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Zusammenfassung (Englisch)

The visual system encompasses about 20% of the cerebral cortex! and plays a
pivotal role in higher-order cognitive processes such as attention and working
memory.>* Cognitive impairments constitute a central role in neuropsychiatric
disorders such as schizophrenia (SZ).5° Impairments are described in visual
perceptual processes including contrast, and emotion discrimination as well as in
the ability to identify visual irregularities and in higher-order cognition like visual
attention and working memory.'%-'® Furthermore, perceptual and higher-order
cognitive processes are part of the Research Domain Criteria (RDoC) project that
aims to develop dimensional and transdiagnostic constructs with defined links to
specific brain circuits.'® 2° Therefore, the detailed study of the visual system using
functional magnetic resonance imaging (fMRI) is essential to understand the
processes in healthy individuals but also in populations with neuropsychiatric
disorders.

Visual mapping techniques include functional localizer tasks to map functionally
defined regions like the fusiform face area (FFA), retinotopic mapping to map
specific brain regions that are retinotopically organized in full, and visual-field
localizer paradigms to define circumscribed areas within retinotopically organized
areas.’ 21-26 Thus, the latter allow studying local information processing in early
visual areas. Despite advances in neuroimaging techniques, analyses of fMRI
data at the group-level are impeded by interindividual macroanatomical
variability. This reduces the reliability to accurately define visual areas particularly
at the group-level and decreases statistical power.?% 27-34 Single-subject based
solutions for this problem are not appropriate.3® Analyses after volume-based
alignment (VBA)?"> 363 and primary surface-based analyses without
macroanatomical alignment3® 4944 do not increase macroanatomical
correspondence sufficiently. Cortex-based alignment (CBA) approaches are
recommended as an alternative technique to address this obstacle.*' However,
CBA has not been evaluated for visual-field localizer paradigms. Therefore, we
aimed to evaluate potential benefits of CBA for an attention-enhanced visual field
localizer paradigm that maps circumscribed regions in retinotopically organized
visual areas. Since previous studies solely compared surface-based data before

and after CBA,?®> we aimed to compare all three techniques: (1) a volume-based



alignment (VBA), (2) a surface-based data set without (SBAV) and (3) a surface-
based data set with macroanatomical alignment (CBA). Furthermore, we sought
to define regions of interest (ROI) that subsequently can be used for the study of
higher-order cognitive processes. Also, we aimed to investigate whether CBA
facilitates the study of functional asymmetries in early visual areas as these were
described in previous studies. Healthy volunteers (n=50) underwent fMRI in a 3-
Tesla Siemens Trio scanner while performing an attention-enhanced visual field
localizer paradigm. Our task consisted of a series of flickering, black-and white
colored checkerboard stimuli that randomly appeared at one of four locations
comprising the participants’ visual quadrants. In 25% of the trials the centrally
located squares briefly changed their color to yellow (target trial). Participants had
to indicate detection of a target by button press. Data analysis was conducted
using Brain Voyager 20.6.#° Our approach for macroanatomical alignment
included a high-resolution, multiscale curvature driven alignment procedure
minimizing interindividual macroanatomical variability. Here, each folding pattern
was aligned to a dynamically updated group average. Thus, we counteracted a
possible confounding effect of a suboptimal selection of an individual target brain
with a folding pattern deviating considerably from the cohort average. Group
ROls after CBA showed increased spatial consistency, vertical symmetry, and an
increase of size. This was corroborated by an increase in the probability of
activation overlap of up to 86%. CBA increased macroanatomical
correspondence and thus ameliorated results of multi-subject ROl analyses.
Functional differences in the form of a downward bias in visual hemifields were
measured with increased reliability. In summary, our findings provide clear
evidence for the superiority of CBA for the study of local information processing
in early visual cortex at the group-level. This approach is of relevance for the
study of visual dysfunction in neuropsychiatric disorders including schizophrenia
as they show impaired visual processing that in turn impacts higher-order
cognitive processes and in consequence functional outcome.*¢-47 In addition, our
attention-enhanced visual field localizer paradigm will be useful for machine
learning approaches such as multivariate pattern analysis decoding local

information processes and connectivity patterns.



Zusammenfassung (Deutsch)

Das visuelle System umfasst ca. 20% des zerebralen Kortex! und spielt eine
bedeutende Rolle in Aufmerksamkeits- sowie Arbeitsgedachtnisprozessen.>*
Kognitive Defizite und Defizite im visuellen System sind zudem zentraler
Bestandteil neuropsychiatrischer Erkrankungen wie der Schizophrenie.5® Bei
Patienten mit Schizophrenie werden z.B. Einschrankungen in der selektiven
Aufmerksamkeit sowie in der Fahigkeit Unregelmaliigkeiten, Farben und
Kontraste adaquat zu erkennen, beschrieben.’®'” Diese Beispiele heben die
Relevanz eines funktionierenden visuellen Systems sowie die Untersuchung der
neurophysiologischen Grundlagen hervor. Beflrwortet wird dies auch durch das
RDoC-Projekt, welches das Ziel hat, neuropsychiatrische Erkrankungen auf
Basis von Defiziten in kognitiven Domanen und neuronalen Netzwerken zu
beschreiben.’® 20 Hierbei wird auch empfohlen, Wahrnehmungsprozesse zu
bertcksichtigen. Zusammenfassend ist somit die detaillierte Untersuchung des
visuellen Systems mittels funktioneller Magnetresonanztomographie (fMRT)
essenziell, um die Ablaufe in gesunden Personen aber auch in Populationen mit
einer neuropsychiatrischen Erkrankung zu verstehen. Im Rahmen solcher
Untersuchungen gibt es verschiedene Methoden, die genutzt werden kdnnen: die
Untersuchung funktionell definierter visueller Areale anhand einer sog.
functional-localizer Aufgabe, retinotope Kartierung der visuellen Areale, sowie
die Untersuchung umschriebener visueller Regionen innerhalb dieser retinotop
organisierten Systeme mittels visual-field-localizer Aufgaben.! 21-26 | etztere
ermdglichen insbesondere die Untersuchung lokaler Informationsverarbeitung
einfacher visueller Stimuli in friihen visuellen Arealen. All diese Ansatze haben
eine limitierende Gemeinsamkeit, und zwar interindividuelle, makroanatomische
Unterschiede, die die Analysen auf Gruppenebene erschweren und die
statistische Aussagekraft minimieren.25 27-34 Als Alternative kann die Anwendung
eines kortexbasierten Angleichungsverfahrens (CBA) dienen.*' Fir visual-field-
localizer Aufgaben ist CBA jedoch noch nicht untersucht. DarlUber hinaus
beschrankten sich die Untersuchungen bislang primar auf oberflachenbasierte
Datenanalysen.?® Hierbei wurde postuliert, dass oberflachenbasierte Methoden
ohne CBA vergleichbar mit strikt volumen-basierten Analysen sind. Ziel unserer
Studie war es, Effekte der CBA auf visual-field-localizer Aufgaben zu evaluieren



und ROIs zu definieren, die auch fur die Untersuchung hoéherer kognitiver
Prozesse genutzt werden konnen. Daruber hinaus beabsichtigten wir, alle drei
Methoden miteinander zu vergleichen: (1) volumenbasierte Angleichung (VBA),
(2) oberflachenbasierte Angleichung ohne makroanatomische (SBAV) und (3) mit
makroanatomischer Angleichung (CBA). Gesunde Kontrollprobanden (n = 50)
ohne neuropsychiatrische Erkrankung bearbeiteten im 3-Tesla-fMRT eine visual-
field-localizer Aufgabe, bestehend aus einer Serie blinkender, runder, schwarz-
weild-gefarbter Schachbrettmuster. Die Muster erschienen zufallig in vier
verschiedenen Gesichtsfeldarealen. In 25 % der Falle anderte sich die Farbe der
zwei zentral gelegenen Quadrate kurzzeitig in Gelb (target trial). Das Bemerken
der Anderung sollte mittels Tastendrucks zuriickgemeldet werden. Alle drei
Analyseverfahren (VBA, SBAV, CBA) wurden mit Brain Voyager 20.6
durchgefiihrt.#® Grundlage der CBA-Methode sind kortikale Faltungsmuster mit
der Besonderheit, dass die Datensatze an ein dynamisch aktualisiertes
Zielgehirn angeglichen werden. Hierdurch vermeidet man, ein Zielgehirn mit
ausgepragter Abweichung vom Gruppendurchschnitt auszuwahlen. Wir
definierten vier ROls fur alle drei Methoden (VBA, SBAV, CBA), um diese
miteinander zu vergleichen. CBA verbesserte die raumliche Prazision der
Gruppenaktivitatskarten und fihrte zu deutlich symmetrischer und fokussierter
Verteilung der Aktivitatscluster. Bestatigt wurde dies durch eine Zunahme der
Uberlappungswahrscheinlichkeit der Aktivitatscluster um bis zu 86%. Es zeigte
sich somit eine deutliche Verbesserung der Ergebnisse der Gruppenanalyse.
Funktionelle  Unterschiede in Form von  Asymmetrien, die in
elektrophysiologischen Untersuchungen beschrieben wurden, konnten hierdurch
reliabler dargestellt werden. CBA-basierte Analyseverfahren sind somit flr die
Untersuchung fruher visueller Areale einer volumen-basierten aber auch einer
rein oberflachen-basierten Analyse ohne makroanatomische Angleichung
uberlegen und konnen daher in Patientengruppen, die eine erhohte
interindividuelle makroanatomische Variabilitat aufweisen wie der Schizophrenie,

genutzt werden.
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Ubergreifende Zusammenfassung

The visual system

The visual system occupies about 20% of the human cerebral cortex' and is
characterized by a complex and hierarchical organization.*® It can broadly be
divided into two parts consisting of an ophthalmic and neurological. The latter
encompasses the occipital cortex containing the primary (V1) and secondary
visual areas (V2-V5) and subsequently extends to temporo-parietal regions.*®: %0
Importantly, it shows close interconnections with regions involved in higher-order
cognition like visual selective attention and visual working memory (WM).24. 49, 51
Its interaction with areas involved in visual WM processes is also reflected by the
sensory recruitment hypothesis®?-%5 which proposes neural populations in early
visual regions to be involved in the maintenance of visual information via
representations in the same early visual area that initially encoded the presented
visual information.%® %% % Such recruitment is commonly initiated by regions
involved in higher-order cognition like frontoparietal regions.53 54 % Importantly,
several findings indicate that such recruitment might also account for an

increased precision of memory storage.>?

Visual mapping techniques

Using fMRI is a common approach to study the visual system with its
topographical representations and connectivity patterns to higher-order cognitive
areas. Visual mapping techniques include retinotopic mapping and population
receptive field mapping,’ 2" 22 functional localizer paradigms,' 22 57-58 and finally
visual-field localizer paradigms.?6: 5% 80 Functional localizer paradigms allow to
map higher-order visual areas like the FFA, extrastriate body area and
parahippocampal place area that are specialized in processing complex visual
information. - 24.25.57. 58 |n contrast, retinotopic mapping and population receptive
field mapping allow delineating early visual areas in full.: 2" 22 Finally, visual-field
localizer tasks are utilized to define circumscribed regions within a retinotopically
organized brain region, thus delineating task-relevant positions in early visual
cortex in isolation.5® 8 To summarize, visual-field localizer paradigms allow

studying local information processing within a visual area. For this purpose, the
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use of flashing checkerboard stimuli are proposed, as these stimuli cover the
exact area of interest within the visual field and lead to strong blood-oxygenation-
level-dependent (BOLD) signal increases in early visual areas (V1-V3).%° Trials
with a sudden change of the actual stimulus — that was initially used to map a
specific brain region (“non-target”) — are characterized as target trials. Due to its
salience, a target stimulus requires the subject to attend to that mismatch, thus
enhancing stimulus processing via bottom-up attention,®%-%2 and increasing the
signal-to-noise-ratio (SNR).%3 Overall, these target trials can induce attentional
modulation by task demands which amplifies the BOLD-response?® 3 and in
consequence the reliability of the resulting localizer maps.®® We refer to these

tasks as attention-enhanced visual field localizer paradigms.

Interindividual macroanatomical variability

Despite advances in neuroimaging and the application of the aforementioned
procedures, interindividual macroanatomical variability impedes analysis of fMRI
data at the group-level. In particular, specific brain regions can differ both in size
and location impairing group-based analyses.?> 27-34 This variability is the result
of divergent cortical folding patterns between individuals. Notably, interindividual
macroanatomical variability is evident in V12% %4 as well as in extrastriate visual
regions.3* For example, V1 surface area can differ about twofold in size between
individuals.?® 6467 |mportantly, findings from postmortem studies also imply
interhemispheric variability of Brodmann areas 17 and 18 within the same
individual.®® %8 |n addition, they reported inter- and intraindividual variabilities in
sulcal patterns.®% 68 Additionally, the location of V5 — the visual motion area — can
differ about 20 mm between individuals.®® Consequently, such variability might
account for individual differences in visual information processing.2% 64 6970 For
example, previous findings in healthy populations using volume-based fMRI
described a downward bias with higher BOLD-response amplitudes to tasks in
the lower visual hemifield.”" 72 Such differences might result from true group
differences and true functional variability but also from a biased analysis due to
interindividual macroanatomical variability. All in all, this variability limits the
reliability to accurately identify specific brain regions like visual areas at the

group-level.?®
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Approaches to address interindividual macroanatomical variability

Group-based analyses necessitate spatial normalization to a standardized three-
dimensional (Cartesian) coordinate system like Talairach-space®® and MNI-
space3® aiming to create a common space for group-based analysis. Talairach
transformations employ anatomical landmarks, namely the anterior (AC) and
posterior commissure (PC) aiming to create a horizontal plane (AC-PC plane).*
Based on this plane three axes are defined: x, y, and z running from left-to-right
through the AC (x-axis), anterior-to-posterior (y-axis, AC-PC) and superior-to-
inferior through the AC (z-axis). These are subsequently utilized to manually
outline the outer cortical boundaries by determining the most extreme points of
the brain, thus creating a bounding box that runs parallel to the aforementioned
axes and specifies the borders of the cerebrum.3® 73 Alternatively, one can
employ a fully data-driven registration of structural images to an average template
brain for transformation as implemented for MNI space.% 73 Such transformation
techniques facilitate comparing signal locations across subjects and studies.?’
However, these traditional stereotactic MRI coordinate systems do not correct
interindividual macroanatomical variability.?®> Consequently, specific landmarks
can still differ in location across subjects, e.g. the precentral and postcentral
gyrus.?> Pooled single-subject ROIs combined with the overall group-based
probability for that ROl at each point in a Cartesian coordinate system can
increase functional resolution and sensitivity and is therefore proposed as an
alternative approach.3® However, such an approach is not suitable for studying
interactions between visual areas and higher-order cognitive areas at the group-
level using whole-brain analyses and it does not reduce macroanatomical
variability sufficiently. To summarize, these approaches are referred to as
volume-based alignment (VBA) and allow comparing brains across individuals to
a certain degree.’®3° However, they do not take into account topological
properties of the cortex and geometric features like sulci and gyri, thus continuing
to lack sufficient macroanatomical correspondence.?”> 74 Surface-based
techniques on the other hand, allow the use of a geodesic coordinate system with
a two-dimensional representation of the cerebral cortex.3% 4044 Compared to
VBA, surface-based approaches increase the SNR by reducing contamination

caused by white matter and cerebrospinal fluid. In addition, these techniques
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mostly preclude contamination resulting from cortical regions adjacent in volume
space but notably more distant in surface space.”® 76 Overall, such approaches
allow constraining critical data preprocessing steps including spatial smoothing
to cortical tissue, thus increasing the SNR by avoiding the above-mentioned
contamination.”® Hence, surface-based methods constitute an important
alternative approach. For further improvement of macroanatomical
correspondence, information about individual cortical folding patterns can be
used to apply a mostly or fully data-driven macroanatomical alignment of the
cortex respecting the topography of the cortex to a much larger degree.30. 40 42-44,
T This method is generally categorized as cortex-based alignment (CBA). Hence,
CBA is recommended as an alternative alignment technique to mitigate
macroanatomical variability.* To date, the benefits of CBA have been evaluated
for retinotopic mapping*® 78 and for functional localizer paradigms?# 2% 79. 80 pyt
not yet for attention-enhanced visual-field localizer paradigms. Additionally, thus
far these studies have constrained the comparison of alignment approaches to
only surface-based analyses before and after CBA treating the former as a proxy
for VBA.?> However, this might underestimate the full effects of CBA as the
differences are limited to macroanatomical alignment while both datasets share
the same advantage of an increased SNR. An intermediate approach, that we
categorize as “surface-based analysis using VBA” (SBAV), allows evaluating the

impact of surface-based analyses in isolation.

The present research project

Aims: The objective of our study was to evaluate potential benefits of CBA for an
attention-enhanced visual field localizer paradigm that maps a circumscribed
region in retinotopically organized visual areas. As previous studies primarily
compared solely surface-based data before and after CBA, we aimed to compare
all three techniques. Moreover, we aimed to define ROIs that are subsequently
useful for the study of higher-order cognitive processes. Finally, we sought to
investigate whether CBA facilitates the study of functional asymmetries in early
visual areas. Methods: Healthy, non-smoking volunteers (n=50) underwent fMRI
ina 3T MAGNETOM Trio scanner while performing an attention-enhanced visual

field localizer paradigm. The task consisted of a series of flickering, round-
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shaped, black-and-white colored checkerboard stimuli (flicker frequency = 7.5
Hz). These stimuli appeared randomly at homologous positions of the
participants’ visual quadrants for 2000 ms reflecting standard trials. The regular
inter-trial-interval (IT1) was 0 ms. However, every 10 to 14 trials, the ITl increased
to 2000 ms. For attentional modulation, during 25% of the trials the two centrally
located squares turned their color to yellow for 133 ms, thus representing target
trials. Participants were required to indicate by button-press the detection of the
target while continuously fixating a black, x-shaped fixation cross displayed at the
center of the screen. For fMRI data analysis we used Brain Voyager 20.6%°, the

NeuroEIlf toolbox (www.neuroelf.net), R 4.1.2 (www.r-project.org) and custom

software written in Matlab 9.10 (www.mathworks.com). Data analyses comprised

structural and functional image pre-processing steps. Structural data pre-
processing included background cleaning, brain extraction, bias field correction
and transformation into Talairach coordinate space. Subsequently, we employed
a segmentation step along the white-and-gray matter boundary as a prerequisite
for surface-based analysis steps with and without CBA. This step included the
reconstruction of cortical hemispheres into mesh representations that were then
transformed into spherical representations. For CBA, we used these spherical
representations to apply a high-resolution, multiscale cortex-based alignment
procedure based on the individual curvature maps of all participants. This step
comprised a rigid and a subsequent non-rigid alignment step.?> 4% During non-
rigid CBA each cortical hemisphere is aligned repetitiously to a dynamically
updated group-average following a coarse-to-fine matching strategy to eliminate
the possible confound of a static target brain based on an individual brain, whose
cortical folding pattern might deviate considerably from the group average.?® To
circumvent a further potential confounding effect of a randomly drawn brain for
the initial rigid alignment, we first conducted a preliminary CBA that included both
steps. The average brain emerging from this preliminary CBA was then utilized
for a second final CBA, again comprising rigid and non-rigid CBA. Functional data
pre-processing started in volume space and included slice timing correction,
motion correction and echo-planar imaging distortion correction before
coregistration to the structural data. Next, we transformed the functional data
(VBA, SBAV, CBA) into Talairach coordinate space. For VBA, we continued pre-

processing in volume space which included spatial smoothing, linear trend
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removal and temporal high-pass filtering. For SBAV and CBA, we continued pre-
processing in surface space which included spatial smoothing, linear trend
removal and temporal high-pass filtering. Overall, we generated three different
functional data sets, i.e., a volume-based data set (VBA), a surface-based data
set without (SBAV) and a surface-based data set with macroanatomical
alignment (CBA). These datasets were directly compared to one another. For
data comparison we identified four ROIs for each dataset while focusing on
mapping the areas that were preferentially activated by our attention-enhanced
visual field localizer paradigm. Subsequently, using these ROIs we calculated the
horizontal and vertical symmetry (also known as asymmetry index, (Al)) for each
dataset. In addition, we generated probability maps (PM) and probability
difference maps (PDM) for each dataset. The PMs reflect the relative number of
subjects showing significant task-related activity in our single-subject analysis,
thus allowing the quantification and visualization of the spatial consistency of
activation patterns.®!: 82 The calculated PDMs allow to quantify alterations in
spatial consistency of these position selective activation patterns. Finally, for CBA
and SBAV we determined the peak vertices for each single-subject full ROl and
computed the vertex-wise number of peak vertices to estimate the degree of
overlap between subjects. This analysis allowed a more direct assessment and
visualization of the effects of macroanatomical alignment on the spatial
correspondence of single-subject ROIs. Results: CBA led to a considerable
improvement of group ROI analyses compared to SBAV and VBA. Overall, in two
out of four ROIs we observed a pattern of increasing cluster size. The
corresponding average time-courses of each ROl showed clear position
selectivity independent of alignment technique. The calculated Als revealed
greater vertical symmetry of both upper and lower visual hemifield ROls for CBA
and VBA compared to SBAV. Regarding horizontal symmetry, the calculated Als
revealed greater horizontal symmetry of both upper and lower visual hemifield
ROIs only for CBA. Maximum probability of activation overlap (PM) was located
at the center of the defined ROIs for all datasets. For CBA, maximum probability
of activation overlap was up to 86% (VBA 55 %, SBAV 66%). Compared to VBA
and SBAV datasets, this was accompanied by a decrease in the spread of
functional activation around the core ROls. In the PDMs for CBA minus SBAV,

we observed a maximum increase in the probability of activation overlap of 44%
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in the central ROIs. This was paralleled by a decrease in the probability of
activation overlap of 32% in further peripheral occipital areas. In the PDMs for
CBA minus VBA, we observed a maximum increase in the probability of activation
overlap of 52%. This was paralleled by a decrease in the probability of activation
overlap of 36% in further peripheral areas. Finally, the peak vertex distribution
maps and the calculation of the vertex-wise number of peak vertices showed an
increase in the number of overlapping peak vertices per vertex for each visual

quadrant for CBA compared to SBAV, thus leading to a less spatial variability.

Discussion

Compared to VBA and SBAV, CBA constitutes a promising approach for
facilitating and improving the study of local information processing in early visual
areas at the group-level. This was evident in the considerable improvement of
our group ROI analyses indicating an enhanced power for CBA to detect
subregions of early visual areas. Moreover, our PMs and PDMs illustrated the
reduction of spurious activation after CBA. This implies that in contrast to CBA-
based group analyses, SBAV and VBA misrepresent the size of visual ROls, a
finding that is also mirrored by changes of the center of gravity of group ROls
between SBAV and CBA. The decrease of variability of single-subject ROl peak
vertex locations for each visual quadrant implies the mitigation of
macroanatomical and functional inter-subject variability after CBA to be the
reason for the improved results at the group-level. Our findings corroborate that
SBAV approaches already improve the SNR, but only the CBA technique shows
advantages of both an improved SNR and increased macroanatomical
correspondence. In addition, this indicates that using SBAV as a proxy for VBA
would underestimate the actual benefits of CBA.

Previous findings using volume-based strategies described lateralized effects on
neurophysiological parameters in early visual areas.?3 8 Since the lateralization
we first observed for SBAV did not persist after CBA, this raises the question of
whether such a lateralization might result partly from poor macroanatomical
correspondence rather than actual functional differences.

Moreover, we observed persisting larger group ROls for the lower visual

hemifield. The following explanations are possible regarding these differences
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between the upper and lower visual hemifield. On the one hand, higher residual
anatomical variability in ventral occipital cortex, representing the upper visual
hemifield, might have elicited these findings. This is in line with previous
observations of a CBA-based probabilistic atlas of the visual system that showed
larger probabilistic ROIs for dorsal V1 and dorsal V2 than for ventral V1 and
ventral V2.24 On the other hand, previous findings also showed differences in
receptor densities with higher cone density in the superior parts of the retina
processing visual information from lower visual hemifields and higher rod density
in the inferior parts of the retina processing visual information from upper visual
hemifields.®% 8 Additionally, dorso-ventral asymmetries in receptor densities in
V2 and V3, as well as higher GABA-A and muscarinic M3-receptor density in
ventral parts of V2 and V3 have been reported.8% 87 In sum, these findings might
also account for our observed results. Moreover, several reports indicate
behavioral advantages in the lower visual hemifield for shape discrimination,”": 72
88-90 reflecting differences in the functional architecture of early visual regions.
These reports have been attributed to the fact that regions processing visual
information from the lower visual hemifield are more closely tied to the dorsal
visual pathway, thus indicating that the lower visual hemifields might be more
specialized for the localization and representation of space. All in all, these
observations illustrate actual differences in functional architecture of early visual
areas representing the upper and lower visual hemifield respectively.%: %1

The reduction of interindividual macroanatomical variability increases statistical
power when studying visual areas at the group-level. This in turn can be utilized
in studies focusing on functional and effective connectivity analyses.%? ©3
Moreover, our attention-enhanced visual field localizer paradigm and our ROls
can be used as a basis for multivariate pattern analysis (MVPA).% % Here, in a
first step our ROIs can be utilized to accurately decode activity patterns, i.e., to
use information derived from activity patterns to determine which task-related
stimulus (“standard stimulus” vs. “target stimulus”) is processed at a specific time-
point. Moreover, our findings raise the question of whether MVPA might benefit
from CBA when using multi-subject based ROls. Here, we expect to observe an
improved power to accurately decode information due to the increase of the SNR
and macroanatomical correspondence. Also, classifiers acquired after MVPA

17



might serve as functional biomarkers to assess symptom severity,% to delineate
subgroups of patients,®” or to assist in the diagnosis of psychiatric disorders.%8
Importantly, CBA approaches are limited by the imperfect correlation between
brain function and brain structure.*® 43 Regarding this, other researchers have
proposed the concurrent application of functional activation and connectivity
patterns to improve macroanatomical alignment across the whole brain.%-101
These methods combine curvature-based macroanatomical alignment
procedures with an alignment based on functional information in order to further
reduce residual interindividual macroanatomical variability. Such variability
results from a restricted degree of structural-functional correspondence at some
regions due the fact that primarily defined functional loci like V5 and FFA can also
vary in size, shape, and anatomical location across subjects.25 68 99-103 An even
more complex approach employs “areal features” such as maps of relative myelin
content and functional resting state networks to align cortical data.'® Compared
to cortical folding patterns these “areal features” are closer tied to cortical regions
thus improving interindividual macroanatomical correspondence to a much larger
degree. Nonetheless, to date studies evaluating the potential advantages of
these methods for visual field localizer paradigms are lacking.

CBA will be particularly relevant to mitigate the confound of increased
macroanatomical variability in neuropsychiatric disorders like SZ to detect true
group differences.** 1% Such studies are of particular clinical importance since
impairments in both the visual system and higher-order cognition are core
features of several neuropsychiatric disorders'# 15 18.106-112 jncluding SZ.5° Here,
disturbances are described at multiple processing levels® 6 including
impairments in visual acuity and perceptual organization like deficits in figure-
ground segmentation, contour integration, shape completion and detection of
coherent motion.'0-15.17. 18 Several studies imply disturbances in both the ventral
and dorsal visual stream to be the cause for the above-mentioned impairments.'”:
18, 113115 |mportantly, these streams show subsequent projections to regions
involved in higher-order cognition. Furthermore, neuroplastic alterations in the
ventral visual stream have recently been implicated in schizophrenia resilience
mechanisms.''® Importantly, the RDoC project recommends including perceptual
and higher-order cognitive processes to establish psychiatric nosology
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depending on cognitive dimensions that originate from brain networks rather than
from categorical-based classification schemes. % 20

To summarize, our findings provide clear evidence for the superiority of CBA for
the study of local visual information processing in early visual areas — particularly
at the group-level. Therefore, our paradigm and method are promising to reliably
study local information processing in healthy population and its involvement in
higher-order cognition including visual selective attention and visual working
memory. Also, our paradigm and method can be utilized to reliably study
impairments of local visual information processing and disturbances in the
interplay between early visual areas and brain regions supporting higher-order
cognitive processes in neuropsychiatric disorders. Hence, studying the visual
system using reliable methods is of particular importance to increase our
understanding of the neurophysiological correlates not only of visual information
processing and its interactions with higher-order cognition in health but also of
perceptual and cognitive impairments associated with SZ and other

neuropsychiatric disorders.
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Improved correspondence
of fMRI visual field localizer
data after cortex-based
macroanatomical alignment

Mishal Qubad ™%, Catherine V. Barnes-Scheufler ™, Michael Schaum©?, Eva Raspor®?,
Lara Résler®%3, Benjamin Peters©%%, Carmen Schiweck ™%, Rainer Goebel 035,
Andreas Reif ©! & Robert A. Bittner(®7%

Studying the visual system with fMRI often requires using localizer paradigms to define regions of
interest (ROIs). However, the considerable interindividual variability of the cerebral cortex represents
a crucial confound for group-level analyses. Cortex-based alignment (CBA) techniques reliably reduce
interindividual macroanatomical variability. Yet, their utility has not been assessed for visual field
localizer paradigms, which map specific parts of the visual field within retinotopically organized visual
areas. We evaluated CBA for an attention-enhanced visual field localizer, mapping homologous parts
of each visual quadrant in 50 participants. We compared CBA with volume-based alignment and a
surface-based analysis, which did not include macroanatomical alignment. CBA led to the strongest
increase in the probability of activation overlap (up to 86%). At the group level, CBA led to the most
consistent increase in ROl size while preserving vertical ROl symmetry. Overall, our results indicate
that in addition to the increased signal-to-noise ratio of a surface-based analysis, macroanatomical
alignment considerably improves statistical power. These findings confirm and extend the utility of
CBA for the study of the visual system in the context of group analyses. CBA should be particularly
relevant when studying neuropsychiatric disorders with abnormally increased interindividual
macroanatomical variability.

The visual system includes a multitude of topographical representations of varying resolution across increasingly
specialized visual areas’. Functional magnetic resonance imaging (fMRI) offers a variety of methods either to
map these topographical representations in full, or to localize specific visual areas or retinotopic positions within
their topography. These approaches are essential not only for the fine-grained study of fundamental properties
of the visual system?, but also for investigating the role of these areas for higher-order cognitive processes such
as visual attention and working memory®S. This also extends to translational studies of visual dysfunction and
its cognitive consequences in neuropsychiatric disorders”®.

Methods for fMRI-based visual mapping, i.e., techniques to define regions of interest in the visual system
based on specific functional properties, fall in in three broad categories: retinotopic mapping, visual field local-
izer and functional localizer paradigms. Retinotopic mapping and the more advanced population receptive
field (pRF) mapping allow the complete delineation of early visual areas’*!". Conversely, visual field localizer
paradigms can map a circumscribed region within a retinotopically organized visual area'""?, Finally, functional
localizers can detect higher-order visual areas such as the fusiform face area (FFA), parahippocampal place area
(PPA), extrastriate body area and lateral occipital complex (LOC), which are clustered and show specializa-
tion for the processing of specific categories of complex visual information'*!*, In most fMRI studies, high
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interindividual anatomical variability of cortical areas in terms of both size and location constitutes an impor-
tant challenge'***, For instance, it has been shown that primary visual cortex (V1) can differ in size by about
twofold between individuals!’. Furthermore, anatomical variability in terms of location has been shown to be
particularly pronounced in extrastriate visual areas*. This crucial confound reduces the power to reliably map
visual areas at the group level.

One way to mitigate this problem is to pool single-subject regions of interest (ROIs), while simultaneously
using the overall group-based probability for that ROT at each point in a Cartesian coordinate system as a
constraint?>?”. While such a single-subject-based analysis improves sensitivity and functional resolution com-
pared to a standard group-based approach, it does not actually reduce macroanatomical variability. Additionally,
studying the interplay between visual areas and other cortical areas more directly involved in higher-order cogni-
tive processes with whole-brain methods such as functional connectomics network analyses® might preclude
a single-subject based strategy.

Group-based analyses typically require spatial normalization of structural and functional imaging data to a
common Cartesian coordinate system such as Talairach®® or MNI*” space. In its most basic form, volume-based
spatial normalization employs a linear transformation that matches the overall extent of the brains to a standard
brain template. While transformation into Talairach space relies on anatomical landmarks, transformation into
MNI space utilizes fully data-driven registration of structural images to an average template brain®’. While these
spatial normalization approaches inherently result in an alignment of brains, the underlying algorithms are not
optimized specifically for aligning homologous brain structures. Conversely, more refined methods employ
non-linear warping algorithms guided by intensity differences to improve macroanatomical alignment®’. Thus,
all of these methods can be categorized as volume-based alignment (VBA) techniques. However, both linear
and nonlinear VBA mostly disregard the topological properties of the cerebral cortex and its geometric features
such as sulci and gyri. Consequently, VBA methods result in a considerable amount of residual interindividual
anatomical variability®***.

Surface-based procedures constitute an important alternative approach. Surface-based spatial normaliza-
tion typically uses a geodesic coordinate system, which allows for a two-dimensional representation of the cer-
ebral cortex and respects the cortical topography to a much larger degree than traditional Cartesian coordinate
systems'®**, This approach offers two main advantages over VBA. First, surface-based spatial normalization
allows to constrain data readout and data pre-processing such as spatial smoothing to cortical tissue. This reduces
signal contamination by white matter and cerebrospinal fluid substantially and also mostly precludes contamina-
tion from cortical areas proximal in volume space but considerably more distant in surface space. Overall, this
approach enhances the signal-to-noise ratio (SNR). Consequently, spatial smoothing in surface space is superior
to spatial smoothing in volume space’**. The second advantage of surface-based spatial normalization is the pos-
sibility to use individual cortical folding patterns for an additional, fully data-driven macroanatomical alignment
of the cerebral cortex*. Compared to VBA techniques, these cortex-based alignment (CBA) methods consider-
ably improve anatomical correspondence of cortical structures while respecting cytoarchitectonic boundaries®.
Thus, CBA leads to a notable reduction of interindividual anatomical variability'®*37-3,

Importantly, previous studies have often exclusively compared surface-based data before and after macro-
anatomical alignment'**’, essentially using the former approach as a proxy for VBA. Yet, this comparison only
reflects the second advantage of CBA, namely the use of macroanatomical alignment instead of VBA. However, in
this case both data sets benefit equally from reduced signal contamination, likely underestimating the full effects
of CBA. Assessing the impact of this first advantage of surface-based analyses in isolation requires a comparison
of VBA with a surface-based analysis without macroanatomical alignment. We refer to this intermediate approach
as a “surface-based analysis using VBA” (SBAV). Thus, assessing both benefits of CBA requires the comparison
of three approaches: VBA, SBAV and CBA.

Due to the advantageous properties outlined above, CBA methods have been proposed as an alternative
approach to VBA specifically for the visual system®®, Several studies have compared the impact of VBA and
CBA methods on specific visual mapping techniques. For retinotopic mapping, an improvement of functional
overlap in both V1 and V2 after CBA has been demonstrated***'. For functional localizer data, CBA substantially
increases the overlap of object processing areas LOC, FFA and PPA across subjects'*****, Conversely, the effects
of CBA on visual field localizer paradigms mapping specific retinotopic positions have not been studied. Thus,
the utility of CBA has been demonstrated for two of the three main categories of visual mapping methods, i.e.,
those methods, which map whole areas, either defined primarily by cytoarchitectonic (e.g. V1) or functional (e.g.
FFA) properties. Conversely, it remains unclear, to which degree CBA can improve the alignment of ROIs mapped
by visual field localizer paradigms. Such paradigms are required for the detailed study of the local processing
of simple visual stimuli in early visual areas'"'24>-4’_Flashing checkerboards covering the exact area of interest
within the visual field are primarily used for this purpose. Checkerboards lead to a particularly strong BOLD-
signal increase in early visual areas (V1-V3)*. To maximize fidelity of the resulting localizer maps, visual field
localizer paradigms typically utilize the fact that attentional modulation induced by task demands significantly
enhances response reliability across visual areas. This can be achieved by adding a simple target-detection task*.

‘We used such an attention-enhanced visual field localizer paradigm to map a circumscribed location in each
visual quadrant across early visual areas aiming to define ROIs suitable for the study of higher cognitive processes.
We chose a CBA method using a dynamic group average as the target brain'®. Thus, we eliminated the possible
confound of a static CBA target based on an individual brain, whose cortical folding pattern might by chance
deviate considerably from the group average.

Our primary goal was to examine the effects of CBA for a visual field localizer paradigm. More specifically, we
aimed to determine, whether macroanatomical alignment improves the reliability of mapping subregions within
retinotopically organized visual areas delineated by such a paradigm at the group level. To this end, in addition
to the analysis of the full single-subject ROIs, we also examined the correspondence of single-subject ROI peak
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vertices, i.e., single vertices showing the strongest level of activation in each subject for each visual quadrant. We
conducted this analysis, because peak vertices are a good approximation of the center of a ROI and thus allow
for a more precise assessment and visualization of the effects of macroanatomical alignment. Based on previous
findings for other localizer paradigm classes and the relatively good structural-functional correspondence in
posterior occipital cortex, we expected to observe a benefit of CBA compared to SBAV when aligning subregions
within early visual cortex for both full ROIs and peak vertices.

Our second goal was to examine the effects of SBAV. More specifically, we aimed to assess the impact of sur-
face-based functional data readout and pre-processing without macroanatomical alignment. Here, we expected
a general improvement of the SNR for SBAV compared to VBA and a corresponding global increase in group
ROI size for all visual quadrants. Notably, several studies have shown differential response properties such as
receptive field size by visual quadrant or hemifield for homologous early visual areas. For instance, previous
studies reported improved behavioral performance and higher BOLD-signal amplitudes in the lower visual
hemifield®**. We were therefore also interested, whether we could observe differences between upper and lower
visual hemifields in our group analysis after CBA.

Overall, the aim of the study was to close an important gap in the evaluation of CBA for the study of the visual
system. Since visual field localizers are crucial for investigating contributions of the visual system to higher-order
cognitive processes, our results should have implications for the study of visual cognition in both basic and
translational neuroscience research.

Results

Visual quadrant ROIs (group level). Group-level mapping of the four visual quadrants revealed notable
differences for the three alignment techniques (VBA, SBAV, CBA) (Fig. 1, Tables 1, 2). For the lower right visual
quadrant, ROI size increased considerably from VBA to SBAV, but decreased for CBA (Table 2). For the lower
left visual quadrant, ROI size decreased slightly from VBA to SBAV, but increased considerably for CBA. For the
upper left visual quadrant, ROI size increased considerably from VBA to SBAV and increased further for CBA.
For the upper right visual quadrant, ROI size increased slightly from VBA to SBAV and increased considerably
for CBA. Thus, two out of four visual quadrant ROIs exhibited a pattern of continuously increasing cluster size,
reflecting an expansion of significant position selectivity across alignment techniques. Additionally, while ROI
size for the lower left visual quadrant decreased slightly from VBA to SBAV, ROI size for CBA was also by far the
largest. Furthermore, while ROI size decreased for the lower right visual quadrant after CBA, for SBAV this ROI
showed by far the greatest extent of any ROI for any alignment technique, even encompassing posterior parts of
temporal cortex.

Within group ROIs, average time courses showed clear position selectivity, which was not further affected by
alignment technique as indicated by the negative results of our linear mixed models (Table 3). Notably, asymme-
try indices (Als) revealed markedly greater vertical symmetry of both upper and lower hemifield ROIs for VBA
and CBA compared to SBAV (Table 4). After CBA, ROI sizes for the lower visual hemifield were considerably
larger than for the upper visual hemifield (Table 1).

Probability maps. For all three data sets, the maximum probability of activation overlap was consistently
located at the center of each ROI as defined in our previous group analysis (Fig. 1, Tables 1, 5). For VBA data,
probability maps (PMs) showed a relatively wide spread of functional activation around the core ROIs (Fig. 2a,
Table 5). Maximum probability of activation overlap was 55%. For SBAV data, PMs showed an even wider spread
of functional activation around the core ROIs (Fig. 2b, Table 5). Maximum probability of activation overlap
was 66%. For CBA data, PMs showed a noticeable decrease in the spread of functional activation around the
core ROIs with a corresponding increase in the maximum probability of overlap at the center of the core ROIs
(Fig. 2c, Table 5). Maximum probability of activation overlap was 86%.

Probability difference maps. Probability difference maps (PDMs) revealed a differential impact of the
individual methodological elements of our macroanatomical alignment approach.

For pure surface-based functional data readout and pre-processing compared to standard volume-based
alignment, the corresponding PDM (SBAV minus VBA) showed a maximum increase in the probability of acti-
vation overlap of 30% around the central ROIs. Conversely, at the location corresponding to the central group
ROIs we mostly observed a decrease in the probability of activation overlap of up to 19% (Fig. 3a, Table 6).
Notably, changes were widespread, partly extending into posterior temporal and parietal cortex. For the addition
of macroanatomical alignment, the corresponding PDM (CBA minus SBAV) showed a maximum increase in
the probability of activation overlap of 44% in the central ROIs (Fig. 3b, Table 6). Conversely, more peripheral
occipital regions showed a maximum decrease in the probability of activation overlap of 32%. Overall, changes
were considerably less widespread than for the SBAV minus VBA comparison. For the additive impact of both
methodological elements, the corresponding PDM (CBA minus VBA) showed a maximum increase in the prob-
ability of activation overlap of 52% in the central ROIs (Fig. 3¢, Table 6). Conversely, more peripheral occipital
regions as well as posterior temporal and parietal cortex showed a maximum decrease in the probability of activa-
tion overlap of 36%. Overall, the spatial extent of these effects fell in between that of the other two comparisons.

Spatial variability of ROl peak vertex distribution (single-subject level). The rates of success for
detecting subject-subject ROIs were as follows: lower right visual quadrant 98% (49 out of 50 subjects), lower
left visual quadrant 94% (47 out of 50 subjects), upper left visual quadrant 98% (49 out of 50 subjects), upper
right visual quadrant 90% (45 out of 50 subjects). Mirroring group-level PMs, single-subject level peak vertex
distribution maps (Fig. 4) showed reduced spatial variability for CBA compared to SBAV. Furthermore, for CBA
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Figure 1. Group analysis of visual quadrants. (a) VBA results. Maps and average timecourses were computed in volume
space; maps were projected on the non-aligned average surface representation. (b) SBAV results. Maps and average
timecourses were computed in surface space; maps were projected on the non-aligned surface representation. (c) CBA
results. Maps and average timecourses were computed in surface space; maps were projected on the aligned average surface
representation. Overall, two out of four visual quadrant ROIs exhibited a pattern of continuously increasing cluster size,
reflecting an increasing extent of significant position selectivity across alignment techniques. Additionally, while ROI size for
the lower left visual quadrant decreased slightly from VBA to SBAV, ROI size for CBA was also by far the largest. Only the ROI
of the lower right visual quadrant showed a cluster size decrease after CBA. Average timecourses (incl. standard error of the
mean) showed clear position selectivity with a strong BOLD signal increase for the position of interest and no BOLD signal
increase for the other three positions. ROI/graph colors: light-blue=lower right (LR) visual quadrant, orange =lower left (LL)
visual quadrant, red =upper left (UL) visual quadrant, dark-blue=upper right (UR) visual quadrant.
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TAL coordinates

Region of interest Analysis method | Number of vertices | Numberofvoxels [x [y |z
VBA 47 953 -22 -9 2
Lower right visual quadrant | SBAV 295 NA -42 | -64 5
CBA 161 NA -24 [-91 | -4
VBA 46 828 19 |-94 2
Lower left visual quadrant SBAV 28 NA 23 |-9 3
CBA 127 NA 9 |-94 | -5
VBA 4 55 4 |-87] -9
Upper left visual quadrant SBAV 47 NA 24 |=-75 |-14
CBA 82 NA 18 |-77 |-15
VBA 3 1 -5 [-88 |-13
Upper right visual quadrant | SBAV 6 NA -18 -80 |=15
CBA 58 NA -18 |-80 |-15

Table 1. Group ROIs. Size and Talairach coordinates of the group ROIs of the corresponding visual quadrants
for the VBA, SBAV and CBA data sets. For ROI size comparison, we focused exclusively on the number

of vertices. Importantly, we only provide the number of voxels of each VBA ROI as a reference to ensure a
comprehensive reporting of our findings. In three out of four visual quadrant ROIs we observed the largest
cluster size for CBA, which is indicative of the highest degree of position selectivity for the most advanced
alignment technique.

| VBA—SBAV (%) VBA—CBA (%)  SBAV — CBA (%)

Lower right visual 528 243 _45

quadrant

Lower left visual

quadrant -39 176 354
Upperlefivisual | 175 1950 74

quadrant

Upper right visual | |00 933 867

quadrant

Table 2. Changes of group ROI size compared between alignment methods. We used the following formula:
{(size_ROI,.4[AM,,] - size_ RO, [ AM,])/size_ROLy,,,[AM,]} x 100. For SBAV compared to VBA, we
observed a group ROI size increase in three out of four visual quadrants. For CBA compared to VBA, we
observed a group ROI size increase in all four visual quadrants. For CBA compared to SBAV we observed a
group ROT size increase in three out of four visual quadrants. Quad visual quadrant of interest, AM alignment
method (VBA, SBAV, CBA). n and m specify AMs, with m referring to the less advanced AM and n referring
to the comparatively more advanced AM.

visual quadrant | SumSq |MeanSq [NumDF [DenDf |Fvalue [pvalue | pvalue (corr)
Lower right visual 1832 92 9 147+ 0.31 0.737 1.000
quadrant |

Lowerleftvisual | 5505, | 13301 |2 o8 [125 |0291 | 1L000
quadrant

Uppersight vimal | o060 121 |2 98 [336 003 | 0.I56
quadrant

Upperleftvisual | 75678 | 36830 2 98 | L19 0308 | 1000
quadrant |

Table 3. Effect of alignment method on position selectivity within group ROIs. To test whether the strength
of position selectivity within corresponding group ROIs across alignment techniques increases for the more
advanced alignment techniques, we conducted separate linear mixed models with random intercept for each
visual quadrant. For each position, we used each subject’s t-values as the dependent variable and the alignment
techniques (VBA, SBAV and CBA) as the independent variable. We adjusted p-values using Bonferroni
correction. We did not observe any significant effect (all p adjusted > 0.05), indicating that this measure of
position selectivity within corresponding group ROIs was not affected by alignment technique. Thus, while for
each alignment method and visual quadrant the corresponding ROI did show significant position selectivity,
the strength of within-ROI position selectivity did not increase for more advanced alignment techniques.
*Random effect variance estimate at the subject-level for the LR ROI was 0, resulting in a singular fit when
using Imer. Therefore, results for LR were estimated without random intercept are thus equivalent to a regular
ANOVA. Sum Sq sum of squares, Mean Sq mean square, NumDf degrees of freedom in the numerator, DenDf
degrees of freedom in the denominator.
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Symmetry ROl compari AL(VBA) AIL(SBAY) AT(CBA)
LRand LL L1 82.7 11.8
Vertical
UL and UR 143 774 17.1
LRand UR 88.0 96.0 47.0
Horizontal
LLand UL 84.0 253 21.5

Table 4. Vertical and horizontal asymmetry indices (Als). To assess the impact of the three alignment
techniques on horizontal and vertical symmetry of our group-level ROIs, we computed a ROI size Al between
each pair of ROIs. Als revealed greater vertical symmetry of the upper and lower hemifield ROIs for VBA and
CBA compared to SBAV. LR lower right visual quadrant, LL lower left visual quadrant, UL upper left visual
quadrant, UR upper right visual quadrant.

TAL
Probability map Analysis method | Number of vertices | MPO (%) |x |y z
VBA 1243 55 -22 |-8 | -2
Lower right visual quadrant | SBAV 2074 66 -26 |-87 2
CBA 1391 86 -20 [-93 | -1
VBA 853 53 23 | -89 1
Lower left visual quadrant SBAV 1396 56 20 (-93 0
CBA 918 84 20 |-93 1
VBA 958 50 15 |-84 | -13
Upper left visual quadrant SBAV 1401 60 13 |-78 |~-16
CBA 1162 80 18 |-83 |-12
VBA 965 47 -19 |-81 |-14
Upper right visual quadrant | SBAV 1897 48 -4 |-83 |-14
CBA 1445 76 -15 |-87 |-15

Table 5. Extent of probability maps. For each visual quadrant and analysis methods, we counted the number
of vertices in the corresponding probability maps exceeding the threshold of 10% probability of activation
overlap. For VBA, maximum probability of activation overlap (MPO) was 55%. For SBAV, maximum
probability of activation overlap was 66%. For CBA, maximum probability of activation overlap was 86%. We
also extracted the Talairach (TAL) coordinates of the vertex showing MPO for each quadrant and each data set.

compared to SBAV we observed an increase in the number of multiple overlapping single-subject ROI peak
vertices per vertex for each visual quadrant (Table 7).

Discussion

The aim of our study was to evaluate the utility of CBA for an attention-enhanced visual field localizer para-
digm used to map circumscribed regions within retinotopically organized visual areas. Our paradigm mapped
homologous regions in each visual quadrant reliably across early visual areas. As expected, CBA led to a marked
reduction in macroanatomical variability with a number of beneficial effects on the functional level, which
clearly exceeded those observed for SBAV. Compared to VBA and SBAV, CBA resulted in the most consistent
improvements in the group ROI analysis across visual quadrants (Fig. 1).

For SBAV compared to VBA, we observed a group ROI size increase in three out of four visual quadrants
(Fig. 1, Tables 1, 2). For CBA compared to VBA, we observed a group ROI size increase in all four visual quad-
rants. For CBA compared to SBAV we observed a group ROI size increase in three out of four visual quadrants.

These results indicate an improved power for CBA to detect subregions of early visual areas, which show
position selectivity. Conversely, we did not observe an increase of position selectivity within corresponding
visual quadrant ROIs across alignment techniques in our linear mixed model analysis (Table 3). However, CBA
was the only approach leading to both an increase in ROI size and a preservation not only of vertical but also of
horizontal symmetry (Table 4).

Regarding changes in the probability of activation overlap across the three alignment techniques reflected
by the PMs, a clear pattern emerged. Probability of activation overlap increased gradually with each step, peak-
ing for CBA with a maximum value of 86%. For SBAYV, effects were weaker and considerably more widespread,
mostly affecting more peripheral brain regions. Likewise, for the comparison of CBA and SBAV PDMs showed
an increase in the probability of activation overlap with a maximum of 44% at the central locations correspond-
ing to the group ROIs. This resulted in considerably more focused activation patterns, while the opposite effect
emerged at more peripheral vertices (Fig. 3). This is most likely not attributable to a decreased spatial overlap
in the periphery of early visual areas. Rather, it indicates that CBA consistently reduces spurious spread-out
activation resulting from poor macroanatomical correspondence after VBA and a generalized SNR increase due
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Figure 2. Probability maps (PMs). PMs indicating the probability of activation overlap across subjects for each
visual quadrant. The color code gray-to-white indicates the probability of activation overlap of single-subject
maps, thresholded at a minimum of 10% probability of activation overlap. Single-subject maps were thresholded
at p<0.05 (uncorr.). We also applied a cluster level threshold of 100 vertices. (a) PMs for VBA showed a
maximum probability of activation overlap of up to 55%. (b) PMs for SBAV showed a maximum probability of
activation overlap of up to 66%. (c) PMs for CBA showed a maximum probability of activation overlap of up to
86%.
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Figure 3. Probability Difference Maps (PDMs). PDM:s indicating the differential impact of the individual steps of our overall
macroanatomical alignment approach for each visual quadrant. PDMs were generated using PMs derived from single-subject maps.
PMs were unthresholded. The color code indicates the difference of activation overlap. The color code brown-to-white indicates a
higher degree of functional activation overlap for the more advanced alignment method. The color code blue-to-green indicates

a higher degree of functional activation overlap for the less advanced alignment method. PDMs were thresholded at a minimum
probability difference of 5%. (a) The impact of surface-based functional data readout and pre-processing compared to standard
volume-based alignment (SBAV minus VBA) was characterized by a widespread activation with an increase in the probability of
activation overlap of up to 30% around the central ROIs and a decrease in the probability of activation overlap of up to 19 % at

the location corresponding to the central ROIs. (b) The additional impact of macroanatomical alignment (CBA minus SBAV) was
less widespread but characterized by an increase in the probability of activation overlap of up to 44% at the location of the central
ROIs and a decrease in the probability of activation overlap of up to 32% around the central ROIs. (c) The additive impact of both
methodological elements (CBA minus VBA) was characterized by an increase in the probability of activation overlap of up to 52% at
the location of the central ROIs and a decrease in the probability of activation overlap of up to 36% around the central ROIs.
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Probability difference map Analysis method Number of vertices | PD pos (%) PDneg(%) |x ¥ z x ¥ z
SBAV minus VBA 1169 30 -12 -34 -76 4 - 16 - 98 -3
Lower right visual quadrant CBA minus SBAV 1341 40 -28 -2 -90 -3 -42 =75 6
CBA minus VBA 739 46 -15 -25 - 88 -3 - 24 -84 9
SBAV minus VBA 570 23 -16 33 - 80 5 20 -92 10
Lower left visual quadrant CBA minus SBAV 694 38 -22 22 =91 5 27 -77 11
CBA minus VBA 402 43 =16 22 -92 -2 18 -96 -8
SBAV minus VBA 612 25 -19 18 -7 -14 12 -89 -5
Upper left visual quadrant CBA minus SBAV 680 44 -32 17 -82 -12 10 -76 -15
CBA minus VBA 546 52 -36 18 - 83 -12 11 - 86 -4
SBAV minus VBA 689 25 =13 -19 -69 -9 -9 - 86 -7
Upper right visual quadrant CBA minus SBAV 964 36 -32 -15 - 87 =15 -15 -72 -12
CBA minus VBA 795 43 -34 -15 - 87 -15 -7 -84 -6

Table 6. Extent of probability difference maps (PDMs) including positive and negative foci. For each visual
quadrant and comparison between analysis methods (SBAV minus VBA, CBA minus SBAV, CBA minus VBA),
we counted the number of vertices in the corresponding PDMs exceeding the threshold of plus 5% or minus
5% difference in probability of activation overlap. Overall, the extent of PDMs was greatest for the CBA minus
VBA comparison, i.e., the combined effect of surface-based analysis and macroanatomical alignment. We also
extracted Talairach (TAL) coordinates of the positive and negative foci for each quadrant and each data set. PD
pos positive value of probability difference, PD neg negative value of probability difference.

to SBAV. It also suggests that VBA and SBAV might misrepresent the location and extent of early visual areas.
This notion is supported by changes of the center of gravity of group ROIs between SBAV and CBA, which were
particularly pronounced for the lower left visual quadrant (Table 1). Together, these findings indicate that CBA
substantially increases statistical power when studying early visual areas at the group level. Naturally, this effect
of CBA should also extend to studies with a more global focus, such as connectivity analyses®=*,

Additionally, the specific advantages of CBA were evident in the markedly decreased variability of single-
subject ROI peak vertex locations for each visual quadrant compared to SBAV (Fig. 4, Table 7). This is indicative
of a reduction of macroanatomical and functional inter-subject variability achieved by CBA as the main reason
for the improved group-level results. Our findings confirm that transforming functional data from volume-space
into surface space already increases statistical power by reducing signal contamination from non-neuronal tissue,
thus improving the SNR. Consequently, using SBAV as a proxy for VBA would underestimate the actual benefits
of CBA. Our findings indicate that only the CBA approach benefits from both an improved SNR and reduced
macroanatomical variability. Thus, our data support the notion that among evaluated methods, CBA is the most
advantageous alignment technique for studying the visual system. Such an interpretation is also supported by the
fact that only CBA but not SBAV could preserve the vertical symmetry of group ROIs characteristic of early visual
areas, which was already evident for VBA (Table 4). This discrepancy is most likely attributable to the unspecific
SNR increase induced by SBAV, which in combination with its inherently poor macroanatomical alignment does
not result in a consistent improvement of functional overlap for all visual quadrants.

For VBA, we observed the largest group ROIs for the right and left lower visual quadrants, an effect that
changed after SBAV and CBA (Fig. 1a, Table 1). For SBAV, we observed the largest group ROIs for the left upper
and right lower visual quadrants, which did not persist after CBA. (Fig. 1b,c, Table 1). Notably, several studies
reported lateralized effects on neurophysiological parameters in early visual areas®>*¢, Our observation raises the
question, whether these findings could at least partly be explained by lateralized differences in macro-anatomical
variability rather than true functional differences.

Conversely, our CBA-aided group analysis allowed us to compare the response properties of each visual
quadrant in a more unbiased way. We observed larger group ROIs for the lower visual hemifield. In a CBA-based
probabilistic atlas of the visual system, which included all regions that could be defined in more than 50% of
subjects, probabilistic ROIs for dorsal V1 and V2 were also noticeably larger than probabilistic ROIs for ventral
V1 and V2, whereas this effect was less clear for V3*. These results are in line with our own findings and could be
attributable to higher residual anatomical variability after CBA in ventral occipital cortex representing the upper
visual hemifield. Alternatively, they could be due to true differences in response properties such as receptive field
size or overall area size. The latter interpretation is supported by studies showing functional differences between
upper and lower visual hemifields already at the retinal level in the form of differences in receptor densities .
Cone density was higher in the superior parts of the retina, which processes information from lower visual fields.
Conversely, higher rod density was observed in the inferior parts. Moreover, Eickhoff et al. reported dorso-ventral
asymmetries in receptor densities in V2 and V3*” and higher GABA-A and muscarinic M3-receptor density in
ventral parts of V2 and V3. Furthermore, there is evidence for fundamental differences in receptive field shape
from pRF mappi_ngsg. Estimating both the aspect ratios and the size of mapped areas, a more elliptical receptive
field shape was observed for the upper visual hemifield represented by ventral parts of the visual cortex compared
to the lower visual hemifield represented by dorsal parts of the visual cortex. Additionally, there is evidence for
a behavioral advantage in the lower visual hemifield for shape discrimination as well as higher BOLD-signal
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Figure 4. Single-subject peak vertex distribution maps for SBAV and CBA data sets. We mapped single-subject
peak vertices for each visual quadrant in surface space for SBAV and CBA data. We then calculated the vertex-
wise number of single-subject peak vertices. The color code indicates the number of overlapping single-subject
peak vertices per vertex. We observed an increase in the number of overlapping single-subject ROI peak vertices
per vertex after macroanatomical alignment (CBA). The number of single-subject peak vertices per occipital
vertex for each visual quadrant before and after macroanatomical alignment (SBAV and CBA) ranged between 1
and 5. Thus, a higher number indicates an improved alignment precision of single-subject ROI peak vertices. LR
lower right visual quadrant, LL lower left visual quadrant, UL upper left visual quadrant, UR upper right visual
quadrant.

changes and peak amplitudes of MEG/EEG responses®’~>5*6%6! Together, these findings demonstrate clear dif-
ferences in the functional architecture of early visual areas representing the upper and lower visual hemifield,
respectively. This has been attributed to the fact that the lower visual hemifield represented by dorsal parts of the
occipital lobe is more closely linked to the dorsal visual pathway, while the upper visual hemifield represented
by ventral parts of the occipital lobe is more closely linked to the ventral visual pathway®>**, Furthermore,
there is evidence for fundamental differences in receptive field shape from pRF mappingi". Here, for the upper
visual hemifield represented by ventral parts of the visual cortex, an increased size and more elliptical shape of
receptive fields was observed compared to the lower visual hemifield represented by dorsal parts of the visual
cortex. This implies that the lower visual field is more specialized for the precise localization and representation
of space. Our observation of larger ROIs in the lower visual hemifield is in line with these findings. Hence, our
results imply that CBA is a suitable tool to extend the study of functional and behavioral asymmetries in early
visual areas to the group-level.

One important limitation of the current study is the lack of complementary retinotopic mapping data due to
time constraints. This data would have allowed us to delineate the boundaries of early visual areas and pinpoint
the exact visual area containing each individual single-subject ROL Retinotopic mapping studies indicate that
peak activation of single subjects elicited by visual localizers are not consistently located in the same visual area.
Most localizer paradigms show peak activation not in V1 but rather in V2 or V3'2 It is therefore highly likely
that our single-subject peak activation did not consistently belong to the same visual cortical area. With the
current data set we cannot determine how precisely individual visual areas were aligned with CBA, and whether
individual levels of the visual cortical hierarchy were affected differentially. However, the position of our group
ROIs, which bordered the calcarine sulcus and spanned the occipital pole, indicate that they mainly comprised
V2 and V3. Similarly, after CBA we observed a comparable increase in the probability of overlap in the same part
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LR 1L UL UR Overall

# of PV per vertex SBAV [CBA [SBAV [CBA [SBAV [CBA [sBAV [CBA |sBAV |cCBA
1 (no overlapping PV) 45 37 47 34 43 38 41 28 176 137

2 overlapping PV 2 6 0 4 3 4 2 1 7 15

3 overlapping PV 0 0 0 0 0 1 0 2 0 3

4 overlapping PV 0 0 0 0 0 ] 0 1 0 1

5 overlapping PV 0 0 0 1 0 0 0 1 0 2
PV detection success rate (%) 98 94 98 90 95

Table 7. Single-subject ROI peak vertex distribution maps. We mapped all single-subject ROI peak vertices
per visual quadrant for SBAV and CBA. We quantified alignment precision of these peak vertices by counting
for each occipital vertex the number of overlapping peak vertices for SBAV and CBA. The number of single-
subject peak vertices per occipital vertex for each visual quadrant before and after macroanatomical alignment
(SBAV and CBA) ranged between 1 and 5. Thus, a higher number indicates improved alignment precision

of single-subject ROI peak vertices. After CBA, we observed an increase in the number of multiple, i.e.
overlapping, single-subject ROI peak vertices per occipital vertex for each visual quadrant and a corresponding
decrease in the number of non-overlapping single-subject ROI peak vertices per occipital vertex. The last row
contains the success rate of detecting single-subject ROIs and ergo peak vertices for each visual quadrant.
Success rates are necessarily equal for SBAV and CBA, because this aspect of our single-subject analysis cannot
be influenced by alignment method. PV single-subject ROI peak vertex, LR lower right visual quadrant, LL
lower left visual quadrant, UL upper left visual quadrant, UR upper right visual quadrant.

of occipital cortex. While this is at least suggestive of a relatively consistent benefit of CBA across visual areas,
more fine-grained studies including retinotopic mapping are required to address this issue more definitively.

Furthermore, we did not use eye tracking to ensure sufficient fixation. We also did not include an additional
attentional control task centered on the fixation cross, which would have further encouraged continuous fixation.
This omission was deliberate in order to keep the difficulty level adequate for psychiatric patient populations.
Our average success rate for finding reliable activation in early visual areas across all four visual quadrants was
95 (90-98)%. Insufficient fixation might partly explain our failure to find reliable activation in a small fraction
of subjects.

Finally, several properties of the VBA data set differed from the SBAV and CBA data sets. We could not match
volume-based and surface-based pre-processing parameters completely due to inherent differences between the
three-dimensional and two-dimensional spatial smoothing algorithms employed. Importantly, the number of
voxels and vertices containing functional data were not identical, differentially affecting Bonferroni correction of
group results. The smaller analysis space of the VBA data set—69% the size of the SBAV and CBA data set—lead
to a corresponding less strict Bonferroni-corrected, final statistical threshold for VBA. Due to this bias towards
the VBA data set, the beneficial effects of the additional processing steps featured in the SBAV and CBA data sets
should be underestimated. The fact that we could demonstrate the advantages of CBA despite an unfavorable sta-
tistical threshold for confirming this primary hypothesis underscores the superiority of this alignment technique.

Our study also has implications beyond mapping the visual system in healthy populations. Visual processing
deficits are a prominent feature of neurodevelopmental psychiatric disorders such as ADHD, schizophrenia and
autism spectrum disorders™**-7!, which can also perturb crucial higher-order cognitive processes including
working memory’>-7%, The current localizer paradigm will be useful to investigate local impairments of visual
information processing as well as disturbances in the interplay between early visual areas and brain networks
supporting higher-order cognitive processes. Here, CBA will be particularly relevant to reduce the confounding
effects of increased macroanatomical variability in disorders such as schizophrenia in order to measure true
group differences and true functional variability’””*. On the other hand, CBA might also be crucial for investi-
gating the neurodevelopmental underpinnings of increased macroanatomical variability itself. To this end, the
inclusion of probabilistic atlases containing information about gene expression profiles’ as well as cyto- and
receptor architectonics’”* will be valuable.

Our CBA approach relied solely on cortical curvature information to reduce macroanatomical variability.
One main advantage of this method is its feasibility for the vast majority of {MRI data sets, since it only requires
a structural brain scan of sufficient quality and resolution. Among comparable methods, CBA is the most data-
driven and objective approach. However, the achievable reduction of macroanatomical variability is limited by the
variable and imperfect correlation between brain structure and brain function®**”. Consequently, more advanced
methods additionally utilize orthogonal functional data to further reduce anatomical variability, including the
use of functional activation or connectivity patterns to improve macroanatomical alignment across the whole
brain?®7*#_ Additionally, a more complex approach has been proposed, which aligns cortical data using ‘areal
features’ more closely tied to cortical areas than cortical folding patterns, including maps of relative myelin
content and functional resting state networks®. These methods have shown to provide a relevant additional
reduction of macroanatomical variability for a variety of paradigms including visual functional localizers. Future
studies should also evaluate these methods for retinotopic mapping and visual field localizers. Moreover, it has
been demonstrated for early auditory areas, that the additional use of a probabilistic atlas of cytoarchitectonically
defined areas further enhances standard CBA results®. In principle, such an approach should easily be feasible
for the visual system.

Scientific Reports|  (2022)12:14310 | https://doi.org/10.1038/541598-022-17909-2 natureportfolio

31



www.nature.com/scientificreports/

To summarize, we demonstrated clear advantages of CBA compared to VBA for the analysis of visual field
localizer data at the group-level, signified by a considerable reduction of spatial variability across subjects across
early visual areas. Our findings extend previous CBA studies evaluating other major categories of visual mapping
techniques. They underscore the loss of information and statistical power incurred by the use of VBA methods
in the majority of fMRI studies. Therefore, CBA and comparable methods should be seriously considered as a
standard procedure for the detailed study of visual information processing and its disturbance in neuropsychi-
atric disorders.

Methods and materials

Participants. All participants gave their written informed consent to participate in the study in accordance
with the study protocol approved by the ethical review board of the Faculty of Medicine at Goethe Univer-
sity. We conducted all experimental procedures in conformity with the approved guidelines and the Declara-
tion of Helsinki. Individuals received compensation for their participation. We recruited 51 healthy volunteers
(female:male = 28:23) with age ranging between 18 and 43 years (mean = 24). All participants were non-smokers,
had no history of neurological or psychiatric illness and reported normal or corrected-to-normal visual acuity.
One participant was left-handed as assessed by the German version of the Edinburgh Handedness Inventory™.

Stimuli and task. Subjects performed an attention-enhanced visual field localizer paradigm (Fig. 5a)
implemented using Presentation (Neurobehavioral Systems, Version 18.0) as part of a larger study investigating
the role of visual areas for higher cognitive functions. The task consisted of a series of flickering black-and-
white-colored round shaped checkerboard stimuli (flicker frequency=7.5 Hz). Checkerboard stimuli appeared
randomly for 2000 ms at one of four different locations (standard trial). Each location mapped a homologous
position in one of the four visual quadrants. The regular inter-trial interval (ITI) was 0 ms. However, once every
10-14 trials (11 times overall), the ITI increased to 2000 ms (prolonged I'TI) (Fig. 5b). Our paradigm featured
a simple target-detection task. During 36 trials, the two centrally located squares of the checkerboard changed
their color to yellow for 133 ms (target trial). Participants had to press a response box button with their left
thumb as quickly as possible if they detected a target. The paradigm consisted of a total of 144 trials: 36 target
trials, 108 standard trials both equally distributed across the four locations (Fig. 5b). This target probability of
25% resulted in one target trial every fourth trial on average (range 3-5 trials) (Fig. 5b). Throughout the task a
black, x-shaped fixation cross was displayed at the center of the screen. Participants were instructed to continu-
ously fixate on the fixation cross. Before the first trial, only the fixation cross was displayed for 10 s. After the last
trial, only the fixation cross was displayed for 20 s. The total duration of the paradigm was 340 s (Fig. 5b). For the
purpose of our analyses we defined a total of four conditions, one for each of the four stimulus locations. Each
participant practiced the task prior to the measurement.

Acquisition and analysis of fMRI data. We acquired functional MRI data on a Siemens 3T MAGNETOM
Trio scanner at the Goethe University Brain Imaging Centre using a gradient-echo 2D EPI sequence (32 axial
slices, TR = 2000 ms, TE =30 ms, FA = 90°, FoV =192 x 192 mm?, voxel size=3x 3 x3 mm°, gap =1 mm, effective
slice thickness=4 mm). Slices were positioned parallel to the anterior- and posterior commissure. Functional
images were acquired in a single run comprising the acquisition of 170 volumes. Immediately before each func-
tional run, 6 volumes of this 2D EPI sequence were acquired with identical parameters except for a switch of
phase encoding direction (posterior to anterior instead of anterior to posterior) for EPI distortion correction.
Anatomical MRI data for cortex reconstruction and co-registration with functional MRI data was acquired
with a high-resolution T1-weighted 3D volume using a Magnetization-Prepared Rapid Gradient-Echo (MP-
RAGE) sequence (192 sagittal slices, TR = 1900 ms, TE = 3.04 ms, TI 900 ms, FA = 9°, FoV =256 x 256 mm?, voxel
size=15> 11 mm?®). Stimulus presentation was constantly synchronized with the fMRI sequence. Head motion
was minimized with pillows. The task was projected by a beamer onto a mirror attached on the head coil. MRI
data were pre-processed and analyzed using BrainVoyager 20.6*, the NeuroElf Matlab toolbox (www.neuroelf.
net) and custom software written in Matlab. One subject had to be excluded due to excessive intra-scan motion.

Structural image pre-processing. Structural data pre-processing included background cleaning,
brain extraction and bias field correction to minimize image intensity inhomogeneities®. Bias field correction
employed a “surface fitting” approach using singular value decomposition based least squares low-order (Leg-
endre) polynomials to model low-frequency variations across 3D image space®. We used polynomials with an
order of three, which we fitted to a subset of voxels labeled as belonging to white matter. The estimated param-
eters of the polynomials were used to construct a bias field, which was removed from the data. Our approach
comprised of one iteration using automatic white matter labeling* and four iterations using manual white mat-
ter labeling.

Subsequently, structural data were transformed into Talairach coordinate space®. This comprised manual
labeling of the anterior commissure (AC) and posterior commissure (PC) as well as the borders of the cerebrum.
These landmarks were then used to rotate each brain in the AC-PC plane followed by piece-wise, linear transfor-
mations to fit each brain in the common Talairach “proportional grid” system'?. Transformation into Talairach
coordinate space was performed because the subsequent automatic segmentation procedure exploits anatomical
knowledge for initial brain segmentation including removal of subcortical structures and disconnection of corti-
cal hemispheres ¥, To prepare the data for this procedure, we performed a manual filling of the lateral ventricles.
Based on the automatic segmentation of the structural scans along the white—gray matter boundary”, cortical
hemispheres were reconstructed into folded, topologically correct mesh representations, which were tessellated
to produce surface reconstructions and calculate curvature maps reflecting individual cortical folding patterns.
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Figure 5. Visual field localizer paradigm. (a) The paradigm consisted of flickering, black-and-white colored
checkerboards that appeared randomly at homologous positions of the participant’s visual quadrant. In 25% of
the trials, the two centrally located squares changed their color to yellow for 133 ms. Participants were required
to press a response box button when noticing that. Participants were instructed to continuously fixate a black,
x-shaped fixation cross presented at the center of the screen. Checkerboards appeared for 2000 ms. The regular
inter-trial interval (ITT) was 0 ms. (b) Every 10-14 trials, the ITI extended to 2000 ms. The task comprised 144
trials (25% target trials). It was preceded and followed by a presentation of the fixation cross for 10 5.
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Figure 6. Fully data-driven CBA approach. CBA consisted of a rigid alignment to a single target brain and a
non-linear alignment to an iteratively updated group average brain. (a) We carried out an initial CBA solely to
generate an unbiased average target brain for the final CBA. We used a randomly selected brain from among

all participants for the initial rigid CBA. (b) For the final CBA we used the unbiased average target brain

created during the initial CBA for rigid CBA. (c) We generated average surface representations before and after
macroanatomical alignment for each hemisphere, which we subsequently merged, inflated and used for analysis
and visualization of the appropriate data sets. The upper row depicts group average spherical, folded and inflated
mesh representations before applying CBA. The lower row depicts group average spherical, folded and inflated
mesh representations after applying CBA.

Surface reconstructions were subsequently morphed into distortion corrected spherical representations. Finally,
both folded and spherical mesh representations were downsampled to a standard number of vertices (40,962
vertices per hemisphere, mean vertex distance: 1.5 mm). We used these standardized mesh representations for
all surface-based processing steps.

Cortex-based alignment of structural data. We then applied a high-resolution, multiscale cortex-
based alignment procedure based on the individual curvature maps of all 50 participants for each hemisphere
separately. This CBA approach, which reliably aligns corresponding gyri and sulci across subjects“, consists of
an initial rigid and a subsequent non-rigid alignment step‘g (Fig. 6a,b). During the initial step, cortical folding
patterns of each sphere are aligned rigidly to the cortical folding pattern of a single target sphere by global rota-
tion. Rigid CBA operates solely on highly smoothed curvature maps containing only the most prominent ana-
tomical landmarks. We used the rotation parameters with the highest degree of overlap between the curvature of
each individual sphere and the target sphere as the starting point for the subsequent non-rigid CBA.
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Non-rigid CBA employs a coarse-to-fine matching strategy, which operates sequentially at four levels of
curvature smoothing, starting with the detail level used during rigid CBA. Each subsequent level includes increas-
ingly finer anatomical details up to almost the full curvature information. Importantly, non-rigid CBA aligns
each cortical folding pattern to a dynamically updated group average through iterative morphing. This moving
target approach, which generates the target curvature map from the average curvature across all hemispheres at
a given alignment stage avoids the possible confounding effects of a suboptimal selection of an individual target
brain, whose folding pattern might deviate considerably from the cohort average.

Notably, rigid CBA typically utilizes a single brain randomly drawn from the full cohort as its target brain.
However, the folding pattern of this brain might also deviate considerably from cohort average. To also address
this potential confound, we first conducted a preliminary CBA encompassing both rigid and non-rigid macro-
anatomical alignment (Fig. 6a). We then conducted a second, final CBA. Here, we used the aligned average brain
derived from the preliminary CBA as an unbiased target for the rigid alignment step (Fig. 6b). After the final non-
rigid CBA, we merged both hemispheres of each individual brain to create a global surface-based analysis space.

Furthermore, for each hemisphere we created average surface representations from the original, non-aligned
folded mesh representations, which we subsequently merged, inflated and used for data analysis and visualiza-
tion. We repeated these steps after applying the transformation matrix of the final rigid and non-rigid CBA to
the folded mesh representations, yielding an accurate representation of the structural effects of macroanatomical
alignment (Fig. 6c).

Functional image pre-processing. The first four volumes of each functional run were discarded to
allow for T1 equilibration. Initial volume-based pre-processing of functional MRI data comprised slice timing
correction using sinc interpolation and 3D motion correction using sinc interpolation. Next, we performed
echo-planar imaging distortion correction using the Correction based on Opposite Phase Encoding method®*®,
EPI distortion corrected functional data were co-registered to the untransformed extracted brains. This was
accomplished utilizing a boundary-based registration algorithm optimized for surface-based analyses™. After
co-registration to the fully cleaned but untransformed structural data, functional data were transformed into
Talairach coordinate space by applying the transformation matrix generated during Talairach transformation of
the structural data using sinc interpolation. This transformation preserved the original voxel size of the func-
tional data (3 x 3 x 3 mm?) (Fig. 7).

Surface-based pre-processing. The volumetric functional data were then transformed into surface space
by sampling on the individual cortical surface reconstructions incorporating data from — 1 to+ 3 mm along ver-
tex normals using trilinear interpolation. Subsequent pre-processing of fMRI data in surface space started with
spatial smoothing using a nearest neighbor interpolation (1 iteration). Based on the standardized vertex distance
of 1.5 mm this approximates a 2D Gaussian smoothing kernel with a full width at half maximum (FWHM) of
3 mm. We opted for minimal spatial smoothing to prevent a loss of accuracy for our visual field localizer. Spatial
smoothing was followed by linear trend removal and temporal high-pass filtering using fast Fourier transforma-
tion (high-pass 0.00903 Hz). Based on the vertex-to-vertex referencing from the folded, topologically correct
surface reconstructions to the spherical representations, we mapped the fully pre-processed functional data into
a common spherical coordinate system (Fig. 7). Finally, we applied surface-based anatomical masks that only
included cortical vertices in our analysis to the functional data. These masks excluded subcortical structures,
which mapped onto the midline of our surface reconstructions, i.e., parts of thalamus and the basal ganglia. For
functional data analysis and subsequent Bonferroni correction in surface space, this yielded a total number of
76,132 vertices.

Full volume-based pre-processing. To generate a purely volumetric data set for the comparison of VBA
and SBAYV, pre-processing after EPI distortion correction was also conducted in volume space mirroring as
closely as possible the steps and parameters outlined above for surface-based pre-processing. First, we applied
spatial smoothing using a 3D Gaussian smoothing kernel with a FWHM of 3 mm, which approximates the
degree of surface-based spatial smoothing. Second, we applied linear trend removal and temporal high-pass
filtering using fast Fourier transformation (high-pass 0.00903 Hz) using parameters exactly matching surface-
based pre-processing (Fig. 7). This data set was not transformed into surface space and did not include an ana-
tomical mask. For functional data analysis and subsequent Bonferroni correction in volume space, this yielded a
total number of 52,504 voxels. Thus, the analysis space for VBA was 69% the size of the analysis space for SBAV
and CBA (52,504 voxels vs. 76,132 vertices). This difference lead to a less strict Bonferroni corrected statistical
threshold for VBA (p =0.00000095) compared to SBAV and CBA (p =0.00000066). Notably, we did not correct
for this difference, even though it increased the difficulty of confirming the hypothesized superiority of CBA
compared to VBA at the group-level.

Comparison of functional data sets. Overall, we generated three different functional data sets: a vol-
ume-based data set, which was entirely pre-processed and aligned in volume-space (VBA); a surface-based data
set, for which the final pre-processing steps—spatial smoothing and temporal filtering—were only applied after
transformation in surface space, but without macroanatomical alignment (SBAV); and a surface-based data set,
which was pre-processed in exactly the same way as the SBAV data set and also utilized macroanatomical align-
ment (CBA) (Fig. 7). Accordingly, the primary analysis of these datasets was carried out in volume space (VBA)
and surface space (SBAV, CBA) respectively. Planned direct comparisons between these three data sets allowed
us to evaluate the effects of different steps of our macroanatomical alignment approach. We compared the VBA
and SBAV data sets to assess in isolation the impact of surface-based pre-processing, while keeping macro-
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Figure 7. Sequences of functional data pre-processing, coregistration of structural and functional data and
spatial transformation operations used to generate the three functional data sets used in our study: VBA, SBAV
and CBA. For VBA we conducted all data pre-processing operations in volume space, including slice-scan-time
correction, 3D motion correction, echo-planar imaging distortion correction, 3D spatial smoothing and linear
trend removal with temporal high-pass filtering. Finally, functional data were co-registered to the structural
data and transformed into Talairach space. For SBAV and CBA, we conducted all data pre-processing operations
up to echo-planar imaging distortion correction in volume space. Here, co-registration of functional data to

the structural data and transformation into Talairach space was followed by transformation into surface space.
We then conducted 2D spatial smoothing and linear trend removal with temporal high-pass filtering in surface
space. For CBA only, we subsequently applied macroanatomical alignment.
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anatomical alignment constant. We compared the SBAV and CBA data sets to assess in isolation the impact of
macroanatomical alignment while keeping pre-processing parameters constant. Finally, we compared the VBA
and CBA data sets to assess the combined impact of both surface-based pre-processing and macroanatomical
alignment.

fMRI group analysis of visual quadrants. We performed multi-subject statistical analyses using multi-
ple linear regression of the BOLD signal. The presentation of each checkerboard stimulus sequence at a single
location was modelled by an ideal box-car function, which covered the volume of each trial, convolved with a
synthetic two-gamma function. These predictors were used to build the design matrix of the experiment. Indi-
vidual statistical maps were generated by associating each voxel with the beta-value corresponding to the specific
set of predictors and calculated on the basis of the least mean squares solution of the general linear model. The
resulting individual statistical maps were entered into a second-level random-effects group analysis using a sum-
mary statistic approach.

‘We performed analyses focusing on the mapping of the four visual quadrants at the group level. To define
group-level ROIs for each visual quadrant, we computed separate weighted contrasts for each quadrant
against the other three quadrants. We assigned a weight of three to the position of interest, e.g. (Bguaa ;% 3)/
(Buad 2+ Pauad 3+ Bauaa_«) (P <0.05, Bonferroni corrected). This allowed us to detect brain regions showing sig-
nificant position selectivity. For each resulting group-level ROI, we extracted average time courses (incl. stand-
ard errors of the mean) for all four conditions. We conducted this analysis for all three data sets (VBA, SBAV,
CBA). For the VBA data set, we computed this analysis fully in volume space using the original resolution of the
functional data (voxel size: 3 x 3 x 3 mm®). We projected the resulting maps on the non-aligned average surface
representation, i.e. the inflated mesh representations before CBA, as depicted in the upper row of Fig. 6c. To
this end, volumetric functional maps were transformed into surface space by sampling on the average cortical
surface incorporating data from —1 to + 3 mm along vertex normals of the group average surface brain using
trilinear interpolation.

‘With this transformation we aimed to achieve a visualization and quantification of VBA results equivalent to
the SBAV and CBA results. To make all three data sets comparable, this transformation of volumetric functional
maps closely mirrored the transformation of functional data into surface space conducted for the SBAV and
CBA data sets during pre-processing. Thus, we were able to assess cluster sizes for all ROIs of all data sets in
surface space based on the number vertices. We also extracted the number of voxels for the VBA results before
transformation into surface space. However, this parameter is not suitable for a comparison with the other data
sets and was only included to ensure a comprehensive reporting of our findings.

‘We used two approaches to determine, whether position selectivity differed between our three data sets: first,
to assess differences in the extent of early visual cortex showing significant position selectivity, we compared ROI
size, i.e. the number of vertices, for each position of interest across data sets. To this end, we compared quantita-
tive changes in group ROT size between alignment methods utilizing the following formula: {(size_ROT .4l AM,]
- size_ROI,.4[AM,])/size_ROI g, [AM,]} x 100. Here, Quad indexes the visual quadrant of interest (LR, LL,
UL, UR). AM refers to alignment methods (VBA, SBAV, CBA). The subscripted characters n and m specify AMs,
with m referring to the less advanced AM and n referring to the comparatively more advanced AM. Accordingly,
a positive value indicates an increase in ROI size—and hence position selectivity—for the more advanced align-
ment method. Second, to test whether the strength of position selectivity within the ROIs of each visual quadrant
changed across alignment techniques, we conducted separate linear mixed models with random intercept for
each visual quadrant using R (version R 4.1.2). To calculate the degree of position selectivity within each ROI, we
contrasted the single-subject t-values of each visual quadrant (“position of interest”) against the single-subject
t-values of the three other visual quadrants, e.g. (tg, 1 % 3)/ (touad 2+ touad 3+ toua 4)» Separately for each align-
ment method. We used the results of these contrasts of each subject as the dependent variable and the alignment
methods (VBA, SBAV and CBA) as the independent variable. To correct for multiple comparisons, p values
were adjusted using Bonferroni correction. Thus, a significant effect in the linear mixed models would indicate
a relevant change in position selectivity across alignment methods for a given visual quadrant.

Finally, to assess the impact of the three alignment approaches on horizontal and vertical symmetry of our
group-level ROIs, we computed an established asymmetry index (AID)*! based on ROI size, i.e. the number of
vertices, between each pair of ROIs using the following formula: ([sizegy, ; - sizego, o|/sizego; | +sizege, ;) x 100.
For calculating the vertical AI, we compared the number of vertices of ROIs facing each other at the vertical
axis. Thus, for the vertical Al we compared left and right visual quadrants. For calculating the horizontal AI, we
compared the number of vertices of ROIs facing each other at the horizontal axis. Thus, for the horizontal Al we
compared upper and lower visual quadrants.

Probability maps. To quantify and visualize variability of functional activation and possible changes
induced by macroanatomical alignment, the use of PMs has been proposed. PMs are specifically useful to assess
inconsistencies, i.e., disparities between individuals regarding the location of a particular (visual) area®™?*. To
quantify the spatial consistency of position selective activation patterns, we generated PMs for each visual quad-
rant for all three data sets (VBA, SBAV, CBA). These maps represent the relative number of subjects showing
significant task-related activity in our single-subject analysis. To this end, we generated single-subject t-maps
based on the same weighted contrasts employed in the group analysis but set at a more lenient statistical thresh-
old (p<0.05 uncorrected). PMs were calculated by counting the number of subjects showing above-threshold
activation in their individual t-maps at a given vertex, dividing this value by the total number of subjects, and
multiplying the result by 100. For the VBA data set, we computed all of these steps in volume space and trans-
formed the final PM into surface space using the same parameters outlined above for the volumetric group
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maps. Finally, we thresholded all PMs at a minimum of 10% probability of activation overlap. We also applied a
cluster level threshold of 100 vertices to focus on the main areas of interest, i.e., the visual quadrants. Addition-
ally, we counted the number of vertices in the corresponding probability maps exceeding the threshold of 10%
probability of activation overlap for each visual quadrant and analysis methods. Our goal was to quantify and
compare the extent of early visual cortex, where each analysis method had a relevant impact on the probability
of activation overlap.

Probability difference maps. Additionally, we aimed to quantify changes in spatial consistency of posi-
tion selective activation patterns resulting from the different alignment methods. To this end, we calculated
PDMs for each visual quadrant, thresholded at a minimum probability difference of 5%, using the original
unthresholded PMs. The resulting three PDMs capture different aspects of our overall approach: the impact of
surface-based functional data readout and pre-processing compared to volume-based alignment (SBAV minus
VBA), the additional impact of applying macroanatomical alignment (CBA minus SBAV) and the additive
impact of both methods (CBA minus VBA). Moreover, we counted the number of vertices in the corresponding
PDMs exceeding the threshold of plus five or minus five % difference in probability of activation overlap for each
visual quadrant. Our goal was to quantify and compare the extent of early visual cortex, where we observed a
difference in the probability of activation overlap, for a comparison of analysis method.

Single-subject ROI peak vertex distribution mapping. For single-subject level analyses, we first
defined ROIs for each subject independently before and after macroanatomical alignment, i.e., for SBAV and
CBA, using the same weighted contrasts employed in the group analysis. We applied a more lenient statistical
threshold (p <0.05 uncorrected). Next, we determined the peak vertex for each subject’s four visual quadrant
ROIs, i.e., the vertex with the highest t-value, for SBAV and CBA. To specifically assess the impact of macroana-
tomical alignment on the overlap of single-subject ROI peak vertices for each visual quadrant, we mapped all
peak vertices per visual quadrant for SBAV and CBA. To quantify changes in the number of precisely overlap-
ping single-subject peak vertices, we counted for each occipital vertex the number of peak vertices for SBAV and
CBA. We performed this analysis in addition to the PM- and PDM-analysis to provide a more direct assessment
and visualization of the effects of macroanatomical alignment on the spatial correspondence of single-subject
ROIs. We restricted this particular analysis to the comparison between SBAV and CBA, because we were specifi-
cally interested in studying in isolation the effect of macroanatomical alignment introduced in the CBA data set
on the overlap of single-subject ROI peak vertices. Since both VBA and SBAV did not include macroanatomical
alignment, but both data sets differed in a number of other pre-processing steps, the direct comparison between
SBAV and CBA is the most appropriate to study this particular issue.

Data availability
‘The data that support the findings of this study are available from the corresponding author, R.A.B., upon rea-
sonable request.
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