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Abstract

Natural plant populations often harbour substantial heritable variation in DNA methylation.

However, a thorough understanding of the genetic and environmental drivers of this epige-

netic variation requires large-scale and high-resolution data, which currently exist only for a

few model species. Here, we studied 207 lines of the annual weed Thlaspi arvense (field

pennycress), collected across a large latitudinal gradient in Europe and propagated in a

common environment. By screening for variation in DNA sequence and DNA methylation

using whole-genome (bisulfite) sequencing, we found significant epigenetic population

structure across Europe. Average levels of DNA methylation were strongly context-depen-

dent, with highest DNA methylation in CG context, particularly in transposable elements and

in intergenic regions. Residual DNA methylation variation within all contexts was associated

with genetic variants, which often co-localized with annotated methylation machinery genes

but also with new candidates. Variation in DNA methylation was also significantly associated

with climate of origin, with methylation levels being lower in colder regions and in more vari-

able climates. Finally, we used variance decomposition to assess genetic versus environ-

mental associations with differentially methylated regions (DMRs). We found that while

genetic variation was generally the strongest predictor of DMRs, the strength of environ-

mental associations increased from CG to CHG and CHH, with climate-of-origin as the

strongest predictor in about one third of the CHH DMRs. In summary, our data show that

natural epigenetic variation in Thlaspi arvense is significantly associated with both DNA

sequence and environment of origin, and that the relative importance of the two factors

strongly depends on the sequence context of DNA methylation. T. arvense is an emerging

biofuel and winter cover crop; our results may hence be relevant for breeding efforts and

agricultural practices in the context of rapidly changing environmental conditions.
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Author summary

Variation within species is an important level of biodiversity, and it is key for future adap-

tation. Besides variation in DNA sequence, plants also harbour heritable variation in

DNA methylation, and we want to understand the evolutionary significance of this epige-

netic variation, in particular how much of it is under genetic control, and how much is

associated with the environment. We addressed these questions in a high-resolution

molecular analysis of 207 lines of the common plant field pennycress (Thlaspi arvense),
which we collected across Europe, propagated under standardized conditions, and

sequenced for their genetic and epigenetic variation. We found large geographic variation

in DNA methylation, associated with both DNA sequence and climate of origin. Genetic

variation was generally the stronger predictor of DNA methylation variation, but the

strength of environmental association varied between different sequence contexts. Cli-

mate-of-origin was the strongest predictor in about one third of the differentially methyl-

ated regions in the CHH context, which suggests that epigenetic variation may play a role

in the short-term climate adaptation of pennycress. As pennycress is currently being

domesticated as a new biofuel and winter cover crop, our results may be relevant also for

agriculture, particularly in changing environments.

Introduction

Besides variation in DNA sequence, natural plant populations usually also harbour variation

in epigenetic modifications of the DNA. This is particularly well documented for DNA meth-

ylation, usually referring to the addition of a methyl group to the 5th atom of the cytosine ring,

a modification associated with silencing of transposable elements (TEs) and the regulation of

gene expression. Variation in DNA methylation can arise if methylation marks are altered by

chance during mitosis or meiosis (epimutations) [1,2], or if they are induced in response to

environmental changes [3,4]. Some DNA methylation differences are stably inherited through

meiosis, which has led some to hypothesize that DNA methylation variation could be under

natural selection and contribute to adaptation [5–7]. These ideas are fuelled by the observation

that DNA methylation variation in natural plant populations is often non-random and geo-

graphically structured [8–12]. However, the DNA methylation variation observed in the field

is always a combination of stable (= heritable) and plastic (= non-heritable) components. In

order to tease these apart and describe the heritable component of DNA methylation variation,

one must analyse the offspring of different populations grown in a common environment. To

date, common-environment analyses of natural DNA methylation variation that cover many

populations and broad environmental gradients are still rare.

In plants, DNA methylation can occur in the three sequence contexts: CG, CHG and CHH

(where H is A, T or C). Distinguishing between these contexts is sensible because they differ in

the molecular machineries for depositing, maintaining and removing methylation [13,14],

which has consequences for their dynamics and stability. In Arabidopsis thaliana, CG methyla-

tion (mCG) is mostly maintained in a copy-paste manner during replication, CHG methyla-

tion (mCHG) by DNA-histone methylation self-reinforcing loops and CHH methylation

(mCHH) by recursive de-novomethylation deposited by the RNA-directed DNA methylation

pathway (RdDM) and partially by CMT2 [13,14]. In addition, CHG and CHH methylation

partially share maintenance pathways [15,16]. Overall, there is a gradient of similarity and

decreasing stability from CG to CHG to CHH. Although less stable, CHH is the most abun-

dant context and often the most responsive to stresses [17]. Besides the sequence contexts, the
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code used in this study is available and
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dynamics of DNA methylation also strongly depend on the genomic features in which it

occurs. While heterochromatic regions and TEs are usually heavily methylated to repress tran-

scription, methylation is often lower and more variable in genes and regulatory regions [18–

20]. In addition, while DNA methylation is almost exclusively a repressive mark on TEs and in

regulatory regions, its function is less clear in gene bodies, as several constitutively expressed

housekeeping genes often harbour CG but not CHG and CHH methylation in their coding

sequences (CDS) [20,21]. If methylation in different genomic features has different functions,

then also different selective pressures are to be expected [22]. Finally, for both influences of

sequence context and genomic features on methylation variation, there appears to be high spe-

cies-specificity in plants [20].

To study such complex dynamics, DNA methylation can be quantified at different levels,

from global (or genome-wide) methylation, to average methylation limited to sequence con-

texts or genomic features, to the methylation of genomic regions or individual positions.

While genetic single nucleotide polymorphisms (SNPs) can have large effects, this does not

seem to be the case for DNA methylation polymorphisms, which affect transcription only

when accumulating over a broader genomic region [23–25]. For this reason, the study of dif-

ferentially methylated regions (DMRs) became very popular in high-resolution studies

[11,12,18,26].

Given the complex molecular machinery for regulation and maintenance of DNA methyla-

tion, it is not surprising that previous studies have demonstrated various kinds of genetic con-

trol over DNA methylation variation. Genetic polymorphisms can control DNA methylation

in cis, for example, when a TE insertion next to a gene promoter induces the methylation of

the latter [25], or in trans, when genetic mutations affect genes involved in the DNA methyla-

tion machinery [11,12,27]. In the latter case, variation in individual DNA loci often affects

methylation levels across the entire genome. In addition, a number of genes have been found

to affect methylation levels indirectly, acting upstream or in aid of the methylation machinery.

In particular, ubiquitination, a post-translational modification affecting histone tails and pro-

tein turnover, affects DNA methylation in plants and animals in several ways [28–33]. For

example, in plants ORTH/VIM E3 ubiquitin ligases recruit DNA METHYLTRANSFERASE 1

(MET1) for methylation maintenance through ubiquitination of histone tails [30,31]. How-

ever, in spite of this functional understanding of several mechanisms of genetic control, we

still lack a good understanding of the degree of genetic determination of DNA methylation

variation in wild plant populations.

If DNA methylation variation is under natural selection–whether independently from

DNA sequence or linked to it–we expect this to result in patterns of association between meth-

ylation variation and the environment. Several previous studies indeed found correlations

between methylation patterns and habitat or climate in different plant species [8–12,34]. How-

ever, most of these studies were either conducted in the field, based on only few natural popu-

lations, or used low-resolution molecular methods, which limited their generalizability and/or

their power to detect environment-methylation associations and to separate genetically con-

trolled from independent components of DNA methylation variation [5]. The only available

data that does not suffer from any of these limitations comes from Arabidopsis thaliana
[11,12,18], a plant with an exceptionally small and simple genome, with low numbers of TEs,

and low global DNA methylation [35]. Given these unrepresentative genomic properties, it is

currently unclear to which extent findings from population epigenomic studies with A. thali-
ana can be generalised across the plant kingdom. As the abundance and genomic distribution

of TEs is a major driver of variation in DNA methylation, species with higher TE contents

could differ not only in the extent of DNA methylation, but also in the dynamics of epimuta-

tion accumulation, and the DNA methylation-based machinery controlling TE mobility. To
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understand the extent of these differences, and the genetic and environmental drivers of natu-

ral DNA methylation variation, it is critical to expand our scope and collect large-scale, high-

resolution data also for other plant species.

Here, we present a detailed genomic analysis of 207 lines of the plant Thlaspi arvense (field

pennycress) that we collected across a latitudinal gradient in Europe, cultivated in a common

environment, and profiled for genomic and epigenomic variation. Like A. thaliana, T. arvense
is an annual and mostly selfing member of the Brassicaceae family, but it has a significantly

larger genome of approx. 500Mb, which is richer in TEs and DNA methylation [36]. The spe-

cies is an interesting study object also because it is currently being domesticated into a new

biofuel and cover crop [37–41]. The genomic work with T. arvense is facilitated by recently

published high-quality reference genomes [36,42]. In our study, we demonstrate that Euro-

pean populations of T. arvense harbour substantial natural epigenetic variation, which is asso-

ciated with DNA sequence variation as well as with climate of origin, but in a highly context-

dependent manner. In our data, genetic variation was generally the stronger predictor of DNA

methylation variation. Genome-wide association analyses identified several candidate loci, but

there was a fraction of the DNA methylation variation that was most strongly associated with

climate of origin, suggesting a link with climate adaptation.

Results

The 207 Thlaspi arvense lines we worked with came from 36 natural populations which we

sampled across Europe in 2018, on a latitudinal gradient from Southern France to Central

Sweden, with three populations each in Southern France and The Netherlands, seven in South-

ern Germany, eight in Central Germany and South Sweden, respectively, and another seven

populations in Central Sweden (Fig 1A and S1 Table). In each population, we collected seeds

of 4–6 different lines (S1 Table). We grew all lines under common environmental conditions,

extracted their DNA and generated Whole Genome Sequencing (WGS) and Whole Genome

Bisulfite Sequencing (WGBS) libraries, which upon deduplication, were sequenced with an

average coverage of 19.7x and 30.3x, respectively (S2 Table). Bisulfite non-conversion rates

were calculated from chloroplast DNA and ranged between 0.14 and 1.9% (S2 Table). Variant

calling retrieved around nine million SNPs and short INDELs with genotypes called in>90%

of the lines. Methylation calling retrieved about 16 million, 18.4 million and 95.3 million posi-

tions in CG, CHG and CHH contexts respectively, with up to 25% missing calls per position.

The global weighted DNA methylation, calculated as the ratio between all methylated and all

total read counts at every analysed cytosine [43], was estimated at 16.9% (average of all lines).

We found significant genetic and epigenetic population structure across Europe. A princi-

pal component analysis (PCA) based on genetic variants showed two main clades: a larger one

including almost all lines from France, Germany and the Netherlands, and a smaller one that

consisted almost exclusively of Swedish lines (Fig 1B). The larger clade also showed a clear lati-

tudinal gradient. PCAs based on DNA methylation variation generally also found two major

clades, with the CG methylation-based patterns most closely resembling the genetically-based

ones, and a decreasing similarity between genetic and epigenetic population structure from

CG to CHG to CHH methylation (Fig 1B and S1). Restricting methylation to specific genomic

features also revealed that mCG of genes and promoters has stronger geographic patterns that

methylation of TEs (S1 Fig).

Average methylation

To understand the structure of DNA methylation variation in T. arvense, we first examined

patterns of weighted average methylation [43] across all lines. We not only distinguished
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between the three sequence contexts CG, CHG and CHH, but we also assigned cytosines to

different genomic features: CDS, introns, promoters, TEs and intergenic regions. For genes

and TEs, we used available annotations [36], while for promoters we considered the 2 kb

upstream sequences of genes (or until the boundary of the previous gene if closer). We consid-

ered intergenic space, anything not belonging to these categories. Across all genomic features,

the average methylation was much higher in CG context than in CHG and CHH; for the latter

two it was generally similar (Fig 2A). TEs were the most highly methylated genomic features,

followed by intergenic regions, whereas promoters and especially gene bodies (CDS and

introns) showed very low average methylation (Fig 2A). For instance, while for CG sites in TEs

the weighted average methylation was around 80%, it was below 2% for CHH sites in genes.

Although these patterns are conserved in the whole collection, there is large residual variation

between lines, which is particularly high in TEs (up to 12%) and decreases gradually moving to

intergenic regions, promoters and particularly genes (Fig 2A). Finally, partially due to TEs cov-

ering about 60% of the T. arvense genome [36], its global weighted methylation of 16.9% (aver-

age of all lines) is much higher than that of A. thaliana (5.8%)[12] and many other

Brassicaceae [20].

To better understand the observed values of average methylation, and in particular the low

gene body methylation, we further examined the distributions of methylation values of indi-

vidual CDS, TEs and promoters, averaging across all lines. Interestingly, while context-specific

methylation levels were very consistent for TEs, almost exclusively methylated, we found

Fig 1. Geographic distribution and population structure of the 207 sampled Thlaspi arvense lines. (A) Geographic locations of the 36 populations. The

background colours are gridded satellite data of average daily temperature (T.) from the Copernicus programme [44]. (B) PCA plots of all 207 lines based on

DNA sequence (“Genetic”) and DNA methylation in different sequence contexts (“mCG”, “mCHG” and “mCHH”).

https://doi.org/10.1371/journal.pgen.1010452.g001
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bimodal distributions for CDS and promoters, with a large majority of unmethylated and a

smaller fraction of methylated features (Fig 2B). Using a binomial test [20,45], we found than

only a small portion of genes is significantly methylated in each sequence context (7.5, 6.5 and

7.3% on average for CG, CHG and CHH respectively), with rather small variation between

lines (S3 Table). Intersecting genes consistently methylated (methylated in at least 70% of the

lines) in each of the three sequence contexts, we confirmed that a large fraction of these was

methylated in all context, showing a TE-like methylation signature (TEm), and a much smaller

fraction was methylated only in CG, showing a gene body methylation signature (gbM) (S2A

Fig)[36]. Moreover, the fraction of methylated genes, tended to cooccur with TEs, since TEm

genes were about eight times more likely than the average gene to overlap with TEs, and gbM

genes were twice as likely. Even though many TEm genes might be pseudogenes, a gene ontol-

ogy (GO) enrichment analysis found enrichment for some housekeeping-like GO terms such

as nucleotide biosynthesis and protein catalysis (S2B Fig). In contrast, the few genes methyl-

ated only in CG, were only enriched for few molecular functions (S2B Fig).

Fig 2. Average methylation and distributions of methylation values for different sequence contexts and genomic features in T. arvense. (A) Weighted average

methylation levels of genomic features; violin plots represent variation between lines. (B) Distributions of individual methylation values for coding sequences (CDS),

promoters and transposable elements (TEs) obtained averaging across all 207 lines.

https://doi.org/10.1371/journal.pgen.1010452.g002
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Genetic basis of methylation variation

To understand the genetic basis of the observed methylation variation, we employed genome-

wide association (GWA) analyses that tested for statistical associations between every biallelic

genetic variant and the average methylation of every sequence context and genomic feature

(S4 Table). For this analysis we used the (unweighted) mean methylation, as weighted methyla-

tion is strongly influenced by structural and copy number variants, which could distort GWA

and produce misleading results when looking for individual genes affecting methylation levels.

We restricted our analyses to genetic variants with a minor allele frequency (MAF)� 0.04;

however, repeating all analyses with a MAF>0.01 did not influence the results relevantly.

Since large numbers of unmethylated genes (Fig 2B) could potentially obscure association pat-

terns in methylated genes, we re-ran these analyses for average methylation levels based only

on genes with methylation > 5% (across all lines). In all GWA analyses, we corrected for popu-

lation structure using an Isolation-By-State (IBS) distance matrix. Although our experimental

design and number of lines hardly provided sufficient power to meet a full Bonferroni thresh-

old, we found that many of the genetic variants that were most strongly associated with meth-

ylation levels were close to genes with predicted functions related to DNA methylation (Figs

3A, 3D and S3 Fig). For instance, one strong candidate was an orthologue of ARGONAUTE 9
(AGO9), coding a DICER-like protein involved in RNA silencing; AGO9 natural variation is

associated with mCHH in TEs in A. thaliana [12]. Another candidate was an orthologue of

DOMAINS REARRANGEDMETHYLTRANSFERASE 3 (DRM3), which despite being catalyti-

cally mutated, is necessary for RdDM and non-CG methylation maintenance in Arabidopsis

[46–48]. Reflecting the multigenic basis of methylation, even the higher -log(p) variants had

relatively small size effects of about 1.5% methylation (Fig 3C).

To confirm the suspected enrichment of methylation-related genes among stronger associa-

tions, we conducted an enrichment analysis based on all genetic variants within 20kb from a
priori candidate genes–orthologues of A. thaliana genes known to affect methylation (S5

Table). For many genomic features and sequence contexts, we indeed found an enrichment of

these a priori candidates among the genetic variants most strongly associated with average

methylation levels (e.g. mCG in Fig 3B), but in most cases the top variants were not neighbour-

ing any a priori candidates (drop of the enrichment for high -log(p) thresholds in mCHG and

mCHH in Fig 3B; see S3 Fig for more results). Nevertheless, a search of the neighbouring

regions of these variants identified several new candidates that may not affect methylation

directly, but have predicted functions with a potential for indirect effects on DNA methylation.

These include e.g. the histone deacetylase SIRTUIN 1 (SRT1), the DNA-damage-repair/tolera-

tion (DRT111), the DNA-repair gene STRUCTURALMAINTENANCE OF CHROMOSOMES 5
(SMC5) and several E3 ubiquitin ligases such as F-box transcription factors and RING-H2 fin-

ger proteins (Fig 3; see S6 Table for all genes located within 15kb from variants significant at

-log(p) > 5). Overall, our results showed that natural DNA methylation variation in T. arvense
was significantly associated with underlying DNA sequence variation, but only some of the top

genetic variants were known methylation machinery genes, whereas there were many addi-

tional, less well-characterized genes that appeared to play a role, possibly through less direct

effects on methylation.

The GWA results strongly differed between sequence contexts, with a unique profile of

genetic variants associated with average mCG, while the results were very similar for mCHG

and mCHH (Figs 3A, 3D and S3 Fig). In mCG, some of the top candidates were AGO9, the

methyltransferase DRM3, the F-box/WD-40 repeat-containing gene Tarvense_02099, involved

in histone methylation, and two orthologues of the SWI/SNF chromatin remodelling compo-

nent BAF60 (S6 Table). In mCHG and mCHH, the strongest associations included SRT1,
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SMC5, the DNA LIGASE 1 (LIG1), involved in DNA demethylation, and DRT111. Lastly, we

tested whether variation in number of gbM genes between lines was associated to genetic vari-

ants and detected a clear peak in Scaffold_3, including, among a few additional genes, LOG2--
LIKE UBIQUITIN LIGASE3 (LUL3), which codes a ubiquitin ligase (S2C Fig).

Methylation relationships with climate of origin

To test for environmental associations of methylation variation, we compiled bioclimatic data

(see Methods section for details) for our 36 study populations and analysed the relationships

Fig 3. Genome-wide association analyses for genetic control of average DNA methylation. We show only the

results for intergenic methylation; for full results see S3 Fig. (A) Manhattan plots, with the top variants labelled with the

neighbouring genes potentially affecting methylation. The genome-wide significance (horizontal red lines), was

calculated based on unlinked variants as in Sobota et al. (2015) [49], the suggestive-line (blue) corresponds to–log(p) =

5. (B) Corresponding to each Manhattan plot on the left, enrichment of a priori candidates and expected false

discovery rates (both as in Atwell et al. 2010 [50]) for stepwise significance thresholds. (C) The allelic effects of the red-

marked variants in the corresponding Manhattan plots on the left, with genotypes on the x-axes and the average

methylation on the y-axes. (D) The candidate genes marked in panel A, their putative functions and distances to the

top variant of the neighbouring peaks. Bold font indicates a priori candidates that were included in the enrichment

analyses.

https://doi.org/10.1371/journal.pgen.1010452.g003
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between climatic variables and the mean methylation in different sequence contexts and geno-

mic features, correcting for population structure with the same IBS matrix used in the GWA

analyses. We found that average methylation was positively correlated with several climate var-

iables reflecting variation in mean temperatures, but negatively with variables related to tem-

perature variability, such as the mean diurnal range and annual temperature range (Fig 4).

Moreover, associations with temperature were more pronounced for minimum temperature

variables than for maximum temperature variables. In other words, plants originating from

colder origins or such with more fluctuating temperature environments had lower overall

methylation. In contrast to the temperature variables, methylation was not associated with the

precipitation variation of the population of origin, and there was also little association with lat-

itude (Fig 4). The latter at first appears counterintuitive, because latitude is usually correlated

with temperature, but in our case latitude is confounded with altitude–more southern samples

were collected at higher elevations (S1 Table)–and therefore poorly correlated with

temperature.

The described climate-methylation associations were generally stronger in CHG and CHH

contexts, particularly for methylation that occurred in CDS (Fig 4). With the exception of

mCG in CDS, which had climate associations similar to mCHH, other methylation variables

clustered mostly by sequence context, with some similarity between CG and CHG. Finally,

global and TEs mCG were the only types of methylation positively associated with temperature

variability (Fig 4).

Fig 4. Climate-methylation associations. A Heatmap of the correlations between mean methylation and different

climatic variables (Precip: precipitation; Temp: temperature), separately for different sequence contexts and genomic

features (prom: promoter; interg: intergenic; TEs: Transposable Elements; CDS: coding sequences). Both rows and

columns are clustered by their multivariate similarity in association patterns.

https://doi.org/10.1371/journal.pgen.1010452.g004
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DMR variance decomposition

Having established associations of methylation variation with genetic background and envi-

ronment of origin, we sought to investigate the relative importance of these two drivers in our

study system, and how this might vary between sequence contexts and genomic features. To

address these questions, we analysed methylation variation at the level of DMRs. We identified

around 44k DMRs in CG, 12k DMRs in CHG and 77k DMRs in CHH (see Methods for details

on the DMR calling), and quantified their overlap with different genomic features. Most

DMRs were located in TEs, and decreasing numbers in intergenic regions, promoters and

genes (Fig 5B).

To quantify the degrees of genetic versus environmental determination, we then analysed

three mixed models for each DMR that included either a distance matrix based on genetic vari-

ants in cis, on genetic variants in trans, or on multivariate climatic distances. Across all DMRs,

genetic similarity based on trans-variants explained the largest proportions of methylation var-

iance in all contexts (Fig 5A). Most variance was explained in CHG-DMRs, followed closely by

CG-DMRs, but in CHH-DMRs the amounts of variance explained were generally much lower.

Interestingly, the explanatory power of environmental variation relative to that of genetic vari-

ation gradually increased from the more stable mCG towards the less stable mCHG and

mCHH (Fig 5A and 5C).

Although genetic variation in trans was on average the strongest predictor of methylation

variance, there were large differences between individual DMRs, and we observed that

Fig 5. Genetic versus environmental predictors of DMR variance. (A) The variance in DMR weighted methylation explained by genetic similarity in cis, genetic

similarity in trans and climatic similarity, averaged across all DMRs. (B) The number of DMRs identified in different genomic features and sequence contexts, and (C) the

fractions of these individual DMRs where cis-variation, trans-variation or climatic variation are the major predictors. DMRs where none of the three predictors explained

>10% of the variance are classified as “unexplained”.

https://doi.org/10.1371/journal.pgen.1010452.g005
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sometimes genetic variation in cis or climatic distance, too, could be the strongest predictor.

To study this more systematically, we classified all DMRs based on their strongest predictor,

and we found that the fraction of DMRs in which climate was a stronger predictor of meth-

ylation variance than any of the genetic distances increased from CG to CHG to CHH (Fig

5C). In CHH, 25–30% of all DMRs had climatic distance as their strongest predictor. To

find out if cis-, trans- and climate-predicted DMRs were enriched close to genes responsible

for different functions, we ran separate GO enrichment analyses for the genes neighbouring

these three classes of DMRs. However, only for the trans-predicted DMRs we found signifi-

cant enrichment of a few GO terms (S4 Fig), while there were none for the other two DMR

classes.

Discussion

Understanding natural epigenetic variation requires combining large-scale surveys of natural

populations with high-resolution genomics and environmental data. Here, we studied Euro-

pean populations of T. arvense to assess how climate of origin and genetic background shaped

their heritable DNA methylation variation. We found epigenetic population structure and

confirmed the genomic patterns of methylation of the T. arvense genome [36] in a large natural

collection. Most importantly, both genetic background and climate of origin were significantly

associated with methylation variation, but their relative predictive power varied depending on

DNA sequence context.

Our analysis of population structure detected two main clades, one composed of lines from

all surveyed countries and a smaller one with almost exclusively lines from Sweden. A latitudi-

nal gradient was also clear within the larger clade. The epigenetic population structure gener-

ally resembled the genetic one, with decreasing degrees of similarity from CG to CHG and to

CHH sequence contexts (Fig 1B). These differences between contexts might reflect their differ-

ent stability, caused by differences in the maintenance machineries [13,14] and possibly differ-

ent proportions of genetic versus environmental control. Moreover, mCG shows stronger

geographic patterns in genes and promoters than in TEs, possibly indicating a higher stability

or selection for this kind of methylation (S1 Fig).

Across all lines, we calculated a global weighted methylation of 16.9%, which is high in the

Brassicaceae family [20], particularly in comparison to A. thaliana (5.8%) [12]. The high global

methylation is related to the high TE content of the T. arvense genome (~60%)[36], but also to

a higher CHH methylation (12.3% across all lines) than it is known for most other angio-

sperms [20]. The levels of CG and CHG methylation (47.4% and 14.2% across all lines), in con-

trast, are more similar to other Brassicaceae [20]. As expected, we found that methylation was

very unevenly distributed not only between sequence contexts, but also between genomic fea-

tures, with high levels of methylation particularly in CG context, and in TEs and intergenic

regions (Fig 2A). Gene body methylation was generally very low, with lines carrying on aver-

age ~93% of the CDS unmethylated in all contexts (S3 Table), and the results were similar,

albeit much less extreme, for promoters (Fig 2B)[36]. When methylated, CDS were usually

methylated in all contexts, showing TE-like patterns, while CG-only methylation, typical of

many housekeeping genes in other species [20], was almost completely absent (S2 Fig). This

uncommonly low gbM is present in other Brassicaceae [20], in particular in the close relative

Eutrema salsugineum and might have evolved before speciation between Thlaspi and Eutrema

[20,36]. Although the loss of CHROMOMETHYLTRANSFERASE 3 (CMT3) was previously

associated to the loss of gene body methylation [51], this gene is expressed, although possibly

mutated, in Thlaspi. If CMT3 is indeed mutated in Thlaspi, the mutation is likely to affect all

lines equally, since we found no variants neighbouring CMT3 associated with variation in the
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number of gbM genes. Instead a significant peak in Scaffold_7, pointing towards other genes,

might explain this variation (S2C Fig). TE-like methylated genes, which are usually pseudo-

genes in many species, were enriched for some constitutive functions and were about eight

times more likely than average to overlap with TEs. This might indicate that the extensive TE

expansion that occurred in the Thlaspi genome also affected some housekeeping genes, with-

out compromising viability (S2 Fig). Overall these findings suggest that gene body methylation

in T. arvense differs from most previously studied plant species [20].

To understand the genetic basis of methylation variation in T. arvense, we used GWA anal-

yses, testing for associations between DNA sequence variation and average methylation levels

in different sequence contexts and genomic features. With a strict Bonferroni correction, we

did not detect any significant genetic variants, which probably resulted from a combination of

our moderate number of only 207 sequenced lines, the nested sampling design, and the high

number of tests (compared to A. thaliana) in a ~500 Gb genome. However, for some methyla-

tion phenotypes, we found strong enrichment of a priori candidates neighbouring genes

known to play a role in DNA methylation from A. thaliana studies, and this indicates that

many of our top peaks are likely to be true positives (Figs 3 and S3). Examples include the

peaks detected next to the genes AGO9, DRM3 and LIG1, which are all part of the DNA meth-

ylation machinery of A. thaliana [13,14], and which were also among our a priori candidates

(S5 Table). In addition to these ’expected’ candidates, we found several additional peaks next

to genes that were indirectly linked to DNA methylation, with predicted functions such as his-

tone acetylation, DNA repair and ubiquitination (S6 Table). The latter in particular is a post-

translational modification which was previously shown to affect methylation in several ways

[28–33]. These new candidate genes were not in our a priori list, which explains the drop of

enrichment at high -log(p) in several GWA analyses (Figs 3B and S3). Our results show that

while there appears to be partial overlap in the genetic control of DNA methylation between T.

arvense and A. thaliana, there are also important differences. Some of our strongest candidates

have not been associated with DNA methylation before, particularly not in natural popula-

tions. Functional characterization of these “new” candidates will be necessary to confirm our

findings and understand the mechanisms of action of these genes.

Finally, some interesting associations warrant further exploration and could uncover func-

tional differences with A. thaliana in the methylation machineries of different sequence con-

texts. For example we find a peak for mCG, next to a DRM3 orthologue, involved in RdDM

and non-CG methylation maintenance in Arabidopsis [46–48], and vice versa a peak for

mCHH of promoters and TEs right next (3kb upstream) to an orthologue of the mCG mainte-

nance methyltransferaseMET1. On the contrary, the high similarity between mCHG and

mCHH in regard to their genetic basis, as shown by the strong overlap of GWA results, seems

to be a common feature in the plant kingdom [13,14].

Natural epigenetic variation was not only associated with genetic background in our study,

but also with climate of origin. These correlations were generally much stronger than those

with latitude or longitude, which supports the idea that the observed correlations reflect adap-

tive processes and not just the combination of epigenetic drift and isolation-by-distance. Spe-

cifically, we found average methylation to be positively correlated with mean temperature but

negatively with temperature variability (Fig 4). Our field survey particularly captured the cold

end of the distribution range of T. arvense (Mean Annual Temp. 6.5–11.1˚C). Previous studies

showed that cold can induce DNA demethylation in plants [52–54] and that demethylation in

turn can be associated with expression of cold-resistance genes and increased freezing toler-

ance [55,56]. The observed negative correlations between methylation and temperature might

therefore reflect adaptation to cold and the fact that we captured the cold end of the distribu-

tion. This interpretation is further supported by the fact that correlations with minimum
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temperatures were generally stronger than with bioclimatic variables capturing maximum

temperature (Fig 4) and explains why a similar study found negative correlations between tem-

perature and methylation in Arabidopsis accessions sampled on a range including many

warmer locations [12]. The negative relationship between DNA methylation and temperature

variability (Mean Diurnal Range and Temperature Annual Range) is more challenging to

interpret, as there have so far been no experimental tests manipulating environmental variabil-

ity in temperature. However, lower DNA methylation is often associated with lower genome

stability [57,58], and it is conceivable that in fluctuating and thus less predictable environ-

mental conditions, lower genome stability and higher transposon activity could be adaptive.

Supporting this hypothesis, Arabidopsis cmt2mutants with slightly lower and more variable

CHH methylation in TEs, were shown to be more common in regions with high tempera-

ture seasonality [59]. Finally, we did not find any association between DNA methylation

and the precipitation of the population origins. However, this may largely be a result of our

latitudinal sampling design, which maximized temperature but not precipitation variation.

None of our sampling sites were particularly dry or particularly wet/oceanic (Annual Prec.

475–869 mm).

To better understand the predictive power of climate of origin versus genetic background,

we finally analysed the variance in methylation levels of individual DMRs. We found that,

across all DMRs, genetic variation in trans generally explained more DMR variation than cli-

matic variation or genetic variation in cis. However, there was a trend from CG to CHG to

CHH that the explanatory power of climate increased relative to that of genetic background

(Fig 5A). In CHH, climate was the strongest predictor of methylation variation in over one

quarter of the individual DMRs; in promoters this was true for even 35% of the DMRs (Fig

5B). These results further support the idea that methylation variation, particularly in CHG and

CHH, is not only involved in plant responses to short-term stress [17] but also in longer-term

environmental adaptation. Moreover, the observation that sometimes climate was the stron-

gest predictor, indicates that at least part of the climate-methylation associations could be

independent of DNA sequence variation [5]. Clearly, further work is needed to support these

speculations, in particular high-resolution analyses that disentangle the genomic versus epige-

nomic basis of relevant phenotypes related to climatic tolerances. We attempted to get some

hints of the functional basis of the observed genomic-methylation and climate-methylation

relationships by analysing GO enrichment in the neighbouring genes of trans-, cis- and

environmentally-associated DMRs, and we found some enrichment, mostly related to house-

keeping functions, for trans-DMRs, but none for cis- and environmentally-associated DMRs

(S4 Fig). However, the functional annotation had GO terms for only less than half of our can-

didate genes, so our GO enrichment analysis had rather limited power.

In summary, our study is the first large-scale investigation of DNA methylation variation in

natural plant populations beyond the Arabidopsis model. We found that T. arvense natural

DNA methylation variation is shaped by genetic and environmental factors, and that the rela-

tive contributions of the two drivers vary strongly between sequence contexts. Methylation

variation in CG is generally the most similar to, and best predicted by, genetic variation. Mov-

ing to CHG and particularly CHH, the genetic determination decreases making environmental

determination relatively higher. Our results thus indicate that DNA methylation could play a

role in the large-scale environmental adaptation of T. arvense. Further experimental research,

in particular dissecting adaptive phenotypes, is necessary to corroborate this hypothesis. There

are currently efforts underway to develop T. arvense into a new biofuel and winter cover crop

[37–41], and any insights into the genomic basis of climate and other environmental adapta-

tion will be highly relevant to these efforts, particularly to deal with future climates.
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Materials and methods

Sampling and plant growth

In July 2018, we collected T. arvense seeds from 36 natural populations in six European

regions, spanning from southern France to central Sweden, and used them to conduct a com-

mon environment experiment in Tübingen, Germany. The experiment started at the end of

August 2018 and lasted about two months. Upon sowing 207 lines in 9x9 cm pots filled with

soil, we stratified them for 10 d at 4˚C in the dark. We then transferred the seeds to a glass-

house and transplanted seedlings to individual pots upon germination. The glasshouse had a

15/9 h light/dark cycle (6 a.m. to 9 p.m.) with temperature and humidity conditions averaging

18˚C and 30% at night and 22˚C and 25% during the day. External conditions influenced these

parameters, resembling natural growing conditions. 46 d after the end of the stratification

period, we collected the 3rd or 4th true leaf and snap-froze it in liquid nitrogen.

Library preparation and sequencing

Using the DNeasy Plant Mini Kit (Qiagen, Hilden, DE), we extracted DNA from disrupted

leaf tissue obtained from the 3rd or 4th true leaf. For each sample, we sonicated (Covaris) 300

ng of genomic DNA to a mean fragment size of ~350 bp and used the resulting DNA for both

genomic and bisulfite libraries. The NEBNext Ultra II DNA Library Prep Kit for Illumina

(New England Biolabs) was used for library preparation and was combined with EZ-96 DNA

Methylation-Gold MagPrep (ZYMO) for bisulfite libraries. Briefly, the procedure involved: i)

end repair and 3’ adenylation of sonicated DNA fragments, ii) NEBNext adaptor ligation and

U excision, iii) size selection with AMPure XP Beads (Beckman Coulter, Brea, CA), iv) split-

ting DNA for bisulfite (2/3) and genomic (1/3) libraries, v) bisulfite treatment and cleanup of

bisulfite libraries, vi) PCR enrichment and index ligation using Kapa HiFi Hot Start Uracil

+ Ready Mix (Agilent) for bisulfite libraries (14 cycles) and NEBNext Ultra II Q5 Master Mix

for genomic libraries (4 cycles), vii) final size selection and cleanup. Finally, we sequenced

paired-end for 150 cycles. Genomic libraries were sequenced on Illumina NovaSeq 6000 (Illu-

mina, San Diego, CA), while bisulfite libraries were sequenced on HiSeq X Ten (Illumina, San

Diego, CA).

Variant calling, filtering and imputation

Base calling and demultiplexing of raw sequencing data were performed by Novogene using

the standard Illumina pipeline. After quality and adaptor trimming using cutadapt v2.6 (M.

Martin 2011), we aligned reads to the reference genome [36] with BWA-MEM v0.7.17 [60].

We then performed variant calling with GATK4 v4.1.8.1 [61,62] following the best practices

for Germline short variant discovery (https://gatk.broadinstitute.org/hc/en-us/articles/

360035535932-Germline-short-variant-discovery-SNPs-Indels-). Briefly, we marked dupli-

cates with MarkDuplicatesSpark and ran HaplotypeCaller to obtain individual sample GVCF

files. We combined individual GVCF files running GenomicsDBImport and GenotypeGVCFs

successively and parallelizing by scaffold, obtaining single-scaffold multisample vcf files. We

then re-joined these files with GatherVcfs. Upon assessment of quality parameters distribu-

tions, we removed low quality variants using VariantFiltration with different filtering parame-

ters for SNPs (QD < 2.0 || SOR> 4.0 || FS> 60.0 || MQ < 20.0 || MQRankSum < -12.5 ||

ReadPosRankSum < -8.0) and other variants (QD< 2.0 || QUAL < 30.0 || FS > 200.0 || Read-

PosRankSum < -20.0). Using vcftools v0.1.16 [63], we further filtered scaffolds with less than

three variants and variants with multiple alleles or more than 10% missing values. Prior to

imputation, we only applied a mild Minor Allele Frequency (MAF) > 0.01 filtering not to
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reduce imputation accuracy [64]. Imputation with BEAGLE 5.1 [65] recovered the few missing

genotype calls left, outputting a complete multisample vcf file.

Methylation analysis

The EpiDiverse WGBS pipeline is specifically designed for bisulfite reads mapping and meth-

ylation calling in non-model species (https://github.com/EpiDiverse/wgbs) [66]. We used it to

perform quality control (FastQC), base quality and adaptor trimming (cutadapt), bisulfite

aware mapping (erne-bs5), duplicates detection (Picard MarkDuplicates), alignment statistics

and methylation calling (Methyldackel). In the mapping step, we only retained uniquely-map-

ping reads longer than 30bp. The pipeline outputs context-specific (CG, CHG and CHH) indi-

vidual-sample bedGraph files, which we filtered for coverage> 3 and combined in

multisample unionbed files with methylated/total read counts for every position and sample

(we used custom scripts and bedtools [67]). We retained all cytosines with coverage > 3 in at

least 75% of the lines and used this dataset for all subsequent analyses.

For describing general patterns of methylation, we calculated weighted methylation as the frac-

tion between all methylated and all total read counts at every cytosine included in the calculation

[43]. In this way we also calculated the bisulfite non-conversion rates, including all cytosines with

coverage> 10 [2] in two regions of Scaffold_364 (51–60.5 KB and 95–110 KB), selected for high

similarity to chloroplast DNA and confidently unmethylated. For analyses of variation between lines

(GWA and correlation with climate) we used mean methylation, which is obtained by calculating

the methylation of each position first (methylated/total read count) and then averaging all positions

included in the calculation [43]. Weighted methylation corrects for coverage, but is highly influ-

enced by structural and copy number variants, which are likely abundant in a species with such a

high TE content [36]. As we were interested in true variation of methylation levels, mean methyla-

tion was more suited for comparing methylation of whole genomic features between lines.

To extract the mean and weighted methylation of genomic features, we intersected (bed-

tools) [67] unionbed files with genomic features (genes, CDS, introns, TEs, promoters and

intergenic regions) and averaged methylation of all intersected cytosines. For introns, we only

included regions annotated as intronic on both strands. We also extracted weighted methyla-

tion of individual CDS, promoters and TEs across all samples and plotted their distributions.

We then used this information to calculate the mean methylation of genes, excluding lowly

methylated ones (average mC< 5% across all lines) and used it for GWA. For PCA, we used

the R [68] function prcomp(). Genome wide PCAs were only based on positions without miss-

ing values as these were already a large amount (always > 1 million). Instead when restricting

to genomic features we allowed for 2% NAs and imputed these with the “missMDA” R package

[69] to include a larger amount of positions (always > 0.8 million). Nevertheless comparison

of PCA plots with and without imputation gave very similar results.

Gene Body Methylation classification

To test whether genes were methylated in their CDS, in any of the sequence contexts, we adopted

a method from previous authors [20,45]. First we used a binomial test to determine, for each cyto-

sine in CDS, whether it had significantly higher methylation than expected from bisulfite non-

conversion rates (P< 0.01). We then computed the fraction of methylated cytosines in all CDS

and lines, separately for each sequence context. Finally we tested if the fraction of methylated cyto-

sines of each individual CDS, was higher than the average of all CDS, with a one-sided binomial

test. In other words, we tested whether a specific CDS had a higher density of methylated positions

than all CDS on average. Upon correcting for multiple testing with the p.adjust() R function [68],

we considered “methylated” CDS with FDR<0.05. We restricted the analysis to genes with at least
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10 covered cytosines (coverage> 3) in each sequence context, for at least 90% of the lines. If a

CDS had less than 6 cytosines covered in a line, we coded it as a missing value. Such analysis

revealed the methylation status of 22703 genes in each line and sequence context. We defined as

“gbM”, genes with mCG FDR< 0.05, and mCHG and mCHH FDR> 0.05. We defined as

“teM”, genes with mCHG or mCHH FDR< 0.05 [12]. For GO enrichment analysis we used

genes consistently methylated, i.e. methylated in at least 70% of the lines.

Population genetic and GWA analysis

For basic genetic population structure analysis, including PCA plots and generation of the IBS

matrix, we applied a mild MAF filtering (MAF>0.01) and performed variants pruning with

PLINK v1.90b6.12 [70], using a window of 50 variants, sliding by five and a maximum LD of

0.8. Upon this filtering, we also used PLINK to generate the IBS matrix used in several analyses

to correct for population structure or for DMRs variance decomposition. For PCA, we used

the R [68] function prcomp().

We ran GWA analyses for multiple phenotypes using a custom script based on the R pack-

age “rrBLUP” [71], which allows to run mixed models correcting for population structure with

the above-mentioned IBS matrix. We used biallelic variants and applied a MAF > 0.04 cutoff.

For Manhattan and QQplots we used the “qqman” package [72], calculating the genome-wide

significance threshold according to Sobota et al. (2015) [49]. We ran GWA analyses using each

average methylation context (CG, CHG and CHH) feature (global, CDS, introns, TEs, promot-

ers and intergenic regions) combination as phenotype. For genes we also calculated mean

methylation of methylated genes, excluding lowly methylated ones (average methylation > 5%

across all lines), ending up with a total of 24 methylation phenotypes (S4 Table). Since a few

samples had higher than usual non-conversion rates (S2 Table), leading to an overestimation

of their average methylation, we calculated, for each individual sample, the surplus non-con-

version rate from a baseline of 0.6%, and subtracted it from the mean methylation values. The

baseline of 0.6% allowed us to correct only the ~20% of samples with highest non-conversion

rates. Occasionally, we observed a positive correlation between mean methylation and cover-

age across lines, probably due to library preparation bias. In these cases we fit a linear model to

the data using the logarithm of coverage (from bam files), as this gave the best fit in all cases,

and used the residuals for GWA analysis. Finally, we applied Inverse Normal Transformation

to mean methylation phenotypes that deviated strongly from normality. A list of all methyla-

tion phenotypes used and corrections and transformations applied, can be found in S4 Table.

With the double aim of validating GWA results and comparing with previous A. thaliana
studies, we performed enrichment of variants neighbouring a priori candidate genes, accord-

ing to the method established by Atwell et al. (2010) [50]. We made a few additions to the

methylation candidate gene list used by Kawakatsu et al. (2016) [12], kindly provided by the

authors, extracted all T. arvense orthologues that we could retrieve from orthofinder [73] anal-

ysis and used them for our a priori candidate genes list (S5 Table). Briefly, we attributed “a pri-
ori candidate” status to all variants within 20kb from genes in the list and calculated

enrichment for increasing -log(p) thresholds as the ratio between Observed frequency (sign. a
priori candidates/sign. variants) and Background frequency (total a priori candidates/total var-

iants). Using the same formula adopted by Atwell et al. (2010) [50], we additionally calculated

an upper bound for the FDR among candidates.

Climate-methylation correlations

To obtain bioclimatic variables for the 25 years predating the experiment, we downloaded tem-

perature and precipitation variables from the “E-OBS daily gridded meteorological data for

PLOS GENETICS Genetic and environmental drivers of large-scale epigenetic variation in Thlaspi arvense

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010452 October 12, 2022 16 / 23

https://doi.org/10.1371/journal.pgen.1010452


Europe” database (v21.0), freely available on the Copernicus website [44]. All downstream

analyses were conducted in R [68]. We extracted data for our population locations with the

“ncdf4” package [74], calculated monthly averages and extracted bioclimatic variables with

“dismo” [75]. Finally, we averaged bioclimatic variables from 1994 to 2018, the year of collec-

tion (S7 Table). To test for climatic patterns in methylation, we ran mixed models for all mean

methylation variables (the same as we used for GWA) and bioclimatic variables combinations,

using the relmatLmer() function from the R package “lme4qtl” [76] and correcting for popula-

tion structure using the same IBS matrix used for GWA analysis.

DMR calling

The EpiDiverse toolkit [66] includes a DMR pipeline based on metilene [77], which calls

DMRs between all possible pairwise comparisons between user-defined groups. We used this

tool to call DMRs using the 36 populations as groups, a minimum coverage of five (cov> 4)

and default values for all other parameters. We complemented the pipeline with a custom

downstream workflow to obtain DMRs for the whole collection from comparison-specific

DMRs. Briefly, since the pipeline output had an enrichment of short and close DMRs (particu-

larly in CHH), we joined all comparison-specific DMRs that were closer than 146bp and had

the same directionality (higher methylation in the same group). 146bp was chosen for consis-

tency with the pipeline fragmentation parameter. We then merged DMRs from all pairwise

comparisons (bedtools) [67] in a unique file and re-extracted weighted methylation of the

resulting regions from all samples. Finally, we filtered DMRs with a minimum methylation dif-

ference of 20% (CG) or 15% (CHG and CHH) in at least 5% of the samples. This ensured to

select DMRs with variability at the level of the whole collection.

DMR variance decomposition

To quantify the variance in methylation explained by cis-variants, trans-variants, and by the

environment, we ran three mixed models for each individual DMR using the marker_h2()

function from the R package “heritability” [78]. Each model had one random factor matrix,

capturing one of the three predictors. For cis we used an IBS matrix generated with PLINK

v1.90b6.12 [70] from variants within 50kb from the DMR middle point. For trans we used the

same IBS matrix used for all other analyses, described in the previous chapter. For the environ-

ment we calculated the Euclidean distance between locations, based on all Bioclimatic Vari-

ables averaged over 25 years before the sampling (1994–2018), and further reversed and

normalized the matrix to obtain a similarity matrix in a 0 to 1 range. To summarize the results

we: i) averaged cis, trans and environment explained variance across all DMRs and ii) classified

each DMR based on the mayor predictor.

Supporting information

S1 Fig. PCA plots of all 207 lines. (A) Complement to Fig 1B with latitude-coloured PCA

plots for the missing PC. (B) latitude-coloured PCA plots based on methylation of specific

genomic features (genes, TEs and promoters).

(PDF)

S2 Fig. Genes methylated in each context, GO enrichment analysis and GWA. (A) Venn

diagram of the number of genes methylated in each context in at least 70% of the lines, which

were also used for the GO enrichment. Genes methylated only in CG are labelled as “gbM”,

genes methylated in either CHG or CHH as “TE-like” [12]. (B) GO enrichment analysis of

methylated genes corresponding to (A). Only significant results for GO terms with minimum
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gene count of four are reported. GO categories are: Biological Process (BP), Cellular Compo-

nent (CC) and Molecular Function (MF). (C) GWA for number of gbM genes, including Man-

hattan plot, enrichment of a-priori candidates and qqplot.

(PDF)

S3 Fig. Complete methylation GWA results. Manhattan plots, enrichment of a priori candi-

date variants and QQplots for all mean methylation phenotypes. more5met: mean methylation

of genes with methylation > 5% across all lines. The genome-wide significance (horizontal red

lines), was calculated based on unlinked variants as in Sobota et al. (2015) [49], the suggestive-

line (blue) corresponds to–log(p) = 5. Top variants are labelled with the neighbouring genes

potentially affecting methylation.

(PDF)

S4 Fig. GO enrichment analysis of genes neighbouring trans-DMRs. Genes neighbouring

(2kb max) cis, trans and env-DMRs were used for individual GO term enrichment analysis,

but only the trans-DMRs gene set was enriched for any significant term.

(PDF)

S1 Table. Geographic locations of all T. arvense populations. Geographic coordinates, eleva-

tion and size of all populations.

(PDF)

S2 Table. Mapping statistics. Number of deduplicated mapped reads, average coverage and

non-conversion rates calculated from chloroplast DNA. WGS: Whole Genome Sequencing;

WGBS: Whole Genome Bisulfite Sequencing.

(CSV)

S3 Table. Number of genes methylated in each line. Numbers and fractions of genes per line

methylated in each sequence context, in CG only (gbM) and in either CHG or CHH (TEm)

[12].

(XLSX)

S4 Table. List of all mean methylation variables used for GWA and climate correlations.

Coverage correction indicates that, prior to GWA, residuals were extracted from a linear

model with log(coverage) as predictor. INT indicates Inverse Normal Transformation. more5-

met: Mean methylation of genes with methylation > 5% across all lines.

(PDF)

S5 Table. List of Thlaspi arvense a priori candidate genes. T. arvense genes and the respective

A. thaliana orthologues with known roles in methylation. We used this list for the enrichment

of a priori candidate variants performed upon GWA.

(CSV)

S6 Table. GWA candidate genes. List of all genes located within 15kb from variants signifi-

cant to -log(p) > 5, including methylation phenotypes where the association was found, a pri-
ori candidate status and relevant functional putative roles. Genes with predicted function

possibly affecting methylation are highlighted in bold.

(XLSX)

S7 Table. Bioclimatic variables. Bioclimatic variables used in this study, obtained from

monthly averages extracted from the Copernicus programme website [44] and averaged for

1993–2018.

(CSV)

PLOS GENETICS Genetic and environmental drivers of large-scale epigenetic variation in Thlaspi arvense

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010452 October 12, 2022 18 / 23

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010452.s011
https://doi.org/10.1371/journal.pgen.1010452


Acknowledgments

We thank the entire EpiDiverse network for its amazing support and discussions, in particular

Adrián Contreras-Garrido for providing orthofinder results and discussing analysis, and Bár-

bara Dı́ez Rodrı́guez and Iris Sammarco for really useful suggestions. We thank Detlef Weigel

for his input on data analysis, and Magnus Nordborg and Eriko Sasaki for their feedback on

GWA analysis and for sharing their list of candidate genes. Finally, we thank Anupoma Troyee

and Valentina Vaglia for helping with sampling, Sabine Silberhorn, Christiane Karasch-Witt-

mann, Eva Schloter, Julia Rafalski and Elodie Kugler for the greenhouse experiment, and

Katharina Jandrasits for help with library preparation. For computing, we acknowledge Prof.

Peter Stadler at the University of Leipzig and David Langenberger from ecSeq, for hosting the

EpiDiverse servers. We also acknowledge the High Performance and Cloud Computing

Group at the Zentrum für Datenverarbeitung of the University of Tübingen for managing the
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26. Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, et al. Mapping the Epige-

netic Basis of Complex Traits. Science. 2014 Mar 7; 343(6175):1145–8. https://doi.org/10.1126/

science.1248127 PMID: 24505129

27. Sasaki E, Kawakatsu T, Ecker JR, Nordborg M. Common alleles of CMT2 and NRPE1 are major deter-

minants of CHH methylation variation in Arabidopsis thaliana. PLOS Genetics. 2019 dic; 15(12):

e1008492. https://doi.org/10.1371/journal.pgen.1008492 PMID: 31887137

28. Bostick M, Kim JK, Estève P-O, Clark A, Pradhan S, Jacobsen SE. UHRF1 Plays a Role in Maintaining

DNA Methylation in Mammalian Cells. Science. 2007 Sep 21; 317(5845):1760–4. https://doi.org/10.

1126/science.1147939 PMID: 17673620

29. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 medi-

ates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007 Dec; 450(7171):908–

12.

30. Kraft E, Bostick M, Jacobsen SE, Callis J. ORTH/VIM proteins that regulate DNA methylation are func-

tional ubiquitin E3 ligases. The Plant Journal. 2008; 56(5):704–15. https://doi.org/10.1111/j.1365-313X.

2008.03631.x PMID: 18643997

31. Kim J, Kim JH, Richards EJ, Chung KM, Woo HR. Arabidopsis VIM Proteins Regulate Epigenetic

Silencing by Modulating DNA Methylation and Histone Modification in Cooperation with MET1. Molecu-

lar Plant. 2014 Sep 1; 7(9):1470–85. https://doi.org/10.1093/mp/ssu079 PMID: 25009302

32. Chen J, Liu J, Jiang J, Qian S, Song J, Kabara R, et al. F-box protein CFK1 interacts with and degrades

de novo DNA methyltransferase in Arabidopsis. New Phytologist. 2021; 229(6):3303–17. https://doi.

org/10.1111/nph.17103 PMID: 33216996

33. Wang J, Qiu Z, Wu Y. Ubiquitin Regulation: The Histone Modifying Enzyme0s Story. Cells. 2018 Aug

27; 7(9):118. https://doi.org/10.3390/cells7090118 PMID: 30150556
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