V ' m f o w ) - { - f f c 3 7 + K 1 " 1 1 = m h V m ( £ , f l , < P ) - ( 6 . 2 ) 

We now proceed to the consequences of (6.1) upon the Dirac equation, whereby we restrict ourselves to the 
case m > 0 . It is sufficient to explore the action of a - p on ,J/m(£, ij, rp) : 

(pr + ipu) [ U t s - l ) a w - » e x p {i{m-l)cp} / ( ! , > ? ) ] = ( « _ i ) i » + J exp { i ( m + £ ) ? } • (6.3) 
^ Is —Tj) 

(m-hW 
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— ih 
exp {i{m-%)<p} 

V 7 ! — ( ( 2 m + 1 ) | 2 + ( | 2 — 1 ) [ t ^ - V ^ 
V1 - T 

Pz [ - 1 ) : i m ±* exp { / ( m ± 1 ) ? } / ( £ , ] 
— ih 

R(i2-rj9-) 
( ^ - l ) i m ± i exp ( i ( m ± i ) ^ } 

(6.4) 

(6.5) 

Inserting these results into the expression (5.13) of the operator a - p and noting X = (I2 — 1) as abbrevia-
tion we are left with 

(<*-p),l/m(£,y,<p) =&mnmy>(f,ri) 

where the matrix operators fPm are [with ~ = exp (irp) X] : 
f l m - i 0 0 0 

<z> = 

and 

0 2>n + i 0 0 
0 0 i 2m-l 0 

. 0 0 0 

r 0 0 -7tz- -71 _ " 
0 0 — 71 + <TZ + 

-T Z - 71- 0 0 
.71 + 71Z + 0 0 

(6.6) 

(6.7) 

(6.8) 

Matrix formulation has been used to commute the differential operators n , 7iz + and with the ^-de-
pendent part of the wave function. These operators are 

- h 

71 _ = 

n. 

R(Z2 -v2) 
h 

R(r-
t>\ 

- T ) 
h 

Vl-tfie-zrz-tl (m-hW 
31 ' dt]J V 1-rf 

R(Z2-rj2) 

(jm + hW (6.9) 

Formulae (6.6) and (6.9) can be checked by elementary but rather cumbersome calculations. 
We are now ready to formulate the Dirac Eq. (5.1) in a more convenient way in prolate spheroidal co-

ordinates, where the variable y> is already split off : 

(ca-p+ßmec2-Z1 e2Jr1 - Z, e2/r, - E) W(r) (6.10) 

ji j , R o e2 (Z.+Z^J-JA-Z^rj 
= 4>m c 7Tm + ßme C- - — —— - E) xp(£, fj) = 0 R ( l 2 - ^ 2 ) 

Observe that the total spinor has the structure 

W(r) = Wm(Z,ri,<p) =0my>{5,ii) (6.11) 

and that two diagonal matrices ß) always com-
mute. 

Up to now the case m < 0 has been explicitly ex-
cluded. However, the Dirac equation must have the 
same eigenvalues for m = ±1 m | on grounds of sym-
metry arguments. A switch from m to — m corres-
ponds to a transformation of Jz to — ] z which can be 

represented by 

<p->-<p and oz-+— oz = U ozU+ (6.12) 

with the unitary matrix 

0 1 0 0 
l 0 0 0 
0 0 0 1 
0 0 1 0, 

With Eq. (6.1) one immediately checks that 

V - m i ^ V ) = U - c p ) . (6.14) 
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Besides, we need the transformation properties of 
the Hamiltonian under the transformation (6 .12) . 
The terms in (5.4) are invariant except a-p (e.g. 
U ß U + = ß). Next, (p —<p induces the changes 

Px + iPu < > P x ~ i p y , P z - ^ - P z (6.15) 

because (£2 — i f ) and change signs (the 
new system is lefthanded). A short calculation then 
shows that 

H{cp) =VH(-<p)U+ 

and we have proved that 

H(<p)W_m(^7],cp)=UH( 

= t / / / ( 

(6.16) 

' V, - <f>) <p)U+UVn 

(6.17) 
This means that m= ± J m ] yields the same eigen-
values and the eigenfunctions for negative m-values 
are most easily obtained from those for positive 
ones through the relation (6 .14) . Therefore, it is 
sufficient to solve the two-center Dirac equation for 
positive values m of the angular momentum projec-
tion onto the nuclear axis. 

VII. The Basis Functions 

Since the two-center Dirac Eq. (6.10) cannot be 
further separated and as no closed analytical solu-
tions are at hand, the eigenvalue problem may be 
attacked in two ways: Either by numerical integra-
tion of (6 .10) and imposing the proper matching 
conditions, or by diagonalization in a suitably 
chosen set of basis functions. We have chosen the 
latter one, because it facilitates the evaluation of 
matrix elements between states C9. 

First, we need a complete set of basis functions. 
In generalization of the functions first given by Hyl-
leraas 22 we take as spinor basis for the wave func-
tion ?/>(£, r}) in Eq. (6.11) : 

= e - x m / r + c ' ( x ) P l m + ̂ (y1)Xs, (7.1) 

where we introduced a new variable 

x=(£-l)/a (x^O) 

and the spin-dependenl parameter 

— 2 J S — 1 5 3 , 

+ i , 5 = 2 , 4 . 
The positive scaling parameter a in Eq. (7.2) will 
be determined further below [Equation (7 .11 ) ] . 
The exponential factor (7.1) accounts for the fact 
that we are dealing with bound state solutions which 

(7.2) 

(7.3) 

asymptotically for =>-oo decay exponentially. The 
Lna(x) are the associated Laguerre polynomials 
defined by 

7 > + a + l ) 
1F1{-n,a + l;x) Ln"(x) r(a + l)F(n + l) 

(7.4) 
and describe wave functions with asymptotically n 
radial nodes. The Pia{rj) are the associated Legendre 
polynomials, and for the internuclear distance 2 R 
approaching zero they go over into P"{cos0) of the 
one-center problem. Finally, the represent the 
four unit spinors with a one at the 5-th place and all 
other components zero, i.e. 

OzZs= - £ s h X s - (7.5) 

The indices n, I, s in (7.1) are defined on the set 

{(n, /, s) | n = 0 ,1 , 2 , . . . ; (7.6) 

l = m + es,m + es+l,... ; 5 = 1 , . . . , 4 } . 

From mathematical arguments it is known4 0 that 
the Lna and Pf form complete sets of orthogonal 
functions if n resp. I run over all allowed values 
(7 .6 ) . Therefore, the system (7.1) combined with 
the index set (7.6) forms a complete set of basis 
functions on the space 

(7.7) 

for square integrable wavefunctions. 
We return to the scaling parameter a introduced in 

Equation (7 .2 ) . Asymptotically for x—> oo the basis 
functions (7.1) show the behavior 

Vnis(^,ri)x—-?exp{-x/2} (7.8) 

which has to be compared with the asymptotic 
behavior of bound states of the Dirac equation to a 
certain energy E : 

V(\r l ) ' f ' - * ° ? exp { - ] / (m e c 2 ) 2 — £21 r\/hc}. 

(7.9) 

In this formula it was assumed that the potential 
vanishes at infinity 41. On the other hand, from (7.2) 
and (5.2) one has 

x —> | / a - > \r\/Ra for (7.10) 

so that by comparison of (7.8) and (7.9) one finds 

h 
2 R mP c 

/ E \21 -1/2 
1 -

2 \ mcc~ / (7.11) 

Thus a is determined by the energy of the bound 
state which is to be calculated. 
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In principle every arbitrary value of a could be 
chosen since the set (7.1) is complete for all values 
of a. In order to obtain rapid convergence of the 
numerical procedures applied, however, it is con-
venient to take such a value for a according to Eq. 
(7.11) with a good estimate of the expected energy 
E of the state under consideration. Then a has the 
same value for all the basis functions in (7 .1) . If 
one is interested in many bound states with very 
different energies at the same time, it is possible to 
take different values a„i for the basis function y>„is 

according to the estimated energies Enis. 

To carry out the diagonalization of the Dirac 
Hamiltonian (6.10) in the basis (7.1) we need to 

This matrix does not reduce to a diagonal unit 
matrix, because the basis functions (7.1) are not 
orthogonal due to the additional factor & m and 
the volume element in spheroidal coordinates 

Due to the simplicity and the suitable choice of 
the basis functions, all matrix elements (7.14) and 
(7.15) can be evaluated analytically. When the 
same scaling parameter a is used for all basis func-
tions (7.1) the evaluation may be effected by reduc-
ing the matrix elements with help of recursive rela-
tions to the orthogonality relations for the poly-
nomials Lna(x) and P"(t]). This is shown in detail 
in Appendix B. On the other hand, when a variable 
scaling parameter a,a is used, the matrix elements 
can be evaluated exactly with finite quadrature for-
mulae for resulting integrals with exponentially 
decaying integrands. Since only polynomials enter, 
this method may be called analytic, too. Details for 
this integration scheme, which is better suited for 
numerical procedures than the resursive methods, 
are found in Appendix C. 

By deliberate chosen scaling parameters a„i the 
basis functions will not form a complete set. This is 
not very important in numerical calculations since 
the basis has to be truncated to finite dimensions, 
anyway. For theoretical considerations and coinci-

know the matrix elements of the Hamiltonian with 
the basis functions. Writing (6.10) in the form 

Hrc V = tf TC W = E <Pm v = E W (7.12) 
one might be seduced to multiply with the operator 
(I>mX from the left before taking matrix elements. 
This is possible because is a regular matrix for 
all 14= 1. However, this would complicate the diago-
nalization procedure, since 0m1 arid Htc do not 
commute (this is the reason for Htc 4= ^ t c ) • It is 
well known that B = AC is a hermitian operator, if 
and only if A and C are hermitian and commute 
with each other. Therefore H?c = ^m1 H t c is 
not a hermitian operator, and we have to take matrix 
elements of the full H^c ? i»e. 

(7.13) 

(7.14) 

(7.15) 

dental convergence tests, however, one would prefer 
a constant scaling parameter for all basis functions, 
ensuring completeness in principle. 

VIII. Extended Nuclear Charge Distributions 

The importance of the finite nuclear radius be-
comes obvious when the electronic states in the field 
of one point nucleus are considered. When the 
central charge Z e grows continuously, the binding 
energy of all bound states keeps increasing, until at 
Z = a - 1 ä ; 137.03602 no eigenstates of angular mo-
mentum / = l / 2 exist42. Of course, the electrons 
occupying these states cannot disappear, if the nu-
clear charge grows beyond 137 e. In fact it can be 
shown that for nuclei with a finite charge distribu-
tion the bound states with j = 1/2 exist also for 
Z a > 1 43, 5. The actual binding energy is very sensi-
tive to the nuclear radius Q. 

There are immediate consequences for the two 
center problem. Even if every single nucleus is 
below the critical value Z a = l , it is possible that 
(Z1 + Z 2 ) a > 1, e.g. I+U gives Z1 + Z 2 = 1 4 5 and 
experiments with similar systems have already been 
done n . As the internuclear distance 2 R is shrinking 
to zero we obtain as limit just the disappearence of 
the 7 = 1 / 2 states, if the two nuclei are treated as 
pointlike. It has been shown earlier41 that in this 

HTC=$mH%c<p-l = <I>, c nm + ß mc c2 
e2 (Z1 + Z 2 ) | - ( Z 1 - Z 2 ) i / 

R 
- l 

The matrix elements are 

< n w | / / T c i n ^ > = {wnrA v s . ) 
The right-hand side of the Dirac equation gives rise to the matrix elements 

( Xl'«>l>*> | E I T%s) = E ÖS'S ( vC ' iv l I Wnls) . 
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case the binding energy of the deepest bound stales 
grows beyond bound proportional to l/R, i.e. di-
verges for R—> 0. Notwithstanding this divergence 
for small internuclear separations, the discrepancy 
between states of pointlike and those of extended 
nuclei will be large. Therefore we are compelled to 
replace — at least for very heavy systems and small 
separations — the 1/r-Coulomb potential by the 
potential of finite charge distributions. 

In general it is impossible to evaluate the matrix 
element with a cut-off Coulomb potential analytically. 
In order to keep the numerical computations small, 
we proceed as follows: Denoting the exact 1/r-
potentials by Vc and that of extended nuclei by 
Vcx , we may write 

Kx(rl9r2) =Vc(r1, r2) + [Vex(ri, r2) - Ve(rlt r2) ] . 
(8.1) 

The term in brackets vanishes everywhere, except 
inside the two nuclear volumes, if the nuclei are 
spherical: 

(>! and q2 are the two nuclear radii. The matrix 
elements 

(8.3) 

are known analytically from the considerations in 
Chapter VII. 

It only remains to evaluate 

(VnTs | VeArt, r2) - Ve(ri, r2) \ • (8.4) 

The potentials of the two nuclei superpose linearly — 
as long as the nuclei do not overlap — and we may 
restrict ourselves to point out the method for one 
nucleus. The nuclear radius be . Then for rx < qx 

Ave have 

( r i , r2) - F c ( r t , r2) = VNi (rt) + Zt e2/^ 

vst[R(t + l)l + 
Zt e2 

R 

{ ( r n r2) I r i = £?i or r2 ^ ( ? 2 } . (8.2) 

where = (Zt e2/R)v$1 was used. Introducing 
ßi = Qi/R> nuclear volume is defined in spheroi-
dal coordinates 

With the basis functions from Eq. (7.1) the matrix element (8.4) becomes 

l ) " ! + fs • exp { - I ( x n r + xnl)} • L\r> ( ay r ) M 

1 

- 1 + /?, ß , - v 

2 JiR2 Zx e2fdVfdHZ2- V2)(Z2 
- l l 

(8.6) 

(8.7; 

(r))PT+e' ^ (R(£ + y)) + 

We have used the symbol es (7.3) and accounted for 
the possibility to employ variable scaling parameters 
a„i. The simplest choice is that of a homogeneous 
charge distribution inside the spherical nuclei, which 
leads to , , R 

v ^ U l ) = - 7 
2 Qy 

3 - (8.8) 

This potential (8.8) has been applied in all our 
calculations where the finiteness of the nuclei was 
taken into account. 

IX. Numerical Procedures 

Any numerical method for the solution of ihe 
matrix form of the twocenlre Dirac equation begins 
with cutting off the basis and reducing the involved 
matrices to finite dimensions. Before investigating 
the convergence of this procedure we give the meth-
od employed for carrying out the search for eigen-
values and eigenstates of the matrix equation. 

H\y>)=EN\ip) (9.1) 

where H is the matrix of the Hamiltonian and N the 
non-diagonal normalization matrix of the scalar 
products of the basis functions. N could be made 
diagonal by first orthogonalizing the basis functions 
with the method given by Schmidt. It is, however, 
more convenient to keep the non-orthogonal basis 
and solve the problem by first diagonalizing N and 
then H. 

We proceed as follows: N is certainly hermitian, 
since it is the matrix of scalar products. Therefore, 
we can find a unitary transformation U, such that 
U N U+ N''is diagonal with only real elements: 

H'\y/) = (UH U+) U\y)=E(UNU+)U\ y>) 
= EN' W ) . (9.2) 

//', N' and ' 1/') are the matrices and vectors after 
transformation. Because the scalar product is by 
definition positive definite, N' has only positive ele-
ments. Therefore there is a diagonal, positive real 
matrix S, such that 

SS = N', 
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and S is regular (our basis is linearly independent). 
Then the inverse matrices N and S - 1 exist and 
from (9.2) becomes 

S^H'S~1S\xp') =ES-iN'S~1S |i/> . (9.3) 

and N commute being diagonal and with 

H" = S'1 H' 5 " 1 = S(N~1 H')5_1, 
I xp") =s I xp) 

we are left with an eigenvalue problem involving 
only one matrix 

H"\xp")=E\xp"). (9.5) 

Since H and H' are hermitian, so is H": 

(H")+ = (S-1 H' S'1)+ = S~1+ H'+ S~i+ 

= 5 _ 1 H' = , (9.6) 

because is diagonal with only real elements. 
Now one can find a unitary transformation V 

diagonalizing H": 

H'"\xp'") = VH" V+V\xp") 
= EV\xp") =E\xp") 

(9.4) 

Altogether we have 

E'" = V 5 _ 1 U H U+ S"1 V+ 

= V SUiN^H)^ S-1 V+, 

l y > ' " ) = VSUlv) 

(9.7) 

(9.8 a) 

(9.8 b) 

and H " contains in the diagonal the eigenvalues of 
the two-centre Hamiltonian. 

The matrix S plays the role of a non-orthogonal 
transformation required to pass from the non-ortho-
gonal basis functions to the necessarily orthogonal 
eigenstates. U and V are additional rotations. 

orthonormal 
basis 

IV"> l O 
— 
'eigenstates 

orthonormal • 
diagonalizing H 

IW> 
two-centre 

basis 
orthogonal 

basis 

Fig. 2. Schematic explanation of the diagonalization proce-
dure employed. Three steps are involved to obtain the 

eigenstates in the non-orthogonal two centres basis. 

The two numerical diagonalizations required for 
the method sketched above were carried out by a 
subroutine utilizing the Jacobian method 44, with an 

accuracy of 1 part in 106. Most computations were 
performed in a basis containing 100 vectors. This 
usually assured satisfactory convergence. In the 
united atom limit the accuracy was of the order of 
0.1 per cent, deteriorating for growing internuclear 
separation. On the Frankfurt Univac 1108 the com-
putation of the matrix elements took 4 — 8 seconds, 
the subsequent diagonalization 90 — 200 seconds, 
depending on the special molecular system. 

X. General Features of the Level Diagrams 

a) Symmetric Systems 

Molecules with two nuclei of the same charge 
show energetically degenerate states belonging to 
the two identical separate atoms at infinitely large 
separations. During the approach of the two centres 
all states are lowered by —Ze2/R in energy, which 
corresponds to the expectation value of the perturb-
ing potential in first order. When the separation 
distance becomes comparable in size to the dimen-
sions of an atomic state under consideration, the 
state is polarized. This transition is smooth, of 
course. 

If there are several degenerate states, any inter-
action will spread them in energy. In the relativistic 
case this is true for states of same total angular 
momentum /', e.g. 2sj/9 and 2pi/2 - The interaction 
between them is up to first order (o0 is the Bohr 
radius) 

AE = (Z e2/R2) (2S1 / 2 \rY10\ 2p1 /2) ^ V3(e2/R) a0 . 
(10.1) 

This is the same as for the linear Stark effect of 
atoms in a static electric field. For light systems, 
the 2pi/o — 2p3/2 fine structure splitting is much 
smaller than the interaction due to the second Cou-
lomb centre. In this case it may be regarded as 
degenerate, too, and one retains the nonrelativistic 
size of the linear Stark effect 

AEnr = 3 (e2/R2)a0 . (10.2) 

In general, the following picture is valid: 
The operators ] z and ß P, i.e. axial angular mo-

mentum and parity, commute with the Hamiltonian. 
All molecular states exhibit good parity and good 
angular momentum around the axis through the two 
centres. States of different quantum numbers 
m = (Jg) or of opposite parity cross without inter-
action. States that do not differ in one of these 



14 B. Müller and \V. Greiner • The Two Centre Dirac Equation 14 

quantum numbers must not cross (for details see 
Section X I ) . 

The commonly accepted nomenclature for the 
molecular states makes use of the quantum numbers 
that are assumed in the united atoms limit /? —> 0, 
besides the magnetic quantum number m and parity 
(g = gerade = even, u = ungerade = odd ) . The lowest 
molecular state is always the ls i / 2a g state, above it 
the 2p 1 ; oa u state. For R—>-oo these two states are 
degenerate, they pass over into the symmetric and 
antimetric superposition of the two 1 s-states of the 
individual atoms, respectively. As the 2 pi/o-state is 
below the 2si/o-state when the nucleus is treated as 
finite, these two molecular states never have crossings 
with other states. 

The molecular states with high angular momen-
tum, i.e. the d- and f-states, are in general lowered 
in energy when the two centres approach, but al-
ready at fairly large distances they rise again 
steeply so that they may be bound even weaker in 
the compound system than in the separated atoms. 
This phenomenon leads to the idea of promotion of 
molecular states1, which is of importance for the 
qualitative explanation of reaction cross sections. 

b) Asymmetric Systems 

Asymmetric molecular systems differ from sym-
metric ones in principle by the lade of parity con-
servation. Consequently, the molecular states can 
only be classified according to their axial angular 
momentum m, and only states with different m are 
allowed to cross. 

For simplicity we assume Z 1 > Z 2 . The only 
general feature of all asymmetric systems is that the 
lowest molecular state lsi /2a ends up in the lsj/2 
state of the heavier partner. The scheme of the 
higher molecular slates depends upon the ratio 
Zx : Z 2 . If this ratio is smaller than 2 ] / l — Z2 2 a2 : 1 
the 1 s-state in the Z2 atom is stronger bound than 
the 2pi/2-state in the Zx atom. (For light molecules 
the ratio is just 2 : 1.) Then the 2 pj/o o-state, i.e. 
the second lowest molecular level, ends up in 
the 1 s-state of the lighter partner. Otherwise, for 
Zx : Z 2 > 2 ] / l — Z 2 2 J2 : 1 the molecular 2 pi/2 O level 
connects the 2pi/2-states of the compound system 
and the heavier partner atom. 

It is clear that the level scheme for the higher 
states of the intermediate molecule allows for a great 
number of possible combinations according to the 
ratio Zx : Z 2 . A qualitative scheme can be construct-

ed in every case from the following arguments 4 5 : 
(1) The axial angular momentum is conserved; 
(2) the molecular states tend to connect states with 
the same number of radial nodes in the two asympto-
tic limits R—>~ 0 and R-+<x>; (3) states with the 
same symmetry are not allowed to cross. 

It is obvious that the rule (2) has to be given up 
when (3) applies, i.e. when an adiabatic level 
suddenly changes its configuration. The level schemes 
which are obtained by obeying prescription (2) even 
if the noncrossing rule has to be violated are called 
diabatic. A sophisticated theoretical justification for 
this point of view was attempted by Smith 3 . 

An interesting phenomenon occurring in slightly 
asymmetric systems (Zx : Z 2 « 1) should be men-
tioned. Upon approach of the two Coulomb centres 
the K-shell of the heavier partner is lowered by 
— Z2 e2jR in energy, whereas the K-shell of the 
lighter partner is lowered by —Z1e2/R, i.e. a greater 
amount. Therefore the two molecular orbitals 1 s o 
and 2pi/2o approach each other when R is decreas-
ed. As soon as R becomes comparable to the K-shell 
radius, first order perturbation theory fails, higher 
order terms become important and the separation 
energy between the two states grows again. This 
pseudocrossing will be further discussed in Sec-
lion XI . 

XI. Level Crossings 

The most interesting features of two centre level 
diagrams occur at the crossing point of two mole-
cular states or at points where they approach each 
other very closely. The well-known anti-crossing 
rule of Neumann and Wigner 46 states that in general 
it is impossible to reach the coincidence of two 
energy eigenvalues by variation of one real parame-
ter: More precisely, one needs at least two real 
parameters when the Hamiltonian is real and three 
whenever it is complex hermitian. " In general" 
means that it is only valid for states with the same 
symmetry properties. 

In the nonrelativistic two centre Coulomb problem 
an additional constant of motion exists, so that the 
v. Neumann-Wigner rule is inapplicable. The mole-
cular states can cross as they like3 5 ' 36' 47. In Sect. IV 
we have seen that this is not the case for the rela-
tivistic problem, therefore the non-crossing rule 
applies. In Sect. X it has already been mentioned 
that crossings are allowed for states with different 
{ / . ) = m and, in the case of symmetric molecules, 
for states of opposite parity. 
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However, it is worthwhile to investigate two prac-
tical examples. One is the avoided crossing of two 
o-levels of the same parity in the molecule Br —Br. 
We select the 2 sj/2 o and the 3 dg/o o states which 
approach at about 7500 fm internuclear distance 
(see Fig. 14). Figure 3 shows on a large scale the 

E' 
9.0 

9.5 

10.0 

I k e V ] 

2 s r 

3d̂ 2tr 

Ej'IRl-EjlR) 
= 295 fm 

6 5 0 0 7000 7500 8000 R [ f m ] 
Fig. 3. The avoided crossing of the 2sa and 3d3 / 2o states 
in the B r + B r quasimolecule at /? = 7450 fm. The repulsion 
between the two molecular levels is a purely relativistic 

effect. 

region between 6200 fm and 8200 fm distance. The 
crossing is actually avoided. Remembering that this 
does not occur for the corresponding non-relativistic 
states the repulsion must be due to one of the rela-
tivistic corrections*. These are48 the Darwin term 

8 \ m c ) 8 \ i m c 

X ( ^ W + ^ W ) , ( H . l ) 

the relativistic contribution to the kinetic energy 
[E-mc2-V(r)]-

2 m c 2 

(E-mc2)2 (.E-mc2) (Zte* 
9 

Til C" 2 mc2 

/j4 

2 m 
Zj I 

. Zo e-
"r ~~ 

r 2 

(11.2) 
and finally the spin-orbit coupling 

-[(grad V(r))xp] 
4 m r c 

e2h or 

4o o m- c~ 
ZL J , Z2 j _ 3 + _ 3 (11.3) 

Unfortunately, all three interactions contribute to 
the repulsion of the levels, since both (11.1) and 

* Also, for very heavy systems, the finite nuclear extension 
has an effect in this direction. 

(11.3) as well as the third term in (11.2) do not 
belong to the class of separable (non-relativistic) 
two-centre potentials that were given in Equation 
(4.4). 

Moreover, they are of the same order of magni-
tude (250 eV) for the states under consideration, 
viz. the 2 s o and the 3 d.i/o o state. 

Our numerical finding proves again that the Dirac 
equation cannot be separable for a two-center poten-
tial (see also Chapter IV) . Comparing the repulsion 
of the two states with their energy slope we find that 
the change of the symmetry of the states happens 
within 

r = 
AE 

[EAR) -E,(R)] 

295 fm (11.4) 

Instead of the binding energy we could look at the 
symmetry properties of the two wave functions. 
Within the short range of the avoided crossing the 
two states can be represented by 

| 1) = sin <p |2so) -j- cos fp |3do) , 
| 2) = cos cp\ 2so) — sin<p 13do) (11.5) 

with rp being a function of R. |2so ) and | 3 d ö) 
denote not the exact eigenfunctions of the adiabatic 
Hamiltonian but the wave functions with unchanged 
symmetry as it is before the crossing (i.e. the dia-
batic wave functions). <p varies between 0 and n/2 
when R runs over the crossing. This phase change 
of a/2 is characteristic for such an avoided crossing. 

The numerically calculated phase cp{R) is shown 
in Figure 4. The center of the phase change is at 
7450 fm and the width (change of fp by a/4) is 

7800 8 200 R l f m l 

Fig. 4. The mixing phase between the adiabatic 2s0 and 
3d3/2s states in B r + B r as a function of the internuclear 
separation R (cf. Figure 3 ) . The total phase change is 90° . 

Diabatic states are obtained by inverting the rotation. 
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290 fm, again. This confirms the results from the 
energy diagram. 

Most avoided crossings in two center diagrams 
are of the same type as the 2 s a — 3 d3/2 o pseudo-
crossing in Br —Br. In slightly asymmetric systems, 
however, a completely different phenomenon is ob-
served. Figure 5 shows that the 2 pi/2 o and the 1 s o 
molecular states in Br — Zr (Zx = 35, Z2 = 4) ap-
proach at an internuclear distance R ^ 104 fm. They 
do not cross but are repelled, which is in accordance 
with the system being asymmetric and the slates 
having no good parity. That this comes about be-
cause the heavier charge is acting on the lighter atom 
and vice versa was already explained in Section X 
(6). 

In contrast to what we had for a pseudo-crossing 
in a symmetric system [see Eq. (11 .5 ) ] wilh the 
mixture phase cp varying between 0 and jt/2, we 
now have on the one side of the pseudo-crossing 

|l ) = | l s o ) , 

and on the other side 

1 

2 ) = | 2 p 1 / 2 0 ) (11.6) 

. l ) = ^ ( | l s o ) + | 2 p 1 / 2 o ) ) , 

|2) = ^ ( | l s o ) - | 2 P l / 2 o ) ) . (11.7) 

This can be expressed by the Eq. (11.5) but the 
phase (p varies between 0 and JT/'2. The cause for 
this behaviour can be seen as follows: When R 
increases, Fig. 5 shows two states j 1 s o ) and 
2 pii-2 o ) of about good, but opposite parity, since in 

the system Br + Zr we still have (Zx — Z2 ) ^ Zx + Z 2 . 
As R increases up to a distance of about R = 104 fm 
the recoupling to the two atomic K-states of Br and 

- 2 5 

-30 

i [keV] 

-
1 " 

"is (Br) 

1 
1 
! AE • • 0.87 AE^ | mm 00 

X 1 ! 1 

i 

i 
i 

i i M I i i I i i 

ls(Zr) 

i t I _ 
15000 20000 25000 R tfm] 

Fig. 5. The pseudocrossing of the lsa and 2p1 /2a states in 
Br + Zr. The repulsive interaction is nonrelativistic in origin 

and very large compared to the one acting in Figure 3. 

Zr takes place. These are essentially sum and differ-
ence of the two molecular states we started with. 
(The argument is only exact in symmetrical systems, 
but there the two K-shells are degenerate and every 
linear combination is an eigenstate. Only the parity-
nonconserving part of the interaction in asymmetric 
molecules forces to the recoupling of states.) 

In a perturbation theory approach, one can show 
that the energies of the 1 s o and 2 pi/2 o states will 
be 

E j/2 = Ea 
R 

± Z j — Z 2 \ - Z e2 \2 
R 

R 
+ 1 + — + 

R2 

3 a 
exp 

2 R 
E ̂  

1/2 

a )\ R 
(11.8) 

with Z = a (Zj + Z2) and a = h2/Ze2m being the 
Bohr radius of the Z atomic K-shell, 0 being 
its binding energy. The difference Ex — E2 is easily 
seem to have a minimum when the exponential term 
begins to balance the potential term in the square 
root. Numerical evaluation of (11.8) indicates that 
this minimum is attained at / ? ~ 1 5 a and is 10 to 
15 percent lower than the separation of the K-shells 
in the single atoms. The relative effect is larger with 
AZjZ and happens at smaller separation distances. 

XII. Spin-Orbit-Interaction for R - > 0 

In the limit of vanishing internuclear distance R 
the molecular states of the two centre Dirac equa-
tion become atomic states with good total angular 
momentum j2. All electronic states with an orbital 
angular momentum higher than zero, i.e. p, d, f, etc. 
states, are split up into a j = l—i and a ;' = / + ! 
states. This splitting is due to the spinorbit inter-
action r 3 (11.3) . 

When the two nuclei are torn apart the potential 
becomes a two centres potential which deviates from 
the strictly atomic potential by the admixture of 
angle dependent terms (we assume a symmetric 
system) : 

Z ^ 2 Z e 2 

2\r-R\ 2\r + R\ 
OO D21 

= - Z e 2 2 c o s f l ) . (12.1) 

This expansion is valid in the region r ^ R. The 
lowest order correction to the atomic potential is 
therefore a quadrupole interaction 

Hqv= — Ze2 (7?2 /r3 )P2 (cos d ) . (12.2) 



W e now want to investigate the effect of this poten-
tial on atomic wave functions with spin j 

Wf)=fi{r) 2 ( / | / | / t - m m / i ) y / ' - m f (12.3) 
m 

which are eigenstates to a Hamiltonian with spin-
orbit coupling H = HÜ + Hso . If we have two states 
I' / ' f- ' /t) and they are initially separated 
by 49 * 

E f + i - ^ = a ( l + 1 ) (12.4) 

where a is an abbreviation for 
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This gives for the 2 p-states 

17 

(ZaY 
2n3Z(Z + l ) ( Z + |) 

(12.5) 

The matrix elements of H Q P with these wave func-
tions are 

i TT i , „ 
(vY\HQp\vf) = - 2 a 

X 
(2/+!)[/(/+!) — 3(/f2+ i)] + 12 ( j — I) fr 

( v f - i l ^ Q p h / ^ + i ) = 4 a | 

(2 / + 3) (2Z + 1) (2 Z— 1) 

Rmc\2 

X 

(12.6) 

(12 .7) 
(2Z-h3) (2Z + 1) ( 2 Z - 1 ) ' 

For an illustration we choose the 2 p wave functions 

I 1 ) = ' | 2 pi/2,1/2) > 1 2 ) = ] 2 p3 /2,1/2) 

and 13) ,= 12 p3/2,3/2) • 

For these Eqs. (12.6 and 7) yield: 

( # Q r ) i i = 0 , 
(//QP) 22 = - § a {R m c/k)2, 
(#Qr)33 = I a{Rmc/h)2, 

and the only non-vanishing interaction is 

(#QP) 12= I 
2]/2 iRmc 

— _ — a 

(12.8) 

(12.9) 

Perturbation theory for two nearly degenerate 
states50 gives as eigenstates to the Hamiltonian 
H = H q + H sp + //QP : 

E\,2=h + El-i + (#Qp)ll + (^qp) 22] 

± ft [ # + » - E ? - i + ( / / Q P ) 2 2 - ( / / Q P ) N ] 2 

+ (^Qp) i2 2 } 1 / 2 . (12.10) 

E\,2 = E°- a Q-

X 
5 

6 q'2 

25 
16 o4 (12.11) 

where £ ° = [ - ( Z a ) 2 / 2 n 2 ] m e c 2 is the (non-rela-
tivistic) energy of the n p-states without spin, and 
Q = Rm c/h. An expansion for 1 yields 

4 
E t = E° 

e 2 = ( e ° -

and for the ^-state simply 

~T " e 

L 2 • 
~5~ 

+ y a - 2 

(12.12) 

(12.13) 

(12.14) 

The corresponding wave functions are determined 
by 55 

I V i ) - I V/ -1 /« ) c o s ß + \Wl*ili) s i n ^ , j 
I V2) = -\V1-U2) sin ß + I ^ + 1/2) s i n ^ J 

with 

t a n 2 £ = 2 ( f f Q p ) 1 2 / [ ( f f Q p ) n - (^qp)2 2] • 
(12.15) 

The two limits show that the wave functions, which 
are initially states of good total angular momentum 
r-(Q< 1 ) : 

I v i ) =|2pi/2,i/2> > IV2) =|2p3/2.i/2> (12.16) 

are decoupled in the spin components by the quadru-
pole interaction and for Q 1 one has wave func-
tions to good Z2 and s 2 : 

I V i ) — 12po) j \W2) =\2pjtl) . (12.17) 

This behaviour is illustrated in Fig. 6, where the 
eigenstates in perturbation theory and the asympto-
tic states for Q 1 and Q 1 are drawn. The tran-
sition between the regions where spin-orbit inter-
action resp. quadrupole interaction dominates is 
independent of the system at the Compton wave-
length of the electron. In Fig. 7 we show how the 
wave functions change from those of good j2 to 
those of good Z2 due to the change from a one-centre 
to a two centres potential. 

For asymmetric systems one also has to take into 
account a dipole interaction term in Eq. (12.1) and 
the 2 p states couple to the 2 s state in addition. 
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Fig. 6. The spin-orbit angular momentum recoupling for 
the 2p molecular states at small internuclear separations. 
For symmetric systems no coupling to the 2sa level occurs. 
The internuclear separation scale is independent (to lowest 

order) of the system involved. 

Fig. 7. The contributions of the various good j2 resp. good 
I2 atomic states to the lowest one of the 2p molecular states 
in the angular momentum recoupling region. For small 
separations R the state is an eigenstate of the total angular 
momentum whereas for large R it becomes eigenstates of 

good orbital angular momentum. 

XIII. Critical Distance 

The discrepancy between the solutions of the 
relativistic and the non-relativistic wave equation 
becomes more and more qualitative when the elec-
trons are very strongly bound. This is most obvious 
if ( Z 1 + Z 2 ) a > 1. For a point charge Z a > l the 
Dirac equation does not yield any bound /' = 1/2 

states. If the nucleus is divided into two parts Zj 
and Z 2 , this singularity disappears for every finite 
distance R between the fragments. However, when 
R->0 the binding energy of each ; = l / 2 state in-
creases beyond bound as (see Ref. 40 ) . 

It has been explained before (Sect. VIII) that in 
this so-called over-critical case a point charge is an 
unallowed idealization of the physical nucleus. We 
have assumed a spherical constant charge distribu-
tion inside the nuclei which leads to a harmonic 
oscillator cut-off of the Coulomb potential (8.8) . 

Fig. 8. The "d iv ing" molecular states for the system U + U 
(1 ) , U + Cf (2) and C f + C f (3 ) . For the l s o levels the 
point nucleus solutions are indicated by broken lines. In 

the region of interest the differences are small. 

Figure 8 shows the two lowest molecular states 1 s o 
and 2 pj/2 O for three over-critical systems (U —U, 
U — Cf, Cf — Cf) . The states have only been calculat-
ed down to the Coulomb barrier (/? = 1 5 f m ) , since 
upon further approach the two nuclei overlap and 
the nuclear wave functions will change. The charge 
distribution then becomes time-dependent as a func-
tion of scattering energy and compression modes 
have to be taken into account 51. 

The critical distance Rcr, where the binding 
energy of a state equals 2 me c2, is of vital impor-
tance for the positron autoionization cross-sections 
in heavy ion collisions 19. The precise values of Rcr 

for homogeneously charged nuclei with radius r0 = 
1.2 fm • A''' are contained in the following table: 

Äcr ( lso) 7?cr(2pi / 2o) 

u - u 34.7 fm 
U - C f 47.7 fm 16.1 fm 
C f - C f 61.1 fm 25.4 fm 

Due to non-adiabatic effects the 2pi/o O level plays 
also a role in positron creation even if it does not 
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completely reach the negative energy continuum, as 
e.g. in U - U (see Ref. 52) . 

In Table 1 we present the wave function 1 s o of 
the U + U system at the critical internuclear distance. 
The n = l = 0, 5 = 1 component is dominating, which 
fact ensures good convergence of the basis set. 

R [ fm ] 

n I R = 3 4 fm 

> 1 

> 2 

.53854 
- . 2 7 4 4 9 

.14959 
- . 0 9 2 7 1 

.09278 

- . 0 2 1 4 4 
- . 0 0 3 9 8 
- . 0 0 0 2 6 
- . 0 0 3 1 4 

.00930 

- . 0 0 6 8 3 
- . 0 2 2 1 7 

.03615 
- . 0 7 7 6 7 
- . 0 1 8 0 5 

.02143 

.00948 

.00269 

.01700 
- . 0 1 6 1 1 

.00223 
- . 0 2 3 7 5 

.05071 
- . 0 4 9 6 7 
- . 0 4 4 9 4 

Energy (keV) - 1 0 2 6 , 7 

Table 1. The l s ö wave func-
tion at the critical distance 
R — 34 fm for the quasi-
molecular system U + U. All 
nonvanishing components are 

given. 

XIV. Level Diagrams 

So far we have discussed the theoretical details of 
the relativistic two centre problems and given a pro-
cedure to solve for the electronic bound states. In 
this section we present some numerical results for 
selected molecular systems. For light systems 
( Z j , Z 2 < 2 0 ) the relativistic corrections to the 
binding energies are very small. Since there is no 
hope that inner-shell molecular systems can be 
studied for more than 1 0 - 1 2 s e c in ion-atom colli-
sions, there is an inherent experimental uncertainty 
of 10 — 100 eV to any such state. This covers up all 
relativistic effects except spin-orbit coupling 53. 

The lightest system we study, Ni + Ni, is of inter-
est in molecular K-radiation measured by Greenberg 
et al.1 5 (Figures 9 — 11). The general features of 
this symmetric system have been discussed in Sec-
tion X a. The overall level scheme (Fig. 9) shows a 

30 
E [keV] 

Fig. 9. The o- and ^-molecular levels of the Ni + Ni, (Z1 = 
Z2=28) system in double logarithmic scale. 

typical rearrangement region for the higher mole-
cular states in the region 104 — 2 x 104 fm, which is 
shown in detail on a linear scale in Fig. 10. Charac-
teristic are steeply moving states and many allowed 
and forbidden crossing points. At high collision 
velocities (£iab ^ 1 MeV) it can be expected that 
diabatic states would give a more physical descrip-
tion of this region. They can be constructed from 
the adiabatic states using a unitary transformation, 
viz. the inverse rotation given in Eq. (11.5) (see 
Ref. 54 ) . So, although the adiabatic states may not 
have great physical significance, they may serve as 
a practical basis to construct diabatic states. From 
/ ? ~ 1 0 4 f m down to / ? ~ 1 0 2 f m the newly formed 
molecular states approach energetically their united 
atom limit. Typically one then has a long 
( ~ 1 0 0 0 f m ) "runway" during which the energies 
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Fig. 10. The rearrangement region in the Ni + Ni quasi-
molecule. The scale is linear. 

stay almost constant. From this region one would 
expect to see the bulk of higher state MO-radiation 
(R <: 104 fm) . The situation is a little different for 
the lowest molecular states. The lsa level reaches 
its united atom limit only at ca. R = 500 fm, if an 
unremovable 3 keV uncertainty due to experiment 
is attributed to the level. In a Ni - Ni collision this 
Avould mean that the united atom (Ba in this case) 
limit can be realized for a time of approx. 3 x 1 0 _ 2 ° 
sec. A rough estimate indicates that this time 
should scale as Z - 1 - 5 . This part of the level dia-
gram is shown in greater detail in Figure 11. 

All these comments hold with only slight quanti-
tative adjustment for the energies and separations 
in the Br + Br system (Figures 12 — 14) . One major 

Fig. 14. The rearrangement region of the Br + Br system. 
The scale is linear and only the higher er-orbitals are shown. 
Prominent features are the strongly promoted 3d3/2<7 and 

4 f V 2 0 molecular states. 

difference between these diagrams and the cor-
responding nonrelativistic ones is the fine-structure 
splitting between the 2p1/2o and 2p3/2o, zi states in 
the united atom limit (see also Sect. XI I ) . This 

Fig. 13. The lowest 9 o-states (solid lines) and four jr-states 
of the Br + Br quasimolecule. The separation between the 
corresponding o - and .T-states is very small for the p-states, 

but larger for the d-states. The distance scale is linear. 

Fig. 12. The 16 lowest o-levels of the B r + B r ( Z t = Z 2 = 3 5 ) 
molecular system in double-logarithmic scale. States of op-
posite parity are allowed to cross. The avoided crossing 
between the 2sa and 3 d s / 2 o states is magnified in Figure 3. 

Observe the 500 fm runway for l sa level. 

Br »..Br cr - and jt-Orbitals 

A, 

•Lar 

4d_ 
55 3 

3pvz 3d 
3s 3pi/2 ä 

td»jO-

3dijir 
3dijir 
3s 

2p*z fl-
ip^ tr 

2p Y20-

- o-levels 
-ir-levels 

Fig. 11. The asymptotic united atom region for the Ni + Ni 
system. 
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Table 2. The l s o wave function of the Br + Br quasimolecule at 8 internuclear separations from 200 to 10000 fm. Only 
the large (5 = 1,2) components of the expansion are given. Observe how the / = 2 , 4 components increase as the separation 

R grows. 

n I s R= 200 500 1000 2000 3500 5000 7000 10000 

0 > .08636 .17958 .26899 .35673 .38923 .39237 .35003 .37902 
1 .00151 .00660 .01337 .02161 .02597 .02120 .02106 - . 0 1 9 9 7 
2 ' 0 .00036 .00121 .00269 .00292 .00536 .00643 .00567 > — .00786 
3 

' 0 
.00010 .00033 .00064 .00108 .00188 .00261 .00327 - . 0 0 3 7 8 

4 .00003 .00011 .00021 .00035 .00061 .00097 .00141 - . 0 0 1 5 6 

0 .01663 .04029 .07148 .10325 .17445 .21139 .25252 .28725 
1 .00233 .00852 .01657 .02800 .03749 .04096 .07768 - . 1 9 9 0 1 
2 ' 2 1 .00057 .00222 .00447 .00701 .01444 .02382 .04971 - . 0 8 1 6 7 
3 .00018 .00071 .00146 .00315 .00647 .00961 .01829 - . 0 2 1 8 8 
4 .00007 .00024 .00054 .00116 .00247 .00447 .00745 - . 0 0 7 8 0 

0 - . 0 0 9 5 9 - .02660 - . 0 9 4 2 2 - . 2 0 2 5 6 - . 3 3 9 1 2 - . 4 3 7 2 4 - . 5 5 6 9 4 - . 1 8 6 7 2 
1 .00224 .00795 .01425 .02899 .05253 .08751 .20825 - . 4 6 4 2 8 
2 4 .00046 .00187 .00380 .00842 .02441 .05464 .15504 - . 2 7 4 2 5 
3 .00013 .00054 .00113 .00337 .00903 .01341 .02623 - . 0 2 8 7 9 
4 > .00004 .00018 .00038 .00111 .00306 .00593 .00827 - . 0 0 8 1 0 

0 > - . 0 0 0 5 0 - .00260 - .00794 - . 0 2 1 4 3 - . 0 5 1 3 1 - . 0 8 1 2 5 - . 1 3 9 9 1 - . 0 0 8 8 5 
1 - . 0 0 0 0 2 - . 0 0 0 1 5 - . 0 0 0 6 7 - . 0 0 2 8 9 - .00680 - . 0 0 8 6 2 - . 0 1 4 5 5 - . 0 1 5 8 4 
2 1 2 — - .00002 - .00009 - . 0 0 0 2 8 - . 0 0 1 1 9 - . 0 0 2 6 6 - . 0 0 5 1 0 - . 0 0 7 5 2 
3 — - . 0 0 0 0 2 - . 0 0 0 0 8 - .00033 - . 0 0 0 6 2 - . 0 0 1 0 7 — .00168 
4 - - - - . 0 0 0 0 2 - .00008 - . 0 0 0 1 9 - .00028 - .00045 

0 
> 2 

- . 0 0 0 4 1 - . 0 0 2 6 9 - . 0 1 2 3 7 - . 0 3 9 2 8 - . 0 8 8 5 9 - . 1 3 4 1 0 - . 2 2 0 2 8 .05790 
1 - . 0 0 0 0 1 - .00008 - . 0 0 0 5 8 - . 0 0 2 8 7 - . 0 0 7 3 6 - . 0 1 1 1 3 - . 0 2 1 2 0 - . 0 5 9 6 0 
2 4 — - . 0 0 0 0 1 - . 0 0 0 0 6 - . 0 0 0 2 4 - . 0 0 1 0 3 - . 0 0 3 3 8 - . 0 0 8 9 1 - . 0 2 5 2 3 
3 — — - . 0 0 0 0 1 - . 0 0 0 0 6 - . 0 0 0 2 5 - . 0 0 0 3 8 - . 0 0 0 6 0 - . 0 0 1 8 6 
4 - - - - . 0 0 0 0 1 - . 0 0 0 0 5 - . 0 0 0 1 1 - . 0 0 0 1 2 - . 0 0 0 3 1 

Energy (keV) - 7 1 . 2 - 6 5 . 4 - 5 7 . 7 - 4 6 . 0 - 3 6 . 0 - 2 9 . 5 - 2 4 . 5 - 1 8 . 2 

Table 3. 2p3/2a molecular wave function in B r + B r is shown for internuclear separations R ranging from 200 to 10000 fm. 
For small R the (0,1,1) component is dominating, for large R the (0,1,2) component. This illustrate the angular momen-

tum recoupling at R ~ 500 fm. 

n I s Ä = 200 500 1000 2000 3500 5000 7000 10000 

0 > - . 0 2 4 0 3 - . 0 6 5 7 7 - . 0 7 2 7 8 - . 0 3 6 4 0 - . 0 1 6 3 0 - . 0 0 7 5 3 - . 0 0 5 7 8 - . 0 0 1 3 8 
1 .00037 .01045 - . 0 1 2 2 1 - . 0 5 4 8 5 - . 0 8 8 2 7 - . 1 2 8 5 4 - . 1 4 3 1 0 - . 1 4 0 3 5 
2 • 1 - . 0 0 0 9 3 - . 0 0 1 9 2 - . 0 0 3 7 1 - . 0 0 4 3 2 - . 0 0 9 8 9 - . 0 2 3 7 7 - . 0 2 1 9 7 >— .01805 
3 - . 0 0 0 2 8 - . 0 0 0 5 9 - . 0 0 1 2 0 - . 0 0 2 0 0 - . 0 0 4 1 7 - . 0 0 7 8 5 - . 0 0 9 2 6 - . 0 0 8 2 8 
4 - . 0 0 0 0 9 - .00020 - . 0 0 0 4 3 - . 0 0 0 7 1 - . 0 0 1 4 6 - . 0 0 3 2 5 - . 0 0 3 1 2 - . 0 0 2 9 9 

0 
> 1 - . 0 0 8 5 9 - . 0 1 7 6 7 - . 0 2 6 5 8 - . 0 2 9 0 8 - . 0 3 2 4 3 - . 0 5 6 9 9 - . 0 7 1 1 7 - . 0 9 2 4 9 

1 - . 0 0 2 7 7 - . 0 0 7 2 2 - . 0 1 2 8 9 - . 0 1 6 7 0 - . 0 2 5 7 9 - . 0 4 2 0 9 - .04739 - . 0 5 2 1 3 
2 • 3 - . 0 0 0 8 2 - . 0 0 2 2 5 - . 0 0 4 5 9 - . 0 0 5 6 1 - . 0 0 8 9 5 - . 0 1 7 4 6 - . 0 1 6 1 6 - . 0 1 6 9 8 
3 - . 0 0 0 2 6 - . 0 0 0 7 7 — .00161 - . 0 0 2 4 7 - . 0 0 4 0 2 - . 0 0 7 3 9 - . 0 0 8 7 9 - . 0 0 9 8 7 
4 - . 0 0 0 1 0 - . 0 0 0 2 8 - . 0 0 0 6 1 - .00090 - . 0 0 1 5 4 - . 0 0 3 4 6 - . 0 0 3 5 7 - . 0 0 4 2 7 

0 - . 0 0 3 8 7 - . 0 2 2 4 6 - . 0 7 2 4 5 - . 1 7 8 6 8 - . 2 5 7 2 9 - . 3 8 8 9 8 - . 5 4 5 2 3 - . 7 9 0 9 6 
1 .00053 .00281 .00940 .02964 .03975 .06095 .09264 .13461 
2 1 .00003 .00015 .00048 .00092 .00233 .00854 .01289 .01946 
3 — .00002 .00008 .00024 .00060 .00164 .00341 .00488 
4 - .00001 .00002 .00005 .00014 .00044 .00072 .00106 

0 
" 2 .00021 .00097 .00232 .00285 .00029 - . 0 0 2 2 5 - . 0 1 8 8 1 - . 0 7 3 8 1 

1 .00003 .00016 .00056 .00161 .00325 .00578 .00884 .01616 
2 . 3 — .00003 .00009 .00020 .00059 .00189 .00252 .00386 
3 — .00001 .00002 .00006 .00018 .00049 .00092 .00156 
4 - - .00001 .00002 .00005 .00016 .00024 .00036 

Energy (keV) - 1 6 . 5 - 1 6 . 5 - 1 6 . 4 - 1 5 . 6 - 1 4 . 0 - 1 2 . 4 - 1 1 . 0 - 9 . 5 
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feature becomes increasingly more important when 
the combined charge Zx + Z2 of the system grows 
and can easily cause major deviations from a scaling 
law given by Briggs and Macek 55. K-vacancy pro-
duction cross sections could be influenced tremen-
dously. 

For this system (Br + Br) we also show the lsö 
and 2p3/2o wave functions for various distances 
(Tables 2 and 3 ) . As remarked in Sect. IX, the 
wave functions were calculated in a basis of 100 
slates. The s = 3,4 components are small since the 
system is not extremely relativistic, also all com-
ponents with wrong parity vanish identically. The 
values listed show how for R —> oo more and more 
components Pim{rj) are required to describe the 
wave function, whereas the convergence in Lnm(z) 
remains fast. One should observe that the basis 
functions are not orthonormal. Table 3 also illus-
trates the change from a j — 3/2 state at 200 fm to 
an almost pure 1=1 state at 200 fm, which was 
predicted for the 2p3/2o level in Section XII. After 
these symmetric systems we consider a slightly asym-
metric combination, Br + Zr (i. e. = 35, Z2 = 40 ) . 
As discussed in Sect. X , states do not have good 
parity and all crossings between o states are avoided. 
Since the parity non-conserving part of the poten-
tial is weak [ z IZ / (Z 1 + Z2 ) ^ 1 ] , in an actual time-
dependent process the diabetic slates will prevail. 
Interesting features of the diagram (Figs. 15, 16) 
are the "diabatic" 4f5/2o level between 8000 and 
20000 fm and the rather close approach between 
the lsa and 2p l / 2o MO-states at ca. 10000 fm. The 
latter one has been extensively discussed in Sect. 
XI b and Figure 5. 

5000 10 000 15000 20000 

3 5 B r < o Z r 

Fig. 15. The 13 lowest o-states in the Br + Zr ^ = 35, 
Z.,= 40) quasimolecule. All crossings are avoided in this 
asymmetric system. The approach between the lsa and 
2p120 states is shown in detail in Figure 5. The scale is 

double logarithmic. 

ElkeV] 
Fig. 16. The rearrangement region in the Br + Zr system in 
linear scale. No crossing between the adiabatic states are 

allowed. Observe the strongly promoted 4f 5 / 20 states. 

100 1000 

4SPV2 

3spv2 

2p*2 
2spi/2 

_ 10 

100 

10000 Rlfm] 

5 3 1 -62Sm 

• IkeV] 

— 5 m 4s 

= sm} 

— Sm} 

2sp 

Is — 
E 

Fig. 17. The 9 lowest o-states of the molecular system 
I + Sm (Z! = 53, Z , = 6 2 ) . This system might be of interest 
because the Sm-nucleus has a low-lying 2+ state so that 
mixing between nuclear and electronic transitions may occur. 

10000 Rlfm) 

[keV] 
united a tom 

Fig. 18. The I + I system (Z1 = Z 2 = 53) in double-logarith-
mic scale. The 9 lowest molecular a-levels are shown. 

Another system of very similar structure is the 
1(53) + S m ( 6 2 ) shown in Figure 17. Since the re-
lative asymmetry is rather close to Br + Zr we re-
frain from a detailed explanation of the figure. 

The second di-halide system we shall discuss is 
the I + I quasimolecule (Figs. 18 and 19) . There 
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Fig. 19. The I + I quasimolecular states in a linear distance 
scale for small internuclear separations. 

are no principle differences to the Br + Br system 
shown earlier in this section, but relativistic effects 
on binding begin to play a more important role. 
The 2p1/2 level of the compound atom Z = 106 (in 
the one-electron approximation!) is by about lOkeV 
lower than the Is level in iodine. Therefore, the dip 
in the 2pj/2o molecular state is much less striking in 
truly non-retlativistic systems. 

A third molecular system having iodine as the 
one partner is of particular experimental inter-
est 5 6 : I (53) + Au (79) . The united atom Z = 132 
is the first superheavy quasi-atom which seems to 
be so far produced (except for observations of 
Kaun et al. for Z = 57 collisions 1 4 a ) . As it is still 
below the critical charge for point nuclei the united 
atom limit exists for all MO level if point nuclear 
charges are taken. The level diagram is presented 

Fig. 21. The I + A u rearrangement region. Only the higher 
states are shown. The deep dip in the 2p 3 / 2 a level is pecu-
liar to a highly relativistic asymmetric system where Sect. 
X I I does not apply because of the large 2 p 3 / 2 — 2 p 1 / 2 split-

ting. 

in Figs. 20 and 21. One of the most interesting 
features is the very strong spin-orbit splitting be-
tween the 2p l / 2 and 2p3/2 states in the Z = 1 3 2 
united atom. Consequently, the 2p3/2a molecular 
level is initially lowered dramatically, until the 
angular momentum recoupling process of Sect. XII 
causes it to rise again at approximately R = 500 fm. 
Only in this case of a strongly asymmetric system 
the molecular dipole moment plays the important 
role. The strongly promoted 3d3/2o and 4f5/2o levels 
behave as they do in lighter systems. 

Figure 22 shows the Ho + Ho system (Z : = Z2 

= 67) which has a united atom just below the criti-
cal limit of point charges. It is seen that the / ' = 1/2 
levels increase steeply in binding energy as /?-><?o, 
but they still attain a limit for R = 0. 

10000 R[fm]_ 
i 1 

UI)M(Au) 

2p*2(Au) 
2SPV2'Au1 

1s(I) 

Fig. 20. T h e I + A u (Z1 = 53, Z 2 = 79) quasimolecule in 
double-logarithmic presentation. Eleven o-states are shown. 
The 4f —3d transitions have been of particular interest. This 
is the first superheavy system investigate in experiment. The 
2 p 1 / 2 — 2 p 3 / 2 splitting is 30 keV and the ls<7 states eventually 

gains 300 keY in binding energy. 

R[fm1 

Fig. 22. The 16 lowest o-states of the Ho + Ho molecule 
( Z ! = Z , = 67) for point nuclei. The / = l / 2 states just reach 
finite limits in the united atom limit. The diabatic represen-

tation is used. 
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We turn to an extremely asymmetric system, which 
also has been of considerable experimental inter-
est 1 3 ' 5 7 : Cl + Pb (Zt = 17, Z2 = 82 ) . The level dia-
gram is shown in Figure 23. Only the four lowest 
molecular states are given, since in an actual col-
lision the higher states will not be adiabatic. This 
is the limiting case in which the description by 
molecular states goes over into the perturbation of 
atomic states by a small incident charge. The chlorine 
levels do not mix — up to the M-shell — with the 
lead levels to cause promotion or demotion. Thus 
one would not expect to see prominent molecular 
features in an experiment but rather explain the 

is extremely asymmetric, so that up to the M-shell the 
molecular states are formed without the participation of the 
chlorine atomic levels. This puts the system at the fringe 

of t h e m o l e c u l a r m o d e l . 

Fig. 24. The 10 lowest a-levels and four rr-levels of the 
supercritical U + U (Z1 = Z 2 = 92) quasimolecule. The states 
are calculated with extended nuclear charge distribution; 
the spectrum is cut off at the Coulomb barrier (/? = 15 fm) . 
Note that the lsa state reaches the lower Dirac continuum 

around R = 35 fm. 

results by polarization of the Pb target by the small 
CI projectile. 

Finally, we present the U + U system (Figs. 
24 — 26) which is completely dominated 'by rela-
tivistic effects. The most important one — con-
ceptually — is that the lsa molecular level joins 
the negative energy Dirac continuum, a fact already 
discussed in Section XIII. But, apart from this: the 
spatial extension of the two nuclei becomes crucial 
to the limit one obtains for zero internuclear separa-
tion (Section VIII) . The npj/2 states in the united 
atom limit are considerably more strongly bound 
than the corresponding nsj/o states. This makes 
more than 550 keV for the 2p!/2 and 2s!/2 levels. 

Fig. 25. The four highly relativistic molecular states in the 
U + U diagram in a linear scale. The strong increase in 
binding takes place below /? = 150 fm. See also Figure 8. 

are given. Due to relativistic effects, the a- and n-states are 
no more almost degenerate. Linear scale. 

100 1s (Pb) 



B. Müller and \V. Greiner • The Two Centre Dirac Equation 25 

Finally the "fine-structure" splitting between 2px/2 

and 2p3 /2 states is tremendous: 800 keV in the united 
atom ( Z = 184) limit. 

After the discussion of other diagrams, Figs. 24 
and 25 are rather self-explanatory. The lso MO 
state turns out to be almost a straight line in the 
double-logarithmic Fig. 24, i. e. it is of the form 

10' 

10" 

10 

[keV] 
Br - Br 

\ 
\ 

V 

\ 

-

\ \ 
\ \ 

\ \ 
\ \ 

\ \ 

\ \ 

\ 

-
" v A 

D 

10' 104 R[fm) 

Fig. 27. The molecular potential in the B r + B r system. All 
states shown in Fig. 13 are included. (A) Coulomb repul-
sion between the nuclei ; (B) electronic binding energy in 
the separate systems; (C) electronic binding energy in the 
quasimolecule and (D) total molecular potential. At large 
separations electron shielding becomes important, causing 
strong deviations from this figure, which was obtained by 

summing one-electron energies. 

10 
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E ~ r ~ a . This makes it possible to extract its actual 
energy out of X-ray anisotropy measurements 58. To 
Fig. 26 it is worthwhile to note that (due to the 
strong shift of the npx/2 united atom states) the 
scheme deviates from lighter diagrams in the course 
of the n p ^ o and npa/2o molecular levels. So e. g. 
the Sp3/.̂ r[ state becomes the spin-flipped counter-
part of the 4p 1/.yO MO level. 

With this remark we conclude the presentation of 
various molecular level schemes and finally give the 
full molecular potentials for the Br + Br system 
(Fig. 27) and the U + U system (Figure 28 ) . Ex-
cept for very large distances, the deviations of the 
total molecular potential curve from the 1/r-Cou-
lomb repulsion between the two nuclei are seen to 
be smooth. However, for U + U the potential contri-
bution from electronic molecular binding attains 
more than 6 MeV at the Coulomb barrier. The 
deviations from Rutherford scattering due to the 
electronic contribution have been calculated in the 
classical approximation by Rafelsky 59b and Schäfer 
and by Soff5 9 a . The U + U potential (E), which can 
be parametrized by 

(14.1) 

Fig. 28. The molecular potential in the U + U system. All 
states from Fig. 24 are taken into account. (A) Coulomb 
repulsion between the nuclei ; (C) electronic binding in the 
molecule; (D) the total molecular potential and (E) the 
gain in electronic binding energy in the molecule. This gain 
amounts to more than 6 MeV at the Coulomb barrier, 
causing deviations up to 3 percent in differential scattering 

cross sections. 

with V0 = 3640 keV, 7?0 = 100 fm and = 10 4 fm, 
leads to 3% deviation in forward collisions down 
to 1% in backward scattering. This has to be com-
pared with at most \% deviation from vacuum 
polarization effects between the two nuclei59b , in-
dicating that the molecular potential might be de-
ducible from differential scattering cross section 
measurements. 

It should be stressed that the potential curves were 
obtained from the one-electron energies calculated 
earlier. One expects qualitative deviations in the 
asymptotic region of very large separations if 
screening is taken into account. For separations 
below ca. 3000 fm the corrections can be estimated 
to be 10 — 20% of the electronic binding contri-
bution. 

Summary and Outlook 

In this article we have outlined the mathematical 
and physical problems connected with the Two-Cen-
tre Dirac Equation. Its solutions were presented for 
various symmetric and asymmetric systems. They 
have to be extended in future works to include elec-
tronic shielding and are absolutely essential for any 
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calculation of intermediate molecular phenomena, 
occurring in atom-atom collisions. The most impor-
tant of these are the molecular X-rays and the posi-
tron-decay of the neutral vacuum in overcritical 
fields. At present, only the molecular X-rays in 
heavy ion collisions are accessible to experiments, 
and they themselves are indeed interesting enough 
to furnish a rich field of research. Experimental-
ly 11. is directional anisotropy of molecular radiation 
has been discovered which seems to peak near the 
classical endpoint of the non-characteristic spectrum. 
Theoretically 3 4 , 6 0 it was shown that alignment of 
the various molecular orbitals can lead to such an 
effect. Eventually, it might prove useful in the spec-
troscopy of superheavy intermediate molecular orbi-
tals. Many more of these effects will be discovered 
in the future; most of them will be connected with 
interference phenomena occurring in the collisions 
of heavy ions. Particularly coincidence experiments 
between scattered ion and X-ray will furnish insight 
into the mechanisms and usefulness of the various 
approximations. 
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Appendix A 

Evaluation of the Spinor Connections 

Using the metric tensor given by (3.4) one easily 
confirms that the only nonvanishing Christoffel 
symbols are 

J M - - ^ - I M - - — 
124 J ~ c ' 144 J c2 ' 

2 1 f t ) , J 2 ] co2 

141 c ; I44 

Inserting these one finds that 

y. (A . l ) 

I K (0 8 
nk-^ik\7l= 0 F 

(A.2) 

with 

F= (xyi + yy2) + (xy2-y n ) (A.3) 
C" c-

and 

CO 
= 1— x r 

CO 
s = < y2 c 

f x y + x r W 

01 I CO 

_ , 1 > 0 U ( T x n . (A.4) 

Then the first term in eq. (3.2) becomes 

+ = x r j y 

= '(yxy) xr j y. (A.5) 

To evaluate the sncond term, the trace part of (3.3), 
we first note that 

y ' P i U f c - y « ! " xy, - x r j - y j (A.6) 

and that 

7 = 7 + 
some permutations 

10 (JO 
( ± ) — y y 2 y A ± ) - - x Y i r 3 

(A.l) 

Now it is known that 

trace (7) = trace (j'2 y3) = trace (yx j'3) = 0 . (A.8) 

Hence that second part vanishes and we have 

1 / co t 1 M f \ yKrk=—yi — -{yxy) xr -y. 

(A.9) 

Appendix B 

Recursive Evaluation of the Matrix Elements 

A glance at the definition of the diagonal matrix 
^m (6.7) shows that &m &m is independent of the 
variable <p. Therefore the integration over drp in all 
matrix elements (7.14) and (7.15) yields 2 71, and, 
in order to get rid of useless constants, we divide 
the matrix elements — or equivalently, the Hamil-
tonian — by 2nR2a. Observe that a is the same 
for all wave functions! This is allowed since, of 
course, the Hamiltonian commutes with a constant. 
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After that, the integration in the matrix elements r n, . ^L ( a + ß — v — l \ r . . /r, .. 
covers the range (1 = ^ + 1 ) : = I [ ß _ l (B.4) 

(B . l ) = (2n + a + \)Lna(x) (B.5) 
0 -1 - ( n + a)LU(x)-(n + l)L^i(x) , 

Application of the following recursive relations « - « » x + i { x ) = { n + a + L a ( x ) _ ( w + i ) ( x ) , 
among the Ln* and Pf permits to carry out all 
matrix elements without performing explicit integra- ^ ' ' 
tions- jxLn>(x)= -L£l(x) , (B.7) 
a) For the Ln"(x): 

L,rl(x) = Lna(x) -Lt-iix) , (B.2) j f i ^ x ) =nLa*(x) - (n + a)L%.l(x) . (B.8) 
ax 

* / • ' ( « ) - Z W * ) , (B.3) b ) F o r t h e P / a ( r ; ) : 

(21+1)7, PfW = (l-a + l)Pf+l(r]) + (I + a)Pf_i (rj) , (B.9) 

(2l+l)Vl-r,2Pr1(r]) =Pf-iW ~Pf+i(ri) , (B.10) 

VT-^PrHy) = (i—a)vPfiv) - (l+a)PU(r,) , ( B . l l ) 

V7! - ? 2 ^ Pf (r j ) = - P r H r j ) - - p ^ h r / V t o ) , (B.12) 

Pf(V) = (l + a) (1-a + DPrHv) + -yfl^fPfW . (B.13) 

(1 - rf) f - Pf fa) - (/ + «)/>?_! it,) -1 rj Pf (V) . (B.14) 

All integrals can be separated into integrals over dr and those over d^. We give the recursive evaluation 
of all integrals occurring as parts of the matrix element (7.14) and (7.15) . 
c) For the dx integrals we introduce the abbreviation 

/V 0 0 Ä 
(n a i A I n a) = f e~x'2 (x) A e~x'2 Lna (x) dx (B.15) <j 

where A is any operator on {x | 0 ^ x}. The fundamental integral is the orthogonality relation 

L0(n, n, a) = (n a | x1 \ n a) = — d n - n . (B.16) 
1 (n + I) 

To this relation all following integrals are reduced step by step: 
Lß(n, n, a) = (n a | xa+ß j n a) 

= (2 n + a+ 1) {Lß-i(n, n, a) - (n +a) Lß_ 1 (n,n- l , a ) - (n + 1) Lß_1(n, n + 1, a) (B.17) 

for ß = 1, 2, 3, . . . ; 
n 

Lm(n, n, a) = {n a | x11 n a + 1 ) = 2 L0[n, v, a) , (B.18) 
v = 0 

Lßu(n, n, a) = (n a + ß j n a + 1) = Lß.\(n, n, a + 1) - Lß^ 1 (n - 1, n, a + 1) (B.19) 

for ß = 1, 2, 3, ; 
Lßh(n,n,a) = (n a + 1 j xa+P \ n a) = LßR(n,n,a) (B.20) 

for all /? = 0 ,1 , 2, . . . . 
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Furthermore, one has the following integrals with differential operators: 

Lßj)(n, n, a) = (n a \xa+P ^ | n a) = nLß.\(n, n, a) - {n + (n , n - 1, a) — | L$(n, n, a) (B.21) 

for ß = 1, 2, 3, . . . ; 

^idr (n\ nia) — (n a\xa + 1 ----- 17i a + 1) = \ (n — a — 1) L0(n, n, a) dx 

+ l{n + l)L0{n,n + l,a) - (a + l)LoR(n, n - 1, a), (B.22) 

LßDR(n,n,a) = (n a | xa + f — U a + 1) - L ( / ? _ 1 ) D (n ' , n, a + 1) - L(ß_i)T)(n - 1, n, a + 1) (B.23) 

for ß = 2, 3, 4, . . . ; and finally 

L/?DL {n,n,A) = (n a + 1 | xa+P ^ | n A) = Lßh(n, n, a) - Lß.\(ri, n - 1, A + 1) (B.24) 

for ß =1,2, 3, 
d) for the integrals over involving the Legendre polynomials we introduce an analogous abbrevia-

tion 
(I' a \A \ I a) = fW (y) APf (V) dt]. (B.25) 

- l 

Here the fundamental orthogonality relation is 

P o ( r , t a) - <r „ I J « ) - . (B.26, 

The reducible integrals are: 

Pß(l', I, a) = (l'u\rf\la) 

l ~ a + 1 Pß_l(l',l+1,«)+ *~-Pß-1(l',l-l,a) (B.27) 
2 Z + 1 ' ' ' ' ' 21+1 

for all ß =1,2, 3, . . . ; 

Psqr(/', /,«) = (/'«! 1/1 ^ 2 | / a + l ) = {l-a)P1 (Z', 1, a) - (I + a) P 0 ( / ' , Z - 1, a) ; (B.28) 

l,a) = (l'a + l\ ] / l - if i I a) = PSQR(Z, I', a) (B.29) 

and three integrals involving differential operators: 

Pd (/ ' , l,a) = (l'a | ( 1 - ?/2) A | / « ) = ( / + « ) P0 (/ ' , Z - 1, a) - 1 P , (I', l, a) ; (B.30) 

P+(l',l,a) = (l'a + l | - l / l 3 ^ 2 (1 _ —aJC ^\la)=P1(l',l,a + l); (B.31) 
d/ / F l -

P.{l',l,a) = {l' a\-Vl~,?V4-+ w ^ i ^ l / a + l ) = - (Z - a) (Z + a + 1) (Z', Z, « ) . (B.32) 
d?y 1 1 — y 

Since the denominator (£2 — if) in the constituents of the operator (6.8) and the potential (5.16) is 
cancelled by the factor (|2 — rf) in the volume element (5 .17 ) , all matrix elements of the Hamiltonian 
(7.14) and (7.15) are linear combinations of the integrals given above in (B.16) lo (B.32) . Il should 
be mentioned that in all formulae of this Appendix the positive value m of the angular momentum pro-
jection m = ( ] z ) has to be taken (a 0 ) . For problems with negative values of m we refer to the end of 
Chapter VI. 
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Appendix C 

A Quadrature Formula for Exponential Integrals 

If one takes different scaling parameters a,a for 
the different basis functions (7.1) , the variable x 
is differently defined in each case: 

xnl=(£-l)/anl (C. l ) 

No orthogonality relation exists for integrals with 
Laguerre polynomials depending on different vari-
ables. There are, however, quadrature formulas of 
the type 

o o n 
f x* e~x f(x) dx = 2cOif(xi)+Rn (C.2) 

0 i= 1 

which help to solve the integrals even in this 
case67 ' 68. The Xi are the n zeros of the associated 
Laguerre polynomial Lna(x) and the weights ojj- are 
defined by 

r(ra + l ) J > + a + l ) 
FT>I= — . ( C . 3 ) 

^ [Lna(x)~\\x = xi K-i fa) 

The point is, that the remainder Rn depends only 
on the (2n)-th derivative of the function f(x) in 

(C.2) : 

Rn~f<M(z) (0 £z<oo). (CA) 

Whenever j(x) is a polynomial of degree N, it is 
sufficient to choose 2n>N in order to insure 
j(2n) ^ = o everywhere. 

For all our matrix elements this condition is satis-
fied: f(x) is a product of two Laguerre poly-
nomials, a power of x and — possibly — the dif-
ferential operator d/dr. With the help of the recur-
rence relations (B.7) and (B.8) the derivative can 
be replaced and one is left with 

f(x)=LZ'(x)L,A-^x)lcixi. (C.5) 
\ a,ii J i = o 

The (n + n + k + 1)-th derivative of f(x) vanishes 
identically and therefore Ry = 0 in (C.2) , and the 
quadrature is exact with a finite number of points to 
be taken. Thus this is a finite algebraical procedure, 
too. It turns out to be better suited for computer 
programming than the recursive method sketched in 
Appendix B. Of course, now the Hamiltonian may 
be divided only by 2 7i R2. For the integrals over 
d)], however, it is convenient to use the recurrence 
relation given in Appendix B. 
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