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Abstract

Antimicrobial resistant infections arise as a consequential response to evolutionary mecha-

nisms within microbes which cause them to be protected from the effects of antimicrobials.

The frequent occurrence of resistant infections poses a global public health threat as their

control has become challenging despite many efforts. The dynamics of such infections are

driven by processes at multiple levels. For a long time, mathematical models have proved

valuable for unravelling complex mechanisms in the dynamics of infections. In this thesis,

we focus on mathematical approaches to modelling the development and spread of resistant

infections at between-host (population-wide) and within-host (individual) levels.

Within an individual host, switching between treatments has been identified as one of the

methods that can be employed for the gradual eradication of resistant strains on the long

term. With this as motivation, we study the problem using dynamical systems and notions

from control theory. We present a model based on deterministic logistic differential equa-

tions which capture the general dynamics of microbial resistance inside an individual host.

Fundamentally, this model describes the spread of resistant infections whilst accounting for

evolutionary mutations observed in resistant pathogens and capturing them in mutation ma-

trices. We extend this model to explore the implications of therapy switching from a control

theoretic perspective by using switched systems and developing control strategies with the

goal of reducing the appearance of drug resistant pathogens within the host.

At the between-host level, we use compartmental models to describe the transmission of

infection between multiple individuals in a population. In particular, we make a case study

of the evolution and spread of the novel coronavirus (SARS-CoV-2) pandemic. So far, vac-

cination remains a critical component in the eventual solution to this public health crisis.

However, as with many other pathogens, vaccine resistant variants of the virus have been a

major concern in control efforts by governments and all stakeholders. Using network theory,

we investigate the spread and transmission of the disease on social networks by compart-

mentalising and studying the progression of the disease in each compartment, considering

both the original virus strain and one of its highly transmissible vaccine-resistant mutant

strains. We investigate these dynamics in the presence of vaccinations and other interven-

tions. Although vaccinations are of absolute importance during viral outbreaks, resistant

variants coupled with population hesitancy towards vaccination can lead to further spread

of the virus.



Zusammenfassung

Antibiotikaresistente Infektionen entstehen als Folge von evolutionären Mechanismen in Mikro-

ben, die sie vor der Wirkung von Antibiotika schützen. Das häufige Auftreten resisten-

ter Infektionen stellt eine globale Bedrohung für die öffentliche Gesundheit dar, da ihre

Bekämpfung trotz vieler Bemühungen schwierig geworden ist. Die Dynamik solcher In-

fektionen wird durch Prozesse auf mehreren Ebenen bestimmt. Seit langem haben sich

mathematische Modelle als wertvoll erwiesen, um komplexe Mechanismen in der Dynamik

von Infektionen zu entschlüsseln. In dieser Arbeit konzentrieren wir uns auf mathematische

Ansätze zur Modellierung der Entwicklung und Ausbreitung von resistenten Infektionen auf

der Ebene zwischen den Wirten (populationsweit) und innerhalb der Wirte (individuell).

Innerhalb eines individuellen Wirts wurde der Wechsel zwischen Behandlungen als eine der

Methoden identifiziert, die zur schrittweisen Ausrottung resistenter Stämme auf lange Sicht

eingesetzt werden können. Aus diesem Grund untersuchen wir das Problem mit Hilfe dy-

namischer Systeme und Begriffen aus der Kontrolltheorie. Wir stellen ein Modell auf der

Grundlage deterministischer logistischer Differentialgleichungen vor, das die allgemeine Dy-

namik der mikrobiellen Resistenz in einem individuellen Wirt erfasst. Im Wesentlichen

beschreibt dieses Modell die Ausbreitung resistenter Infektionen und berücksichtigt dabei

evolutionäre Mutationen, die bei resistenten Erregern beobachtet werden, und erfasst diese

in Mutationsmatrizen. Wir erweitern dieses Modell, um die Auswirkungen von Thera-

pieschaltungen aus einer kontrolltheoretischen Perspektive zu untersuchen, indem wir ge-

schaltete Systeme verwenden und Kontrollstrategien mit dem Ziel entwickeln, das Auftreten

von arzneimittelresistenten Erregern innerhalb des Wirts zu reduzieren.

Auf der Ebene zwischen den Wirten verwenden wir Kompartimentmodelle, um die Über–

tragung von Infektionen zwischen mehreren Individuen in einer Population zu beschreiben.

Insbesondere untersuchen wir die Entwicklung und Ausbreitung des neuen Coronavirus (SARS-

CoV-2) als Fallstudie. Bislang ist die Impfung eine entscheidende Komponente bei der

Lösung dieser Krise im Bereich der öffentlichen Gesundheit. Wie bei vielen anderen Krank–

heitserregern sind auch bei diesem Virus impfstoffresistente Varianten ein Hauptproblem bei

den Kontrollbemühungen der Regierungen und aller Beteiligten. Mithilfe von Netzwerktheo-

rie untersuchen wir die Ausbreitung und Übertragung der Krankheit in sozialen Netzwerken,

indem wir die einzelnen Kompartimente aufteilen und den Krankheitsverlauf in jedem Kom-

partiment untersuchen, wobei wir sowohl den ursprünglichen Virusstamm als auch einen der

hochgradig übertragbaren impfstoffresistenten Mutantenstämme berücksichtigen. Wir unter-

suchen diese Dynamik in Gegenwart von Impfungen und anderen Interventionen. Obwohl

ii



Impfungen bei Virusausbrüchen von absoluter Bedeutung sind, können resistente Varianten

in Verbindung mit einer zögerlichen Haltung der Bevölkerung gegenüber Impfungen zu einer

weiteren Ausbreitung des Virus führen.
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Chapter 1

Introduction

1.1 Motivation

Throughout history, there have been records of human populations being invaded by in-

fectious disease-causing pathogens leading to infectious diseases with varying public health

impacts, some more lethal and others frequently recurrent [5]. One of the deadliest natural

disasters in human history was caused by a viral infection, the 1918 flu pandemic, which

killed approximately 50 million people [6]. Another serious global health threat in recent

times is the novel Coronavirus, SARS-CoV-2, which has caused high levels of mortality and

morbidity worldwide. According to the World Health Organisation (WHO), as of March 4

2022, there have been more than 440 million confirmed cases of SARS-CoV-2, including over

5 million deaths, reported globally [7].

Generally, infectious diseases can be caused by a variety of microorganisms, most prominently

bacteria and viruses. Bacteria are microscopic organisms that can be found everywhere.

When found within the human system, they can be either good or bad. In fact, good bacteria

helps perform vital functions in the body such as aiding digestion and producing vitamins.

On the other hand, harmful bacteria can cause infection when found inside the human body

[8, 9, 10]. Viruses are tiny microorganisms that are made up of genetic material inside a

protein coating which cause some familiar infectious diseases such as the common cold and flu

as well as some severe diseases such as HIV/AIDS, Ebola, SARS and SARS-CoV-2. Viruses

invade normal living cells within an individual (the host), multiplying and causing damage

to host cells [11, 12]. In general, diseases caused by viruses, such as Influenza, Chicken pox

and Measles, confer immunity against reinfection whereas those caused by bacteria, such as

Tuberculosis and Gonorrhea, do not.

For most infections, the immune system of the host works to fight the infection. However,

the development of drugs and vaccines can help prevent infection and reduce the number of

1
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people infected. Antibiotics and antivirals are powerful weapons to fight against infections.

However, many infectious pathogens can evolve and generate successor strains that confer

resistance to these drugs owing partly to the misuse and overuse of drugs. This phenomenon

where pathogens resist the action of antimicrobial and antivirals thereby reducing the effect

of these drugs for treatment is known as drug resistance [13, 14, 15]. One characteristic of

drug resistance is that it may either be present before the onset of treatment or may occur

during or after treatment with a particular drug [16]. Resistance can also occur towards

more than one drug, in which case the phenomenon is called multidrug resistance.

Thousands of people are killed annually due to the rapid evolution of drug resistant infec-

tions [17, 18]. In fact, the World Health Organization (WHO) has reported antimicrobial

resistance (AMR) as a global health problem [19]. This has been clearly exposed by a

growing list of bacteria that are becoming harder to treat due to antibiotics becoming less

effective owing to the evolution of drug resistant strains e.g. pneumococcus, Staphylococ-

cus, aureus, Pseudomonas aeruginosa among others. Resistance to both naturally occurring

and synthetic antibiotics have developed in almost all antibiotic classes. Evidence of resis-

tance to fluoroquinolone, a synthetic antibiotic, was found in Escherichia coli with about

10−40% of cases occurring in Europe [20]. Other examples of antibiotic resistance infections

include multidrug-resistant mycobacterium tuberculosis (MDR−MTB), methicillin-resistant

Staphylococcus aureus (S. aureus) (MRSA), vancomycin-resistant Enterococci (VRE) and

fluoroquinolone resistant Neisseria gonorrhoeae (Gonorrhea). About 490, 000 people were

recorded to have developed MDR−TB globally in 2015 [21].

In addition, resistance to antivirals also pose a significant problem to eradicating viral infec-

tions globally [22, 1]. Several human viruses have, through their evolutionary process, also

developed survival strategies which enable them to resist vaccines. For example influenza A

virus (IAV), human immunodeficiency virus (HIV) and hepatitis C virus (HCV)) [1]. Al-

though specific antiviral compounds have been developed for several of those viral infections

that have not been adequately controlled by vaccines, resistant infections still persist. For

instance, there have been several reports of oseltamivir-resistance influenza virus infections

globally. A study by Okomo et al [23] found low (about 1%) proportions of oseltamivir-

resistant H1N1 influenza in 2006-2007 but then resistance surged rapidly worldwide, reaching

as high as about 90% in the United States.

In the past 50 years, the study of infectious diseases has matured into a multidisciplinary

field at the intersection of epidemiology, mathematics, ecology, sociology, immunology and

public health. Mathematical models for the spread of diseases have played a central role in

medicine and epidemics, providing a cost-effective way of assessing disease transmission as

well as targets for preventing disease and control [10]. Mathematical modeling has helped

to suggest new vaccination strategies to protect against influenza infection [24]; supported
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public health strategies for containing an emerging influenza pandemic in southeast Asia

[25] and for the use of antiretroviral treatment for HIV-infected patients as a prevention

measure [26], among several others. For host infections, mathematical modeling has been

used to capture the dynamics of different infectious diseases inside the host to understand

the interaction of the pathogen and the immune system, as well as design antivirals [27].

1.2 Overview and Contributions

In this thesis, we aim to explore the problem of resistance at both within-host (progression

of infection inside a single individual) and between-host (transmission of infection between

multiple individuals of a host population) levels.

Chapter 2, gives a brief overview of the necessary background used in the rest of this thesis.

It provides some biological notions important for the subsequent chapters as well as necessary

mathematical theories and concepts that appear throughout the thesis.

Chapter 3 introduces the state of the art of drug resistance evolution both within the host

and in a given population. We describe mathematical modelling approaches that have been

used in the study of resistance development and spread at both between-host and within-host

levels. We further explain the various methods commonly used in studies of drug resistance

infections such as deterministic, stochastic, individual-based or statistical approaches.

Studying disease dynamics within the host has become necessary mainly due to the increas-

ing rise in resistant infections worldwide. With few new antimicrobial drugs being developed

in recent times, it is crucial to be able to rationalise already existing drugs. A key aspect

discovered by technological advances in genome sequencing is collateral sensitivity - a phe-

nomenon in which a pathogen which has developed resistance to one drug displays increased

sensitivity to another drug [28, 29, 30]. These breakthroughs provide the idea of using collat-

eral sensitivity cycling as a sustainable treatment paradigm that may be generally applicable

to infectious diseases and cancer [31]. However, to design drug cycling protocols in order to

avoid resistance development is a computationally demanding task. To describe how this can

be done mathematically, in Chapter 4, we utilise methods from control engineering together

with mathematical modelling approaches to describe the dynamics of drug resistance within

the host. We then continue further to propose some drug switching strategies which could

be helpful in mitigating antimicrobial resistance using existing drugs.

At between-host levels, drug resistance leads to the further spread of infections in a pop-

ulation. This is especially the case for many respiratory tract infections such as measles,

influenza and coronavirus diseases (such as MERS-CoV, SARS-CoV and SARS-CoV-2). In
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Chapter 5, we present a social network-based compartmental model to describe the dynam-

ics of SARS-CoV-2 using network theory. We further use stochastic simulations to highlight

the importance of vaccination towards the prevention of further spread of the SARS-CoV-2

virus for both single and double strains of the virus. We find that there are low infection

cases when many people in a given population are vaccinated with a vaccine which is 100%

effective.

Chapter 6 concludes the main ideas and results that have been achieved by this thesis and

summarizes some open questions for further research. Some of the results of this thesis have

led to the following peer-reviewed publications:

1. Tetteh, J. N., & Hernandez-Vargas, E. A. (2021). Network models to evaluate vaccine

strategies towards herd immunity in COVID-19. Journal of Theoretical Biology, 531,

110894.

2. Tetteh, J. N., Matthäus, F., & Hernandez-Vargas, E. A. (2020). A survey of within-host

and between-hosts modelling for antibiotic resistance. Biosystems, 196, 104182.

3. Tetteh, J. N., Olaru, S., Parra-Rojas, C., & Hernandez-Vargas, E. A. (2020). Lyapunov-

based Switching to Mitigate Antimicrobial Resistance. IFAC-PapersOnLine, 53(2),

16049-16054.

4. Hernandez-Vargas, E. A., Alanis, A. Y., & Tetteh, J. (2019). A new view of multiscale

stochastic impulsive systems for modeling and control of epidemics. Annual Reviews

in Control, 48, 242-249.



Chapter 2

Preliminaries

In this chapter, we give a brief overview of the necessary background used in the rest of this

thesis. We provide the necessary mathematical theories that appear throughout the thesis.

We also provide some biological notions important for our studies.

2.1 Mathematical preliminaries

The notation used throughout the rest of this thesis is as follows: Z denotes the set of integers,

N denotes the set of natural numbers and R denotes the set of real numbers. Rn denotes the

set of n×1 column vectors of real numbers. Rn×n denotes the set of n×n matrices with real

number entries. (·)T denotes matrix transpose. For x ∈ Rn, xi denotes the ith component of

x. Rn
+ = {x ∈ Rn : x ≥ 0} denotes the non-negative orthant in Rn. Given a set φ, a subset

of a topological space, we denote by int{φ} its interior and by ∂φ its boundary.

2.2 Dynamical systems

A dynamical system is one whose state changes with time, t. Two main types of dynamical

systems are encountered in practice: discrete (when t is discrete, that is t ∈ Z or N) and

continuous (when t is continuous, that is t ∈ R). For a state x, discrete dynamical systems

can be presented as iterations of a function, that is,

xt+1 = f(xt), t ∈ Z or N. (2.1)

The dynamics of a continuous dynamical system are usually described by a differential equa-

tion, dx/dt = ẋ = f(x) and the state space of systems is Rn allover.

5
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From now on, we refer to dynamical systems as simply systems.

Definition 2.1. Positive System: A system whose states and outputs are always non-

negative provided that the initial conditions and the input are non negative.

Consider a general form of an ordinary differential equation given as

ẋ = f(x, t) (2.2)

where the function f : Rn × R → Rn. Note that the system admits a solution x(t) which

is uniquely defined on Rn for all x(0) ∈ Rn. The equilibrium points of eq (2.2) are the real

roots of the system f(x, t) = 0 for all t.

Definition 2.2. Let x̄ be an equilibrium point of the system (2.2).

• x̄ is stable if for any ϵ > 0 there exists a δ > 0 such that if a solution x = ϕ(t) satisfies

||ϕ(0)− x̄|| < δ, then

||ϕ(t)− x̄|| < ϵ

for all t > 0, where ||x|| =
√
x21 + x22 is the Euclidean norm on R2.

• x̄ is unstable if it is not stable as defined above.

• x̄ is asymptotically stable if there exists a δ > 0 such that if a solution x = ϕ(t) satisfies

||ϕ(0)− x̄|| < δ, then

lim
t→∞

ϕ(t) = x̄.

Theorem 2.3. (Lyapunov stability theorem [32, Theorem 4.1]). Let x̄ be an equilibrium

point for the system (2.2) and D ⊂ Rn be a domain containing x̄. Let V : D → R be a

continuously differentiable function such that

V (x̄) = 0 and V (x) > 0 in D \ {x̄} (2.3)

V̇ (x) ≤ 0 in D (2.4)

where V̇ (x) =

n∑
i=1

∂V

∂xi
fi(x).

Then, x̄ is stable. Moreover, if

V̇ (x) < 0 in D \ {x̄} (2.5)

then x̄ is asymptotically stable. A continuously differentiable function V (x) satisfying these

conditions is called a Lyapunov function.



Chapter 2 7

2.2.1 Positive invariance

Definition 2.4. A set X ∈ Rn is positively invariant with respect to the system ẋ = f(x, t)

if ∀ x0 ∈ X, the solution x(t, x0) satisfies x(t, x0) ∈ X ∀ t > 0.

We introduce here the definition of tangent cone to a set, which will be useful in characterizing

positively invariant sets. Consider any norm || · || in Rn. Given a point x ∈ Rn and a set φ,

we define the distance of x from φ as dist(x, φ) = infy∈φ ||x− y||.

Definition 2.5. Let x ∈ Rn and φ ⊂ Rn be a compact set. The tangent cone to φ in x is

the set

Tφ(x) =

{
z ∈ Rn : lim inf

h→0

dist(x+ hz, φ)

h
= 0

}
.

Note that if φ is convex, so is Tφ(x) and lim inf can be replaced by lim. Moreover, if

x ∈ int{φ}, then Tφ(x) = Rn and if x /∈ φ, then Tφ(x) = ∅. Hence making the set Tφ(x)

non-trivial only on the boundary of φ. So geometrically, the tangent cone for x ∈ ∂φ is a

cone with center at the origin and which contains all the vectors whose directions from x are

tangent to (or point inside) the set φ.

Theorem 2.6. (Nagumo’s Theorem [33, Theorem 3.1]). Consider the system ẋ = f(x, t)

and assume that, for each initial condition in a set X ∈ Rn, it admits a globally unique

solution. Let φ ⊆ X be a closed and convex set. Then the set φ is positively invariant for

the system if and only if

f(x) ∈ Tφ(x) for all x ∈ φ. (2.6)

The condition in eq.(2.6) is known as the sub-tangentiality condition which has meaning only

for x ∈ ∂φ since for x ∈ int{φ},Tφ(x) = Rn. Thus, this condition can be replaced by

f(x) ∈ Tφ(x) for all x ∈ ∂φ.

2.2.2 Control theory

Control theory is a discipline whose objective deals with the behaviour of dynamical systems.

Broadly, it involves developing models and algorithms governing the application of inputs to

a dynamical system to drive it to a desired state, ensuring a level of control stability, often

to achieve a degree of optimality.

2.2.2.1 Switched systems

Many systems are made up of interactions which are continuous and discrete in nature.

Dynamical systems described by an interaction between continuous and discrete dynamics
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are usually called hybrid systems [34]. Several researchers in systems and control theory, tend

to regard hybrid systems as continuous systems with switching and place a greater emphasis

on properties of the continuous state. These continuous-time systems considered without

details of their discrete behaviour are known as switched systems.

Throughout this thesis, we are interested in positive systems. These types of systems can be

found in chemical processes, stochastic models, biology and economics. To a large extent,

several models representing biological processes, such as compartmental models, are positive

systems.

Definition 2.7. Switched positive system: Generally refers to a positive hybrid dynamical

system consisting of a family of subsystems and a rule which brings about the switching

between them. Mathematically, these subsystems are usually described by a collection of

indexed differential equations.

Classification of switched systems is based on the dynamics of their subsystems, for example;

continuous-time or discrete-time, linear or nonlinear. In addition, switched systems can be

classified as state-dependent, time-dependent, autonomous or controlled switching. In this

thesis, we focus on time-dependent switching.

Time-dependent switching

Suppose we have a family fp , p ∈ P of functions from Rn to Rn, where P is some index

set (typically, P is a subset of a finite-dimensional linear vector space). This gives rise to a

family of systems

ẋ = fp(x), p ∈ P (2.7)

evolving on Rn. The functions fp are assumed to be sufficiently regular (at least locally

Lipschitz). The easiest case to think about is when all these systems are linear:

fp(x) = Apx, Ap ∈ Rn×n, p ∈ P (2.8)

and the index set P is finite: P = {1, 2, · · · ,m}.

To define a switched system generated by the above family, we need the notion of a switching

signal. This is a piecewise constant function σ : [0,∞) → P. Such a function σ has a finite

number of discontinuities - which we call the switching times - on every bounded time interval

and takes a constant value on every interval between two consecutive switching times. The

role of σ is to specify, at each time instant t, the index σ(t) ∈ P of the active subsystem, i.e.,

the system from the family (2.7) that is currently being followed. We assume for concreteness

that σ is continuous from the right everywhere: σ(t) = limτ→t+ σ(τ) for each τ ≥ 0.
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Thus, a switched system with time-dependent switching can be described by the equation

ẋ(t) = fσ(t)(x, t) (2.9)

where x(t) ∈ Rn is the state vector at time t. fσ(t) : Rn → Rn is called a switching vector

field.

A particular case is a switched linear system

ẋ(t) = Aσ(t)x(t) (2.10)

2.2.3 Network theory

Network theory is the study of graphs as a representation of either symmetric relations or

asymmetric relations between discrete objects. A graph is made up of vertices (also called

nodes or points) which are connected by edges (also called links or lines). A graph is an

ordered pair G = (V (G), E(G)), where V (G) is a finite set of vertices of G and E(G) is a set

of 2-element subsets of V (G) × V (G) called edges of G. For the sake of simplicity, an edge

(v1, v2) will be denoted by v1v2. Suppose v1, v2 ∈ V (G) and v1v2 ∈ E(G). Then we say v1

and v2 are adjacent.

The degree of a vertex v of G is the number of edges incident with v and the degree of a graph

is the maximum of the degrees of the vertices of a network. The probability distribution of

the all node degrees over the network is the degree distribution. Vertices that have highest

degree are called hubs.

Definition 2.8. Suppose G is a graph with V (G) = v1, ..., vn and d(vi) denotes the degree

of vertex vi, 1 ≤ i ≤ n. Then we call (d(v1), . . . , d(vn)) the degree sequence of G and the

average degree, denoted by ⟨k⟩, is given by

⟨k⟩ = 1

n

n∑
i=1

d(vi)

Definition 2.9. Connected Graph: A graph G is connected if there exists a path between

any pair of its vertices. Otherwise, G is disconnected. When a graph is connected and

undirected, we call it an epidemiological network.

Definition 2.10. Bipartite Graph: A bipartite graph G is a graph whose vertex set V (G)

can be divided into two disjoint subsets V1 and V2 such that every edge joins a vertex in V1

to a vertex in V2.

Definition 2.11. Adjacency Matrix: The connections between nodes can be expressed by

the adjacency matrix A = (aij). For a given graph G with vertex set V (G) = v1, ..., vn,
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the adjacency matrix A ∈ Rn×n of the graph is defined component-wise as ai,j = 1 if

(vi, vj) ∈ E(G) and 0 otherwise. In addition, the graph and its adjacency matrix determine

each other up to enumeration.

In networks, clustering involves grouping nodes into classes based on some characteristics of

the nodes.

2.3 Explanations of notions from biology

In the previous sections, we discussed some of the key mathematical concepts that are nec-

essary for the rest of the thesis. In this section, we will provide explanations of some of the

key notions from biology that are relevant to this thesis. By providing a foundation in both

mathematical and biological concepts, we hope to offer a comprehensive understanding of

the mathematical models used to describe biological phenomena.

Definition 2.12. Genome: It is the complete set of genetic information in an organism. It

provides all of the information the organism requires to function. In living organisms, the

genome is stored in long molecules of DNA called chromosomes.

Definition 2.13. Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA):

DNA is a molecule that carries genetic information in all living organisms. It consists of two

complementary strands that form a double helix structure.

RNA is a molecule that is involved in protein synthesis and other cellular processes. It

is similar to DNA but typically consists of a single strand, and the sugar molecule in its

nucleotides is ribose instead of deoxyribose.

A single strand, in the context of DNA or RNA, refers to a nucleic acid molecule that consists

of only one chain of nucleotides, rather than the two complementary chains that make up a

double-stranded molecule.

Definition 2.14. Variant (or strain): In virology, a variant is a term used to describe a

subtype of a microorganism that is genetically distinct from a main strain, but not sufficiently

different to be termed a distinct strain. Variants might be caused by mistakes during cell

division.

Definition 2.15. The mutation rate of a virus has been described as the probability that

during a single replication of the virus genome a particular nucleotide position is altered.

Definition 2.16. Epidemic: An epidemic is the rapid spread of disease to a large number

of hosts in a given population within a short period of time.
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Definition 2.17. Pandemic: A pandemic is an epidemic that has spread over several coun-

tries or continents, usually affecting a large number of people.

Definition 2.18. Herd immunity: This is a form of indirect protection from an infectious

disease which occurs when a large part of the population of an area is immune to a specific

disease.

Definition 2.19. Mass vaccination: This is a vaccination strategy which involves immuniza-

tion of a large number of people at one or more locations in a short interval of time. Mass

vaccinations are useful in increasing herd immunity during a disease outbreak.

Definition 2.20. Ring vaccination: This is a vaccination strategy in which infected cases

and contacts of cases are identified and vaccinated. This strategy is especially efficient in

controlling rare pathogens and has been successful in the eradication of Smallpox and the

Ebola virus disease.
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Modelling Drug Resistance

This chapter describes the state of the art of resistance evolution in bacteria and viruses.

Resistant mechanisms, optimality of treatment strategies and overview of mathematical mod-

elling techniques used in the study of resistance development and spread at both between-host

and within-host levels are presented. The methodology employed in studies of drug resistance

infections such as deterministic, stochastic, individual-based or statistical approaches is also

discussed.

3.1 Introduction

Drug resistance can be caused by various physiological and biochemical processes. The

paucity of knowledge about these mechanistic processes is primarily one of the reasons very

little has been achieved for effective prevention and control [35, 36]. The increasing need to

find lasting solutions makes many international, national and local agencies recognise drug

resistance as a major threat to public health [37, 38, 39, 40, 8]. The sixty-eighth World Health

Assembly in May 2015 endorsed a global action plan to address antimicrobial resistance,

especially antibiotic resistance [41]. The United Nations General Assembly in 2016, called

upon the World Health Organization (WHO) and the Food and Agriculture Organization

(FAO) to finalize a framework with the aims of developing, conserving and ensuring affordable

access to antimicrobials in relation to the Global Action Plan on antimicrobial resistance [42].

The rapid spread of resistance over the years can be associated with the misuse of antimi-

crobials as well as bad prescription by medical practitioners. Nowadays, antibiotics are by

far the most common drugs frequently prescribed by physicians and in some cases prescribed

for other non-bacterial infections. This situation becomes more complicated as there are

numerous pathways of transmission between animals and humans, coupled with weakened

12
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immune systems. However, this transfer process cannot be easily identified due to enormous

interactions between humans and animals. Studies in existing literature have established that

intervention strategies that restrict antibiotic use are associated with reduction in antibiotic

resistance in food-producing animals and in humans [43]. Furthermore, the European ban

on the use of antibiotics for livestock production in Europe in 2006 [44] led to a decline in

resistance to antibiotics in both humans and animals [45, 46].

We have witnessed enormous advances in the field of antiviral drug discovery including

the introduction of therapies capable of preventing human immunodeficiency virus (HIV)

replication, or cure hepatitis C virus infections in people suffering from liver disease [47].

However, there are other viral diseases without effective treatments and the emergence of drug

resistance threatens the efficacy of successful therapies used today. For instance, development

of resistance to two classes of drugs, adamantanes and neuraminidase inhibitors (NAIs),

currently used for treatment of influenza has increased, thereby threatening the ability of

clinicians to effectively treat influenza.

Mathematical models have played a central role in medicine, epidemics, and public health.

They provide a cost-effective way of assessing transmission as well as targets for prevention

and control of infections. Many mathematical models on spread and control of drug resistance

can be found in literature, for instance, comprehensive systematic reviews of these models

have been conducted by [48, 49, 50, 51, 52, 53] and [54] among several others. In this chapter,

we explore modelling techniques for drug resistance in bacteria and in viruses.

3.2 Drug resistance in bacteria

Bacteria are broadly classified as either Gram-positive or Gram-negative based on differences

in the thickness of their cell wall (peptidoglycan). Gram-positive bacteria are composed of

thick cell walls (about 20 − 80nm) whereas Gram-negative bacteria have thin cell walls

(< 10nm) [9]. Though Gram-positive bacteria have thicker cell walls than Gram-negative

bacteria, antibiotics can easily get access to the cell wall (peptidoglycan). This is however not

feasible for Gram-negative bacteria because unlike Gram-positive bacteria, Gram-negative

bacteria have an outer membrane which serves as a protective layer and is essential for sur-

vival. Gram-negative bacteria are a major cause of morbidity and mortality in both humans

and animals. Gram-negatives have been identified to be more inclined to antibiotic resis-

tance [55, 56, 10] and hence result in the evolution of many ‘resistant-related’ infections [57].

Examples of Gram-positive bacteria are S. aureus (most popular Gram-positive pathogen),

Clostridium difficile, Proteus vulgaris and Proteus mirabilis. Examples of Gram-negatives

include E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica and

more recently, Acinetobacter baumannii.
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The most serious bacterial infections occur in health care settings and are most commonly

caused by Enterobacteriaceae (mostly K. pneumoniae), Enterococcus faecium, P. aeruginosa,

S. aureus and Acinetobacter [58, 59, 60, 35, 61, 10], a group collectively known as ESCAPE

pathogens [62]. Infections caused by these pathogens are particularly difficult to treat due to

increasing levels of resistance and paucity of therapeutic strategies [63, 64]. P. aeruginosa is

a major threat related to hospital-acquired infection and effectively treated with β−lactams

(such as penicillin and carbapenems) and aminoglycosides. However, resistance to relevant

antibiotics for this pathogen evolved as a concomitant consequence of introduction of new

derivatives of antibiotics for treatment. Patients with cystic fibrosis infection are at higher

risk of developing resistance due to the use of these antibiotics over a long period of time

[57, 31]. Acinetobacter baumannii infections have rapidly evolved in recent times to be

problematic and highly difficult to treat due to resistance to last-line antibiotics such as

colistin and carbapenem [65, 61].

An antibiotic effectively inhibits bacterial growth if it recognizes its target and has enough

concentration at the target site to effectively impede its activity. Thus, resistance mecha-

nisms can either be due to target modification or antibiotic concentration reduction. Resis-

tance mechanisms vary depending on the type of bacteria and class of antibiotic used. Yet,

resistance to the same antibiotic can be caused by more than one resistance mechanism.

Antibiotic resistance can also be caused by modifications due to antibiotic-inactivating en-

zymes - a mechanism found in several antibiotic classes. It leads to a reduction in the amount

of active antibiotics reaching the target [66]. For instance, in the β−lactam class of antibi-

otics, resistance arises due to hydrolitic inactivation of β−lactamases. That is, the substrate

specificity of the enzyme changes with even a single base change in a β−lactamase gene. In

addition, for the aminoglycoside class of antibiotics, it has been found that introduction of

new variants of aminoglycosides leads to acquisition of new resistance genes [67]. For ex-

ample, a new type of antibiotic inactivating enzyme was discovered in gentamicin-resistant

strains when gentamacin was used as a replacement of kanamycin. A similar mechanism is

found for chloramphenicol-resistance [57].

Intracellular alterations and modifications of antibiotic targets, such as ribosomes and DNA

proteins, is another resistance mechanism. Such a mechanism inhibits action of the drug in

the microbial cell. This mechanism has generated resistance in macrolide antibiotics which

are widely used for treatment of Gram-positive infections. Another resistant mechanism is

to target the means of transportation of the drugs to action sites; for example, resistance to

tetracyclines and fluroquinolones is caused by drug efflux from the cell [8, 68].
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3.2.1 Treatment strategies employed to prevent antibiotic resistance

Discovery and designing of new antibiotics have been given a lot of effort [69, 70] but unfor-

tunately with not much success achieved. Several intervention strategies have been proposed

and implemented for prevention and control of resistance; ranging from personal hygiene, a

combination of different antibiotics, and rational prescription and use of antibiotics in hos-

pitals and by the public [71, 20]. There have also been recommendations for appropriate

use of antibiotics in other areas such as animal husbandry, fish farming, and agriculture [20].

Implementation of these strategies have however been slow and have also encountered more

challenges as resistance still persists [72, 73]. Thus, intervention strategies that are capable

of predicting resistance evolution should be developed and implemented at international,

national and local levels [74].

One way to reduce the development and spread of antibiotic resistance is by lowering selection

pressure based on the assumption that susceptible strains will outnumber resistant strains

[75]. This is however not always the case as it has been identified that some resistant strains

persist in the human immune system even after treatment [76, 77, 78, 79, 74] or on human

and animal skins for many years at low levels without detection. This is because the fitness

cost of resistance is often not large enough to be selected against. Even when the cost of

resistance is high, it can easily be compensated for by mutations that cause resistance when

an antibiotic is used. Thus, making complete eradication of antibiotic resistance non-trivial.

Treatment strategies involving more than one or a combination of antibiotics have been found

to be a good strategy against developing resistance. Two treatment methods which involve

a heterogeneous use of antibiotics, antibiotic mixing and antibiotic cycling were proposed

by clinicians to curb the evolution of resistance [71]. Antibiotic mixing refers to the use of

different antibiotics by different hosts at any given time whereas antibiotic cycling refers to

the use of different antibiotics in a sequence. Simultaneous administration of antibiotics to

each infected host, a treatment strategy known as combination treatment has also been used.

These strategies have been the subject of a number of mathematical modelling evaluations

with the consistent conclusion that antibiotic cycling is less likely to be effective compared

to antibiotic mixing [71, 80, 81].

3.2.2 Between-host models

Mathematical models have been used to improve knowledge of the epidemiology and spread

of resistance [48] between multiple individuals of a host population. Compartmental models

describing the dynamics of an antibacterial treatment have been considered for single and

multiple antibiotic treatment regimens. These models have been simplified with assumptions
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of the availability of either one or two drugs in a population. Most of these models are

formulated based on resistance transmission dynamics in the hospital [71, 82, 81, 83, 84] with

very few based on the community [76]. Early between-host models of antibiotic resistance can

be considered as basic models. These models, for single and multiple treatments, proposed by

Bonhoeffer et al [71] and Lipsitch et al [82] (Figure 3.1) have been widely used in other studies

with several other models being variants and/or modifications of these two models. Modelling

analysis of [71] were done by other authors [85, 86] and for [82] by [87, 88, 89, 83, 80, 90].

Assuming that only one drug is used for treatment in the entire population, three com-

partments are considered. These are the uninfected hosts, patients infected with bacteria

sensitive to the drug and patients infected with bacteria resistant to the drug. In the case

when two antibiotics are used for treatment, say drug A and drug B, the model considers

additional compartments for patients resistant to either drug A or drug B. Resistance to a

combination of both, that is AB, is also considered in some models. Bonhoeffer et al [71]

modelled antibiotic resistance to both treatments with one drug and treatment with two

drugs using a simple compartmental model.

Treatment with one
antibiotic

Treatment with two 
antibiotics

Mathematical models
 of Antibiotic Resistance  

y

Assuming emergence 
of dual resistance

Assuming no emergence 
of dual resistance

yrw

A

x

yw yby yaba

B

x

x

S

R R1 2

C
Hospital

Community

Figure 3.1: The most basic mathematical models for one and two antibiotic treatment
regimen. (A): Basic model for single drug treatment of bacterial infection [71]. Uninfected
hosts (X) entering the population can be infected with either sensitive (yw) or resistant (yr)
bacteria strains (shown by blue arrows). It is assumed that in the absence of treatment
infected patients recover from the infection and that infected patients become susceptible
again after treatment (shown by red arrows). (B),(C): Basic models for multiple antibiotic
treatments. Unlike in (B) [71] where there is resistance to drug A (ya), B (yb) and AB (yab),
there is only resistance to drug A and B in (C) [91]. In (C), hosts colonized by susceptible
strains of the bacteria of interest are represented in the S compartment.
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3.2.2.1 Treatment with one antibiotic

Mathematical models for single antibiotic treatment describe the transmission and spread

of resistance. Some models of this kind consider the interaction between the hospital and

the community [91] while others do not [71]. Generally, such mathematical models comprise

interactions between three compartments, namely the uninfected, infected and sensitives.

These models are appropriate for the transmission dynamics of resistant bacteria to a single

antibiotic and can be used to study bacteria frequently transmitted in the hospital like the

Gram-positive cocci such as S. aureus species and Enterococcus species. The model proposed

by [71] is illustrated in box A of Figure 3.1.

For this model ([71], Figure 3.1 box A), uninfected hosts enter the population at a rate, λ,

and leave at the rate d. Uninfected hosts can become infected by bacteria that are either

sensitive or resistant to the treating antibiotic. The densities of hosts infected with sensitive

and resistant bacteria are yw and yr respectively. Uninfected hosts become infected at a

transmission parameter rate b and infected hosts die at a rate c. Rates of recovery from

infections are rw and rr for sensitive and resistant patients respectively. The fraction of

patients treated is represented as f and the maximum rate of treatment is h. A fraction, s,

of uninfected become infected with sensitive strains of bacteria and another fraction (1− s)

become infected with resistant strains. The model equations are as in eq (3.1).

dx

dt
= λ− dx− bx(yw + yr) + rwyw + rryr + fh(1− s)yw, (3.1a)

dyw
dt

= (bx− c− rw − fh)yw, (3.1b)

dyr
dt

= (bx− c− rr)yr + fhsyw. (3.1c)

The model assumes that the fitness cost of resistance is characterized by a higher rate of

recovery of hosts with resistant bacteria relative to recovery in hosts with sensitive bacteria.

It disregards temporary immunity, in that, treated patients become susceptible again after

treatment. The model also assumes that there is a small proportion of resistant bacteria pre-

existing in a fraction of sensitive infected patients. Thus, resistant populations can outgrow

the sensitive bacteria and dominate the infection. Superinfection of sensitive infected by

resistant bacteria is however not considered. The model predicts that if the rate of treatment

of sensitive infected, fh, outweighs the cost of resistance, ∆r = rr−rw, that is if fh > rr−rw,
then resistant infections will prevail for longer time periods and there will be no sensitive

infections (Figure 3.2b). However, if fh < rr − rw, sensitive infections will prevail and

resistant infections will coexist at low levels. Qualitative analysis of this model was done by

[85] with solution trajectories as shown in Figure 3.2c.
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Figure 3.2: Simulation of single antibiotic treatment model with λ = 10, d = 1, b =
1.5, s = 0.3, c = 1.5 and initial values x0 = 1.4, yw0 = 1.0, yr0 = 0.4. Parameter values
are obtained from [85]. (a) Absence of antibiotic treatment with cost of resistance. With
antibiotic treatment, (b) resistant infections (yr) prevail at longer time periods and there
is no sensitive infections when cost of resistance outweighs selection pressure; (c) sensitive
infections (yw) prevail while resistant infections (yr) coexist at low levels when selection
pressure outweighs cost of resistance.

The model proposed by [82, 91] is as in eq (3.2a) and illustrated in box C of Figure 3.1.

dS

dt
= mµ− βSX − (τ1 + τ2 + γ + µ)S (3.2a)

dR

dt
= β(1− c)RX − (µ+ τ2 + γ)R (3.2b)

dX

dt
= (1−m)µ+ (τ1 + τ2 + γ + µ)S + (τ + γ)R− βSX − β(1− c)RX − µX(3.2c)

This model outlines the transmission dynamics of hospital-transmitted bacterial infections.

It is assumed that a fraction of patients entering the hospital is already colonized with

the bacteria. Thus, individuals entering the hospital may carry either sensitive or resistant

bacterial strains or be uncolonized and free of the bacteria (X). For simplicity, it is assumed

that there is no frequent entry of hosts with resistant strains. The fraction m represents

the fraction of sensitive individuals whilst the fraction (1 − m) represents the fraction of

uncolonized individuals entering the hospital. Rate of treatment with drug 1 per day is τ1

and for drug 2 is τ2. Sensitive and resistant bacteria are cleared at the rate γ. Uncolonized

individuals are colonized with sensitive bacteria at the rate β and with resistant bacteria at

the rate β(1− c), where c is the fitness cost of resistance to drug 1. The average duration of

stay in the hospital is given as 1/µ, where µ is the rate of admission per day.

Three main predictions were made based on the model in [82]. Firstly, the model predicts

that using antibiotic for which there is no resistance in the hospital is positively associated

with carriage of resistance to other antibiotics in patients but is negatively associated with

the prevalence of resistance to another drug in the population. In other words, when there

is no resistance to an antibiotic in the hospital, resistance to other antibiotics is more likely

in patients. However, on the population level, the prevalence of resistance to another drug

is less likely. Secondly, the prevalence of colonization with resistant bacteria can be reduced
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by interventions that reduce transmission of bacteria within a hospital. Thirdly, changes

in the prevalence resistance after treatment is faster in hospital-acquired infections than in

community-acquired infection.

3.2.2.2 Multiple antibiotic treatment

Generally, treatment protocols involving the use of two or more antibiotics give rise to antibi-

otic cycling and mixing. Mathematical models have been used to investigate the effectiveness

of these treatment protocols either in the hospital setting or in individual patients. Theo-

retical models describing treatment with two antibiotics broadly consider assumptions of the

emergence of dual resistance. Bonhoeffer et al [71] proposed a model which assumes the

emergence of dual resistance whilst the model proposed by Bergstrom et al [81] assumes non

emergence of dual resistance.

Bonhoeffer et al [71] raised questions about the best strategy to employ when using more

than one antibiotic. By assuming that the cost of resistance to each drug is equal, a multiple

antibiotics treatment strategy is proposed to address the issue concerning optimal treatment

protocols by considering three scenarios of resistance transmission with regards to cycling,

50 − 50 treatment (a kind of antibiotic mixing strategy in which equal fractions of the

population receive different antibiotics at any given point) and combination therapy. First,

the transmission of resistance is by infectious patients with resistant bacteria. For this

case, as long as initial appearance of primary resistance is considerably greater than the

appearance of acquired resistance, treatment is of equal benefit irrespective of the treatment

strategy used. Second, is resistance acquired in the course of treatment. Cost to resistance

determines the performance of the treatment protocol. If there is no cost to resistance then

cycling and 50 − 50 treatment yield the same total gain of infected. However, if there is

cost to resistance then the 50 − 50 treatment is superior to the cycling of antibiotics; this

is affirmed with numerical simulations. This scenario does not hold true when resistance to

both drugs is carried by the same plasmid. In this case, the probabilities of acquiring single

and multiple resistance are equal. The last scenario is the case when there is no or small

amount of bacteria with multiple resistance. In this case, cycling of antibiotics is worse than

50− 50 treatment.

The model proposed by Bergstrom et al [81] is an extension of their previous models [82, 91] to

account for cycling of antibiotics as a way of controlling resistance. This new model assumes

that two drugs are used and that resistant strains to each of the two drugs are present but

with no dual resistance yet. Cycling is important for limiting the spread of resistant strains

currently present in the population and also for inhibiting the formation of new resistant

strains. Resistant strains currently present in the population will be expected to abound in
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higher quantities in a slowly changing environment than in a rapidly changing environment.

Antibiotic mixing provides a more heterogeneous environment at the individual level whilst

cycling offers greater heterogeneity at the level of the ward. This is because selection pressure

experienced by resistant strains of the bacteria occurs consistently in a cycling protocol than

in a mixing protocol where these selection pressures alternate at much shorter time periods

between patients under different drug treatments. The authors found that cycling can be

an effective approach for reducing the evolution of multiple resistance, relative to mixing. If

more of the drug is used, the cost of resistance decreases, patients arriving with resistance

decreases and finally, there is an equal fraction of patients arriving with strains resistant to

drug one and drug 2. However, cycling fails if this fraction is unequal.

Empirical and clinical studies have examined various multiple antibiotic treatment strategies,

but the question of which approach is optimal remains unclear. This uncertainty raises

concerns about the effectiveness of proposed treatment strategies for resistance development

and control, as noted by Beardmore et al. [92]. To address this question, optimal control

theories and computational tools must be considered. These strategies have been utilized to

describe the dynamics of resistance evolution to antibiotics.

Empirical and clinical studies have examined various multiple antibiotic treatment strategies,

but the question of which approach is optimal remains unclear. This uncertainty raises

concerns about the effectiveness of proposed treatment strategies for resistance development

and control, as noted by Beardmore et al [92]. To address this question, optimal control

theories and computational tools must be considered. These strategies have been utilized to

describe the dynamics of resistance evolution to antibiotics. Beardmore et al [92] made some

realistic predictions using optimal control theory and computational tools used for dynamic

programming problems. These optimal control strategies were applied to the already existing

models by [81] and [71] to compare cycling and mixing based on synthetic data presented

from both models. The criterion used in these mathematical explorations is to maximize the

probability that patients in a cohort will receive appropriate treatment.

For the model by Bergstrom et al [81] which assumes all patients are treated with either

one of the drugs, the constraint, τ1 + τ2 = τ , where τ is a fixed constant representing the

rate at which each drug, is used. In this model, x represents uninfected hosts, yw represents

the number of individuals infected with the wild type, ya denotes the number of patients

with drug A resistant strain and yb denotes the number of patients with drug B resistant

strain. The optimal control problem in this case is to find a function that minimizes the total

fraction of days within which a patient is observed with a drug-resistant infection. That is,

to find a function fa(t) such that ∫ T

0
yw + ya + yb dt,
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where T is the observation time, is minimized. For the lack of better strategies, the au-

thors [92] applied an optimal control law to the model by Bergstrom et al to compare the

performance of cycling and mixing using control strategies.

Stochastic versions of the models were used to determine the performance of cycling and

mixing. Stochasticity is achieved by introducing a random process into the model so that τ1

represents a noisy protocol which varies with time such that the expectation E(τ1(t)) = α(t)

for each t > 0 where α(t) is some treatment protocol. The authors [92] found that determin-

istic and stochastic variations of the same model can yield different optimal strategies, hence

making it difficult to establish which protocol is better. For instance, deterministic models

yield mixing strategies whereas stochastic models yield switching strategies. Their findings

are also consistent with previous studies suggesting that it is not possible to distinguish the

impacts of cycling and mixing therapies.

Prior studies [81, 71] concluded that antibiotic mixing was optimal using exemplar simula-

tions, but many of these ignore the perspective of individual patients. Since it is possible

for resistance to evolve at the patient level, individualised treatment strategies should be

considered when optimizing antibiotic resistance. Beardmore [92] predict that mixing might

not be an optimal strategy after all. This prediction has gained support from other stud-

ies ([93]) which consider treatment on the individual and population levels. These studies

found that antibiotic treatment strategies differ on individual-based and population-based

levels and neither cycling nor mixing is an optimal strategy. On the other hand, combination

therapy has been found to perform better than cycling and mixing [94].

3.2.3 Within-host models

Within-host mathematical models of antibiotic resistance evolution and development are

useful for understanding bacteria dynamics within a single individual. These models describe

how antibiotic treatment strategies affect resistance evolution and how resistance can be

prevented within the host. Within-host models capture the effect of the immune system

cells on the bacteria of interest and vice versa. Development of resistance is recognised

to begin within the host [95] and that within-host competition shapes resistance evolution

[96]. These models have explained the theoretical framework for studying multiply resistant

bacteria [95], described the effect of antibiotics in a heterogeneous bacterial population [97],

tried to understand factors that determine the fraction of resistant strains in a bacterial

population [98], describe the interplay of host immune responses [99, 100, 101] and antibiotic

treatment as well as optimality of drug dosage [102, 103, 104].

Antibiotic resistance evolution is also impacted by the existence of competing sensitive and

resistant strains within the host. The dynamics of various forms of competition have been
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addressed in some theoretical as well as empirical studies [105, 106, 13, 96, 107, 108, 109].

In a simple two-strain (sensitive and resistant) logistic model, Garber [110] describes the

selection pressure for resistance in the presence of an antibiotic.

In this model (as depicted in Figure 3.3), xs and xr represent sensitive and resistant strains

respectively and X = xs + xr. The growth rate of the sensitive strain is µ and the rate at

which resistance is lost is δ. Competition between the two strains is represented by β and

the antibiotic concentration is a. The inhibitory strength of the antibiotic is considered as

being quantitative and is represented by γ. This model was used to identify conditions which

lead to the survival or existence of sensitive or resistant strains as well as coexistence of both

strains (see Figure 3.4). In particular, the sensitive strain survives if a < δ/γ whereas the

resistant strains survive if a is much larger. Furthermore, this model predicts that antibiotics

can minimize bacterial population while selecting resistant strains.

Antibiotic
Xs Xr

Competition
      (β)

Resistance
 loss (δ)

Growth
  (μ)

Figure 3.3: Schematic illustration of within-host model by Garber [110]. µ is the growth
rate of sensitive strain Xs, δ represents loss of resistance and β represents competition
between sensitive Xs and resistant Xr strains.

A simulation of this model is shown in Figure 3.4.
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Figure 3.4: Within-host antibiotic resistance. Due to paucity of biologically meaningful
parameter values, arbitrary values have been used to generate these plots. For all simulations,
β = 0.04 and µ = 2. Other parameter values: (a) γ = 0.3, a = 0.055, δ = 0.025; (b)
γ = 0.3, a = 2.5, δ = 0.025; (c) γ = 0.7, a = 1.0, δ = 0.2
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Davies et al [96] identified competition between sensitive and resistant strains within the host

to promote coexistence and shape resistance evolution and spread. This study was conducted

using an individual-based model (IBM) which describes within-host competition of sensitive

and resistant bacterial strains. Using empirical data, the authors argue that competition

between resistant and sensitive pathogens within hosts gives resistant pathogens a relative

fitness benefit when they are rare, promoting coexistence between strains at the population

level.

One important factor assumed to facilitate infection clearance time and resistance control

is host immunity. A strong immune system can necessitate shorter duration of treatment

[100]. The interaction between host immune response and antibiotic treatment has been

the focus of some mathematical models. Previous studies have shown that the presence

of a strong immune response can reduce the mutant selection window (MSW) despite a

considerable decrease in bacteria population [99, 111]. The MSW is defined as the range of

drug concentrations for which the drug is strong enough to remove the sensitive population

but not strong enough to remove the partially resistant pathogen population.

The century-old chemotherapy principle of “hit hard and hit early” introduced by Paul

Ehrlich has been supported by numerous studies [101]. The original basis for the use of

this principle was to gradually eradicate bacterial populations in order to increase efficacy of

drugs. However, it has been used to understand the evolution of antibiotic resistance [101]

and to guide rational development of treatment. “Hitting hard” has been justified by the

following reasons: (1) higher doses of antibiotics supplement immune response by rapidly

decreasing the density of infecting bacteria and thereby ensuring a decline in the amount

of resistant bacteria in the host and (2) lower doses create a pathway for intermediately

resistant strains to increase resistance due to mutations. This protocol might however not

be the best because a high antibiotic dose increases selection for resistance even though

it restricts the appearance of a resistant enough strain [72]. On the other hand, “hitting

early” is supported with the notion that an early high dose can drive resistant strains to

extinction. Administering a high dose earlier has the advantage of limiting the emergence of

resistance in the presence of intermediate resistant strains. Thus, the dichotomy of antibiotic

dose administration lies between low dosages efficient to clear the bacteria and high dosages

which will be safe for the host.

Using a within-host mathematical model, Ankomah and Levin [101] investigated the rela-

tionship between antibiotics and immune response in acute infections. Their model is shown

in eq (3.3) below

dBi

dt
= ψi(AiR)Bi − kPBiP − kIBiI + fPSBPi − fSPBi (3.3a)

dBPi

dt
= ψPi(R)BPi − jPBPiP − jIBPiI − fPSBPi + fSPBi (3.3b)
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where Bi and BPi represent the population of bacterial cells and their mutants respectively.

ψi and ψPi represent the rate of growth or death of bacterial cells of either a Bi and BPi

population respectively. The probability that a mutant cell BPi will be produced from the

Bi population is fSPBi. Antibiotic concentration for each bacteria cell is denoted as Ai and

limiting resource is denoted as R. k is the resource concentration at which the population is

growing at half its maximum rate.

Results from this study suggest that the net bactericidal effect of antibiotics can be affected

by the intensity of the immune response and the amount of pathogens. So that if the efficacy

of the immune response is dependent on the bacterial load, antibiotics can reduce immune

response stimulation by reducing the density of bacteria. This is evident at lower antibiotic

doses which trigger low immune response due to relatively low bactericidal effect of drug.

A within-host model by Gjini et al [100] studies the interplay between host immune response

and antibiotic treatment. The model equations can be found in eq (3.4) below.

dN

dt
= −σN B

k +B
(3.4a)

dBs

dt
= r0Bs − dBsI − δ0Bsη(t)Am (3.4b)

dBr

dt
= r1Br − dBrI − δ0Brη(t)Am (3.4c)

dE

dt
= (2σN + σE)

B

k +B
− hE(1− B

k +B
) (3.4d)

dM

dt
= fEh(1− B

k +B
), (3.4e)

where I(t) = N(t) + E(t) +M(t) is the total number of immune cells activated to clear the

pathogen andB(t) = Bs(t)+Br(t) is the total pathogen load at time t. They found that in the

absence of antibiotics, drug-sensitive strains, Bs, grow exponentially in the absence of immune

response whereas in comparison, drug-resistant strain grow more slowly. As immunity builds

up, naive precursor cells, N , differentiate into effector cells, E, which initiate clearance of

the bacteria and differentiate into persistent memory cells, M , as the pathogen decreases

(see Figure 3.5). Analysis of this model emphasises that better treatment outcomes can be

achieved when there exists a balance between antibiotic therapy and the natural defence

system of the host. Exploring two dosing regimes, classical regime (fixed drug dose and

treatment duration) and adaptive regime (follows infection outcomes and patient symptoms),

the authors also found that successful antibiotic treatment is influenced by the timing of

therapy in both cases. Furthermore, this optimal timing is affected by bacterial load and

host immunity.
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(a) Bacteria dynamics. (b) Immune response dynamics.

Figure 3.5: Illustration of the model by Gjini et al for dynamics of the model in the
absence of antibiotics. Parameters used are same as in [100]. In the absence of antibiotics
and immune response, sensitive Bs and resistant Br bacteria grow exponentially and reach
a peak with the density of Bs higher than Br. When immune response accumulates, naive
cells N transform into effector cells E which initiate bacteria clearance. As bacteria density
decreases, effector cells differentiate into persistent memory cells M .

Alavez-Ramirez et al [112] developed models of TB infection which address drug admin-

istration based on strength of the immune system. Results from this study indicate that

administering a single drug can be effective against low bacteria population and an immune

system with reduced immune response. On the other hand, using two drugs prolongs the

time for the appearance of resistance for an immune system with severe immune deficiency.

3.2.3.1 PK/PD modelling

Another way suggested to combat antibiotic resistance is finding novel techniques of using

the already extant drugs [113, 114]. Thus, instead of developing new drugs, optimizing the

present ones [115] and understanding their action on the human body is crucial to the suc-

cess of treatment [116, 117]. Pharmacokinetic and pharmacodynamic properties of drugs are

considered in this regard. Pharmacodynamics (PD) describes the functional relationship be-

tween drug concentrations and the change in bacteria population whereas Pharmacokinetics

(PK) encapsulates the body’s reaction to drugs during absorption, distribution, metabolism

and excretion [118, 113]. PK/PD analysis can be employed in optimizing dosing of both

new and old antibiotics, leading to an increased probability of therapy success [103]. Hence,

such models are likely to minimize the risk of within-host resistance development thereby,

minimizing endemic levels of resistant bacterial strains in the community at large [119].
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3.2.3.2 Treatment duration and dosage

The dynamics of an infection can greatly influence the optimal duration and dosing of an-

tibiotic treatment. Optimising treatment duration and dose in order to minimize infection

duration and reduce selection for resistance can be used as a protocol to extend the efficacy

of drugs. The effect of the length of treatment may be similar to the amount of dose admin-

istered. Some studies have found that more bacteria can be annihilated if a given amount of

antibiotic is administered frequently in small doses instead of few large doses [99].

Current traditional treatment regimens involve fixed daily doses of drugs over a set period

of time. These protocols remain largely unchanged and there is little evidence about their

optimality. Considering a baseline current antibiotic treatment regimen of 23 µg/ml per day

for 8 days, Paterson et al [104] in a nouveau study approach involving the use of genetic al-

gorithms, identified that an optimal antibiotic dosage consists of an initial high dose followed

by tapering lower doses. They found that with a comparable success rate, the baseline treat-

ment uses 20% more antibiotics and longer days than the alternative treatment identified by

the genetic algorithm. This tapered treatment approach has been found to be effective in

treating Clostridium difficile.

Using within-host models, Geli et al [103] determined optimal antibiotic dosing strategies

that are capable of simultaneously minimizing morbidity and selection for resistance. In this

model, it is assumed that there is competition between drug sensitive and drug-resistant

bacteria with population sizes of S and R, respectively. It is also assumed that bacteria

grow at the rate λ, but a fraction, µ, of the sensitive bacteria become resistant through

mutations. Sensitive and resistant bacteria die at the rates ζs and ζr respectively. The

bacteria populations are limited by immune response I and their growth is also limited by

the population size K. The functions fR and fS describe the relation between antibiotic

concentration and antibiotic effect on bacteria. a is the maximum per capita proliferation

rate, b is the bacterial population that gives half the maximum rate, and 1/δ is the average

duration of the immune response. Their model is represented as in eq (3.5).

dS(t)

dt
= (1− µ)λ

(
1− S(t) +R(t)

K

)
S(t)− (ζs + fs)S(t)− γI(t)S(t) (3.5a)

dI(t)

dt
=

aI(t)(S(t) +R(t))

b+ S(t) +R(t)
− δI(t) (3.5b)

dR(t)

dt
= (µλS(t) + λR(t)

(
1− S(t) +R(t)

K

)
S(t)− (ζr + fr)S(t) (3.5c)

− γI(t)R(t).

Their findings concur with other studies that shorter treatment duration is more likely when

there is a functional immune response in which case the successful treatment of infected
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patients is not compromised. In addition, for infections caused by commensal pathogens,

they found that short and aggressive treatment at early stages of the infection could be the

best treatment strategy. In general, shorter duration of treatments could limit the emergence

of resistance, but might not always be optimal.

3.2.3.3 Fitting models to data (Data-driven models)

Regoes et al [113] used a mathematical PK/PD model to describe the relationship between

growth rates of bacteria and antibiotic concentration. Using pharmacodynamic data from

previous studies in conjunction with pharmacokinetic data, they investigated the efficacy

of antibiotics going beyond the use of only the MIC of the drug. The pharmacodynamic

function used in this study is the functional relationship between growth or death of bacteria

and antibiotic concentration. Treatment efficiency can be determined by combining this

pharmacodynamic function (Ψ) with pharmacokinetic data. The pharmacodynamic function

from Regoes et al [113] is as follows:

Ψ(a) = Ψmax −
(Ψmax −Ψmin)(a/zMIC)κ

(a/zMIC)κ −Ψmin/Ψmax
(3.6)

where a is antibiotic concentration, Ψmax is the maximum growth rate of bacteria in the

absence of antibiotic, Ψmin is the minimum net growth rate of bacteria at high antibiotic

concentrations, κ is the Hill coefficient which determines how strongly the bacterial growth or

death rate responds to changes in the antibiotic concentration and zMIC is the pharmaco-

dynamic minimum inhibitory concentration (MIC). This model is similar to a four-parameter

Emax model where these four parameters, Ψmax,Ψmin, zMIC and κ characterise the phar-

macodynamic function. A plot of the relationship between bacteria growth and antibiotic

concentration is shown in Figure 3.6.

Regoes et al found that when only one bacterial strain is used, the three parameters, Ψmax,

zMIC and κ, vary across antibiotic classes except the parameter Ψmax . However, incorpo-

rating Ψmax as a model parameter is essential if the effect of antibiotics on bacterial strains

that differ in their growth rates is considered. For the development of new antibiotics and

novel treatment strategies, Regoes et al [113] perceive that the shape of the pharmacody-

namic function is important as these contain information about the effect of antibiotics on

bacterial growth that are not captured by MICs or other single pharmacodynamic parame-

ters. Therefore, they recommended a multi-parameter approach involving the consideration

of the entire pharmacodynamic function rather than relying solely on MICs or other single

parameters as representatives of pharmacodynamics of antibiotics.
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Figure 3.6: Relationship between bacteria growth rate (Ψ) and antibiotic concentration
(a) for different values of the Hill coefficient, κ = 0.5, 1.0, 3.0. The following parameter
values were used: Ψmax = 100,Ψmin = 5, zMIC = 0.1

Furthermore, a mathematical model for antibiotic cycling is proposed by Udekwu et al [114]

to test the plausibility of optimisation of antibiotic cycling based on collateral sensitivities

of drug pairs. This model not only incorporates PK/PD approaches but also accounts for

collateral sensitivity to study the efficacy of the antibiotic cycling treatment regimen. The

pharmacodynamic function defined by Regoes et al [113], above, is used together with com-

puter simulations. This function was applied to each antibiotic considered and simulations

were performed to cycle two antibiotics with varying pharmacodynamic properties and dif-

ferent cycling times. For easy understanding, pharmacodynamic properties of antibiotics are

described broadly as bactericidal (cidal), killing bacteria, or bacteriostatic (static), inhibiting

bacterial growth [120]. The model equations are shown in the system (3.7) and (3.8). For

antibiotic 1, the parameters are: MICS = 1,MIC1 = 15,MIC12 = 0.5,MIC2 = 15 and the

model equations are as follows:

dR

dt
= Cw − eH(R)(vmaxsS + vmaxM1

M1 + vmaxM2
M2 + vmaxM12

M12)− wR (3.7a)

dS

dt
= vmaxH(R)ψ1(Ab1,MICs)S − µ1S − µ2S − µ1µ2S − wS (3.7b)

dAb1
dt

= c hsf(t)− wAb1 (3.7c)

dM1

dt
= vmaxM1

H(R)ψ1(Ab1,MICM1)M1 − µ2M1 + µ1S − wM1 (3.7d)

dM2

dt
= vmaxM2H(R)ψ1(Ab1,MICM2)M2 − µ1M2 + µ2S − wM2 (3.7e)

dM12

dt
= vmaxM12

H(R)ψ1(Ab1,MICM12)M12 + µ1M2 + µ2M1 + µ1µ2S − wM12 (3.7f)

dAb2
dt

= −wAb2 (3.7g)
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For antibiotic 2, the parameters are: MICS = 1,MIC1 = 0.5,MIC12 = 15,MIC2 = 15 and

the model equations are as follows:

dR

dt
= Cw − eH(R)(vmaxsS + vmaxM1

M1 + vmaxM2
M2 + vmaxM12

M12)− wR (3.8a)

dS

dt
= vmaxsH(R)ψ2(Ab2,MICs)S − µ1S − µ2S − µ1µ2S − wS (3.8b)

dAb1
dt

= −wAb1 (3.8c)

dM1

dt
= vmaxM1

H(R)ψ2(Ab2,MIC1)M1 − µ2M1 + µ1S − wM1 (3.8d)

dM2

dt
= vmaxM2

H(R)ψ2(Ab2,MIC2)M2 − µ1M2 + µ2S − wM2 (3.8e)

dM12

dt
= vmaxm12

H(R)ψ2(Ab2,MIC12)M12 + µ2M1 + µ1M2 + µ1µ2S − wM12 (3.8f)

dAb2
dt

= c hsf(t)− wAb2 (3.8g)

In the above model, Ab1 = Antibiotic 1 concentration, Ab2 = Antibiotic 2 concentration,

S = Sensitive cells, M1 = Resistant mutants to Ab1, M2 = Resistant mutants to Ab2, M12=

Double-resistant mutants, µ1 = Mutation rate (to Ab1), µ2 = Mutation rate (to Ab2), w =

flow rate, vmax = maximum growth rate of cells. Computer simulations from this model show

that in exploiting mutual collateral sensitivity, static antibiotics prevent resistance evolution

and are more superior to cidal ones as they prevent the growth of resistant strains.

The proposed model is similar to other models [71, 81] considered above. It is made up

of four compartments representing dynamics of sensitive bacteria, and cells resulting from

mutation due to drug 1, drug 2 or both drugs. PK/PD is incorporated into the model by

modulating the minimum growth rates relative to each strain’s respective MICs. Collateral

sensitivity is assumed to be instantaneous and is accounted for by switching the MIC of the

pre-exposed strain at periods corresponding to when the drug is cycled. It was observed that

resistance to both antibiotics occurred quickly for low doses of the drug. However, cycling

a combination of moderate to high concentrations of cidal and static antibiotics prevented

resistance development. The most suitable strategy from their in silico simulations to prevent

resistance was cycling static antibiotics that have low Hill’s constant every 3 days.

A summary of mathematical models describing within-host dynamics within the host are

presented in Table 3.1 according to questions addressed by these models and the approaches

used.
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Table 3.1: Overview of different within-host mathematical models for antibiotic resistance.

Questions
Methods

Deterministic Stochastic IBM Statistical PK/PD

Optimality of treat-

ment regimes
[112],[121] [122] [121], [114]

Interaction with

Immune response
[112],[123],[100] [99], [101] [95]

Strain Competition [96],[110],[124] [96] [96] [96]

Optimal treatment

duration
[103] [102]

Optimal drug dosage [95],[113]

Evolution and spread

of resistance

[125], [126] [98],

[122]
[127] [126] [128]

3.3 Drug resistance in viruses

Mammalian viruses represent a diverse group of tiny infectious agents and have been classified

to be the most abundant species on the planet [12, 11]. Viruses can exist as particles called

virions when not inside an infected cell [129]. These virions are very small to be seen and

are made up of long molecules of DNA or RNA that encode the structure of the proteins

by which the virus acts (making up the genetic material), a protein coat which surrounds

and protects the genetic material and in some cases, an outside envelope of lipids [130, 129].

Viruses can be found in a wide variety of sizes and shapes, ranging from simple helical forms

to more complex structures. When a host cell is infected with a virus, these viruses rapidly

replicate, producing thousands of copies of the original virus [12].

The viruses that cause diseases commonly found in human populations comprise approxi-

mately 25 known families, which fall into groups according to their genome and replication

strategies (see [1] for a full list of all these families). For instance, double-stranded DNA

viruses include the poxviruses, adenovirus, the herpesvirus groups and double stranded RNA

viruses include reoviruses and rotavirus. Viruses such as west nile virus, yellow fever virus,

dengue, hepatitis A, rubella virus and rhinovirus are all made up of single strand RNA

genomes [1, 131]. Table 3.2 summarises some human viruses and their genome structures.

The discovery of antivirals to combat virus infection dates back to the 1970s when the first

antiviral compound, aciclovir, was found to inhibit DNA replication of herpes simplex virus

at concentrations lower than those affecting the production of cellular DNA [132]. This
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discovery was a beacon of hope to both academics and clinicians as this meant that there

was a possibility of counteracting the adverse effects of viruses. Today, there are more than 50

antiviral drugs [133, 134] that have been proven for treatment of several viral infections such

as amantadine for influenza A infection, enfuvirtide for HIV infection, entecavir for hepatitis

B virus (HBV) infection [134] and in more recent years, remdesivir for SARS-CoV-2 [135].

Table 3.2: Examples of human viruses and their genome structures

Genome Genome structure Virus

DNA

Double strand

Adenoviruses

Herpesviruses

HSV

Cytomegalovirus

VZV

Papillomaviruses

Poxviruses

Single strand Parvoviruses

Partial double strand, replicating via RNA Hepadnavirus

HBV

RNA

Double strand, segmented Reoviruses

Rotavirus

Single strand, positive strand

Flaviviruses

HCV

West Nile virus

Yellow fever virus

Dengue virus

Picornaviruses

hepatitis A or HAV

Rhinovirus

Togaviruses

Rubella virus

Single strand, negative strand, segmented Orthomyxoviruses

Influenza virus

Single strand, negative strand, nonsegmented

Rabies virus

Paramyxoviruses

Mumps, measles, RSV

Replicating via DNA Retroviruses

HIV

Drug resistance in viruses is usually discussed in the context of antiviral therapy. Through

the process of evolution, viruses have acquired various attributes that enable them exacerbate

infections and increase their burden on public health. Similar to many other antimicrobial

resistant mechanisms, antiviral drug resistance depends on the viral mutation frequency,
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intrinsic mutability of the antiviral target site, the selective pressure exerted by the drug,

and the magnitude and rate of virus replication [136, 137]. In viruses, the process of random

mutation combined with the ability to replicate quickly results in the selection of resistant

strains with altered antiviral targets or antiviral activators [137]. In addition, in the absence

of mechanisms to prevent rapid viral replication at greater rates, resistance to antiviral

therapy develops quickly [136].

Generally, all viruses have one main mechanism for development of resistance to antivirals

and vaccines. This is the evolutionary process that leads to selection of random mutations.

In many instances, mutation leads to increased resistance of viruses to the antiviral drug. For

example in the treatment of influenza infections using amantadine and rimantadine, resistant

variants are selected so quickly in such a way that it is still possible for a treated person

to pass on resistant virus to contacts [136, 138]. This mechanism has severely limited the

clinical usefulness of these drugs. Table 3.3 summarises the resistance rate of some viruses

and their corresponding clinical implications.

Table 3.3: Clinical consequences due to varying resistance rates. Adapted from [1]

Virus Resistance
rate

Clinical outcome

Vaccinia (DNA) Very slow Vaccine has eliminated virus from human population.
Selective antiviral agents (e.g., ST 246) being developed as
anti-bioterrorism agent. Resistance can be obtained in the
laboratory but no clinical data available.

Polio (RNA) Very slow Vaccine has eliminated virus in most countries.
Varicella zoster
(DNA)

Moderately
slow

Vaccine expected to be effective for decades; antiviral slow
therapy has not led to an increase (< 1%) of resistant
isolates among the immunocompetent patients (no increase
in three decades) but some increase in immunocompromised
patients.

Herpes simplex
types 1 and 2
(DNA)

Moderately
slow

No efficacious vaccine yet available but resistance to slow
antiviral therapy similar to that with VZV.

Rubella, mumps,
measles,
HAV(RNA
viruses) and HBV

Slow Vaccines have remained clinically effective for years;
antiviral resistance to therapy of HBV with single antiviral
agents may occur (within one or a few years).

Influenza (RNA) Fast Vaccine needs to be updated at least annually. Resistance
to antiviral compounds occurs in the population at various
rates for different compounds (days to years).

HIV (RNA) Very fast No vaccine successful. Monotherapy leads quickly to
resistance in individual patients. Combination therapy (3 or
4) gives low resistance rate.

In the particular case of SARS-CoV-2, the increase in emerging SARS-CoV-2 variants is

promoted by two complementary pathways: infectivity and vaccine resistance [139, 140]. In

the early stages of evolution of the virus, mutation leading to severe infections was dominant.

However, since March 2021 when vaccination programmes were being rolled out [141, 3, 142]
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and vaccines had provided protection to vaccinated populations, several vaccine-resistant

mutations have been observed relatively frequently. Considering that a good portion of the

population is still not vaccinated, mutations which cause severe infections and are resistant

to vaccines still dominate among the prevailing and future variants [139].

3.3.1 Mathematical models for drug resistance in viruses

In the literature, it is possible to find several mathematical approaches to describe the trans-

mission dynamics of viruses in a population during an epidemic [143]. Modelling the emer-

gence of drug resistance in other viruses has been overshadowed by epidemic models relating

to drug resistance in HIV. A few models of antiviral resistance have also been developed for

HSV-2 and influenza [144, 145].

To predict (with a degree of uncertainty) the effectiveness of Antiretroviral therapy (ART)

in San Francisco, Blower et al [146] developed and analyzed a mathematical model which

includes the potential effects of ART on the transmission dynamics of both drug-sensitive and

drug-resistant HIV strains. Their model keeps track of the infection dynamics of five groups:

susceptible individuals (X), untreated individuals infected with either drug-sensitive (Y U
S ) or

drug-resistant strains (Y U
R ), and ART-treated individuals infected with either drug-sensitive

(Y T
S ) or drug-resistant strains (Y T

R ). The model equations are shown in the system (3.9) and

illustrated in Figure 3.7.

dX

dt
= π −X[c(λs + λR) + µ] (3.9a)

dY U
s

dt
= Xcλs + Y U

R q + Y T
S − gS − Y U

S (σS + vUS + µ) (3.9b)

dY T
S

dt
= Y U

S σS − Y T
S (gS + r + vTS + µ) (3.9c)

dY U
S

dt
= XcλR + Y T

R gR − Y U
R (q + eσR + vUR + µ) (3.9d)

dY T
R

dt
= Y U

R eσR + Y T
S r − Y T

R (gR + vTR + µ) (3.9e)

In system 3.9, π is the rate at which gay men join the sexually active community; 1/µ

is the average time during which a gay man acquires new sex partners; c is the average

number of new receptive anal sex partners per year; 1/q is the average time for an untreated

drug-resistant infection to revert to a drug-sensitive infection; σ is the per capita effective

treatment rate; e is the relative efficacy of ART in treating drug-resistant infections; r is

the rate of emergence of resistance due to acquired resistance; g is the proportion of cases

that give up ART per year; and v is the average disease progression rate. λ specifies the

per capita force of infection for drug-sensitive (λS) and drug-resistant (λR) HIV. The total

population size is N(t) = X + Y U
S + Y U

R + Y T
S + Y T

R .
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Figure 3.7: Schematic illustration of the transmission dynamics of an HIV epidemic in
the presence of combination antiretroviral therapy (ART) by Blower et al [145]. Model
equations are given in eq (3.9).

In this study, it was assumed that none of the possible ART-resistant HIV strains that could

possibly evolve could be as transmissible as the wild type. The study also assumed that

individuals infected with ART-sensitive virus undergoing treatment cannot be co-infected or

superinfected by an ART-resistant strain. From their model, Blower et al predicted that

acquired resistance will continue to be on the rise, but transmitted resistance is likely to

increase only gradually, with a doubling time of around four years and a predicted median of

15.6% new HIV infections likely to be resistant to antiretroviral drugs by 2005. Although their

analysis predicts a stabilisation of transmitted ART resistance at low levels, the predicted

range around the 15.6% is very wide (0.05% to 73.21%). With this, the authors argue that

the higher values in the range generated from their sensitivity analysis have a very low

probability.

Another virus of concern relating to drug resistance is influenza. The emergence of influenza

drug resistance has become of particular interest as current planning for an influenza pan-

demic involves using massive amounts of antiviral drugs. Dobrovolny et al [22] developed

stochastic models to simulate the emergence of drug resistant strains in the course of infec-

tion within a host patient in the presence and absence of antiviral therapy. The antiviral

used in this study is adamatanes. Specifically, this model examines the effects of antiviral

mechanism, immune response, and surface proteins on the emergence of drug resistant strains
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in the host. Their model equations are as follows (see eq (3.10)):

dT

dt
= −T

∑
i

βiVi (3.10a)

dEi

dt
= (1−mi)βiTVi −

Ei

τE
(3.10b)

dIi
dt

=
Ei

τE
− Ii
τi

(3.10c)

dVi
dt

= (1− ni)pi
∑
j

ρijIj − cVi, (3.10d)

where T is the pool of uninfected, susceptible target cells. When a target cell is infected,

it enters the eclipse phase, Ei, where the cell is infected with viral strain i but is not yet

producing virions. Cells remain in the eclipse phase for an average time τE before becoming

infectious. Infectious cells, Ii, are cells infected with viral strain i, releasing virions of strain

i at constant rate pi with probability ρi, and of strain j at constant rate pj with probability

ρij . Infectious cells die after producing virus continuously for an average time τI . Infection

rate is βi.

From their study, Dobrovolny et al [22] found that adamantanes, because they act at the

start of the replication cycle to prevent infection, are less likely to produce drug-resistant

mutants than other drugs, which act at the end of the replication cycle. They also found that

immune response subdues slow growing infections thereby further decreasing the probability

that a drug resistant mutant will arise and lead to drug-resistant infection. Even in the

absence of any drug treatment, their model predicts that drug-resistant mutants will be

present during an infection, potentially in large enough numbers and can be transmitted to

other individuals. This finding is in agreement with other previous studies in bacteria [16].

Furthermore, investigating the spread of influenza infections in a closed population, Stil-

ianakis et al [143] developed a model to determine the effects of different treatment strategies

on the spread of the infection. Using a complex SIR model, the authors consider the effect of

treatment either before infection or after infection. The model is given as in eq (3.11) where

S represents susceptible persons, Spr represents susceptible persons taking drug before infec-

tion, I = infected untreated persons, Is shows infected untreated persons who develop clinical

symptoms, Ir shows infected untreated asymptomatic persons who shed drug-resistant virus,

Is,r shows infected untreated persons with clinical symptoms who shed drug to the resistant

virus, Itr shows infected treated persons, Is,tr shows infected treated persons who develop

clinical symptoms, Ir,tr represents infected treated asymptomatic persons who shed drug-

resistant virus, and Is,s,tr represents infected treated persons with clinical symptoms who
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shed drug-resistant virus.

dS

dt
= −(β1I + β2Is + β1,rIr + β2,rIs,r + p1β1Itr + p2β2Is,tr + β1,rIr,tr + β2,rIs,r,tr)S

− θ1S

(3.11a)

dSpr
dt

= −(p3β1I + p4β2Is + β1,rIr + β2,rIs,r + p5β1Itr + p6β2Is,tr + β1,rIr,tr + β2,rIs,r,tr)Spr

+ θ1S

(3.11b)

dI

dt
= (β1I + β2Is + p1β1Itr + p2β2Is,tr)S − (γ1 + δ1 + θ2)I (3.11c)

dIs
dt

= δ1I − (γ2 + θ3)Is (3.11d)

dIr
dt

= (β1,rIr + β2,rIs,r + β1,rIr,tr + β2,rIs,r,tr)S + (β1,rIr + β2,rIs,r)Spr − (γ1 + δ2 + θ2)Ir

(3.11e)

dIs,r
dt

= δ2Ir − (γ2 + θ3)Is,r (3.11f)

dItr
dt

= (p3β1I + p4β2Is + p5β1Itr + p6β2Is,tr)Spr − (r1γ1 + δ3 + q1κ)Itr + θ2I (3.11g)

dIs,tr
dt

= δ3Itr − (r2γ2 + q2κ)Is,tr + θ3Is (3.11h)

dIr,tr
dt

= (β1,rIr,tr + β2,rIs,r,tr)Spr − (γ1 + δ4)Ir,tr + q1κItr + θ2Ir (3.11i)

dIs,r,tr
dt

= δ4Ir,tr − γ2Is,r,tr + q2κIs,tr + θ3Is,r (3.11j)

In their model, eq (3.11), transmission of infection from infected individuals to susceptible

individuals occurs with a rate β. Transition from the asymptomatic infected to the symp-

tomatic infected stage occurs with a rate δ and the rate of development of drug resistance

is κ. Infected persons recover and become immune with a rate γ (infectivity period is 1/γ).

The rate at which treatment is given before infection is given is denoted as µ and the rate

at which treatment is given is denoted as σ. pi represents the relative infectivity of wild

type virus during treatment compared with that of wild type virus without drug interven-

tion, q1 and q2 correspond to the likelihood of developing drug resistance from Itr and Is,r,tr

respectively.

In this model, it was assumed that drug treatment has no effect on viral replication and
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that the reduction of transmissibility in susceptibles is about one-third that of an encounter

with an I or Is person. It is also assumed that there is no difference in transmission for

contacts of susceptible and infected persons with clinical symptoms shedding resistant virus

whether treated or not. Figure 3.8 illustrates the epidemic curves as predicted by the model

in (3.11-3.11j).
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Figure 3.8: Epidemic curves as predicted by eq (3.8). Number of infected individuals
using treatment only (red) or using prophylaxis in addition to treatment(blue) over the
first 30 days of the epidemic. The gray line shows the course of the epidemic without any
intervention. The solid lines depict the total number of infected individuals, whereas the
dashed lines depict the number of individuals infected with resistant virus.

Comparing different strategies in their analysis, the researchers found that the optimal strat-

egy (in their study) which leads to low infection levels during an epidemic involves drug

treatment before infection. With this strategy, a considerable high number of people remain

susceptible to infection. Thus, there is low emergence of drug resistance as a strong block-

ing of the epidemic occurs and the epidemic is shorter than without any intervention. In a

pandemic, this approach moderately reduces the number of symptomatic infected individu-

als. They also found that both treatment before and after infection strongly suppress the

epidemic with low emergence of drug-resistant virus. However, this depends heavily on the

relative transmissibility of resistant and wild type virus.

3.4 Epidemic burden of SARS-CoV-2

The novel Coronavirus SARS-CoV-2 epidemic first emerged in December 2019 [147, 148,

149, 150]. It was considered to have originally started via a zoonotic transmission associated

with a seafood market in Wuhan, China. Later, it was discovered that human to human

transmission was possible with this virus and that such transmission significantly contributed
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to the subsequent viral outbreak. The disease caused by this virus was called Coronavirus

Disease 19 (COVID-19). It has also been shown that this novel Coronavirus is structurally

related to the virus that causes severe acute respiratory syndrome (SARS, 2002 and 2003) and

Middle East respiratory syndrome (MERS, 2012 to the present) [149, 151]. Since its discovery,

SARS-CoV-2, has spread globally, causing high levels of mortality and morbidity worldwide

and poses as a critical challenge for public health, research, and medical communities. On

January 30, 2020, the W.H.O. Emergency Committee declared a global health emergency

based on increasing case notification rates of the disease globally [147].

Coronaviruses are enveloped, positive single-stranded large RNA viruses that not only infect

humans, but also a variety of animals including birds and bats [150, 152]. For a long time,

human coronaviruses circulate in the population and have been known to cause seasonal and

usually mild respiratory tract infections associated with symptoms of the common cold. In

contrast, SARS, MERS and SARS-CoV-2, which have emerged in the human population

over the past 20 years, are highly pathogenic and may potentially cause severe disease and

fatalities. By infecting bronchial epithelial cells and the upper respiratory tract cells in

humans, SARS, MERS and SARS-CoV-2 infections can develop into severe, life-threatening

respiratory infections and lung injuries for which no definite therapy has been approved to

date [153].

Since its inception, COVID-19 has impacted a large number of people worldwide, being

reported in approximately 200 countries and territories. As of August 3rd, 2021, around 200

million cases and 4 million deaths have been recorded worldwide according to the Center

for Systems Science and Engineering (CSSE) at John Hopkins University [154]. Though

prevalent in all age groups, epidemiological studies have shown that mortalities are much

higher in elder population than in children [155, 156, 157].

The symptom of patients infected with SARS-CoV-2 ranges from minimal symptoms to se-

vere failure of respiratory organs with a large portion of the population being asymptomatic

carriers. The most common reported symptoms include fever (83%), cough (82%) and short-

ness of breath (31%) [158, 159, 160, 153]. Gastrointestinal symptoms such as vomiting,

diarrhea, and abdominal pain are described in 2–10% of the patients with COVID-19, and

in 10% of patients, diarrhea and nausea precede the development of fever and respiratory

symptoms [161, 162, 151].

As with other respiratory viruses, SARS-CoV-2 transmission occurs with high efficacy mainly

through the respiratory route. The main recognized route of transmission of the virus is

through droplets and aerosols although the oral-fecal route may be another route of trans-

mission of the virus. In the course of the outbreak of the virus, viral particles have been
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detected on inanimate surfaces such as door handles and the surface of cell phones in resi-

dential sites of patients with confirmed COVID-19. Thus, individuals who come into contact

with infected surfaces could be infected if they touch their eyes, mouth or nose [153, 158].

To curb the spread, the WHO recommends standard precautions for all patients, which are

also appropriate for public prevention, including hand and respiratory hygiene, the use of

appropriate personal protective equipment, safe waste management, environmental cleaning

and sterilization of patient-care equipment. Governments across the world have implemented

these measures ranging from quarantining, social distancing, wearing of face masks among

others. Amidst this crisis, national health care systems such as in Italy and the United States

of America have been overwhelmed by the ever-increasing number of infection cases [163].

At the start of the epidemic, pharmaceutical companies have been in a race to produce safe

and highly effective vaccines to counter transmission of the disease. As of December 2020,

there were 52 vaccine candidates in clinical trials in humans, 13 of which were in Phase 3

trials [2]. In November 2020, some pharmaceutical companies and institutes, including Pfizer

Inc and BioNTech, Moderna, the University of Oxford (in collaboration with AstraZeneca),

announced positive results from the first interim analyses of their Phase 3 vaccine trials

[164, 165, 166]. Initial data released from these trials report that the vaccines manufactured

by Pfizer Inc/BioNTech and Moderna both yielded 95% efficacy whereas that by University

of Oxford (in collaboration with AstraZeneca) yielded 70% efficacy. On 2 December 2020,

the UK medicines regulator MHRA granted a temporary regulatory approval for the Pfizer-

BioNTech vaccine [142] which was under evaluation for emergency use authorization (EUA)

status by the United States Food and Drug Administration [167] and approved for use on 11

December 2020 [142] in the United States.

Although the Pfizer, Moderna and University of Oxford/AstraZeneca vaccines are being

used worldwide, in other countries such as China and Russia, other vaccines (from Sinovac

in China and Gameleya Research Institute in Russia) have been developed and are currently

in limited use. Table 3.4 summarizes candidate vaccines currently in use as well as their

manufacturers and vaccine platform (that is, a system which uses certain basic components

as the backbone but is relatively flexible and can be adapted quickly to be used against

different pathogens [168]).

3.4.1 Mathematical modelling of SARS-COV-2

To understand and curb the spread of the disease, COVID-19 epidemiological models have

been formulated. Many of these models follow an SIR framework [169, 170] either in the

deterministic or stochastic form or both [171, 172, 173, 174, 175, 176]. Other variations

and modifications to this general model have been considered including SEIR [177, 178, 179]
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Table 3.4: List of candidate vaccines currently in use. Adapted from [2] and [3]

SARS-CoV-2 Vaccine
Manufacturer /
Developer

Vaccine
platform

Timing of
doses

Overall
Efficacy (from
[3])

University of
Oxford/AstraZeneca

Non-replicating
viral vector

0, 28 days 74%

Sinovac Inactivated 0, 14 days 50%

Janssen Pharmaceutical
Companies

Non-replicating
viral vector

0 or 0, 56 days 72%

Moderna/NIAID RNA 0, 28 days 92%

CanSino Biological
Inc./Beijing Institute of
Biotechnology

Non-replicating
viral vector

66%

BioNTech/Fosun
Pharma/Pfizer

RNA 0, 21 days 95%

Beijing Institute of
Biological
Products/Sinopharm

Inactivated 0, 21 days 73%

Novavax Protein subunit 0, 21 days 89%

Gameleya Research
Institute / Sputnik

Non-replicating
viral vector

0, 21 days 91%

Medicago Inc. Virus-like
particle (VLP)

0, 21 days −

and SIRD [180] compartmental models. Some models also include parameters such as age-

heterogeneity [181], guiding the flow of users in supermarkets [182], and governmental policies

[179, 183, 184]. In addition, a few studies incorporate the dynamics of the disease within an

individual host [185, 186]. However, only a few of these models consider the structure of the

population and the underlying interactions between individuals [187, 188, 189]

Fitting a stochastic model to publicly available data in Wuhan, Kucharski et al estimated

the early dynamics of SARS-COV-2 transmission in Wuhan [178]. Their model follows an

SEIR formulation and accounts for delays in symptom onset. In this model, a Poisson distri-

bution is used to model newly symptomatic cases, reported onsets of new cases and reported

confirmation of cases. Furthermore, transmission was modelled as a geometric random walk

process and sequential Monte Carlo simulations were used to infer the transmission rate over

time and the resulting number of cases as well as the basic reproduction number.

In their study, Kucharskiet al [178] estimated that the median daily reproduction number

in Wuhan decreased from 2.35 one week before travel restrictions were introduced on Jan

23, 2020, to 1.05 one week after indicating the effect of travel control measures on the

transmission of the disease. Their findings also suggest a 50% probability of infection spread

in places where there are at least four new cases in the population. Thus, as more cases are

reported, there is a likelihood of the incidence of new outbreaks in the population.
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Using ordinary differential equations (ODEs) and data from patients in Germany, Hernandez-

Vargas et al [185] modelled the viral kinetics of SARS-COV-2 within the host [185]. In their

work, they presented different mathematical models in an attempt to adjust viral kinetics

in patients in the data. The mathematical models considered include a so-called target cell-

limited model which divides the cell population into susceptible, infected and viral cells and

an immune response model for SARS-CoV-2 which is based on T-cell response to infection

from the virus.

From their findings, the best model that fits the data is the one which includes immune cell

response. This model is a minimalistic viral replication model for influenza infection and is

utilised in this study owing to the role of T-cells in clearing Influenza infections within the

host. This model assumes that the virus (V ) level induces the proliferation of T-cells (T )

and is represented with a logistic function with maximum carrying capacity K, growth rate ρ

and viral clearance rate c. The model also assumes that the activation of T cell proliferation

by the virus follows a log-sigmoidal form with half saturation constant kT and width m.

The terms sT and δT in eq (3.12-3.13) represent cell homoeostasis and half-life of T-cells

respectively and the term cTV T represents the rate of killing infected cells by the immune

response [185]. This formulation is as follows:

dV

dt
= ρV

(
1− V

K

)
− ctV T − cV (3.12)

dT

dt
= sT + rT

(
V m

V m + kmT

)
(3.13)

Although limited to data collected at the beginning of infection, analysis of the model (3.12-

3.13) suggests that T-cell response slowly mounts up against the virus peaking between 5

to 10 days post infection. These findings also agree with the data and act as evidence to

support the slow rate of replication by the SARS-CoV-2 virus.

3.5 Chapter summary

In the absence of the development of new drugs and success of treatment strategies, mathe-

matical models can be used to understand the problem of drug resistance. Several mathemat-

ical models describing the problem of drug resistance evolution exist and can provide some

insights for public health policies. These models vary in structure, methodology and aim.

From deterministic ordinary differential equations to mechanistic individual-based models,

models for resistance aim to explore some biologically relevant foci ranging from evolution

and spread of resistance to immune response to resistance.
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In this chapter, we have discussed the biological underpinnings of resistance and provided

analysis of studies pertaining to the evolution of drug resistance in bacteria and viruses at

within and between host levels. We have seen how mathematical modelling is crucial to

understanding the problem of drug resistance in microorganisms in the absence of the devel-

opment of new drugs and success of treatment strategies. Mathematical models describing

the problem of resistance evolution and capable of providing some insights for public health

policies have been discussed.

Deterministic models are popular at both between-host and within-host levels for drug resis-

tance infections in bacteria. These epidemiological models have been used to study various

groups of a population with emphasis on treatment with single or multiple antibiotics, emer-

gence of dual resistance and interplay with immune response. Though not extensively used,

models involving stochastic processes can be used to provide simplified solutions to ques-

tions posed by these deterministic models. Pharmacodynamic properties of antibiotics are

also considered by PK/PD models which give insight into immune response to drug resis-

tance.

Appropriate dosing regimens and therapy duration have also been questionable. For within-

host models, a high antibiotic dose eliminates resistant strains whilst a low antibiotic dose

subdues the less fit resistant strain. An intermediate antibiotic dose however, leads to the

emergence of resistance [72]. Though verified by experimental studies, these model predic-

tions should be fitted to in vivo data for validation. Some studies validate that prolonged

antibiotic treatment can lead to the emergence and spread of resistance in the host whereas

frequent antibiotic doses in small fractions can lead to the clearance of more resistant strains.
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Within-Host Resistance

Therapy switching has been identified as one of the methods that can be used for the gradual

eradication of resistant strains on the long term. This chapter explores the use of positive

switched systems to describe the dynamics of resistance infections within the host. We provide

a background on the notion of collateral sensitivity and cross resistance and discuss how this

notion can be exploited to mitigate antimicrobial resistant infections within a host patient,

using notions from control engineering. Using numerical simulations, we compare different

drug switching strategies and explore their performance in eradicating resistant strains within

the host.

4.1 The phenomenon of collateral sensitivity

Biochemical or phenotypic resistance may arise in cells spontaneously or be acquired as a

result of exposure to a drug. This kind of resistance is thought of to be as a result of the

modification of cellular phenotype due to genetic factors which causes these phenotypes to

have varying resistance properties [16, 190]. In cancer patients for example, exposure to

cancer therapy causes the development of resistance to drugs [191]. Although treatment

with appropriate curative therapy decreases tumor burden in some cases, in other cases, a

relapse can occur after the commencement of treatment [192].

The survival of a resistant strain depends on the environment and population characteristics.

In the absence of antibiotics, the growth of resistant cells is often slower than that of sensitive

cells [16, 191]. The presence of antibiotics causes the production of enzymes which can lead

to the expression of resistance thereby preventing the growth of sensitive cells. With the

use of antibiotics, it is possible for a strain susceptible to one drug to generate resistant

cells which are susceptible to another drug. Over time, the newly developed susceptible cells

43
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can also generate cells which are resistant to the current drug but susceptible to a different

drug. This continuous occurrence of resistant and susceptible cells can eventually lead to the

appearance of resistant cells susceptible to the initial drug used. This phenomenon is known

as Collateral Sensitivity (CS) [30, 193] and its converse is known as Cross Resistance (CR)

(see Figure 4.1).
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Figure 4.1: Evolution of antibiotic resistance in five drugs commonly used for the treat-
ment of P.aeruginosa infections in cystic fibrosis. TOB: Tobramycin, AZY: Azithromycin,
AZE: Aztreonam, CIP: Ciprofloxacin, COL: Colistin. (a) Heatmap of collateral sensitivity
and cross resistance of evolved resistant strains of antibiotics. It represents the collateral sen-
sitivity matrix for evolved resistant cell lines (columns) tested against another drug (rows).
(b) Network of collateral interactions from (a). Blue arrows represent CS and red arrows
represent CR. The directed path of each arrow represents the collateral susceptibility or
cross resistance of a drug-resistant strain on the drug. Adapted from [31].

Several studies have suggested the use of collateral sensitivity as a new treatment strategy

for combating drug resistance infections through a drug scheduling protocol called Collateral

Sensitivity Cycling (CSC) [31, 192, 193, 29, 114]. In general, collateral sensitivity cycling is

a treatment framework in which traditional antibiotic cycling is done using drugs which have

compatible collateral sensitivity profiles. By cycling between drugs which are collaterally

sensitive, resistance cells can always be targeted and the life span of drugs can be extended

as drugs are reintroduced. Experimental analysis of drug-resistant strains of E. coli have

shown collateral interactions between Aminoglycosides, such as tombramcyin and kanamycin,

and other classes of antibiotics [194]. In drug-resistant strains of P. aeruginosa, Imamovic

et al found that about 75% of resistant strains exhibited collateral sensitivity to at least one

antibiotic and 78% of these could be possible candidates for collateral sensitivity cycling.

Modeling of infectious diseases has been developed at different scales [195]. At the epidemi-

ological level, models have helped to propose new vaccination strategies or support public

health strategies [196, 197]. At within-host level, mathematical modeling has been used to

capture the dynamics of different infectious diseases inside the host (patient) to understand
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the interaction of the pathogen and the immune system, as well as scheduling of therapies

[198, 199, 200].

Most mathematical models to represent microbe dynamics are shown to be based on varia-

tions of the classical Verhulst logistic growth equation. In a general form, this model is given

by
dP

dt
= rP

(
1− P

K

)
(4.1)

where P is the population at time t, r is the growth rate and K is the carrying capacity

of the population (that is the maximum value that P can reach). This model has served

as a key mathematical tool in representing the growth of tumors [201] and microbes [202].

Although other models, including exponential growth models [203] and stochastic growth

models [191, 16, 204] have been used to study drug resistance in microbes, such models are

often limited by the assumption of a constant growth rate which oversimplifies cell growth

and development of resistance. The logistic model however, considers that a population will

proliferate and reach a limiting saturation level of resources of the human body, known as

the carrying capacity [205, 203].

In the literature, infections have been studied using the notion of switched positive dynamical

systems [206, 207]. A switched positive system generally refers to a hybrid dynamical system

consisting of a family of continuous-time subsystems and a rule which brings about the

switching between them. Interest in switched systems has increased recently due to their

applications in diverse areas such as economics, engineering and biology, to mention a few

[34, 208, 209, 210]. The feedback stabilization of such systems has received a lot of attention

and numerous tools have been developed to make such analysis. In particular, the use of

control Lyapunov functions have gained wide popularity in studying the stabilization of both

linear and nonlinear switched systems [211, 212]. Studies show that for switched systems,

control Lyapunov functions provide a robust feedback solution for achieving stability [213].

Though widely used in engineering and biology, these types of systems have also been applied

in studying infectious diseases [207, 206].

While theoretical approaches to mitigate drug resistance have been mainly developed at

between-host level [48][111], too little has been directed to investigate within-host strate-

gies against antimicrobial resistance [207]. Our goal is to abstract the concept of collateral

sensitivity in relation to drug-resistant infections as studied by the clinical investigations of

Imamovic et al [31] and develop examples of tailored therapy cycling strategies towards the

eradication of drug-resistant microbes within the host.

In this chapter, we develop a mathematical abstraction of the dynamics of antimicrobial

resistance in the form of non-linear switched systems. We make use of dynamical systems

based on logistic equations. We then develop different switching control techniques designed
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to minimize the appearance of drug resistant bacteria within the host. Using numerical

simulations, we present and compare these techniques for the mitigation of drug resistance.

4.2 Logistic switching maps to model drug resistance

Mathematical modelling of antimicrobial resistance can be done using logistic equations.

Logistic equations are well-known differential equations used to model population growth and

interactions between two or more populations. When using these equations, it is assumed

that the growth rate of the population is proportional to the existing population and the

amount of resources available. With numerous applications in other scientific fields, logistic

equations are used to explore dynamical systems which exhibit bifurcations and chaos.

The dynamics of antibiotic resistance can be described using the following general switched

logistic system as proposed by [214]. This model describes the interaction between genetic

bacterial strains and helps tailor appropriate interventions. The model equation is as follows:

ẋi(t) = ρi,σ(t)xi(t)
(
1− xi(t)

K

)
− δσ(t)xi(t) + µ

n∑
j=1

mij,σ(t)xj(t) (4.2)

defined for all t ≥ 0, and where xi : i = 1, 2, 3, ..., n with n representing different bacterial

strains. Each state xi denotes a strain of bacteria which is either sensitive or resistant to

any particular drug used. µ is the mutation rate. δσ(t) is the bacterial clearance depending

on the drug used. ρi,σ(t) is the proliferation rate of the strain i under therapy σ at any

time t. mij,σ(t) represents the mutation from strain i to strain j under therapy σ at any

time t. K defines the maximum carrying capacity and σ(t) denotes the switching signal (see

Section 2.2.2.1) based on the treatment policy such that σ(t) takes values in {σ1, σ2, . . . , σN}
with N representing the number of drugs. All parameters and initial conditions are assumed

to be non-negative so that xi(0) ≥ 0 for i ∈ {1, 2, . . . , n}. A description of all parameters

used can be found in Table 4.1.

By setting K equal to 1, we can express eq (4.2) in matrix notation as follows:

ẋ(t) = diag{x}[Pσ(t) − diag{Rσ(t)}xT ] + µMσ(t)x(t) (4.3)

where x = (x1, x2, . . . , xn) ∈ Rn, Rσ(t) = (ρ1,σ(t), ρ2,σ(t), . . . , ρn,σ(t)) ∈ Rn and Pσ(t) = (RT
σ(t)−

δσ(t)) ∈ Rn. The mutation matrix Mσ(t) := [mij,σ(t)] ∈ Rn×n defines the observed mutations

based on the therapy, σ, in use at time t.

Remark. The mutation matrix, Mσ(t) describes how strains gain or lose sensitivity or resis-

tance, thereby, altering the bacterial composition of the system without changing the total
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number of bacteria. The main diagonal of this matrix should be non-positive, as a positive

diagonal implies that a strain can mutate into itself, which is not biologically feasible.

Table 4.1: Description of parameters used.

Parameter Description

K carrying capacity
n number of bacterial strains
t time variable
N number of drugs or therapy
σ(t) switching signal dependent on therapy.
ρi,σ(t) proliferation rate of strain i under drug σ at time t

µ mutation rate
δσ(t) clearance rate depending on drug σ at time t

Mσ(t) mutation matrix describing observed mutations based on σ(t).
Mσ(t) := [mij,σ(t)] ∈ Rn×n

In the subsequent sections, we employ notions in control engineering and positive switched

systems, to develop control techniques based on Lyapunov functions to minimize the appear-

ance of drug resistant bacteria within the host. We begin with a model of two strains of

a pathogen and with two treatment options and continue with a more general form of this

model with several treatment strategies. We analyse each of these models and carry out nu-

merical simulations to explore therapy switching strategies towards eradication of resistant

strains.

4.3 Two strain model for antimicrobial resistance

With the use of therapy, it is possible for a strain susceptible to one drug to generate resistant

strains which are susceptible to another drug by a phenomenon known as collateral sensitivity

[30]. Over time, the newly developed susceptible strains can also generate strains which are

resistant to the current drug but susceptible to a different drug. This continuous occurrence

of resistant and susceptible strains can eventually lead to the appearance of resistant strains

susceptible to the initial drug used.

4.3.1 Model analysis without switch between therapies for two pathogen

strains

Our aim is to illustrate a hypothetical scenario of collateral sensitivity using a two-strain

bacterial population, x1 and x2, where each strain represents a family of strains sharing the

same susceptibility to a given drug. Assuming that each mutation changes the susceptibility
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of the bacteria from one family to the other, the connection between the families can be

written by the following symmetric matrix:

M =

[
−1 1

1 −1

]
.

For this two-strain system, we can express eq (4.2) based on the aforementioned assumptions,

where Mσ(t) := [mij,σ(t)] ∈ R2×2 and σ(t) ∈ {σ1, σ2} as:

ẋ1 = [−δ + ρ1 (1− x1)]x1 + µ(−x1 + x2) (4.4a)

ẋ2 = [−δ + ρ2 (1− x2)]x2 + µ(x1 − x2). (4.4b)

All parameters and initial conditions are assumed to be non-negative so that x1(0) ≥ 0 and

x2(0) ≥ 0.

A schematic illustration of this model is shown in Figure 4.2

X1 X2

Growth
 (ρ1)

Mutation
    (μ) 

Growth
  (ρ2)

Clearance
      (δ)

Figure 4.2: Schematic illustration of the model (4.4). x1 and x2 are two bacterial strains
with proliferation (growth) rates ρ1 and ρ2 respectively, mutation rate µ and clearance rate
δ.

Further qualitative characterisation of the model with and without switching is considered

in the subsequent sections.

4.3.1.1 Equilibrium points and stability

Equilibrium points

The substitution method is used to find the equilibrium points of the system. Equating the

right hand side of eqn (4.4) to zero, an expression for x2 in terms of x1 is obtained from

eq (4.4b) which is substituted into eq (4.4a) to obtain a quartic polynomial, H(x1) described

explicitly as :
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H(x1) =
x1 (−µρ1x1(δ + µ))

µ2
+
x1 (ρ1 (δ + µ− ρ2) + ρ2(δ + µ)− δ(δ − 2µ))

µ

−
x1
(
ρ2
(
ρ1 (x1 − 1) (2x1(δ + µ)− µ) + x1(δ + µ)2 + ρ21 (x1 − 1) 2x1

))
µ2

and

x2(x1) =
δx1 + µx1 + ρ1x

2
1 − ρ1x1

µ
.

Figure 4.3: Graphical view of equilibrium points for system (4.4). Equilibrium points as
a result of substitution method. Red lines: trace of intersection points to x2(x1) curve.
(left) Vector fields around the four equilibrium points; two with non-negative coordinates
(E1 and E4) and two with negative components (E2 and E3). (right) Dependence of E4 on
parameters. Red dots represent the value of E4 for µ = 0 and blue dots for µ > 0. The green
lines show the translation of equilibrium point (k1, k2) from µ = 0 to µ > 0. If ρ1 = ρ2, E4

is unchanged for both µ = 0 and µ > 0.

H(x1) and x2(x1) are plotted on the same axis. The intersection of H(x1) with the abscissa

gives the x1-components of the equilibrium points. The coordinates of these intersection

points to the curve x2(x1) give the corresponding x2-components and hence characterize the

equilibrium points. This is illustrated in Figure 4.3(a), which shows four equilibrium points:

the trivial equilibrium point E1(0, 0), where both populations are zero, two others E2, E3

and a coexistence equilibrium at E4(k1, k2), where both populations are positive.

Depending on the parameter values, only two or all four equilibrium points are admissible:

the origin (which always exists) and (under certain conditions) a coexistence equilibrium

in the positive orthant. The points (E2 and E3) are not admissible because the values of

x1 and x2 are negative at E2 and E3 respectively. Hence, the only biologically meaningful

equilibrium points are the origin E1 and the positive coexistence equilibrium at E4.
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A vector field plot of system (4.4) depicts these equilibrium points and gives a hint of the

nature of their stability. This is shown in Figure 4.3 which also illustrates the dependence of

E4 on parameter values.

Stability

The origin, E1(0, 0) is a common equilibrium point which always exists independent of the

parameters thus, making it the point of interest from the stability point of view. Since

E1(0, 0) is a common equilibrium point, once its stability is addressed, the stability of E4

can be inferred. The Jacobian matrix for eq (4.4) is

J(x1,x2) =

(
−δ − µ+ ρ1 − 2ρ1x1 µ

µ −δ − µ+ ρ2 − 2ρ2x2

)

with eigenvalues

λ1,2 = 1
2 [−2δ − 2µ+G(x1, x2)]±

√
4µ2 −G(x1, x2)2 (4.5)

where G(x1, x2) = 2ρ1x1 + ρ1 − 2ρ2x2 + ρ2

At the origin, the trace and determinant of the Jacobian matrix are:

tr = −2(δ + µ) + ρ1 + ρ2,

det = δ2 + µ(−ρ1 − ρ2) + δ(2µ− ρ1 − ρ2) + ρ1ρ2.

Thus, for stability of E1(0, 0), the restriction of τ < 0 and ∆ > 0 is satisfied by the conditions:

C1 : µ >
(δ − ρ1)(δ − ρ2)

−2δ + ρ1 + ρ2
= µc and C2 : 2δ > ρ1 + ρ2 (4.6)

where µc is a critical mutation rate.

It follows that whenever both ρ1 > δ and ρ2 > δ, then µc > 0 and −2δ + ρ1 + ρ2 > 0.

The former is a contradiction to C2 and consequently E1 is not stable. However, when both

ρ1 < δ and ρ2 < δ, then −2δ + ρ1 + ρ2 < 0 and µc < 0. Thus E1 is stable for any value of

µ > 0. Furthermore, if either ρ1 > δ and ρ2 ≤ δ or ρ1 ≤ δ and ρ2 > δ but their sum (ρ1+ ρ2)

still satisfies C2, then (δ − ρ1)(δ − ρ2) < 0 and −2δ + ρ1 + ρ2 < 0 so µc > 0. The origin is

not always stable in this case and there exist some values of µ which make E1 stable.

Proposition 4.1. The stability of E4 is complementary to that of E1 in that when E1 is

stable, E4 does not exist but whenever E4 exists, E1 is unstable. In addition, the points E2

and E3 are saddles if they exist.

Note that the evolution of E2 and E3 as a function of changes in µ could lead to the escape

of trajectories from the positive orthant and thus, a study of the positivity of the solutions
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is necessary. The feasible region of state space is required to be positive since the system

is based on populations. The following subsection investigates the positivity of solutions by

means of the invariance of the feasible region.

4.3.1.2 Set-theoretic characterisation of behaviour

The notion of positive systems relates to the positivity of solutions of the system. We aim to

prove the positivity of the system (4.4) by means of the invariance of the state-space region

of biological interest.

Proposition 4.2 (Positivity of solutions). Solutions of the system with non-negative µ re-

main non-negative for any positive initial conditions in R2 and for all time t > 0.

Proof. Let t > 0 and assume non-negative values of µ. From system (4.4) we have;

ẋi ≥ xi (−δ − µ+ ρi(1− xi))

with solution

xi(t) ≥
(ρi − δ)

ρi

(
1 +

(
(ρi−δ)
x0

− 1
)
e−t(ρi−δ−µ)

) (4.7)

for all ρi ≥ 0 , δ ≥ 0.

When ρi > δ,

lim
t→∞

xi(t) =
(ρi − δ)

ρi
> 0 since ρi > δ

When ρi ≤ δ,

lim
t→∞

xi(t) −→ (ρi − δ)

ρi(1 +∞)
= 0

Thus, all components are converging monotonically and limt→∞ xi(t) = 0.

This proves that the solution of the system (4.4) is non-negative for all t > 0.

Let us now consider the region of invariance with respect to system (4.4) .

Proposition 4.3. Given a set of positive parameters: ρi, δ and µ, the set

Ω =
{
(x1, x2) ∈ R2 | 0 ≤ x1 ≤ k1, 0 ≤ x2 ≤ k2

}
(4.8)
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is positively invariant with respect to system (4.4) above with the coexistence equilibrium point

at (k1, k2).

Proof. Consider the general dynamical system

ẋ = F (x) (4.9)

with F : R2 → R2 and let X be the set of all initial conditions in R2. Following Nagumo’s

theorem (in Chapter 2, Section 2.6), assume that for each initial condition in X , there is a

globally unique solution and let Ω ⊆ X be a closed and convex set. The boundary of the set

Ω is denoted as ∂Ω and the tangent cone of Ω at x is denoted as TΩ(x). Then, the set Ω is

positively invariant for the system if and only if

F (x) ∈ TΩ(x), ∀ x ∈ ∂Ω,

Thus, if for every x ∈ ∂Ω, the derivative ẋ(t) points inside the set Ω, then the trajectory x(t)

remains in Ω [33].

In the particular case of Ω in eq (4.8) and ẋi in eq (4.4) with F (x) =

[
f1(x)

f2(x)

]
, ∂Ω is defined

by the four line segments (see Figure 4.3);

A = {(x1, x2) | 0 < x1 < k1, x2 = 0} ,
B = {(x1, x2) | x1 = 0, 0 < x2 < k2} ,
C = {(x1, x2) | 0 < x1 < k1, x2 = k2} and

D = {(x1, x2) | x1 = k1, 0 < x2 < k2}.

To show that all points along ∂Ω point inwards, one has to use normals that point inside Ω

by using the dot product. However, we recall Proposition 4.2, where it was shown that the

system is positive and hence the points along the boundaries defined by A and B are proved

to point inside Ω. Thus, it remains to show that points along C and D also point inside Ω.

For C, x2 is constant and x1 changes from 0 to k1 with the normal vector n⃗C = (0,−1). For

any point p ∈ [0, k1], let X =

[
p

k2

]
be the initial conditions. Then,

F (X)T .n⃗C = F

([
p

k2

])T

.

(
0

−1

)

=

[
f1

([
p

k2

])
f2

([
p

k2

])]
.

(
0

−1

)

= −f2

([
p

k2

])
,∀p.
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It remains to show now that

F (X)T .n⃗C = −f2

([
p

k2

])
≥ 0, ∀p ∈ [0, k1]. (4.10)

From eq (4.4b),

ẋ2 = [−δ + ρ2(1− x2)]x2 + µ(−x1 + x2). (4.11)

Since (k1, k2) are roots of the system (4.4),

ẋ2 = [−δ + ρ2(1− k2)] k2 + µ(−k1 + k2) = 0. (4.12)

Thus,

[−δ + ρ2(1− k2)− µ] k2 + µk1 = 0

[−δ + ρ2(1− k2)− µ] k2 = −µk1 (4.13)

Now from eq (4.10),

−f2

([
p

k2

])
= − [ρ2k2 (1− k2)− δk2 − µk2 + µp]

= − [ρ2k2 (1− k2)− δk2 − µk2]− µp

= −(−µk1)− µp from eq (4.13)

= µ(k1 − p) > 0 when p ∈ (0, k1)

The value of the dot product being positive, the vector fields point in the same direction as

a normal field (i.e. inside the domain Ω).

For D, x1 is constant and x2 changes from 0 to k2 with the normal vector n⃗D = (−1, 0).

Based on the same reasoning, similar results are obtained:

F (X)T .n⃗D = f1

([
k1

p

])
> 0,∀p ∈ [0, k2].

and the vector fields point inside the domain.

Eventually, since all points along ∂Ω point inwards, the set Ω is positively invariant with

respect to system (4.4).
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Corollary 4.4. In the case when there is no mutation, that is when µ = 0, along the

boundaries C and D,

f2

([
p

k2

])
= 0 and f1

([
k1

p

])
= 0

respectively. Therefore the set Ω is positively invariant with respect to system (4.4).

The invariant region Ω bounded by the line segments A,B,C,D is illustrated in Figure 4.3.

4.3.1.3 Lyapunov stability analysis

We have established that all solutions of the system (4.4) with positive initial conditions

are positive and remain in the positively invariant region Ω (in eq (4.8)) for all t > 0. We

have also shown that the system converges to either the origin or the coexistence equilibrium

point. However, the convergence of interest is the one at the origin which indicates the

eradication of both strains of bacteria. The stability of the origin is analysed in this section

using Lyapunov’s theory from Theorem 2.3 on stability of dynamical systems. Using a

Lyapunov function, we can determine the Lyapunov stability of the equilibrium point, E1

for system (4.4).

Theorem 4.5. The system (4.4) under the conditions (4.6) has x̄ = 0 as stable equilibrium

with a domain of attraction ΩD = {(x1, x2) ∈ Ω | (x1, x2) ̸= (k1, k2)}.

Proof. Starting from the positive invariance of Ω ⊂ R2, we construct a candidate Lyapunov

function in the form

V (x) = (x1 − x̄1)
2 + (x2 − x̄2)

2. (4.14)

Over the domain ΩD, V (x) is continuously differentiable, V (x̄) = 0 and V (x) > 0 for all

x ̸= x̄. Thus V (x) is a valid Lyapunov candidate. The derivative, V̇ (x) of the Lyapunov

function V (x) is calculated along the trajectories as

V̇ (x) = 2(x1 − x̄1)ẋ1 + 2(x2 − x̄2)ẋ2 (4.15)

Clearly, V̇ (x) = 0 for x = (0, 0) and x = (k1, k2). Next, we consider the Lyapunov stability

of the origin and develop eq (4.14) for x ∈ ΩD and the equilibrium point x̄ = (0, 0)

V̇ (x) = 2x1ẋ1 + 2x2ẋ2

= 2x1 [(−δ + ρ1 (1− x1))x1 + µ(−x1 + x2)]

+ 2x2 [(−δ + ρ2 (1− x2))x2 + µ(x1 − x2)]

= 2x21(ρ1 − δ) + 2x22(ρ2 − δ)

− 2(ρ1x
3
1 + ρ2x

3
2)− 2µ(x1 − x2)

2
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Let µ be expressed in terms of the critical mutation rate µc from eq (4.6) as µ = µc + ϵ.

Substituting this into V̇ (x) yields:

V̇ (x) = 2x21(ρ1 − δ) + 2x22(ρ2 − δ)− 2
(
ρ1x

3
1 + ρ2x

3
2

)
−2(x1 − x2)

2

(
(δ − ρ1)(δ − ρ2)

−2δ + ρ1 + ρ2
+ ϵ

)
= −2ρ1x

3
1 − 2ρ2x

3
2 − 2ϵx21 − 2ϵx22 + 4ϵx1x2

+
2(δ − ρ1)

2x21 + 2(δ − ρ2)
2x22 + 4(δ − ρ1)(δ − ρ2)x1x2

−2δ + ρ1 + ρ2

= −2ρ1x
3
1 − 2ρ2x

3
2 − 2ϵ(x1 − x2)

2

+
2((δ − ρ1)x1 + (δ − ρ2)x2)

2

−2δ + ρ1 + ρ2

When C1 is satisfied then 2((δ−ρ1)x1+(δ−ρ2)x2)2

−2δ+ρ1+ρ2
< 0. When C2 is satisfied then ϵ > 0 and

−2ϵ(x1 − x2)
2 < 0.

Therefore satisfying both conditions (4.6) ensures that V̇ (x) < 0, ∀ x ∈ Ω.

When any of the conditions (4.6) are not satisfied, there exists at least one combination of

(x1, x2) ∈ ΩD which makes the expression (4.15) non-negative, thus invalidating the stability

of the origin over this domain.

4.3.2 Model analysis with switching between therapies for two pathogen

strains

By considering the switched system (4.4), we introduce here a mechanism for improving the

stabilisation and the rate of convergence of the system (4.4) when more than one treatment

policy is employed. Two types of switching policies are considered: Periodic switching and

Lyapunov switching.

A periodic switching policy is the switching of therapies i in a periodic pattern at regular

intervals Ti. The principle of periodic switching of therapies can be described as follows in

the case of two therapies. Given two therapies with administration periods T1 and T2, we

have the switching policies σ(T1) = 1 and σ(T2) = 2. A periodic cycling policy in this case

begins at the initial state with therapy 1, then runs along with the switching policy σ = 1

for a period T1, and at the end of T1, the system turns to the switching policy σ = 2 for

a period T2. Therefore as time goes, this pattern switches the therapies one by one for the

entire duration of time (see Figure 4.4).

A Lyapunov switching policy refers to cycling of therapies based on the Lyapunov function.
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T1 T2 T1 T2

σ=1 σ=2 σ=1 σ=2

Figure 4.4: Illustrating periodic switching of two therapies with periods T1 and T2. Treat-
ment begins at the initial state with policy σ = 1 and continues for a period T1. At the end
of T1, the system runs with switching policy σ = 2 for a period T2. Continuing this way
creates a pattern of switching between the two therapies consecutively thus giving rise to a
periodic switching policy.

4.3.2.1 Switching based on control Lyapunov function

The use of the Lyapunov function serves as a tool for finding strategies to achieve convergence.

Based on the Lyapunov function argument, we can have a switching strategy which ensures

the stability of the origin under a given choice of the parameters.

Proposition 4.6. The system (4.4) has the origin as a stable equilibrium if for every x ∈ ΩD

there exists at least one therapy σx ∈ {σ1, σ2} for which V̇ (x, σx) < 0, where V̇ is the

Lyapunov function derivative in eq (4.15).

Proof. Let the Lyapunov function derivative V̇ defined as in eq (4.15) be with respect to the

dynamics of system (4.4) by considering it as a function of x and σ. If for every x ∈ ΩD there

is at least one therapy σx that yields V̇ (x, σx) < 0. We can construct a switching policy by

choosing the therapy such that

σ(t) = argmin
σi

V̇ (x, σi).

This constructive solution proves the existence of a switching policy σ, such that

V̇ (x, σ) < 0 and hence following from Theorem 2.3, the system has a stable equilibrium at

the origin.

Thus, given two configurations both with the common equilibrium point (0, 0), a policy based

on the Lyapunov function derivative can be used to stabilize the system provided that at

least one of the configurations guarantees V̇ (x, σi) < 0. In addition, switching based on the

Lyapunov function derivative can lead to faster convergence than periodic switching. In the

following, some scenarios of these conditions are discussed.

4.3.2.2 Numerical simulation for switching therapies for two strain model

If the switching system (4.4) has a common Lyapunov function, then the system is asymp-

totically stable at the origin for any switching signal σ(t). To illustrate this, we consider

three different scenarios with different proliferation rates and under two treatment policies
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(see Table 1). For all simulations, an initial condition vector x = [103, 10] is chosen and the

following parameter values are used: δ = 0.25,K = 105, T = 10 days and µ = 10−4. In case

Table 4.2: Proliferation rates for bacterial strains under therapy combinations

Case Therapy x1 x2 E1

1 1 ρ1,1 = 0.2 ρ2,1 = 0.1 Stable
2 ρ1,1 = 0.1 ρ2,1 = 0.2 Stable

2 1 ρ1,1 = 0.5 ρ2,1 = 0.1 Unstable
2 ρ1,1 = 0.1 ρ2,1 = 0.2 Stable

3 1 ρ1,1 = 0.1 ρ2,1 = 0.35 Unstable
2 ρ1,1 = 0.35 ρ2,1 = 0.1 Unstable

1, both subsystems are asymptotically stable at the origin. Therefore, any switching policy

leads to eradication of both strains. In case 2, the first subsystem is unstable at the origin

but the second is stable. Switching periodically between therapies will not stabilize the entire

system unconditionally. In cases 1 and 2, switching based on the Lyapunov function argu-

ment not only ensures convergence to the origin but also achieves convergence at a faster

rate compared to switching periodically between policies. We can see in Figure 4.5a and

4.5b switching results for cases 1 and 2 respectively. For case 3, the two subsystems are not

stable at the origin and thus, using the policies independently does not lead to eradication.

However, switching between the two policies periodically leads to a convergence at the origin.

Moreover, the Lyapunov switching converges to such a periodic stabilizing sequence implicitly

and additionally ensures a better convergence of the closed-loop system (see Figure 4.5c).

For this last case, subsystems a priori unstable at the origin can be brought to convergence

under the Lyapunov switching argument based on feedback. Moreover, an analysis of the

Lyapunov function derivative shows that a sliding mode can occur at the intersection of the

two configuration as shown in Figure 4.6(b). Thus, the feedback switching can be seen as

a reaching law to the sliding surface. Once the sliding mode is reached, the control can be

completed with a sliding law defined based on periodic switching.
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Figure 4.5: Illustration of therapy switching for all three cases. (a) Case 1; (b) Case 2;
(c) Case 3. Solid lines: periodic switching. Dashed lines: Lyapunov based switching. Blue
lines: strain x1. Red lines: strain x2.
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Figure 4.6: A sliding mode for case 3 occurs at the intersection of V̇ (x1, x2) for therapy 1
and 2 when the minimum of V̇ (x1, x2) for each pair (x1, x2) with respect to both therapies
is plotted. The right hand side shows the values of V̇ (x1, x2) under therapy 1 and the left
hand side shows the values of V̇ (x1, x2) under therapy 2. tr denotes the time to reach the
sliding mode.
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Let us now consider a more general case of of the model for antimicrobial resistance.

4.4 General model for antimicrobial resistance

In the following sections, we focus on the qualitative characteristics of the model (4.2).

In particular, we examine this generalised model while taking into consideration that the

mutation matrices in this case are not constant for all treatment scenarios as in the two

strain model discussed above. Instead, these matrices are considered to vary depending on

drug use. Additionally, in this case, the mutation process is incorporated as an extra growth

factor, resulting in the lack of mass conservation, unlike in the two-strain model.

The following assumptions are made for analysing this model.

Assumption 4.7. Modelling with logistic dynamics It is assumed that the growth rate

of the population is proportional to the existing population and the amount of resources

available (which is usually in excess in the course of an infection). Thus, for simplicity, we

assume the same carrying capacity (K) for the different variants in the presence of antibiotics.

Assumption 4.8. Development of resistance before treatment onset. In silico ex-

periments performed by Komarova et al [16] suggest that when two or more drugs are used,

the phase which plays a dominant role in treatment failure is the period before treatment

and that development of resistance during treatment can be ignored. In fact, evidence from

experimental studies show that for bacteria isolated from different populations of P. aerugi-

nosa selected before the initiation of antibiotic therapy, there were both strains susceptible

and resistant to all six antibiotics tested [31]. These observations imply that evolution of

resistant strains in a bacteria population can be observed either prior to the use of antibi-

otics or during the course of treatment. In this study, we assume that resistance to all used

antibiotics is developed before the start of treatment.

Assumption 4.9. Proliferation rate as a fitness level. Evolution of mutation in the

population results in the progression towards higher fitness levels due to selection pressure.

Based on the susceptibility profile (level of sensitivity and/or resistance to a given antibiotic)

of each cell, we assume that there are two possible fitness levels under each drug: lowest for

most sensitive cells and highest for most resistant cells. The metric used to determine the

fitness level in this work is the overall proliferation ability (ability to grow and increase in

number) during resistance evolution. This is captured by the proliferation rate ρi,σ.

Assumption 4.10. Proliferation rates depend on antibiotic treatment. In the pres-

ence of an antibiotic, it is reasonable to assume that the population of sensitive cells decreases

whereas that of resistant cells increases. Thus, under each drug, we assign two types of pro-

liferation rates; one for each cellular type. We assume that the sensitive and resistant strains



Chapter 4 60

proliferate at different rates and set the proliferation rates of resistant cells to be higher than

that for sensitive cells.

Assumption 4.11. Mutation is based on therapy. With the use of therapy, bacterial

cells susceptible to a particular drug, say drug A, can undergo mutations in the course of

treatment leading to cells which are resistant to the given drug A but sensitive (collateral

sensitivity) or resistant (cross resistance) to another drug, say B. Consequently, the cell dy-

namics leading to the evolution of mutant strains differs with the use of drug. This is because

the genetic connections between cells are defined by their collateral sensitivity profiles which

changes depending on the drug in use. Therefore the mutation matrixMσ(t)[M1,M2, . . . ,Mn]

can be seen as a collection of all mutation matrices obtained from n drugs.

Assumption 4.12. Collateral sensitivity or cross resistance is only observed in

resistant populations. Experimentally evolved resistant strains of P. aeruginosa and S.

aerus were found to be collaterally sensitive to at least one out of several antibiotics being

tested [31]. Therefore, in this model, we assume that collateral sensitivity and cross resistance

are accounted for when resistant cells to the current drug are either sensitive or resistant to

another drug. Also, a sensitive cell giving rise to other sensitive strains has been excluded

from this model.

Assumption 4.13. Mutation rate independent of therapy and strain. For a given

drug, the development of resistance within the sensitive population occurs at a rate - the

mutation rate, µ. As the mutation rate is increased, the level of resistance also increases

thereby generating more resistance cells in the population. This relationship between therapy,

cells and the mutation is simplified in this model by assuming a constant mutation rate for

all therapy and cells.

Assumption 4.14. Pathogen clearance depends on therapy. Understanding the clear-

ance of bacteria helps to measure the effect of the drug on the population. In this work, we

assume that the rate of clearance of bacteria, δ is drug-induced and that the value of this

parameter changes with the change of the drug.

4.4.0.1 Mutation matrix Mσ(t)

The process of mutation is assumed to be absolute and irreversible such that a single strain

can mutate into several other strains which do not eventually yield the same strain at the

start of the mutation process. Thus, it is not possible for two different strains to yield the

same mutant upon mutation. In other words, all backward mutations are excluded from this

model as there exists no sequence of l mutations xj1 → xj2 → . . .→ xjl → xi for any length

l when a mutation from strain i to j occurs. In general, it is not possible to come back to

strain i starting from strain i.
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Let X be a set. We recall that a (homogeneous) relation R on X is a subset of the Cartesian

product X ×X. Elements x, y ∈ X are said to be in relation R if (x, y) ∈ R.

The relation “leads to / generates” is defined on the finite set X of all cells in the system

such that X = {x1, x2, . . . , xn}. This relation holds if and only if x can lead to or generate y.

In other words, x acts as a source to y. Thus, when drug A is used, AsRAr holds because As

can lead to or generate Ar. This implies that, cells sensitive to drug A can become resistant

to drug A after some time and As cells are the source to Ar cells. The entries in the mutation

matrix Mσ(t) are defined by

mi,j =

1 for (x, y) ∈ R

0 for (x, y) /∈ R
(4.16)

These are Boolean in nature and are either 0 or 1 depending on whether a relation holds

between two strains in X or not.

The mutation matrix Mσ(t)
is a zero diagonal matrix as a cell cannot generate itself and

there is no way of going back to strain xi, not only in one but also in multiple mutation steps

starting from strain xi. Thus, Mσ(t)
can be expressed as the adjacency matrix of a directed

acyclic graph (DAG). It follows that there exists a topological ordering of the strains that

renders Mσ(t)
upper triangular. In other words, we can relabel the strains so that for every

mutation from xi to xj , i comes before j. As this DAG is finite, there is a maximum-length

path, ν and no other path can be longer than that path. It follows that for k ≥ ν, Mk
σ(t)

= 0,

thus making it nilpotent.

A typical mutation matrix is made up of four main blocks, I, II, III and IV , representing

sensitivity (S) and resistance (R) depending on the drug used as seen in Figure 4.7.

I II

III IV

S R

S

R
Mσ(t) =

Figure 4.7: A typical mutation matrix is made up of four main blocks, I, II, III and IV ,
representing sensitivity (S) and resistance (R) depending on the drug used.

Block I: Entries in this block are 0 as we cannot have cells sensitive to a given drug generating

sensitivity to other drugs – this is a direct result of Assumption 4.12. That is, when a

particular drug is used, the cells sensitive to that drug are not sensitive to other unused

drugs. For instance, when drug A is used, cells sensitive to drug A (As) cannot generate

cells sensitive to another drug B (Bs). Hence, (As, Bs) /∈ R and mij = 0.
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Block II: When a given drug is used, the cells that developed resistance can give rise to

cells sensitive to other drugs - which is the phenomenon of Collateral sensitivity. In this case,

(Ar, Bs) ∈ R and mij = 1 else mij = 0. That is, resistant strains of one drug act as sources

of sensitive strains to other drugs.

Block III: In this block, cells sensitive to a given drug can become resistant over time.

Therefore, when drug A is used for example, (As, Ar) ∈ R and mij = 1.

Block IV: Cells resistant to a given drug can also become resistant to another drug not

currently in use. This leads to the phenomenon of Cross resistance captured in this block.

Here, (Ar, Br) ∈ R and mij = 1 else mij = 0. That is, resistant strains of one drug act as

sources of resistant strains to other drugs.

4.4.1 Quantitative Analysis for Monotherapy

In this section, we make quantitative analysis of the model by focusing on the use of a single

therapy (no switching). Without loss of generality, the model can be simplified with the

following change of variables in eq (4.2):

ρi,σ(t) → ρi, δσ(t) → δ and mij,σ(t) → mij .

Subsequently, with K = 1, eq (4.2) can be rewritten as follows:

ẋi(t) = xi(t) (ρi − δ)− ρixi(t)
2 + µ

n∑
j=1

mijxj(t), 1 ≤ i ≤ n. (4.17)

The region of biological interest is given as the set

Ω2 = {(x1, x2, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n} . (4.18)

Proposition 4.15 (Positivity of solutions). Solutions of the system (4.17) with non-negative

µ are non-negative for any positive initial condition in Rn and for all times t > 0.

Proof. The proof follows from the proof of Proposition 4.2 above.
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4.4.1.1 Equilibrium points and stability analysis

Solving for ẋi = 0, for any i, the equilibrium points of the system (4.17), which we denote

by E = (x∗1, x
∗
2, . . . , x

∗
n), are of the form

x∗i ∈
{
0,max

(
λi
ρi
, 0

)}
, c∗i = 0

x∗i =
λi ±

√
λ2i + 4µρic∗i

2ρi
, c∗i > 0

(4.19)

where c∗i corresponds to the equilibrium value of the strain that acts as a source of xi. In

other words, if the source of xi is xk, then c
∗
i = x∗k.

We denote by λi, the i-th eigenvalue of the Jacobian matrix of the system evaluated at the

origin given by

λi = ρi − δ. (4.20)

Remark. If c∗i > 0, x∗i yields positive values when x∗i =
λi +

√
λ2i + 4µρic∗i

2ρi
and negative

values when x∗i =
λi −

√
λ2i + 4µρic∗i

2ρi
. However, for the biological system under study, the

only admissible equilibrium points are those with positive values as seen in eq (4.19).

Remark. System (4.17) always has an infection-free equilibrium point E(0) at the origin with

x∗i = 0 for all i = 1, . . . , n. This equilibrium is locally asymptotically stable if λi < 0 for

i = 1, . . . , n and unstable if λi > 0 for some i.

The Jacobian matrix of the system evaluated at any given equilibrium point can be written

as a sum of two matrices M and D such that

J(E) = D(E) + µM, (4.21)

where M is the mutation matrix and D ∈ Rn×n is diagonal with entries

dii(E) = ρi − δ − 2ρix
∗
i (4.22)

We have established in Proposition 4.4.0.1 that the mutation matrix M has a zero diagonal

of and its off-diagonal entries encode the pattern of mutation between strains. Due to the

properties of the matrix M , the resulting eigenvalues of J are given by its diagonal entries,

dii. At the origin, we recover the eigenvalue in eq (4.20). Therefore, for all i, the point E(0)

is locally asymptotically stable if λi < 0 and unstable if λi > 0.
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The trace and determinant of the Jacobian matrix J(E(0)) can be expressed as:

tr =
n∑

i=1

(ρi − δ) and det =
n∏

i=1

(ρi − δ) (4.23)

When λi < 0 (that is ρi < δ) for all i, the eigenvalues have negative real part and thus, E(0)

is locally aysmptotically stable. Moreover, there exists at least one k ̸= i such that λk > 0

and λi < 0, thus the trace and the determinant are negative and hence, the point E(0) is a

saddle (and consequently contain an unstable point).

Theorem 4.16. Let i ∈ {1, . . . , n} with {1, . . . , n} = J1 ∪J2 ∪ {i} where J1 is the subset of

indices corresponding to the strains that can be reached from the strain xi and J1 ∩ J2 = ∅
and assume λi > 0. Then there exists an equilibrium with x∗k > 0 for all k ∈ J1 ∪ {i} and

x∗j = 0 for all j ∈ J2.

This equilibrium will be linearly stable if, additionally, λj < 0 for all j ∈ J2.

Proof. Recall the Jacobian of the system given by eq (4.21) and the corresponding eigenval-

ues, λi in eq (4.20). Since we assumed that λi > 0, Jii(E) = ∆i = −
√
λ2i + 4µρic∗i therefore

yielding an eigenvalue which is always negative. Hence, the eigenvalues of the Jacobian

corresponding to x∗i are of the form

Λi =

λi x∗i = 0

∆i, x∗i > 0
(4.24)

Whenever strain xi persists (that is, λi > 0), then all strains xk, k ∈ J1, will also persist.

On the other hand, all other strains, xj for j ∈ J2, in the system are unable to persist in

isolation, x∗j = 0 and the eigenvalues corresponding to x∗i > 0 with x∗k > 0 will satisfy:

∆k < 0 if c∗k = x∗i

λk < 0 if c∗k ̸= x∗i

Consequently, the equilibrium point is linearly stable.

To ensure the depletion of resistant strains, the equilibrium point of interest is the infection-

free equilibrium at the origin. We have already established the linear stability of this point

in Theorem 4.4.1.1. Next, the stability of the origin is further analysed using Lyapunov’s

theory on stability of dynamical systems (see Theorem 2.3). For this, we define the domain of

attraction, Ω2D as Ω2D = Ω2 \ S, where S = {(x1, . . . , xn) ∈ E|xi > 0}, for all i ∈ {1, . . . , n}.

Theorem 4.17. In the absence of mutations (that is when µ = 0), the system (4.17) admits

the origin to be globally asymptotically stable whenever ρi < δ for all i ∈ {1, . . . , n}.
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Proof. To ensure the global stability of the origin, let us construct a Lyapunov function in

the form

V (x) =

n∑
i

x2i . (4.25)

Over the domain Ω2D, V (x) is continuously differentiable, V (x∗) = 0 and V (x) > 0 for all

x ̸= 0. Thus V (x) is a valid Lyapunov candidate.

The derivative, V̇ (x) of the Lyapunov function V (x) is calculated as

V̇ (x) = 2
n∑
i

xiẋi. (4.26)

From eq (4.26), V̇ (x) = 0 for all x = 0.

Next, we consider the Lyapunov stability of the origin. Here,

V̇ (x) = 2

n∑
i

xiẋi

= 2
n∑
i

xi

xi(t) (ρi − δ)− ρixi(t)
2 + µ

n∑
j=1

mijxj(t)


= 2

n∑
i

xi

xi(ρi − δ)− x2i ρi + µ
n∑

j=1

mijxj(t)


= 2

 n∑
i

x2i (ρi − δ)−
n∑
i

x3i ρ1 + µ
n∑

j=1

mijxj(t)


In the absence of mutation (that is when µ = 0),

V̇ (x) = 2

[
n∑
i

x2i (ρi − δ)−
n∑
i

x3i ρ1

]
≤ 0 when ρi < δ for all i ∈ {1, . . . , n} (4.27)

Therefore, the origin is globally stable under this condition.

4.4.2 Switching control for therapy scheduling

We aim to design switching strategies which can be used to eliminate bacterial strains within

the host on the long term base. In mathematical terms, our main objective is to stabilize the

infection-free equilibrium of the system at the origin whilst switching therapies in a given

time period. Based on the general model (4.2), we consider a mechanism for improving the

stabilisation and the rate of convergence of the system when more than one treatment policy

is applied.
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4.4.2.1 Choice of a Lyapunov function

Similar to the two strain model, the Lyapunov function can be used as a tool to improve the

convergence of the system. A switching strategy which ensures the stability of the origin can

be found based on a Lyapunov function argument.

Proposition 4.18. The system (4.2) has the origin as a stable equilibrium if for every

x ∈ Ω2D there exists at least one therapy σx ∈ {σ1, · · · , σN} for which V̇ (x, σx) < 0, where

V̇ is the Lyapunov function derivative in eq (4.26).

Proof. The proof follows from the proof of Proposition 4.6 for every x ∈ Ω2D, V̇ as in

eq (4.26) and again, by choosing the therapy such that

σ(t) = argmin
σi

V̇ (x(t), σi). (4.28)

Thus, given the subsystems of a class of switched systems with the common equilibrium point

at the origin, a policy based on the Lyapunov function derivative can be used to stabilize

the system provided that at least one of the configurations guarantees V̇ (x(t), σ(t)) < 0.

4.5 Collateral sensitivity cycling numerical example

Collateral sensitivity cycling of drugs can be implemented to treat infections by cycling

antibiotics based on their collateral sensitivities. Here, we examine the sequential application

of drugs for an infection as clinically studied by Immamovic et al [31]. The modelling

approach is to switch or cycle drugs based on the susceptibility profile of resistant cells. At

every switching time, a new drug is selected and the corresponding network of collaterally

sensitive drugs is applied. As an example, we consider the use of N = 5 drugs with collateral

interactions as shown in the susceptibility network in Figure 4.8. This network is particularly

representative of the collateral interactions among drugs commonly administered to cystic

fibrosis patients during treatment of Pseudomonas aeruginosa infection [31] – A: Tobramycin,

B: Azithromycin, C: Aztreonam, D: Ciprofloxacin, E: Colistin. In Figure 4.8, each directed

edge represents CS (blue) or CR (red). From this network, four drug pairs are seen to

exhibit mutual collateral sensitivities: drugs A and B, drugs C and E, drugs B and E and

drugs A and C. In addition, drugs B and D exhibit mutual cross resistance. These collateral

interactions can be summarized in Table 4.3. Based on this network and from the principles

of CS above, with the use of drug A as the current therapy, for example, there are four

potential therapies, B,C,D and E, that can be used as the next treatment.
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C

E B
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A

Figure 4.8: Network of collateral interactions among five drugs derived from Figure 4.1.
A: Tobramycin, B: Azithromycin, C: Aztreonam, D: Ciprofloxacin, E: Colistin. Blue arrows
represent CS and red arrows represent CR. The directed path of each arrow represents the
collateral susceptibility (blue arrows) or cross resistance (red arrows) of a drug-resistant
strain on another drug [31].

Drug Collateral sensitivity Cross resistance

A B, C, D E
B A, E D
C A, B, D, E -
D - B
E A, B, C, D -

Table 4.3: Table of collateral interactions from Figure 4.8.

Before the onset of treatment, it is assumed that strains sensitive to and resistant to each

drug being considered are present in the system. For example, with ongoing treatment

with drug A, some strains initially sensitive to drug A (As) which are not affected by the

drug, mutate into strains which are resistant to drug A, Ar. These resistant strains develop

sensitivity to the potential therapies, B,C and D as seen in (Table 4.3), thus yielding strains

Bs, Cs, Ds. These dynamics are illustrated in Figure 4.9 where directed arrows show the

mutations from one strain to another: solid arrows represent mutations originating from As

and dashed arrows represent mutations from Ar.
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Figure 4.9: Mutation network for therapy A. Arrows indicate mutations between strains
represented as nodes. Sensitive strains, As evolve resistance, Ar, - solid line. Resistant
strains As are sensitive to drugs B,C,D and resistant to drug E - dashed lines.

The corresponding mutation matrix obtained when drug A is used then is:

Mσ(t) =

As Bs Cs Ds Es Ar Br Cr Dr Er



As 0 0 0 0 0 0 0 0 0 0

Bs 0 0 0 0 0 1 0 0 0 0

Cs 0 0 0 0 0 1 0 0 0 0

Ds 0 0 0 0 0 1 0 0 0 0

Es 0 0 0 0 0 0 0 0 0 0

Ar 1 0 0 0 0 0 0 0 0 0

Br 0 0 0 0 0 0 0 0 0 0

Cr 0 0 0 0 0 0 0 0 0 0

Dr 0 0 0 0 0 0 0 0 0 0

Er 1 0 0 0 0 1 0 0 0 0

4.5.1 Numerical simulations

As already established in section 4.4.2.1, if the switching system (4.17) has a common Lya-

punov function, then the system is asymptotically stable at the origin for any switching

signal σ(t). To illustrate this, we make use of examples based on the collateral suscepti-

bility network in Figure 4.8. Here, (As, Bs, Cs, Ds, Es, Ar, Br, Cr, Dr, Er) is equivalent to

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ∈ R10 and therapies A,B,C,D,E are denoted as thera-

pies 1, 2, 3, 4, 5 respectively.

For all simulations, an initial condition vector x = [103, 0, 0, 0, 0, 10, 0, 0, 0, 0] is chosen and

the carrying capacityK = 106 is used. The mutation rate µ is fixed at 10−4 and the pathogen
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clearance rate δσ is fixed at 0.25 day−1 for each therapy. Four different scenarios are explored

using the following strategies:

S1) Periodic switching: For this switching sequence, we consider a three drug switching

sequences made up of drugs 1,3 and 5 (that is, A,C and E). Thus, the sequence is as follows,

A,C,E,A,C,E, · · · .

S2) Sub-optimal switching type 1: This is based on the Lyapunov function in eq (4.28)

having a restricted number of drugs such as 1, 3 and 5 (that is, A,C and E).

S3) Sub-optimal switching type 2: This is also based on the Lyapunov function in

eq (4.28) but with more freedom to select any of the available drugs such as 1, 2, 3, 4 and 5

(that is A, B, C, D and E).

The proliferation rates ρi,σ for these scenarios are captured in Table 4.4. In all scenarios,

therapies 1 to 5 inhibit respectively strains x1, x2, x3, x4, x5 (that is ρ1,1 < δ, ρ2,2 < δ, ρ3,3 <

δ, ρ4,4 < δ, ρ5,5 < δ) but promote strains x6, x7, x8, x9, x10 (that is ρ1,1 > δ, ρ2,2 > δ, ρ3,3 >

δ, ρ4,4 > δ, ρ5,5 > δ) respectively. Thus, without any feedback control, all systems are not

stabilizable at the origin.

Scenario Therapy x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1

1 0.1 0.15 0.16 0.3 0.18 0.29 0.216 0.217 0.218 0.219

2 0.15 0.1 0.16 0.17 0.18 0.1 0.29 0.217 0.218 0.219

3 0.15 0.16 0.1 0.17 0.18 0.2 0.215 0.29 0.216 0.219

4 0.15 0.16 0.17 0.1 0.18 0.216 0.217 0.218 0.29 0.219

5 0.15 0.16 0.17 0.18 0.1 0.1 0.217 0.218 0.219 0.29

2

1 0.1 0.3 0.16 0.3 0.18 0.29 0.216 0.217 0.218 0.219

2 0.3 0.1 0.16 0.17 0.3 0.1 0.29 0.217 0.218 0.219

3 0.15 0.16 0.1 0.3 0.18 0.2 0.215 0.29 0.216 0.219

4 0.15 0.3 0.3 0.1 0.18 0.216 0.217 0.218 0.29 0.219

5 0.3 0.3 0.17 0.18 0.1 0.253 0.217 0.218 0.219 0.29

3

1 0.1 0.15 0.16 0.3 0.18 0.29 0.3 0.217 0.3 0.219

2 0.15 0.1 0.16 0.17 0.18 0.3 0.29 0.217 0.218 0.3

3 0.15 0.16 0.1 0.17 0.18 0.2 0.215 0.3 0.3 0.219

4 0.15 0.16 0.17 0.1 0.18 0.216 0.3 0.3 0.29 0.219

5 0.15 0.16 0.17 0.18 0.1 0.3 0.3 0.218 0.219 0.29

4

1 0.1 0.15 0.16 0.3 0.18 0.29 0.26 0.217 0.3 0.219

2 0.15 0.1 0.3 0.17 0.18 0.1 0.29 0.27 0.278 0.219

3 0.15 0.16 0.1 0.3 0.18 0.27 0.215 0.29 0.26 0.219

4 0.3 0.16 0.17 0.1 0.18 0.256 0.217 0.218 0.29 0.279

5 0.15 0.16 0.3 0.18 0.1 0.251 0.217 0.3 0.219 0.29

Table 4.4: The proliferation rates ρi,σ for the illustrative scenarios for drug resistance
based on eq (4.17). Each value in the table denotes the value of ρi,σ for each strain xi with
i = 1, 2, . . . , 10 and under each therapy, σ with σ = 1, 2, . . . , 5. For example, ρ1,1 = 0.1 and
ρ10,5 = 0.29.
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In scenario 1, we assume populations susceptible to different drugs. In addition to the general

assumptions for all scenarios stated above, in this scenario, we also assume that strain x4

is promoted by therapy one (that is, ρ4,1 > δ). Hence, without any control policy, the

strain x4 together with strains x5 to x10 are expected to proliferate in the system. With the

introduction of switching in the system, any switching policy leads to eradication of strains

in the long run. However, the switching based on the Lyapunov function ensures a faster

rate of convergence to eradication. In particular, the sub-optimal switching type 2 achieves

this faster than any other drug switching approach (see Figure 4.10) and it is also interesting

to note from that this is obtained without the use of therapy 5 in the switching sequence.
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Figure 4.10: Periodic, sub-optimal types 1 and 2 switching policies for Scenario 1.

In scenario 2, we have that there are more strains being inhibited in the susceptible class

(that is strains x1 to x5) with only x6 in the resistance class being inhibited by therapy 5.

Therefore without switching, these strains are going to proliferate in the system thus making
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the system unstable. Due to these proliferations, even with switching control, the system

cannot be stabilised in the origin by a periodic switching as these strains still persist (see

Figure 4.11). However, both types of the Lyapunov-based switching (sub-optimal switching

types 1 and 2) ensures eradication, that is the convergence at the origin, with the sub-optimal

switching type 2 achieving this even faster and with the lowest pathogen load at the end of

treatment days.
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Figure 4.11: Periodic, sub-optimal types 1 and 2 switching policies for Scenario 2.

In sharp contrast to scenario 2, in scenario 3, there are more strains being inhibited in

the resistance class (that is strains x6 to x10) with only x4 in the susceptible class being

inhibited by therapy 1. This results in an ever-growing resistant population rendering the

system unstable. Introducing switching control into the system still makes it unstabilsable

at the origin with either periodic switching or any of the two Lyapunov switching types. We

observe that there is no change in switching sequence and total pathogen load at the end
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of treatment for both types of Lyapunov-based switching policies as seen in Table 4.5 and

Figure 4.12. Furthermore, the switching sequences for both types of the Lyapunov switching

also remain the same.
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(e) Sub-optimal switching type 2
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Figure 4.12: Periodic, sub-optimal types 1 and 2 switching policies for Scenario 3.

In scenario 4, however, all therapies promote the growth of strains in both susceptible and

resistant classes (see Table 4.4). Without any control policy, this system is not stable at the

origin. However, sub-optimal switching type 2 gives a better control to the origin and lowest

pathogen load at the end of the treatment period (see Figure 4.13).
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Figure 4.13: Periodic, sub-optimal types 1 and 2 switching policies for Scenario 4.

Table 4.5 summarises the treatment scenarios of 400 days with a decision to switch therapy

every 20 days. As seen in Table 4.5, the Lyapunov type 2 switching approach yields the best

alternative for all the scenarios considered.

Scenario Periodic Sup-optimal type 1 Sub-optimal type 2

1 0.02 5.63× 10−4 8.16× 10−6

2 11.39 0.46 2.55× 10−5

3 808.14 0.09 0.09

4 24476.55 945.80 0.03

Table 4.5: Total pathogen load at the end of treatment of 400 days with a 20 day drug
switching interval.
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4.6 Chapter summary

The aim of any drug treatment during an infection is the complete eradication of the pathogen

by exposing disease-causing cells to adequate concentrations of drug within the host. The

current clinical principle of drug cycling relies on the reduction of resistant strains in the

absence of resistance selection [111]. However, collateral sensitivity cycling allows for selection

against resistance with a primary basis on an increase in drug sensitivity as a result of rational

selection of drugs with reciprocal collateral sensitivities [31, 30]. In principle, drug treatment

based on collateral sensitivity cycling should exhibit superior efficacy in patients infected with

both the fully susceptible pathogens population and resistant mutants compared to cycling

of drugs without compatible collateral sensitivity profiles. However, designing effective drug

protocols for clinical use is a challenging problem.

In this chapter, we presented a generalised switching logistic model with the potential to

be the basis for scheduling antimicrobials to mitigate resistance. We analysed this model

by considering two pathogen strains and two therapies as well as a more general form of

the model which can take several strains and several therapies. In the former, the mutation

matrix was held constant for both therapies but in the later, this condition is relaxed and

the mutation matrix is allowed to vary with the drug used.

As discussed in section Section 4.3, in the scenario involving two strains, the mutation process

can lead to the loss of strain x1 or the gain of strain x2, while keeping the total mass of

bacterial cells constant over time. Here, the matrix M represents the mutation scenario,

with −1 on the main diagonals and 1 elsewhere. Positive values of µ are required because a

negative value of µ leads to a positive coefficient for x1 in eq (4.4a) and a positive coefficient

for x2 in eq (4.4b), which is not possible since a strain cannot mutate into itself.

Furthermore, in the two-strain model, conditions for which the unstable zero-equilibrium

of the logistic equations can be stabilized through a periodic switching signal are derived,

assuming there is no mutation. For the case with mutations, switching strategies based on

Lyapunov functions prove to be a fast and practical computational approach. Numerical

results highlighted that the strategy with Lyapunov functions will perform better than pe-

riodic therapies, and in certain conditions will be able to eradicate pathogenic populations.

Numerical results also show that cycling strategies are not intuitive and bacterial dynamics

under different treatments are central for infection eradication.

A key biological aspect of this proposed control-theoretical approach for the two strain model

is that, in a first stage one needs to identify the distribution of the bacterial population.

Based on this initial information, a switching trajectory (see Figure 4.6(a)) can be computed

to indirectly define a sliding mode (see Figure 4.6(b)). Once on the sliding mode, a periodic

switching between therapies can be utilised to eradicate the bacterial colony. In conclusion,
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this approach can be used as an instrument in the future to guide therapies to tackle bacterial

resistance with a minimal collection of information.

In the more general model, the implications of different types of cycling strategies as well as

the use of cross sensitivity of cell strains to treatment in a general setting and not for specific

antibiotics and/or pathogens was explored. We implemented drug cycling by changing drug

dependent parameters which consequently leads to changes in cell mutations and hence vary-

ing mutation matrices for each drug used. Cell mutations are assumed to be absolute and

irreversible events which depend on the drug used. Therefore, the use of different drugs gives

rise to different mutations due to the varying collateral susceptible profiles of pathogens.

It is important to note that this general formulation includes the mutation process as an

additional growth factor, resulting in the absence of mass conservation. The main diagonal

of Mσ(t) is neglected, implying that there will be more growth than with a mutation process

that does not produce extra bacteria. Thus, if the zero fixed point can be stabilised for this

general case as shown in Section 4.4, then its analysis is sufficient for the other cases to hold.

We used three types of drug switching strategies with different switching orders. In the first

switching type, periodic switching, the order of drug sequence is periodic. In our two sub-

optimal switching strategies, the effect of drug measured at a specific time point is defined

by the instantaneous rate of change in total pathogen size under the Lyapunov function in

eq (4.25) and the switching law defined by eq (4.28). Hence, these depend on the pathogen

load at a given moment and the effect of the drug towards cells. Thus, if the cell composition

and/or drug parameters are unknown, we cannot measure the drug effect. This therefore

poses a challenge to capturing the switching sequence leading to the eradication of resistant

strains.

In most microbial infections it is difficult to obtain detailed information about heterogeneity

of cell population. Thus, although we have derived sub-optimal therapeutic protocols for

therapy scheduling based on collateral sensitivity profiles of drugs and pathogen strains, their

application in a clinical setting would require knowledge of drug and pathogen parameters.

One important aspect for the clinical implementation of our sub-optimal switching strategies

lies in fast quantification of pathogen population as well as drug parameters as defined in

our algorithm. Recent advances [215] provide robust techniques to obtain this information

in a clinically relevant setting. In [215] plasma cell-free DNA is sampled from a patient

with relatively high temporal frequency and used to resolve the corresponding evolutionary

dynamics.

Several studies have identified many collateral sensitivity relationships among various antibi-

otics as well as anticancer drugs [31, 203, 193, 216]. Our numerical simulations are made up
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of three and five drug cycles. From our results in Figures 4.10-4.13, we observe that the ap-

plication of more than three-drug cycles in our sub-optimal switching type 2 strategy leads to

low pathogen loads compared to the other methods considered, indicating that this method

can improve the efficacy of therapies when designed suitably and taking into consideration

the susceptibility profiles of pathogens.

To sum up, switching therapies can be considered as a mechanism for improving the stabili-

sation and rate of convergence of a positive system when more than one treatment policy is

used. For the particular case of antibiotic resistance infections, switching can be applied for

the gradual eradication of resistant strains on the long term based on a feedback decision.

Our numerical simulations suggest that switching between therapies based on the switching

rule from the Lyapunov function leads to a better convergence at the origin than an open-loop

periodic switching.
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Between-host resistance

In this chapter, we present a between-host model of the novel coronavirus, SARS-CoV-2,

epidemic using network theory. We consider the progression of the epidemic amidst vaccina-

tion and non-pharmaceutical interventions such as lockdowns. We also investigate the effect

of vaccine resistant strains on the transmission dynamics of the disease. Using stochastic

simulations, we analyse and highlight the need for strengthening vaccination efforts so as to

curb further spread of the virus. This project is coded in Python v.3 and the simulation codes

can be found in this Github repository

5.1 Introduction

Between-host transmission generally refers to the transmission of infection between individ-

uals in a population. The general framework underlying models at the between-host level

is usually classic compartmental modelling. This involves dividing a given population into

different compartments based on disease or infection symptoms. Typically, the population

under study is divided into three classes which represent the interactions between susceptible

individuals S, infected individuals I, and recovered individuals R. Susceptible individuals

include all in the population who are not yet infected with the disease but are prone to

infection. Infected individuals are all those assumed to have been infected and capable of

transmitting the disease causing agents to susceptibles. Individuals in the recovered com-

partment are those individuals who have either been infected and recovered from the disease

and have therefore become immune or vaccinated against infection or isolated from the rest of

the population. Depending on the disease under study, more compartments can be created.

The earliest basic compartmental model to describe the transmission of infectious diseases

was formulated by W.O. Kermack and A.G. McKendrick in 1927 [170]. These models are

77
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deterministic in nature and predict similar behaviours observed in numerous diseases that

pose a threat to a population. They have been used over the years to predict the spread

of infectious diseases between individuals in a given population. To mention a few, such

models have been instrumental in the study of malaria, measles and the SARS epidemic of

2002-2003.

In the rest of this chapter, we focus on the disease transmission dynamics of the novel coro-

navirus, SARS-CoV-2 using a social network model based on a Susceptible-Asymptomatic-

Infected-Recovered disease dynamic. We shall discuss the epidemic process of the disease

with and without vaccination in the population and highlight the importance of vaccination

efforts during disease outbreaks, especially during the SARS-CoV-2 pandemic. We shall also

discuss the impacts of vaccine-resistant strains on the disease dynamics of SARS-CoV-2.

5.2 Network modelling of SARS-CoV-2

To curb the spread of SARS-CoV-2, governments across the world have implemented mea-

sures ranging from quarantining, social distancing, wearing of face masks, among others.

Amidst this crisis, national health care systems such as in Italy and the United States of

America have been overwhelmed by the ever-increasing number of infection cases [163].

SARS-CoV-2 epidemiological models have been formulated to understand and curb the

spread of the disease. Many of these models follow an SIR framework [169, 170] either in

the deterministic or stochastic form or both [171, 172, 173, 174, 175, 176]. Other variations

and modifications to this general model have been considered including SEIR [177, 178, 179]

and SIRD [180] compartmental models. Some models also include parameters such as age-

heterogeneity [181], guiding the flow of users in supermarkets [182] and governmental policies

[179, 183, 184]. However, only a few of these models, consider the structure of the population

and the underlying interactions between individuals [187, 188, 189].

The assumption of random homogeneous mixing in epidemiological models has been docu-

mented to be unrealistic in nature as populations have underlying structural properties and

individuals tend to interact with each other [217]. Increasingly, network theory is being used

in epidemiology [218, 219, 220, 221]. In particular, social networks have gained popularity

in conceptualising the effects of social interaction during epidemics in a given population

[222, 223, 224]. Contacts between individuals can be captured in a network where nodes

represent individuals and the edges represent the connections between them [27]. Social

networks are thus important determinants of infectious disease transmission as for exam-

ple, infections transmitted by close contact can easily spread along the paths of a network.

Figure 5.1 illustrates infection spread on a social network.
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contact
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Figure 5.1: Illustration of infection spread with vaccination on a social network. Individ-
uals in the social network are considered as nodes. Contact between nodes exposed to the
virus and those who do not have the virus can potentially lead to a transmission. Persons
who are vaccinated are considered to be immune to infection. The epidemic state of each
node is represented by a colour: Susceptible, S, (•), Asymptomatic, A, (•), infectious, I, (•),
Vaccinated, V, (•) and Recovered, R, (•).

Many studies in network theory have found that networks may display varying connectivity

properties such as randomness and regularity. Some well-known network models include

random networks, scale-free networks and small-world networks. Random networks such

as the Erdos-Renyi network, are characterised by a Poisson distribution of nodes whereby

there is equal distribution of nodes. Such models do not have hubs and there is absence of

clustering effect. However, scale-free networks such as the Barabási and Albert model, follow

a power-law distribution and have an inhomogeneous degree distribution of nodes [225] (that

is, the number of connections a node has to other nodes). In small-world networks such as the

Watts and Strogatz model, the pattern of connectivity between nodes is more localized [226]

and the average path length is comparable with a homogeneous random network, without

any regard to clustering.

During a disease outbreak, it is less likely for the disease to reach epidemic proportions in

the power-law network than it is in random networks [227, 228]. This is because power-law

networks are made up of vertices with few contacts and a very small proportion of hubs (or

superspreaders) whereas vertices in random networks are fairly homogeneous. Thus, while it

is possible to reach an epidemic in power-law networks with a high enough transmissibility, a

random network reaches an epidemic threshold only when the outbreak leads to an epidemic

[229, 218].

Since the declaration of SARS-CoV-2 as a pandemic, initial control efforts relied heavily on

the use of non-pharmaceutical interventions (NPIs), including physical distancing, wearing

of masks and hand hygeine. In many countries across the globe, school closures and national



Chapter 5 80

lockdowns have been implemented as part of NPIs to mitigate infection [230, 231, 232].

However, with the continuation of SARS-CoV-2 worldwide, the push for a vaccine became

highly necessary. Pharmaceutical companies have been in a race to develop suitable vaccines

as there is a lack of other alternatives. As of October 2020, there were 17 candidate vaccines

undergoing trial at various stages. Owing to the fact that it is a novel viral disease, it is

still unclear what levels of vaccine efficacies will be sufficient to curb the spread of the virus.

Identifying such efficacies earlier can direct vaccine development and administration in the

population [233]. Previous studies suggest that vaccination would be effective for protecting

the host against SARS-CoV-2 [140], however, few studies to evaluate the potential effects of

different vaccination programs over a network model.

Although some vaccines (Pfizer-BioNtech and Modern) have showed high efficacy for the

original strain of the virus, these clinical trials were done before the emergence of SARS-CoV-

2 variants of concern. Variants of concern, especially delta, alpha, gamma and omicron are the

main reason for continued infections globally. Consequently, even though mass vaccination

campaigns have been launched in many countries including Israel, Germany, the United

Kingdom and the United States with more than 50% of the population fully vaccinated

[234], the continued evolution of SARS-CoV-2 could eventually give rise to a fully vaccine-

resistant variant [235]. Such a variant has the potential to spread quickly due to its ability

to infect vaccinated and recovered people in addition to fully susceptible individuals and

consequently reducing the efficacy of current SARS-CoV-2 vaccines.

A key question to be answered is, how much vaccine is required to create herd immunity

to block SARS-CoV-2 transmission? [236]. In other words, how many people need to be

vaccinated in order to reach herd immunity?

Here, we employ a network-based approach to explore the potentials of two vaccination

schemes, classical mass vaccination and ring vaccination, in minimizing the spread of SARS-

CoV-2. Furthermore, we also study the potential impacts of vaccine resistant strains of the

virus on the transmission dynamics of the disease.

Our analysis uses stochastic network simulation models of SARS-CoV-2 transmission to

examine its control by different vaccination strategies with varying vaccine efficacy in the

presence of non-pharmaceutical disease control interventions. Given that vaccinating millions

of people will require a lot of time, this study implements a lockdown period as a further

control measure. It is important to note that the roll out of vaccines play an increasing

role in reducing the number of infections - thereby causing governments to ease lockdown

measures. However, in order to keep our model mathematically tractable, we assume that

social contacts follow lockdown-period patterns throughout the vaccination campaign.
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5.2.1 Model Setup

Network Generation. To study the impact of vaccination on the epidemic dynamics of

SARS-CoV-2, the underlying structure of human interactions is represented by a typical

complex network. As heterogeneous networks are often used to explore epidemic spread,

we consider the infection dynamics on a random Erdos-Renyi (ER) network and a scale-free

Barabási–Albert (BA) network due to their tractability and practicability [237, 225] (see also

Chapter 2). The ER network is based on the G(n,M) random graph model characterized

by two parameters; the network size n and the number of edges M which assigns exactly

M edges to each graph. In the ER networks used for this study, n = N,M = 5N, that is

G(N, 5N), which yields an average degree ⟨k⟩ = 10. On the other hand, the BA network is

created using G(N,m, p) consisting of N vertices and m outgoing edges for each vertex with

a power constant p of the nonlinear model equal to one. For the simulations using the BA

network, m = 5 and p = 1 which ensures an average degree of ⟨k⟩ = 10 as in the ER network.

Table 5.1 summarizes all the key terms and parameters used in the rest of this chapter.

Table 5.1: Definition of key terms and parameters

Key term Definition Value

N number of nodes in the network 106

⟨k⟩ average degree of nodes in the network 10

transmission
probability β

the probability that infection is spread due to
contact between an infectious node and a
susceptible node

eq (5.7)

incubation period the interval between exposure to virus and
initial occurrence of symptoms

1− 5 days [238]

infection period interval between symptom onset to recovery 6− 19 days [239]

vaccine efficacy η efficacy of vaccine varies [240]

%vac percentage of population vaccinated prior to
infection (before case zero)

varies

T epidemic duration 360 days

%asymptomatic percentage of population asymptomatic to
virus before onset of vaccination

varies

symptomatic
probability, δ

the probability that a person in the A class
moves to the I class

0.2 [241]

Epidemic Spread. SARS-CoV-2 is a disease which spreads primarily through close contact

with an infected person. Following the exposure to the SARS-CoV-2 virus and before symp-

tom onset, individuals go through an incubation period of about 2−14 days with the average

being about 5 − 6 days [239, 242, 238]. After this incubation period, infectious individuals

become symptomatic and are able to transmit to others through respiratory droplets or by

direct contact [239].



Chapter 5 82

Model formulation. Let W = {1, . . . , n} be the set of all virus variants circulating in the

population. For each j ∈W and time t ≥ 0, let S(t), Aj(t), Ij(t), Rj(t) and V (t) respectively

denote the number of Susceptible, Asymptomatic due to strain j, Infectious due to strain j,

Recovered from strain j and Vaccinated individuals in the population at time t.

At any time t during the infection process, individuals in the susceptible class S(t) are not

infected but are prone to infection with the virus. The Asymptomatic population Aj(t)

consists of individuals who are infectious with variant j, may not show symptoms and can

transmit to others. Individuals making up the Infectious population Ij(t) are infectious with

variant j, symptomatic and capable of transmission to others. In the Recovered population

Rj(t), individuals are recovered and immune to variant j (but can be susceptible to another

variant, v ̸= j) and the Vaccinated population V (t) consists of individuals who have been

vaccinated. In addition, we assume that there is no co-infection and hence individuals can

only be infected by one variant at any given time. Therefore, at any time, t, in the infection

process, N(t) = S(t) +A(t) + I(t) +R(t) + V (t).

The main goal of vaccination is to prevent transmission. At the beginning of each epidemic

simulation, a fraction of the population (%vac) is given a vaccine. Due to delayed immunity

of the vaccine, these vaccinated individuals remain in the S state for a period of 14 days.

Within this 14 day window, these individuals, which we denote as Vs, are still prone to

interaction with asymptomatic and infectious individuals which can lead to more infections

with a probability β. After 14 days, individuals in Vs who do not have the virus, move to

V state. Individuals in V that become exposed to the virus due to contact with an exposed

individual move into the A state with probability (1− η)β(t), where η is the efficacy of the

vaccine. Individuals for whom the vaccine is effective remain in the V state whilst those for

whom the vaccine is not effective move into the A state. Furthermore, depending on the

vaccination strategy being modelled, the time of vaccination as well as population coverage

varies.

We denote byXt the set of nodes with state xit = X at time t. The model proceeds in discrete

one-day time steps for a given period to determine the dynamics of the disease. Each node

i = 1, . . . , N has an individual state xit at time t. We initialize the model simulation by

randomly assigning a number of nodes (seed nodes) to the asymptomatic state (A1), that

is setting xi0 = A1 and the rest of the nodes to the susceptible state. Conditional on the

current state xit, the next state xit′ for node i is determined as follows.
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• Susceptible nodes

xit′ |(xit = S) =

Aj with binomial trial B(1, β(t))

S otherwise
(5.1)

• Asymptomatic nodes

xit′ |(xit = Aj) =

Ij after incubation period

Rj otherwise
(5.2)

• Infectious nodes

xit′ |(xit = Ij) =

Rj after infectious period

Ij otherwise
(5.3)

• Recovered nodes

xit′ |(xit = Rj) = Rj with probability 1 (5.4)

• Vaccinated nodes

xit′ |(xit = Vs) =

S within 14 days post vaccination

V after 14 days post vaccination
(5.5)

xit′ |(xit = V ) =

Aj with binomial trial B(1, (1− η)× β(t))

V otherwise
(5.6)

This mathematical model and general methodology can be extrapolated to more variants,

increasing the number of equations and parameters. Figure 5.2 illustrates an example of the

model described above, specific for two viral strains.
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Figure 5.2: Schematic illustration of double strain network model with for SARS-CoV-2.
S: susceptible, V : vaccinated, A1: asymptomatic with strain one, I1: infected with strain
one, A2: asymptomatic with strain two, I2: infected with strain two, R: Recovered from
infection.

5.3 High-Performance Computing

Implementations of the models used in this Chapter were computationally demanding and

challenging using conventional resources. For instance, one simulation can take up to several

hours or days to complete in a modern desktop computer. Thus, due to these limitations,

we employed a High-Performance Computing (HPC) cluster for our simulations. The cluster

used is FUCHS-CSC from the Center for Scientific Computing (CSC, Frankfurt, Germany).

It is based on 72 dual-socket AMD Magny-Cours CPU compute nodes with 64 GB of RAM,

250 dual-socket AMD Istanbul compute nodes with 32 GB of RAM and 36 quad-socket AMD

Magny-Cours compute nodes with 128 GB of RAM each. A simulation in the HPC takes

about 5 hours to complete for the classical vaccination scenarios and about 5−8 days for the

ring vaccination scenarios for the single strain model. In the double strain model, a single

scenario takes about 24 hours to complete in the cluster.

In the subsequent sections, we will explore these dynamics using a single strain of the virus,

with a double strain and further with a vaccine resistant strain of the virus.
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5.4 Single strain network modelling of SARS-CoV-2

5.4.1 Epidemic Process

For a single strain (where n = 1 and W = {1}), the model proceeds for a period of 360 days.

At the initial state of the epidemic process, all individuals in the network are susceptible

except one (patient zero) which is in the asymptomatic state. On each day during the

epidemic process, there is interaction between individuals and infected persons can potentially

transmit to their susceptible contacts. If a susceptible individual comes into contact with

someone who has the virus (that is, a person in the A or I state), a Binomial trial is used

to determine if the contact results in an infection. If yes, the newly infected susceptible

individual moves from the S state to the A state. Any individual exposed to the disease

remains in the A state for the duration of the incubation period. After the incubation

period, infected nodes either move to the I state with a probability δ or to the R state with

a probability (1− δ). When infectious individuals come into contact with their neighbours,

they can transmit to their neighbours in a Binomial trial with a given probability, β(t) and

then move into the R state after the infectious period.

In the course of an epidemic, the rate of infection is never constant. As interventions are

being executed, the per-capita transmission rate of infection decreases, and when these in-

terventions cease, this rate will increase towards its pre-intervention level. To model this

response, we utilise a double logistic function to model the various phases of the infection

dynamics leading to a decline in cases when interventions are initiated and a resurgence in

cases when interventions cease. The double logistic function used to define a time dependent

probability of infection, β(t) is as follows:

β(t) = b1 + (b2 − b1)

(
−1 +

1

1 + e−r1(t−m1) + 1 + e−r2(t−m2)

)
(5.7)

where b1 is the first boundary (i.e. function value at time zero), b2 is the second boundary, r1

is the rate of change of first period, r2 is rate of change of second period, m1 is the midpoint

of the first period (start of interventions), m2 is the midpoint of the second period (end

of interventions) and t is time. Note that if b1 > b2 the function increases first and then

decreases, and vice versa. To get a good set of parameters for β(t), we applied eq (5.7) to

emulate infection data (from February 22 to September 1 2020) from Italy, one of the worst

hit countries during the SARS-CoV-2 pandemic (see Figure 5.3).

For the first strategy which we refer to as the classical mass vaccination strategy, a fraction

of individuals start in the V state (denoted %vac) with one index case (patient zero) and the

rest in the S state. The population coverage in this case ranges from 10%, 20%, · · · , 100%.

The modelling process follows as in Algorithm 1.
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Figure 5.3: Infection cases between the network model simulation using β(t) and Italian
SARS-CoV-2 data from February 22 2020 to September 1 2020. The y-axis shows the
infection cases. Parameter values used are b1 = 0.028,b2 = 0.001, r1 = 0.09, r2 = 0.04,
m1 = 50, m2 = 126.

Algorithm 1: Epidemic process on social network

Input: Network, β(t), epidemic duration, T = 360 days

Output: Number of nodes in each state after each simulation

Initialize: Choose an index case at random, and set state to be A. Set

Vs = %vac, V (0) = 0, S(0) = N,A(0) = 1, I(0) = 0, R(0) = 0, State(%vac) = Vs

1 for t ∈ T do

2 for i ∈ {%vac} do

3 if 14 days is reached and State(i) = Vs then

4 State(i) = V

5 for n ∈ {e|State(e) = A} do

6 if incubation period is reached then

7 State(n) = R with binomial trial B(1, δ

8 else

9 State(n) = I

10 for each neighbour, nb of n do

11 if State(nb) = S then

12 State(nb) = A with a binomial trial B(1, β(t))

13 if State(nb) = V then

14 State(nb) = A with a binomial trial B(1, (1− η)× β(t))

15 if before 14 days is reached and State(nb) = Vs then

16 State(nb) = A with a binomial trial B(1, (β(t))

17 for m ∈ {i|State(i) = I} do

18 for each neighbour, mnb of m do

19 if State(mnb) = S then

20 State(mnb) = A with a binomial trial B(1, β(t))

21 If the infectious period is reached, State(m) = R

22 Stop the simulation when there is no infectious node and update the number of nodes in all

states.
Result: Updated number of nodes in all states
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For the second strategy which we refer to as ring vaccination, vaccination occurs after a

percentage (1% or 3%) of the population has been exposed to the virus during the epidemic

and is in the asymptomatic state. In this case, we simulate the epidemics as described

above (in Algorithm 1) with no vaccination and only begin vaccine administration after a

proportion of the population (%asymptomatic) is asymptomatic (See Algorithm 2 for more

details).

Algorithm 2: Ring vaccination model on social network

Input: Network, β(t), epidemic duration, T = 360 days,%asymptomatic

Output: Number of nodes in each state after each simulation

Initialize: Choose an index case (i) at random, and set state to be A. Set

V (0) = 0, S(0) = N,A(0) = 1, I(0) = 0, R(0) = 0

1 for t ∈ T do

2 if #{ e|State(e) = A} < %asymptomatic then

3 proceed using Algorithm 1

4 else

5 for n ∈ {e|State(e) = A} do

6 if incubation period is reached then

7 State(n) = I

8 for each neighbour, nb of n do

9 if State(nb) = S then

10 State(nb) = A with a binomial trial, B(1, β(t))

11 select and store susceptible neighbours not exposed in previous step and

label as first contacts

12 if State(nb) = V then

13 State(nb) = A with a binomial trial, B(1, β(t))

14 for each node in first contacts do

15 vaccinate

16 select and store susceptible neighbours and label as second contacts

17 for each node in second contacts do

18 vaccinate

19 for m ∈ {i|State(i) = I} do

20 for each neighbour, mnb of m do

21 if State(mnb) = S then

22 State(mnb) = A with a binomial trial, B(1, β(t))

23 If the infectious period is reached, State(m) = R

24 Stop the simulation when there is no infectious node and update the number of nodes in all

states.
Result: Updated number of nodes in all states
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We assume that once a case is diagnosed, all the contacts or neighbours are traceable and

vaccinated. To initiate the ring vaccination, susceptible contacts of exposed individuals can

be vaccinated in a binomial trial with probability (1 − η)β(t). This vaccination is further

extended to susceptible contacts of these first contacts with the assumption that contacts are

identified through contact tracing. Contacts of contacts are also vaccinated with the same

probability. In our model, we also assume that traced and identified susceptible contacts

and contacts of contacts are vaccinated. This process is described in Algorithm 2. In both

strategies, we assume that the vaccine does not have an effect on infectious or asymptomatic

individuals.

5.4.2 Simulation Scenarios

Several scenarios are explored here. First, we consider an epidemic implemented with no

vaccination. This scenario is evident of the epidemic outcome without the discovery of a vac-

cine. Subsequent scenarios consist of the overall performance of the vaccine by considering

its efficacy in preventing transmission and symptomatic infection using either the classi-

cal mass vaccination or the ring vaccination strategy. In our simulations, vaccine efficacy

varied between 40% − 100% whereas population coverage for classical vaccination varied

between 10% − 100%. For ring vaccination, the proportion of asymptomatic individuals

(%asymptomatic) varied as 1% and 3% (see Table 5.2). For ER simulations: N = 106,

b1 = 0.028, b2 = 0.001, r1 = 0.09, r2 = 0.04, m1 = day 50, m2 = day 126 and T = 360

days. For BA simulations: N = 106, b1 = 0.013, b2 = 0.001, r1 = 0.09, r2 = 0.04, m1 = day

50, m2 = day 126 and T = 360 days. Each scenario is repeated 100 times and the mean of

infection cases taken for analysis.

Table 5.2: Vaccination scenarios with corresponding population coverage and vaccine effi-
cacy.

Scenario Coverage Time of vaccination Effect of

vaccine

(%)

No vaccination 0% - -

Mass

vaccination

10%, 20%, · · · , 100% Before case zero 40, 60, 80, 100

Ring

vaccination

1st order and

identified contacts

AND contacts of

contacts

After percentage of

population infectious

(varies between 1%, 3%)

40, 60, 80, 100
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5.4.3 Results

Our parameter fitting for β(t) shows infection peaks at comparable time points with varying

population percentages but essentially a qualitative fit of the data (see Figure 5.3). The

parameter values used to fit β(t) are: b1 = 0.028, b2 = 0.001, r1 = 0.09, r2 = 0.04, m1 = 50,

m2 = 126.

Control Scenario

In a completely susceptible population, the introduction of one asymptomatic individual

leads to the spread of the infection with more than one peak of cases of infection after some

months. In Figure 5.4, the mean number of infectious cases peaks at 0.83% for ER network

and 0.07% for BA network.
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Figure 5.4: Distribution of the final infectious cases in different timing for scenarios without
vaccination in both networks. A population of N= 106 individuals was generated and 100
simulations were run to simulate the epidemic in the course of one year. An individual was
chosen randomly as patient zero for each run. Circles represent mean infection cases for each
month connected by lines. (a): Erdos-Renyi network, (b): Barabasi-Albert network.

Mass Vaccination Scenarios

These scenarios determine the outcome of vaccination at the initial stages of the epidemic

before infectious cases peak in both networks. From Figure 5.5 we observe that generally,

infection peaks are much lower in Barabasi-Albert network than in the Erdos-Renyi network.

In the Erdos-Renyi network, when vaccine efficacy is 40%, a population coverage of 40% or

more is needed to achieve infection peak with less than 1% infection cases in the population.

Figure 5.5 reveals that with vaccine efficacy of 60%, a coverage more than 60% keeps mean

infection cases on the low with elimination of the peak occurring when coverage is more than

80%. Furthermore, low cases of infection are observed when 70% or more of the population

is vaccinated and vaccine efficacy is 80%. On the other hand, a vaccine which is 100%
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efficacious requires just 20% or more of the population to be vaccinated to ensure there is

no peak of infections.

In the Barabasi-Albert network, with a vaccine efficacy of 40%, a population coverage of

more than 60% ensures elimination of infection peaks whereas when vaccine efficacy is 60%,

a coverage more than 70% achieves elimination. In addition, when 70% or more of the

population is vaccinated with an 80% efficacious vaccine, infection cases are almost negligible.

In the case when a 100% efficacious vaccine is administered, a population coverage more than

20% keeps infection peaks at bay.
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(a) Erdos-Renyi Model: Heatmap il-
lustrating average infection peaks con-
sidering vaccine efficacy and population
coverage.

40 60 80 100
Vaccine efficacy(%)

10
0

90
80

70
60

50
40

30
20

10
Po

pu
la

tio
n 

co
ve

ra
ge

(%
)

0.00

0.04

0.08

0.12

0.16

0.20

BA
 M

od
el

: A
ve

ra
ge

 in
fe

ct
io

n 
pe

ak

(b) Barabasi Albert Model: Heatmap
illustrating average infection peaks con-
sidering vaccine efficacy and population
coverage.

Figure 5.5: Comparing infection peaks in both networks.

As seen in Figures 5.6 and 5.7 (see also Figures A.1 - A.4 and Figures A.7 - A.10 in the

appendix), peak(s) of infection cases are observed when a small percentage of the population

is vaccinated in both networks with double infection peaks more frequent in the Barabasi-

Albert network. For instance, in both networks, there is at least one peak of infection for

vaccine coverage between 20% and 60% even when η varies. Therefore, vaccinating a small

proportion of the population is not useful in these instances as cases can still peak even with

a vaccine with 100% efficacy. Thus, the key to eliminating infection peaks is to administer

very efficacious vaccines to many individuals.
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(a) (b)

(c) (d)

Figure 5.6: Outcome for mass vaccination scenarios for each vaccine efficacy percentage
on an Erdos-Renyi network. This shows the changes in mean infected cases over time under
the different vaccine efficacies. In (a), (b), (c) and (d) vaccine efficacies are 40%, 60%, 80%
and 100% respectively.

(a) (b)

(c) (d)

Figure 5.7: Outcome for mass vaccination scenarios for each vaccine efficacy percentage on
a Barabasi Albert network. This shows the changes in mean infected cases over time under
the different vaccine efficacies. In (a), (b), (c) and (d) vaccine efficacies are 40%, 60%, 80%
and 100% respectively.

Furthermore, infection cases in vaccinated and unvaccinated individuals is much higher in

the ER model than in the BA model (see Figures 5.8a, 5.9a, 5.8b, 5.9b. and Tables A.6,

A.5, A.3, A.2). In both networks, a 100% efficacious vaccine ensures that no susceptible

(unvaccinated) individual gets exposed to the disease and is asymptomatic (Figure 5.8).
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Similar results are observed in the proportion of vaccinated individuals who later become

asymptomatic (Figure 5.9). For the ER network, the highest infection cases occur when

vaccine efficacy is 40% and only 10% of the population is vaccinated. In the BA network

however, this is seen at vaccine efficacy of 40% and 20% population coverage.

In the population of unvaccinated individuals for the ER network, higher cases of infection

are observed with vaccine efficacy of 80% or less and population coverage less than 40%

(Figure 5.8a). However, for the BA network, observed cases of infection are usually low in

comparison with the ER network (Figure 5.8b). In the population of vaccinated individuals

for the ER network, higher cases of infection are observed with vaccine efficacy of 60% or less

and population coverage less than 40% (Figure 5.9a). Again, for the BA network, observed

cases of infection are usually low in comparison with the ER network (Figure 5.9b).
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(a) Erdos-Renyi Model: Heatmap il-
lustrating average proportion of unvac-
cinated (susceptible) individuals who
got exposed and moved to the asymp-
tomatic state in the course of the infec-
tion. Derived from Table A.3.
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(b) Barabasi-Albert Model: Heatmap il-
lustrating average proportion of unvacci-
nated (susceptible) individuals who got
exposed and moved to the asymptomatic
state in the course of the infection. De-
rived from Table A.6.

Figure 5.8: Comparing average proportion of unvaccinated individuals who got exposed
and moved to the asymptomatic state in the course of the infection in both networks.
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(a) Erdos-Renyi Model: Heatmap il-
lustrating average proportion of vacci-
nated individuals who got exposed and
moved to the asymptomatic state in the
course of the infection. Derived from
Table A.2.
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(b) Barabasi Albert Model: Heatmap
illustrating average proportion of vacci-
nated individuals who got exposed and
moved to the asymptomatic state in the
course of the infection. Derived from
Table A.5.

Figure 5.9: Comparing average proportion of vaccinated individuals who got exposed and
moved to the asymptomatic state in the course of the infection in both networks.

Ring vaccination scenarios

We carried out simulations using Algorithm 2 to determine the infection outcome when ring

vaccination is used in both networks. In Figures 5.10 and 5.11 (see also Figures A.5, A.6,

A.11, A.12 and Table 5.3), we show these outcomes with varying scenarios of vaccine efficacy

and when 1% or 3% of the population is already exposed (and in the asymptomatic state)

to the disease before the onset of vaccination.

(a) (b)

Figure 5.10: Outcome for ring vaccination scenarios for each vaccine efficacy percentage
on a Erdos-Renyi network. This shows the changes in mean infected cases over time when
there is 1% and 3% prior exposed population in (a) and (b) respectively.
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(a) (b)

Figure 5.11: Outcome for ring vaccination scenarios for each vaccine efficacy percentage
on a Barabasi Albert network. This shows the changes in mean infected cases over time
when there is 1% and 3% prior exposed population in (a) and (b) respectively.

We see that in both networks, there are less cases realised with a 1% exposed population

before the start of vaccination as compared to a 3% exposed population. In addition, the

number of infected cases in these scenarios are considerably lower than that of the classical

vaccination method. Also, even with a 100% efficacious vaccine, total eradication of the peak

is not achieved irrespective of the exposed population prior to vaccination and regardless of

the network.

In comparison to mass vaccination, a lower percentage of the population has to be vaccinated

when using a ring vaccination protocol in order to attain low infection cases (see Table 5.3).

This is especially so as with effective contract tracing, more individuals can be vaccinated

and thus decreasing the number of infections. It is worth noting also that even with the above

results, the percentage of vaccinated individuals is lesser when only 1% of the population

is exposed prior to vaccination than when the prior exposed population is 3%. Also, from

Table 5.3 we see that for each network, the vaccinated populations are very similar in both

scenarios (that is when 1% or 3% of the population is exposed) respectively irrespective of

the efficacy of the vaccine.

Table 5.3: Average population coverage (in %) for ring vaccination scenarios in both ER
and BA networks considering vaccine efficacy.

Vaccine Efficacy

40% 60% 80% 100%

(ER Network)

(1% of population exposed before vaccination)

0.71± 0.20 0.77± 0.23 0.67± 0.20 0.68± 0.19

(3% of population exposed before vaccination)

0.81± 0.23 0.89± 0.26 1.00± 0.29 0.65± 0.19

(BA Network)

(1% of population exposed before vaccination)

0.062± 0.02 0.068± 0.02 0.043± 0.01 0.032± 0.01

(3% of population exposed before vaccination)

0.073± 0.02 0.049± 0.02 0.057± 0.02 0.65± 0.19
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Table 5.4 shows the average proportion of unvaccinated (susceptible) individuals who got

exposed in the course of the infection in both ER and BA networks under ring vaccination.

Similar to the average infection peaks, there are less cases in unvaccinated individuals in

the BA network than in the ER network. In addition, more cases are seen when 3% of the

population is exposed than when 1% is exposed. From our simulations for ring vaccination

in both networks, vaccinated individuals remain vaccinated and do not get exposed during

the course of the infection process.

Table 5.4: Average proportion (in %) of unvaccinated (susceptible) individuals who got
exposed in the course of the infection in both ER and BA networks under ring vaccination.

Vaccine Efficacy

40% 60% 80% 100%

(ER Network)

(1% of population exposed before vaccination)

0.71± 1.00 0.82± 1.01 0.77± 1.04 0.71± 0.99

(3% of population exposed before vaccination)

1.85± 2.68 2.26± 2.81 2.56± 2.90 1.72± 2.63

(BA Network)

(1% of population exposed before vaccination)

0.40± 1.00 0.65± 1.27 0.66± 1.78 0.41± 1.04

(3% of population exposed before vaccination)

1.98± 4.95 1.57± 4.12 2.17± 4.59 1.52± 4.38

5.5 Double strain network modelling of SARS-CoV-2

5.5.1 Epidemic process

In this section, we describe the dynamics of two strains of the SARS–CoV–2 virus under one

vaccination regime - mass vaccination. We assume a situation that models the competition

between the original SARS–CoV–2 virus and one of its mutated variants (such as alpha,

delta and omicron), that have been observed in many countries. We also assume that a

stable social behaviour has been reached in some countries and hence the transmission rates

can be maintained relatively constant. In this case, the two competing variants are assumed

to have different transmission rates β1, β2 > 0 which are fixed throughout the epidemic

process. The mutated variant has a higher infection rate, that is β2 > β1.

Though initially developed for the original SARS-CoV-2 virus, some vaccines have been said

to be effective against other variants of the virus which have occurred due to mutations. As

there are no variant specific vaccines, we assume only one vaccinated group. We also assume

that there is no possibility of coinfection, hence, a node may only be infected by one variant at

any given time. This makes it possible to divide individuals into two groups - those infected
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with strain 1 and those infected with strain 2 as in Figure 5.1. Here, since we consider two

strains of the virus, W = {1, 2}. For each j ∈ W , the epidemic transmission model used

here follows from that of the single variant model in Section 5.4. Considering vaccination,

our aim is to provide a qualitative analysis regarding the effect of the introduction of a new

more transmissible SARS-CoV-2 variant.

The infection process starts by selecting a node uniformly at random and exposing it with

variant 1 at which time the second variant is not yet introduced in the population (it can also

be considered as being dormant) and hence A1(0) = 1, A2(0) = 0. Variant 1 circulates in

the population until day τ when variant 2 is introduced into the population with α number

of nodes set to the state A2(τ). Therefore, A1(0) > A2(0) and A2(τ) = α. As interventions

change, transmission rates also change accordingly. For instance, individuals are likely to

avoid face-to-face interactions and hence have fewer contacts during lockdowns. To account

for this, we remove edges from the network who have more than l connections during the

time at which lockdown is implemented in the model. l in our model is taken as the average

node degree in the network.

5.5.2 Simulation scenarios

Similar to the single strain model above, we consider two main simulation scenarios: (1)

model without vaccination (control scenario) and (2) model with vaccination. However, for

the double variant model, we only consider mass vaccination as that is the most widely used

vaccination strategy since immunizations towards the epidemic started. This is mainly due

to the fact that tracking individuals throughout the infection period is a challenging task

and has not been a success. Here, the vaccine efficacy levels and population coverage levels

considered are the same as in the single strain model. That is vaccine efficacy varied between

40%−100% whereas population coverage varied between 10%−100%. In all simulations, we

consider that lockdown begins on day 50 and ends on day 140. For ER simulations: N = 105,

β1 = 0.022, β2 = 0.025, τ = day 220 and T = 539 days. For BA simulations: N = 105,

β1 = 0.014, β2 = 0.017, τ = day 220 and T = 539 days. Each scenario is repeated 100 times

and the outputs are taken for analysis.

5.5.3 Results

5.5.3.1 Scenario without vaccination

Figure 5.12, shows the simulation results for epidemic spread when there is no vaccination

in the population. Here, we observe that at the onset of the second strain, there is a drastic

reduction in total infectious cases in the first strain which then causes the infection levels of
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the second strain to rise steadily before reaching peak values. The number of cases for strain

1 begin to decline when strain 2 is introduced and eventually die out when strain 2 peaks.

In Figure 5.12, the mean number of infectious cases peaks at 1.07% for strain 1 and 0.97%

strain 2 in the ER network. In the BA network, infection peaks are observed at 0.33 and

0.92 for strain 1 and strain 2 respectively. Similar to the single strain model, epidemic peaks

in the BA network are lesser than that in the ER network.
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Figure 5.12: Distribution of the final infectious cases for no vaccination scenario in both
networks. A population of N= 105 individuals was generated and 100 simulations were run
for 539 days. Circles represent mean infection cases for each month connected by lines. (A):
Erdos-Renyi network, (B): Barabasi-Albert network.

5.5.3.2 Mass vaccination assuming equal vaccine efficacy

In this section, we evaluated how mass vaccination with similar vaccine efficacy levels in both

strains affect the spread of both strains of the virus. In general, we observe that the peak

values in these cases are lower than in the single strain model scenarios. However, the disease

dynamics are quite similar for both models. See Appendix B.

In the ER network, for vaccine efficacy levels of 40%, 60% and 80%, infectious cases are

much high for strain one than for strain 2, when strain 2 exists (that is, for population

coverage levels of 10%, 20% and 30%). This also means that the average infection peaks for

strain 1 are higher than that for strain 2 as can be observed in Figure 5.13. When vaccine

efficacy is 100% however, a different trend is observed. Infectious cases for strain 2 are on

average higher than for strain 1 when there is low vaccination coverage. Both strains become

extinguished when population coverage is 40% and above as seen in Figure 5.13d.
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Figure 5.13: Erdos-Renyi Model: Comparing average infection peak values for both strains
and for different levels of vaccine efficacy. A population of N= 105 individuals was generated
and 100 simulations were run to simulate the epidemic in the course of one year. In (A),
(B), (C) and (D) vaccine efficacies are 40%, 60%, 80% and 100% respectively. Population
coverage of zero corresponds to the control scenario (ie. no vaccination). Dots and squares
represent the average peak infection values for 100 simulations of each pair of vaccine efficacy
level and population coverage level.
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There is also an observed plateau of infections with increasing population coverage when

vaccine efficacy is 60%, 80% and 100% as seen in Figure 5.13. This plateau of infections

occur when mean peak of infections is 0% and signifies infection eradication. For 60% vaccine

efficacy, this plateau of infections is observed from 40% to 80% population coverage. For 80%

vaccine efficacy, this plateau of infections is observed from 50% to 80% population coverage.

For 100% vaccine efficacy, this plateau of infections is observed from 40% to 80% population

coverage but at notably extremely low values.

From Figure 5.14, we see a general decline in average infectious cases as vaccine efficacy

and population coverage levels increase. Also, irrespective of the vaccine efficacy, average

infectious cases for each strain indicate that when population coverage is from 40% to 100%,

the only strain circulating in the population is strain 1 (strain 2 is dormant) as seen in

Figure 5.14b.
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(a) Average infected cases for different
vaccine efficacies and for strain 1.
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(b) Average infected cases for different
vaccine efficacies and for strain 2.

Figure 5.14: Erdos-Renyi Model: Comparing average infected cases for different vaccine
efficacy levels and for each strain. (A) is for strain 1 and (B) is for strain 2. A population
of N= 105 individuals was generated and 100 simulations were run to simulate the epidemic
in the course of one year

In all scenarios for the ER model, 100% efficacious vaccine and 100% population coverage

ensure that there are no vaccinated or unvaccinated individuals who get exposed as seen

in Figures 5.16 and 5.15. This finding is similar in the single strain model above (see also

Figures 5.8a and 5.8b).

For strain 1, the average number of vaccinated individuals who later get exposed are higher

when vaccine efficacy is 40% which are also higher than that when vaccine efficacy is 60%

which is also higher than when vaccine efficacy is 80%. This observation is true only for all

population coverage levels except 30%, 40% and 50% where we find that the mean number

of vaccinated who get exposed are higher for 60% vaccine efficacy, which is also higher for

40% vaccine efficacy which is also higher than 80% vaccine efficacy.
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The findings for strain 2 are slightly different. Here, vaccinated individuals who got exposed

were only found when only 10% to 40% of the population is vaccinated. Similar to strain 1,

there are no vaccinated individuals who were exposed when vaccine efficacy is 100%. Also,

we find that average values for vaccinated individuals is highest when vaccine efficacy is 40%

and population coverage is also 20%. Also, this numbers decrease when vaccine efficacy and

population coverage increases with more observations for lower population coverage thereby

yielding a right-skewed distribution as seen in Figure 5.15b.
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(a) Proportion of vaccinated individu-
als who got became asymptomatic to
strain 1.
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(b) Proportion of vaccinated individu-
als who became asymptomatic to strain
2.

Figure 5.15: ER Model: Comparing average proportion of vaccinated individuals who
became asymptomatic in the course of the infection in both strains. A population of N= 105

individuals was generated and 100 simulations were run to simulate the epidemic in the
course of 539 days.

In the results for unvaccinated individuals who are exposed to the virus, we find that in

general, as vaccination efficacy increases and population coverage also increases, we have

less unvaccinated individuals being exposed as seen in Figure 5.8. Also, we observe that for

strain 1, there are no unvaccinated exposed individuals when vaccine efficacy is 100% and

population coverage ranges from 40%. A similar observation is made for strain 2.
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(a) Proportion of unvaccinated individ-
uals who got exposed to strain 1.
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(b) Proportion of unvaccinated individ-
uals who got exposed to strain 2.

Figure 5.16: ER Model: Comparing average proportion of unvaccinated individuals who
got exposed in the course of the infection for both strains. A population of N= 105 individ-
uals was generated and 100 simulations were run to simulate the epidemic in the course of
539 days.

For the BA network, we have a slightly different observation (see Figure 5.17 and also

Figure B.1.2 in the appendix). The infection peaks for no vaccination appear to be much

higher in comparison to the vaccination scenarios. When vaccine efficacy is 40%, 60% and

80% (see Figure 5.17a, 5.17b, 5.17c), strain 2 dominates at lower population coverage whereas

strain 1 dominates at high population coverage levels and both strains coexist at very low

levels. However, when vaccine efficacy is 100%, in Figure 5.17d, strain 2 dominates at all

population coverage levels until a point (when population coverage > 50%) where both

strains are extinguished.

Furthermore, we observe that with increasing vaccine efficacy, the less population coverage

required to eradicate both strains of the virus. For instance, when vaccine efficacy is 40%,

eradicating both strains will require everyone in the population to be vaccinated whereas for

efficacy of 60%, more than a 90% coverage is needed. For efficacy of 80%, more than an 80%

coverage is needed and for efficacy of 100%, more than 40% coverage is needed to achieve

this. See Figure 5.17.
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Figure 5.17: Barabasi-Albert Model: Comparing average infection peak values for both
strains and for different levels of vaccine efficacy. A population of N= 105 individuals was
generated and 100 simulations were run to simulate the epidemic in the course of one year. In
(A), (B), (C) and (D) vaccine efficacies are 40%, 60%, 80% and 100% respectively. Population
coverage of zero corresponds to the control scenario (ie. no vaccination). Dots and squares
represent the average peak infection values for 100 simulations of each pair of vaccine efficacy
level and population coverage level.
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In addition, the average infectious cases for the BA network model for both strains are

relatively lower compared to those observed in the ER network model but we can see a

similar declining trend as population coverage and vaccine efficacy increases, see Figure 5.18.

For both strains, a vaccine efficacy of 100% ensures eradication when population coverage

is more than 40% (Figure 5.18a and 5.18b). For strain 2, this coverage level increases to

50% for the remaining efficacy levels whilst for strain 1, 80% population coverage ensures

eradication for all vaccine efficacy levels.
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(a) Average infected cases for different
vaccine efficacies and for strain 1.
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(b) Average infected cases for different
vaccine efficacies and for strain 2.

Figure 5.18: Barabasi-Albert Model: Comparing average infected cases for different vac-
cine efficacy levels and for each strain. (A) is for strain 1 and (B) is for strain 2. A population
of N= 105 individuals was generated and 100 simulations were run to simulate the epidemic
in the course of 539 days.

In the case of vaccinated individuals who later on became exposed and asymptomatic, there

are less of such cases in general for strain 2 than for strain 1. To add to that, we observe that

similar to the ER model, with a vaccine efficacy of 100%, there are no vaccinated individuals

who later get exposed to either strain of the virus, Figure 5.19. Instead, for strain 1, we

observe a general increase of vaccinated individuals who get exposed as population coverage

increases, reaching a peak and then tapering off as more people are vaccinated. When

population coverage is 100%, there are no cases of vaccinated individuals being exposed to

either strain. For strain 2 however, peak values of average vaccinated who get exposed are

higher for lower population coverage levels thereby achieving a right-skewed distribution as

seen in Figure 5.19b. These observations are similar to those observed for the ER network.
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(a) Proportion of vaccinated individu-
als who got became asymptomatic to
strain 1.
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(b) Proportion of vaccinated individu-
als who became asymptomatic to strain
2.

Figure 5.19: Barabasi-Albert Model: Comparing average proportion of vaccinated individ-
uals who became asymptomatic in the course of the infection in both strains. A population
of N= 105 individuals was generated and 100 simulations were run to simulate the epidemic
in the course of 539 days.

In the case of unvaccinateds, there are more individuals becoming exposed and asymptomatic

to strain 1 than to strain 2. Also, there is a general declining trend in such cases, for both

strains, as vaccine efficacy and population coverage increase. Except for when vaccine efficacy

and population coverage are both 100%, there are many unvaccinated individuals who become

asymptomatic to strain 1 of the virus (see Figure 5.20). However, a population coverage of

60% and more ensures that there are no unvaccinated who are later asymptomatic to strain

2 for all vaccine efficacy levels. A vaccine efficacy of 100% and population coverage ≥ 60%

ensures that there are no unvaccinated individuals who become asymptomatic to either strain

of the virus.
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(a) Proportion of unvaccinated individ-
uals who got exposed to strain 1.
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(b) Proportion of unvaccinated individ-
uals who got exposed to strain 2.

Figure 5.20: Barabasi-Albert Model: Comparing average proportion of unvaccinated in-
dividuals who got exposed in the course of the infection for both strains.
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5.6 Modelling Vaccine Resistance

In this section, we distinguish between a wild-type virus and a vaccine-resistant mutant

virus. The vaccine is effective against the wild-type strain, while the mutant strain evades

immunity induced by the vaccine. We assume here that individuals who have recovered

from the wild-type infection are still prone to infection with the vaccine resistant variant

of the virus. We carry out simulations that mimic immunity acquired by two doses of the

Pfizer-BioNTech (BNT162b2) vaccine (the first FDA-approved COVID-19 vaccine) against

the original SARS-CoV-2 virus. We use this vaccine because it is the most widely used

vaccine worldwide. In particular, we are interested in the disease dynamics when the wild-

type strain is in circulation with the omicron variant. Experimental observations highlight

that vaccine effectiveness for the wild-type variant within two to four weeks after two doses

of vaccine for the prevention of symptomatic COVID-19 is 95% and that for the omicron

variant is 65% [4]. However, vaccine efficacy drops in the omicron variant, reaching as low

as 8.8% at 25 weeks or more after the second dose [4] (see also Figure 5.21).
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Figure 5.21: Vaccine effectiveness for omicron variant after second dose of Pfizer-BioNTech
vaccine from Table 5.5.

To determine the fold change in vaccine efficacy between the wild-type and the mutant strain,

we can find a parameter k such that k is the fold change of vaccine efficacy between the wild-

type and the mutant strain. That is, k is the ratio of the vaccine efficacy (η) of the mutant

strain to the wild-type given by

η(strain) = k ∗ η(WT ) (5.8)

For our study, we assume the vaccine efficacy for the wild-type is 95%. In order to mimic

the experimental data in [4], we find a k (from eq (5.8)) for each week interval presented

in Table 5.5. Following from the preceding sections, for our simulations, we hypothesize

that the vaccine efficacy for the wild-type ranges from {40%, 60%, 80%, 100%}. Therefore,
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using eq (5.8), we obtain a value for k as k = 0.655 within 2 − 4 weeks post second vac-

cine dose. Consequently, we have that vaccine efficacy for the resistant variant will be

{40%, 60%, 80%, 100%} each multiplied by 0.655 as per eq (5.8). Hence, the vaccine efficacy

values of the mutant omicron variant becomes {26.2%, 39.3%, 52.4%, 65.5%} respectively.

Similar processes can be used to obtain the vaccine efficacy values for the remaining week

intervals shown in Table 5.5

Table 5.5: Vaccine efficacy of Pfizer-BioNTech vaccine (BNT162b2) for the omicron variant
of SARS-CoV-2 and corresponding k-values from eq (5.8). Adapted from [4].

Week after vaccination Vaccine efficacy (%) k-values

2− 4 65.5 0.655

5− 9 48.7 0.0195

10− 14 30.1 0.0316

15− 19 15.4 0.0617

20− 24 11.5 0.0826

≥ 25 8.8 0.108

In the subsequent subsections, we shall analyse the model with the above mentioned consid-

erations. All numerical scenarios hereafter follow from the above reasoning.

5.6.1 Scenario without vaccination

Analysing the scenario without vaccination, we observe high infection cases overall but higher

in strain 1 (with an average peak value of 1.32) than strain 2 (with an average peak value

of 1.12), see Figure 5.22. These values are considerably high in comparison to the previous

examples of no vaccination in the preceding sections. These high values are attributed to the

increase in transmissibility of the mutant strain and its reduced response to the effect of the

vaccine.
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Figure 5.22: Erdos-Renyi vaccine resistance model: Distribution of the final infectious
cases for no vaccination scenario in an Erdos-Renyi network. A population of N= 105

individuals was generated and 100 simulations were run for 539 days. Circles represent
mean infection cases for each month connected by lines.
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5.6.2 Mass Vaccination Scenarios

Comparing average infection peak values, we observe that there are higher infection peaks

in strain 2 relative to strain 1 for all vaccine efficacy levels as seen in Figure 5.23 (see also

Figures B.9 - B.12 in Appendix B.2.1). For vaccine efficacy of 100%, a plateau of very low

peak infections is reached from population coverage of 30% and above in strain 1 and 90%

and above in strain 2 (see Figure 5.23d). It is also important to note here that even with

vaccination campaigns, it is possible to have infection cases higher in strain 2 than the control

scenario when there is no vaccination. This is more evident at low population coverage levels.

This observation relates with the reduced effect of vaccine in the resistant strain 2.
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Figure 5.23: Erdos-Renyi vaccine resistance model: Comparing average infection peak
values for both strains and for different levels of vaccine efficacy. A population of N= 105

individuals was generated and 100 simulations were run to simulate the epidemic in the
course of one year. In (A), (B), (C) and (D) vaccine efficacies are 40%, 60%, 80% and 100%
respectively. Population coverage of zero corresponds to the control scenario (ie. no vacci-
nation). Dots and squares represent the average peak infection values for 100 simulations of
each pair of vaccine efficacy level and population coverage level.
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In terms of average infected cases, there is a general decline in the number of infected cases as

more people are vaccinated for both strains, see Figure 5.24. Thus, less people are infected

on average when more people in the population are vaccinated against the virus. With

strain 1, vaccine efficacy of 100% ensures negligible infection cases when 30% or more of

the population is vaccinated. For strain 2, more infection cases are observed irrespective

of population coverage and vaccine efficacy levels (see Figure 5.24b). In addition, higher

infection values are obtained due to strain 2 than strain 1 as seen in Figure 5.24b.
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(a) Average infected cases for different
vaccine efficacies and for strain 1.
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(b) Average infected cases for different
vaccine efficacies and for strain 2.

Figure 5.24: Erdos-Renyi vaccine resistance model: Comparing average infected cases for
different vaccine efficacy levels and for each strain. (A) is for strain 1 and (B) is for strain 2.
A population of N= 105 individuals was generated and 100 simulations were run to simulate
the epidemic in the course of 539 days.

In Figure 5.25, we see a comparison of the number of vaccinated individuals who got exposed

and became asymptomatic to either strain of the virus in the course of the epidemic. We

observe that in general, this number is lower for strain 1 than for strain 2. In addition,

a vaccine efficacy of 100% yields no infection cases irrespective of the population coverage

in strain 1. Furthermore, the number of vaccinated individuals who become asymptomatic

rise steadily at low population coverage levels reaching a peak at about population coverage

(60%, 70%) before decreasing at higher population coverage levels (see Figure 5.25a). On the

other hand, for strain 2, the number of vaccinated who got exposed increases steadily for

vaccine efficacy of 40%, 60% and 80%. For vaccine efficacy of 100%, this number increases at

low population coverage, reaching a peak at 40% population coverage before tapering down

at higher population coverage.
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(a) Proportion of vaccinated individu-
als who became asymptomatic to strain
1.
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(b) Proportion of vaccinated individu-
als who became asymptomatic to strain
2.

Figure 5.25: Erdos-Renyi vaccine resistance model: Comparing average proportion of
vaccinated individuals who became asymptomatic in the course of the infection in both
strains. A population of N= 105 individuals was generated and 100 simulations were run to
simulate the epidemic in the course of 539 days.

In terms of unvaccinated individuals who get exposed in the course of the epidemic, we

observe a general decline in both strains with increasing population coverage (see Figure 5.26)

but with considerably much higher values for strain 2 than for strain 1. For unvaccinated

individuals exposed to strain 1, population coverage of 30% or more yields low to no exposure

to the virus (see 5.26a).
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(a) Proportion of unvaccinated individ-
uals who got exposed to strain 1.
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(b) Proportion of unvaccinated individ-
uals who got exposed to strain 2.

Figure 5.26: Erdos-Renyi vaccine resistance model: Comparing average proportion of
unvaccinated individuals who got exposed in the course of the infection for both strains.

5.7 Chapter summary

In this chapter, we modelled the spread of SARS-CoV-2 infection using an SAIRV model

structure social networks for both single variant and double variant models. We carried out
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stochastic simulations to determine vaccine efficacy and population coverage limits capable of

extinguishing the disease in a given time period. We considered two vaccination strategies for

the single variant case, each with varying scenarios regarding vaccine efficacy and population

coverage and one vaccination strategy for the double variant models. We found that, the

introduction of a single infectious person into a completely susceptible population leads to

the spread of infection giving rise to more infectious cases and subsequently more than one

infection peak in all models.

In addition, the introduction of vaccination lowered the number of infectious cases irrespective

of the type of vaccination and contact network for the single strain model. Our simulations

and analysis show that when using a mass vaccination strategy, the lower the efficacy of the

vaccine, the more people needed to be vaccinated against the disease in order to eliminate

infection peak(s). This is true for both ER and BA networks. For instance, in an ER network,

a vaccine with an efficacy of 40% will require more than 40% of the entire population to be

vaccinated in order to reach low infection peak values less than 1% whereas in a BA network,

a population coverage more than 70% with a vaccine efficacy of 80% achieves negligible

infection cases. In both networks, a 100% effective vaccine will require just about 20% of the

population to be vaccinated.

Furthermore, in the presence of two circulating variants of the virus, vaccination plays a

major role in achieving eradication. A vaccine efficacy of 100% ensures extremely low average

infection values even with population coverage levels for both strain of the virus. In addition,

with good enough vaccines (with efficacy more than 30%), our simulations tell us that we

can achieve zero infectious cases when more than 40% of the population is vaccinated with

a vaccine which has efficacy of 40% or more. Moreover, the more people are vaccinated, the

less exposure vaccinated individuals have to the virus and hence low number of vaccinated

individuals become exposed to the second strain of the virus. Similarly, increasing population

coverage and vaccine efficacy leads to less number of unvaccinated individuals being exposed

to either strain of the virus.

To add to that, when a vaccine resistant strain is in circulation with the wild-type of the virus

in the population, our numerical simulations indicate that even with vaccination campaigns,

it is possible to have infections greater than when there is no vaccination. In addition, more

people are infected with the resistant strain than the wild-type irrespective of the efficacy of

the vaccine and the population coverage. A 100% efficacious vaccine however, yields low to

no infections with the wild-type strain when 30% or more of the population is vaccinated.

Even though there are some vaccines which require a single dose regimen to achieve acclaimed

efficacy levels (from Table 3.4), it can be seen easily that majority of vaccines require more

than one dose to achieve the levels of efficacy claimed by manufacturers. Given that this

is a simplified model to explore the effects of vaccination strategies in general, it is worth
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pointing out that our model is limited when considering a two-dose vaccine regimen and

hence results from our model can likely be influenced under such circumstances.

Given the experimental nature and limited initial supply of vaccines, a classical mass vacci-

nation campaign might not be feasible in many countries. However, ring vaccination of likely

case contacts and contacts of cases could provide an effective alternative in distributing the

vaccine to ensure low levels of infection and subsequently preventing infection peaks. This

is with the assumption of effective contract tracing of infectious people.

Researchers, policy makers and the general public are of the opinion that the discovery of

a vaccine will allow the return to normality of life before the SARS-CoV-2 pandemic. It is

worth noting that, the discovery of a proven-to-be effective vaccine however, might not reduce

transmission completely. This is due to the fact that a vaccine which effectively reduces the

severity of transmission does not necessarily reduce virus transmission to a comparable degree

[243].

It is also important to consider the potential impact of voluntary mass vaccination in the

efforts of clearing the epidemic [244, 245, 246, 247]. In years past, the roll-out of vaccination

has been faced with declining vaccine confidence in the general public which could possibly

lead to hesitancy in getting vaccinated [248]. Such instances could easily lead to a disrup-

tion of people receiving a vaccine voluntarily thus, having a detrimental effect on efforts to

eradicate the disease and hence such situations should not be underestimated.
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Conclusions and Future Work

In the absence of adequate epidemiological data, mathematical models produce some evidence

for the efficacy of disease interventions through simulation. Knowledge of the transmission

characteristics of infections can be incorporated into mathematical models to make better

inferences about infections. In this thesis, we have used mathematical modelling techniques

to explore the problem of drug resistance at two levels: between-host and within-host. We

have described the importance of mathematical models as a cost effective approach to under-

standing infection progression dynamics as well as control and interventions at both levels.

Studying biological problems of this nature with mathematical approaches can be a use-

ful predictive tool to explore some uncertain scenarios during a disease outbreak and most

importantly, predict the plausible effects of control and interventions.

In Chapter 3, we presented a general introduction to drug resistance evolution both within

the host and in a given population. We described in depth the biological underpinnings of

the problem of drug resistant infections that can be found in the existing literature. We also

explored various mathematical approaches which have been used in the study of resistant

infections such as deterministic, stochastic and statistical methods. These models are often

times limited to the dynamics of the spread of resistance while neglecting resistance evolution

and are often deterministic in nature. They present hypothetical situations for the spread of

drug resistance infections in hospitals and in the community and also indicate some commonly

used treatment strategies.

A common practice for modellers is to use deterministic models since simulating such models

is often easier than stochastic models. Stochastic models are effective for capturing complex

heterogeneous processes in a biological system. They can be used to unveil certain complex-

ities of resistance that deterministic models do not. Such models can be used to explore

complex interactions that may affect resistance such as dosing effect and immune response.

112
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While these approaches are all good steps in the direction of understanding resistant infec-

tions, tackling resistance, however, will stem from understanding the mechanisms leading to

the evolution of resistance. Therefore, it is important for models addressing this problem

to include specific evolutionary mechanisms of resistance such as mutations and interactions

between resistant genes. This will aid for understanding of the interaction between genetic

strains of pathogens and help tailor appropriate interventions.

To this end, in Chapter 4, we used mathematical modelling techniques to explore the evo-

lution and spread of resistant infections within the host and to analyze some treatment

strategies to combat resistance. We presented logistic based mathematical models to de-

scribe the dynamics of different pathogen strains during drug therapy and also capture the

process of cell mutation which lead to resistance within the host. In drug therapy for elimi-

nating resistance, treatment scheduling remains an important area of research as there is no

consensus on the best treatment protocols.

Motivated by studies which have shown that sequential administration of drugs tend to be

superior in eradicating resistant strains in the long term, we used notions from control en-

gineering and switched positive systems to tailor drug cycling strategies with the aim of

eradicating drug-resistance within the host. In particular, we analysed scheduling and se-

quential use of drugs for treatment within a host using the principle of collateral sensitivity

in bacteria and compared different therapy switching approaches to determine their perfor-

mance in eradicating resistance in the host on the long term. We compared switching under

two different types of drug switching approaches: periodic switching and lyapunov switching

and studied these systems both in the presence and absence of mutation. When mutation

is considered to be present, asymptotic stability of the origin is achieved if the switching

system has a common Lyapunov function.

Beginning with a simple two strain system with two therapies, we investigated suitable

drug scheduling protocols on a small scale. We showed using numerical simulations that any

switching strategy ensured eradication of resistance when both subsystems are asymptotically

stable at the origin. However, when only one subsystem is unstable, periodic switching does

not guarantee that resistance will die out but lyapunov based switching does and is even

much faster. And when all subsystems are unstable at the origin, only a lyapunov based

switching ensures eradication. However, a sliding mode occurs at the intersection of the two

configurations in which case feedback switching can be used to reach the sliding surface and

the control can be completed with a sliding law defined based on periodic switching.

We then extended this model to a more generalised system with more than two strains

and with many therapies. We obtained similar results for the general model as well. Our

numerical simulations showed that switching strategies based on Lyapunov functions have

better performance. The cases considered in this chapter, yielded faster and computationally
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practical outcomes and in certain conditions were able to eradicate pathogenic populations.

Simulation results emphasise that drug cycling protocols are not intuitive and therefore,

pathogen dynamics under different treatments are central for infection eradication. Despite

this good performance, it will be interesting to check Model Predictive Control (MPC) ap-

proaches as well since MPC has been shown to work well for nonlinear models especially in

control theory.

In Chapter 5, our overarching goal was to use mathematical and computational approaches

to describe antimicrobial infections between hosts. We used the novel coronavirus as a

case study and modelled it’s transmission dynamics on a social network amidst vaccination

campaigns and other non-pharmaceutical interventions. We described the general dynamics

of the disease while investigating the impact of vaccination protocols on the spread of this

virus. Using numerical simulations, we also studied the potential qualitative impact that a

new and more transmissible mutant vaccine-resistant variant could have on the population.

Our results for the single strain model indicate that regardless of the vaccination protocol

and network model, the number of infectious cases reduced whenever there was vaccination.

In addition, the number of people needed to be vaccinated in order to reach low infection

values and peaks depended heavily on the efficacy of the vaccine. For instance, with a low

efficacy vaccine, more people would have to be vaccinated in order to prevent infection peaks.

However, with the introduction of a more vaccine resistant variant in circulation with the

wild type virus, more individuals are infected with the vaccine resistant strain than with the

wild type and with all vaccine efficacy levels except for 100%. With a 100% efficacious vaccine

on the other hand, there is low to no infection when more than 30% of the population is

vaccinated. In addition, we found that in the vaccinated population, less people are infected

with the wild type strain than the mutant strain. This observation is due to the increased

transmissibility and reduced efficacy of vaccine towards the mutant strain.

Though exploring the effects of SARS-CoV-2 transmission on social networks, we limited our

analysis to two types of social network which is the Erdos-Renyi network and the Barabasi-

Albert network models. To proceed towards increasing practicality, the analysis performed

in this thesis can be extended to consider disease spread and vaccination on other social

networks and small-world network models such as the Watts-Strogatz network, using similar

scenarios and protocols. Such network models can be compared with each other and the

outcomes analysed. Data on known social networks such as contact matrices and mixing

patterns can also be used for further analysis and evaluation.

In our numerical simulations, we assumed an optimistic condition in which all infectious

individuals are identified. In reality, contact tracing is especially difficult in the course of

an ongoing epidemic. In the particular case of SARS-CoV-2, traditional interview based
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approaches as well as recent digital contact-tracing apps have proven to be less effective.

Thus, identifying all infectious contacts and their secondary contacts (especially for the ring

vaccination strategy) becomes difficult and comes at a higher cost. In effect, these challenges

can potentially reduce the impact of vaccination efforts. Also, the model used here assumes

there is equal mixing of individuals and their neighbours in the network whereas in reality this

is not the case. Consequently, this could lead to lower infection cases and lower population

coverage.

The focus of this thesis has principally been on modelling techniques for resistant infections

between-host and within-host. However, the problem of resistance is complex and hence

further adaptation of these models can be formulated as knowledge and technology improves.

Control strategies from the model presented in Chapter 4 provide the theoretical road map

to alleviating resistant strains. However, knowledge of how to implement different typical

model parameters and how these relate to reality is crucial in validating these strategies for

real-world use. For instance, what is the carrying capacity of a human patient for different

types of resistant strains, and how can this be measured? This emphasizes the need for

future research to provide ample data (experimental and observational) to develop model

simulations and support model validation. In addition, many multiscale models have been

used to understand the dynamics of infectious diseases across multiple scales such as between-

host and within-host processes. Such models describe the dependence of each scale on the

other and can provide understanding of interactions at different scales. However, such models

are lacking for the problem of antibiotic resistance and thus, remain open areas for future

research.

To add to that, although the model presented in Chapter 5 is simplistic in itself, it allows to

study the basic effect of vaccination as well as vaccine-resistant viral strains on the course of

an epidemic and the proportion of the population to be vaccinated to stop the epidemic. With

this model, we are able to gain some insights into the qualitative behaviour of the transmission

process of the virus but it can be extended to study some quantitative features such as the

potential number of individuals in the population carrying the virus. The model can also

be expanded to capture some of the finer details of the disease such as the differentiation of

recovered and dead individuals, inclusion of hospitalized and quarantined compartments, and

healthcare workers. Furthermore, the ring vaccination intervention strategy has potential

to yield desirable results when infectious cases can be rightly targeted and tracked. As

this strategy relies on infected individuals and their neighbours, developing methods and

technology tools to identify and trace infectious individuals and their neighbours can aid in

containing the infection. These should be instrumental in future models.



Appendices

116



Appendix A

Single strain SARS-CoV-2 model

results

Here, we present the simulation plots for the single strain model in Chapter 5. The set of

figures presented here represent the model in Section 5.4 where the vaccine efficacy levels

and population coverage levels considered are the same as in the single strain model. As

mentioned in the main text, vaccine efficacy varied between 40%−100% whereas population

coverage for classical vaccination varied between 10% − 100%. For ring vaccination, the

proportion of asymptomatic individuals (%asymptomatic) varied as 1% and 3% (see Table

5.2). For ER simulations: N = 106, b1 = 0.028, b2 = 0.001, r1 = 0.09, r2 = 0.04, m1 = day

50, m2 = day 126 and T = 360 days. For BA simulations: N = 106, b1 = 0.013, b2 = 0.001,

r1 = 0.09, r2 = 0.04, m1 = day 50, m2 = day 126 and T = 360 days. Each scenario is

repeated 100 times and the mean of infection cases taken for analysis.
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A.1 Erdos-Renyi network results
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Figure A.1: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 40%. Population coverage varies from 10%− 100%.
Circles represent mean infection cases for each month connected by lines.
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Figure A.2: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 60%. Population coverage varies from 10%− 100%.
Circles represent mean infection cases for each month connected by lines.
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Figure A.3: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 80%. Population coverage varies from 10%− 100%.
Circles represent mean infection cases for each month connected by lines.
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Figure A.4: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 100%. Population coverage varies from 10%−100%.
Circles represent mean infection cases for each month connected by lines.
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Table A.1: Erdos-Renyi Model: Average infection peak values considering vaccine efficacy
and population coverage.

Mass vaccination scenarios

(vaccination before case zero)

Population

Coverage

Vaccine Efficacy

40% 60% 80% 100%

10% 2.19± 0.63 1.98± 0.57 1.47± 0.50 0.13± 0.04

20% 1.12± 0.37 1.11± 0.34 0.97± 0.29 0± 0

30% 1.09± 0.36 0.83± 0.26 0.47± 0.17 0± 0

40% 0.41± 0.15 0.49± 0.17 0.25± 0.09 0± 0

50% 0.3± 0.1 0.32± 0.1 0.13± 0.05 0.0± 0

60% 0.14± 0.04 0.20± 0.06 0.07± 0.02 0.0± 0

70% 0.08± 0.02 0.04± 0.01 0.05± 0.01 0± 0

80% 0.02± 0 0.01± 0 0± 0 0± 0

90% 0± 0 0± 0 0± 0 0± 0

100% 0± 0 0± 0 0± 0 0± 0

Table A.2: Erdos-Renyi Model: Average proportion and standard deviation of vaccinated
individuals who got exposed in the course of the infection.

Mass vaccination scenarios

(vaccination before case zero)

Population

Coverage

Vaccine Efficacy

40% 60% 80% 100%

10% 42.33±34.56 30.9± 26.84 14.64±12.98 0± 0

20% 35.13±43.02 28.78±36.03 13.43±16.53 0± 0

30% 39.04±46.84 28.61±40.82 10.69±17.39 0± 0

40% 19.61±39.23 24.02±40.59 6.97± 15.5 0± 0

50% 13.93±34.44 17.43±37.21 4.03± 11.78 0.0± 0

60% 6.98± 25.44 11.81±31.99 1.9± 7.62 0.0± 0

70% 4.99± 21.77 2.98± 16.93 1.36± 5.45 0± 0

80% 2± 13.99 1.0± 9.92 0± 0 0± 0

90% 0± 0 0± 0 0± 0 0± 0

100% 0± 0 0± 0 0± 0 0± 0
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Table A.3: Erdos-Renyi Model: Average proportion and standard deviation of unvacci-
nated(susceptibles) individuals who got exposed in the course of the infection.

Mass vaccination scenarios

(vaccination before case zero)

Population

Coverage

Vaccine Efficacy

40% 60% 80% 100%

10% 52.75±43.07 48.52±42.14 44.12±39.11 3.5± 14.98

20% 38.1± 46.66 36.3± 45.4 33.18±40.65 0.02± 0.04

30% 40.24±48.27 32.04±45.66 23.86±38.31 0.01± 0.02

40% 19.85±39.69 25.64±43.26 15.05±32.42 0± 0

50% 13.96±34.59 17.91±38.23 9.15± 25.7 0.0± 0

60% 6.99± 25.48 11.97±32.43 4.72± 18.14 0.0± 0

70% 5± 21.78 3± 17.04 3.86± 14.83 0± 0

80% 2± 14.00 1± 9.95 0± 0 0± 0

90% 0± 0 0± 0 0± 0 0± 0

100% 0± 0 0± 0 0± 0 0± 0
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Ring Vaccination
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Figure A.5: Erdos-Renyi network: Distribution of final infectious cases in different timing
for ring vaccination scenario when 1% of the population is exposed prior to vaccination.
Circles represent mean infection cases for each month connected by lines.
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Figure A.6: Erdos-Renyi network: Distribution of final infectious cases in different timing
for ring vaccination scenario when 3% of the population is exposed prior to vaccination.
Circles represent mean infection cases for each month connected by lines.
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Barabasi-Albert network results

Mass vaccination
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Figure A.7: Barabasi-Albert network: Distribution of final infectious cases in different
timing for mass vaccination scenario when η = 40%. Population coverage varies from 10%−
100%. Circles represent mean infection cases for each month connected by lines.
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Figure A.8: Barabasi-Albert network: Distribution of final infectious cases in different
timing for mass vaccination scenario when η = 60%. Population coverage varies from 10%−
100%. Circles represent mean infection cases for each month connected by lines.
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Figure A.9: Barabasi-Albert network: Distribution of final infectious cases in different
timing for mass vaccination scenario when η = 80%. Population coverage varies from 10%−
100%. Circles represent mean infection cases for each month connected by lines.
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Figure A.10: Barabasi-Albert network: Distribution of final infectious cases in different
timing for mass vaccination scenario when η = 100%. Population coverage varies from
10%− 100%. Circles represent mean infection cases for each month connected by lines.
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Table A.4: Barabasi Albert Model: Average infection peak values considering vaccine
efficacy and population coverage.

Mass vaccination scenarios

(vaccination before case zero)

Population

Coverage

Vaccine Efficacy

40% 60% 80% 100%

10% 0.1± 0.03 0.1± 0.03 0.14± 0.04 0.05± 0.01

20% 0.21± 0.07 0.13± 0.05 0.10± 0.04 0.01± 0

30% 0.07± 0.03 0.08± 0.03 0.09± 0.03 0± 0

40% 0.08± 0.03 0.08± 0.03 0.04± 0.02 0± 0

50% 0.04± 0.01 0.09± 0.03 0.04± 0.02 0.0± 0

60% 0.04± 0.01 0.04± 0.01 0.01± 0 0.0± 0

70% 0± 0 0± 0 0± 0 0± 0

80% 0± 0 0± 0 0± 0 0± 0

90% 0± 0 0± 0 0± 0 0± 0

100% 0± 0 0± 0 0± 0 0± 0

Table A.5: Barabasi Albert Model:Average proportion and standard deviation of vacci-
nated individuals who got exposed in the course of the infection.

Mass vaccination scenarios

(vaccination before case zero)

Population

Coverage

Vaccine Efficacy

40% 60% 80% 100%

10% 4.29± 11.09 3.22± 7.38 1.7± 3.11 0.0± 0

20% 12.17±23.67 6.29± 14.44 2.22± 4.93 0.0± 0

30% 5.18± 18.94 5.48± 16.65 2.73± 6.83 0± 0

40% ±20.86 5.5± 18.72 1.75± 6.98 0± 0

50% 2.84± 16.12 7.39± 23.53 1.56± 6.39 0.0± 0

60% 3.9± 19.1 3.52± 17.24 0.18± 1.81 0.0± 0

70% 0.0± 1.87± 13.07 0± 0 0± 0

80% 0± 0 0± 0 0± 0 0± 0

90% 0± 0 0± 0 0± 0 0± 0

100% 0± 0 0± 0 0± 0 0± 0
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Table A.6: Barabasi Albert Model:Average proportion and standard deviation of unvac-
cinated(susceptibles) individuals who got exposed in the course of the infection.

Mass vaccination scenarios

(vaccination before case zero)

Population

Coverage

Vaccine Efficacy

40% 60% 80% 100%

10% 6.36± 16.47 6.69± 15.34 7.27± 13.34 2.24± 5.57

20% 15.2± 29.50 10.23±23.44 7.48± 16.54 0.32± 1.67

30% 5.97± 21.79 7.79± 23.46 7.8± 19.37 0.02± 0.09

40% 5.66± 22.4 7.08± 24.01 4.15± 16.44 0.04± 0.19

50% 2.94± 16.69 8.59± 27.33 4.15± 15.26 0.0± 0

60% 3.97± 19.44 3.92± 19.18 0.55± 5.45 0.0± 0

70% 0± 0 1.99± 13.91 0± 0 0± 0

80% 0± 0 0± 0 0± 0 0± 0

90% 0± 0 0± 0 0± 0 0± 0

100% 0± 0 0± 0 0± 0 0± 0
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Ring vaccination
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Figure A.11: Barabasi-Albert network: Distribution of final infectious cases in different
timing for ring vaccination scenario when 1% of the population is exposed prior to vaccina-
tion. Circles represent mean infection cases for each month connected by lines.
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Figure A.12: Barabasi-Albert network: Distribution of final infectious cases in different
timing for ring vaccination scenario when 3% of the population is exposed prior to vaccina-
tion. Circles represent mean infection cases for each month connected by lines.
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Double strain SARS-CoV-2 model

results

Here, we present the simulation plots for the double strain model in Chapter 5 and considering

only mass vaccination.

B.1 Model assuming equal vaccine efficacy levels

The set of figures presented here represent the model in Section 5.5.3.2 where the vaccine

efficacy levels and population coverage levels considered are the same as in the single strain

model. As mentioned in the main text, vaccine efficacy varied between 40%− 100% whereas

population coverage varied between 10% − 100%. In all simulations, we consider that lock-

down begins on day 50 and ends on day 140. For ER simulations: N = 105, β1 = 0.022,

β2 = 0.025, τ = day 220 and T = 539 days. For BA simulations: N = 105, β1 = 0.014,

β2 = 0.017, τ = day 220 and T = 539 days. Each scenario is repeated 100 times and the

outputs are taken for analysis.
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B.1.1 Erdos-Renyi network

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.5

1.0

1.5

2.0

2.5
In

fe
ct

io
u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.5

1.0

1.5

2.0

2.5

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

ct
io

u
s 

ca
se

s 
(%

)

Type

Strain 1
Strain 2

%vac=10 %vac=20 %vac=30

%vac=40 %vac=50 %vac=60

%vac=70 %vac=80 %vac=90 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
fe

ct
io

u
s 

ca
se

s 
(%

)

×10 3

Type

Strain 1
Strain 2

%vac=100

Figure B.1: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 40%. Population coverage varies from 10%− 100%.
Circles represent mean infection cases for each month connected by lines.
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Figure B.2: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 60%. Population coverage varies from 10%− 100%.
Circles represent mean infection cases for each month connected by lines.
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Figure B.3: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 80%. Population coverage varies from 10%− 100%.
Circles represent mean infection cases for each month connected by lines.
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Figure B.4: Erdos-Renyi network: Distribution of final infectious cases in different timing
for mass vaccination scenario when η = 100%. Population coverage varies from 10%−100%.
Circles represent mean infection cases for each month connected by lines.
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B.1.2 Barabasi-Albert network
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Figure B.5: BA network: Distribution of final infectious cases in different timing for mass
vaccination scenario when η = 40%. Population coverage varies from 10% − 100%. Circles
represent mean infection cases for each month connected by lines.
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Figure B.6: BA network: Distribution of final infectious cases in different timing for mass
vaccination scenario when η = 60%. Population coverage varies from 10% − 100%. Circles
represent mean infection cases for each month connected by lines.
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Figure B.7: BA network: Distribution of final infectious cases in different timing for mass
vaccination scenario when η = 80%. Population coverage varies from 10% − 100%. Circles
represent mean infection cases for each month connected by lines.
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Figure B.8: BA network: Distribution of final infectious cases in different timing for mass
vaccination scenario when η = 100%. Population coverage varies from 10%− 100%. Circles
represent mean infection cases for each month connected by lines.
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B.2 Model assuming vaccine resistance

The set of figures presented here represent the model in Section 5.6 where the vaccine efficacy

levels and population coverage levels considered are the same as in the single strain model. As

mentioned in the main text, vaccine efficacy varied between 40%−100% whereas population

coverage varied between 10% − 100%. In all simulations, we consider that lockdown begins

on day 50 and ends on day 140. For ER simulations: N = 105, β1 = 0.022, β2 = 0.025, τ =

day 220 and T = 539 days. For BA simulations: N = 105, β1 = 0.014, β2 = 0.017, τ = day

220 and T = 539 days. Each scenario is repeated 100 times and the outputs are taken for

analysis.
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B.2.1 Erdos-Renyi network
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Figure B.9: Erdos-Renyi vaccine resistance model: Distribution of final infectious cases
in different timing for mass vaccination scenario when η = 40%. Population coverage varies
from 10%−100%. Circles represent mean infection cases for each month connected by lines.
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Figure B.10: Erdos-Renyi vaccine resistance model: Distribution of final infectious cases
in different timing for mass vaccination scenario when η = 60%. Population coverage varies
from 10%−100%. Circles represent mean infection cases for each month connected by lines.
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Figure B.11: Erdos-Renyi vaccine resistance model: Distribution of final infectious cases
in different timing for mass vaccination scenario when η = 80%. Population coverage varies
from 10%−100%. Circles represent mean infection cases for each month connected by lines.
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Figure B.12: Erdos-Renyi vaccine resistance model: Distribution of final infectious cases
in different timing for mass vaccination scenario when η = 100%. Population coverage varies
from 10%−100%. Circles represent mean infection cases for each month connected by lines.
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Aufgrund des Mangels an geeigneter epidemiologischer Daten liefern mathematische Modelle

durch Simulation einen gewissen Anhaltspunkt für die Wirksamkeit von Krankheitsbekaemp-

fungsinterventionen. Kenntnisse über die Übertragungseigenschaften von Infektionen können

in mathematische Modelle einbezogen werden, um bessere Rückschlüsse auf Infektionen zu

ziehen. In dieser Arbeit haben wir mathematische Modellierungstechniken eingesetzt, um das

Problem der Arzneimittelresistenz auf zwei Ebenen zu untersuchen: zwischen denWirten und

innerhalb der Wirte. Wir haben die Bedeutung mathematischer Modelle als kosteneffizien-

ten Ansatz zum Verständnis der Dynamik des Infektionsverlaufs sowie der Kontrolle und

der Interventionen auf beiden Ebenen beschrieben. Die Untersuchung biologischer Prob-

leme dieser Art mit mathematischen Ansätzen ist ein nützliches Vorhersageinstrument, um

einige ungewisse Szenarien während eines Krankheitsausbruchs zu erforschen und, was am

wichtigsten ist, die plausiblen Auswirkungen von Kontrollmaßnahmen und Interventionen

vorherzusagen.

In Kapitel 2, haben wir eine allgemeine Einführung in die Entwicklung der Arzneimittelre-

sistenz sowohl innerhalb des Wirts als auch in einer bestimmten Population gegeben. Wir

haben die biologischen Grundlagen des Problems der arzneimittelresistenten Infektionen, die

in der vorhandenen Literatur zu finden sind, eingehend beschrieben. Wir haben auch ver-

schiedene mathematische Ansätze erforscht, die bei der Untersuchung resistenter Infek-

tionen verwendet wurden, zum Beispiel deterministische, stochastische und statistische Meth-

oden. Diese Modelle beschränken sich häufig auf die Dynamik der Resistenzausbreitung, ver-

nachlässigen aber die Resistenzevolution und sind häufig deterministischer Natur. Sie stellen

hypothetische Situationen für die Ausbreitung von Infektionen mit Arzneimittelresistenzen

in Krankenhäusern und in der Bevölkerung dar und zeigen auch einige häufig verwendete

Behandlungsstrategien auf.

Eine gängige Praxis für Modellierer ist die Verwendung deterministischer Modelle, da die Sim-

ulation solcher Modelle oft einfacher ist als die stochastischer Modelle. Stochastische Modelle

eignen sich gut zur Erfassung komplexer heterogener Prozesse in einem biolo-gischen Sys-

tem. Sie können dazu verwendet werden, bestimmte Komplexitäten der Widerstandsfähigkeit

148
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aufzudecken, was deterministische Modelle nicht können. Mit solchen Modellen lassen sich

komplexe Wechselwirkungen erforschen, die sich auf die Resistenz auswirken können, wie

z.B. die Dosierungswirkung und die Immunantwort.

Diese Ansätze sind zwar alle ein guter Schritt in Richtung eines besseren Verständnisses re-

sistenter Infektionen, doch die Bekämpfung der Resistenz hängt vom Verständnis der Mech-

anismen ab, die zur Entstehung der Resistenz führen. Daher ist es wichtig, dass Modelle,

die sich mit diesem Problem befassen, spezifische evolutionäre Mechanismen der Resistenz

wie Mutationen und Interaktionen zwischen resistenten Genen einbeziehen. Dies wird zum

Verständnis der Interaktion zwischen genetischen Stämmen von Krankheitserregern beitra-

gen und helfen, geeignete Maßnahmen zu entwickeln.

Zu diesem Zweck haben wir in Kapitel 3 mathematische Modellierungstechniken eingesetzt,

um die Entwicklung und Ausbreitung resistenter Infektionen im Wirt zu untersuchen und

einige Behandlungsstrategien zur Bekämpfung der Resistenz zu analysieren. Wir haben lo-

gistisch basierte mathematische Modelle vorgestellt, um die Dynamik verschiedener Erreger-

stämme während der Arzneimitteltherapie zu beschreiben und auch den Prozess der Zellmu-

tation zu erfassen, der zur Resistenz im Wirt führt.

Die Dynamik der Antibiotikaresistenz lässt sich mit dem folgenden, von [214] vorgeschlagenen

allgemeinen, geschalteten logistischen System beschreiben. Dieses Modell beschreibt die

Interaktion zwischen genetischen Bakterienstämmen und hilft dabei, geeignete Maßnahmen

festzulegen. Die Modellgleichung lautet

ẋi(t) = ρi,σ(t)xi(t)
(
1− xi(t)

K

)
− δσ(t)xi(t) + µ

∑n
j=1mij,σ(t)xj(t)

und ist definiert für alle t ≥ 0 und wobei xi : i = 1, 2, 3, ..., n mit n verschiedene Bakterien-

stämme repräsentieren. Jeder Zustand xi bezeichnet einen Bakterienstamm, der ent-weder

empfindlich oder resistent gegen ein bestimmtes verwendetes Medikament ist. µ ist die

Mutationsrate. δσ(t) ist die bakterielle Clearance in Abhängigkeit von dem verwendeten

Medikament. ρi,σ(t) ist die Proliferationsrate des Stammes i unter der Therapie σ zu einem

beliebigen Zeitpunkt t. mij,σ(t) ist die Mutation von Stamm i zu Stamm j unter Therapie

σ zu jedem Zeitpunkt t. K definiert die maximale Belastbarkeit und σ(t) bezeichnet das

Umschaltsignal (siehe 2.2.2.1) auf der Grundlage der Behandlungspolitik, so dass σ(t) Werte

in {σ1, σ2, . . . , σN} annimmt, wobei N die Anzahl der Medikamente darstellt. Alle Para-

meter und Anfangsbedingungen werden als nicht-negativ angenommen, so dass xi(0) ≥ 0 für

i ∈ {1, 2, . . . , n}.
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Ohne Beschraenkung der Allgemeingültigkeit kann das Modell durch die folgende Änderung

der Variablen in Gleichung (4.2) vereinfacht werden:

ρi,σ(t) → ρi, δσ(t) → δ und mij,σ(t) → mij .

Somit mit K = 1 laesst sich die Gleichung (4.2) umschreiben als

ẋi(t) = xi(t) (ρi − δ)− ρixi(t)
2 + µ

n∑
j=1

mijxj(t), 1 ≤ i ≤ n.

Die Region von biologischen Interesse ist gegeben als die Menge

Ω2 = {(x1, x2, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n} .

Bei der medikamentösen Therapie zur Beseitigung von Resistenzen ist die Behandlungs-

planung nach wie vor ein wichtiges Forschungsgebiet, da es keinen Konsens über die besten

Behandlungsprotokolle gibt.

Angeregt durch Studien, die gezeigt haben, dass die sequenzielle Verabreichung von Medika-

menten langfristig besser geeignet ist, resistente Stämme auszurotten, haben wir Begriffe

aus der Steuerungstechnik und aus positiv geschalteten Systemen verwendet, um Stra-tegien

für die zyklische Verabreichung von Medikamenten mit dem Ziel zu entwickeln, die Medika-

mentenresistenz im Wirt auszurotten. Insbesondere analysierten wir die zeitliche Planung

und den sequenziellen Einsatz von Arzneimitteln für die Behandlung innerhalb eines Wirts

unter Anwendung des Prinzips der kollateralen Empfindlichkeit bei Bakterien und verglichen

verschiedene Therapiewechselansätze, um ihre Leistung bei der langfristigen Ausrottung

von Resistenzen im Wirt zu bestimmen. Wir verglichen die Umschaltung bei zwei ver-

schiedenen Arten von Arzneimittelumschaltungen: periodische Umschaltung und Lyapunov-

Umschaltung und untersuchten diese Systeme sowohl bei Vorhandensein als auch bei Abwesen-

heit einer Mutation. Wenn Mutation als vorhanden betrachtet wird, wird asymptotische Sta-

bilität des Ursprungs erreicht, wenn das Schaltsystem eine gemeinsame Lyapunov-Funktion

hat.

Um die Verarmung der resistenten Stämme zu gewährleisten ist der Gleichgewichtspunkt

von Interesse das infektionsfreie Gleichgewicht am Ursprung. Die lineare Stabilität dieses

Punktes haben wir bereits in Theorem 4.4.1.1 nachgewiesen. Als Nächstes wird die Stabilität

des Ursprungs mit Hilfe der Lyapunov-Theorie über die Stabilität dynamischer Systeme

(siehe Theorem 2.3) weiter analysiert. Dazu definieren wir den Anziehungsbereich Ω2D als

Ω2D = Ω2 \ S, wobei S = {(x1, . . . , xn) ∈ E|xi > 0 for all i = 1, . . . , n}.



Deutsche Zusammenfassung 151

Theorem 4.17 In Abwesenheit von Mutationen (d.h. wenn µ = 0), lässt das System (4.17)

zu, dass der Ursprung global asymptotisch stabil ist, wenn ρi < δ für alle i ∈ {1, . . . , n}.

Ausgehend von einem einfachen Zweistamm-System mit zwei Therapien untersuchten wir in

kleinem Maßstab geeignete Protokolle für die Medikamentenplanung. Anhand numerischer

Simulationen konnten wir zeigen, dass jede Umschaltstrategie die Ausrottung der Resistenz

gewährleistet, wenn beide Teilsysteme am Ursprung asymptotisch stabil sind. Wenn jedoch

nur ein Teilsystem instabil ist, garantiert das periodische Schalten nicht, dass die Resistenz

verschwindet, aber das Lyapunov-basierte Schalten tut es und ist sogar viel schneller. Wenn

alle Teilsysteme am Ursprung instabil sind, gewährleistet nur eine lyapunov-basierte Um-

schaltung die Auslöschung. In diesem Fall kann die Rückkopplungsschaltung verwendet

werden, um die Gleitfläche zu erreichen, und die Steuerung kann mit einem Gleitgesetz ver-

vollständigt werden, das auf periodischer Schaltung basiert.

Anschließend haben wir dieses Modell auf ein allgemeineres System mit mehr als zwei

Stämmen und vielen Therapien ausgedehnt. Auch für das allgemeine Modell erhielten wir

ähnliche Ergebnisse.

Proposition 4.18 Das System (4.2) hat den Ursprung als stabiles Gleichgewicht, wenn es

für jedes x ∈ Ω2D mindestens eine Therapie σx ∈ {σ1, · · · , σN}, für die V̇ (x, σx) < 0, wobei

V̇ die Ableitung der Lyapunov-Funktion in eq (4.26) ist.

Unsere numerischen Simulationen zeigten, dass Umschaltstrategien auf der Grundlage von

Lyapunov-Funktionen eine bessere Leistung aufweisen. Die in diesem Kapitel betrachteten

Fälle lieferten schnellere und rechnerisch praktikable Ergebnisse und waren unter bestimmten

Bedingungen in der Lage, die pathogenen Populationen auszurotten. Die Simulationsergeb-

nisse machen deutlich, dass die Protokolle für den Medikamentenzyklus nicht intuitiv sind

und daher die Erregerdynamik unter verschiedenen Behandlungen für die Ausrottung der

Infektion von zentraler Bedeutung ist. Trotz dieser guten Leistung wird es interessant sein,

auch Ansätze der Model Predictive Control (MPC) zu prüfen, da sich MPC insbesondere in

der Kontrolltheorie als gut für nichtlineare Modelle erwiesen hat.

In Kapitel 4 war es unser übergeordnetes Ziel, mathematische und rechnerische Ansätze zu

verwenden, um antimikrobielle Infektionen zwischen Wirten zu beschreiben. Wir verwende-

ten das neuartige Coronavirus als Fallstudie und modellierten seine Übertragungsdynamik in

einem sozialen Netzwerk inmitten von Impfkampagnen und anderen nicht-pharmazeutischen

Interventionen. Wir beschrieben die allgemeine Dynamik der Krankheit und untersuchten die

Auswirkungen von Impfprotokollen auf die Ausbreitung dieses Virus. Mit hilfe numerischer

Simulationen haben wir auch die potenziellen qualitativen Auswirkungen untersucht, die

eine neue und besser übertragbare mutierte, impfstoffresistente Variante auf die Bevölkerung

haben könnte.
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Unsere Ergebnisse für das Modell mit einem einzigen Stamm zeigen, dass unabhängig vom

Impfprotokoll und vom Netzwerkmodell die Zahl der Infektionsfälle immer dann zurückging,

wenn geimpft wurde. Darüber hinaus hing die Zahl der Personen, die geimpft werden

mussten, um niedrige Infektionswerte und Spitzenwerte zu erreichen, stark von der Wirk-

samkeit des Impfstoffs ab. Bei einem Impfstoff mit geringer Wirksamkeit müssten beispiels-

weise mehr Menschen geimpft werden, um Infektionsspitzen zu vermeiden.

Wird jedoch eine impfstoffresistentere Variante zusammen mit dem Wildtypvirus in den

Verkehr gebracht, so werden mit dem impfstoffresistenten Stamm mehr Personen infiziert als

mit dem Wildtyp und zwar bei allen Impfstoffwirkungsgraden außer bei 100%. Bei einem

wirksamen 100%-Impfstoff hingegen kommt es nur zu einer geringen oder gar keiner Infektion,

wenn mehr als 30% der Bevölkerung geimpft sind. Darüber hinaus haben wir festgestellt,

dass in der geimpften Bevölkerung weniger Menschen mit dem Wildtyp-Stamm infiziert sind

als mit dem mutierten Stamm. Diese Beobachtung ist auf die erhöhte Übertragbarkeit und

die geringere Wirksamkeit des Impfstoffs gegenüber dem mutierten Stamm zurückzuführen.

Bei der Untersuchung der Auswirkungen der SARS-CoV-2-Übertragung auf soziale Netz-

werke haben wir unsere Analyse auf zwei Arten von sozialen Netzwerken beschränkt, nämlich

das Erdos-Renyi-Netzwerk und das Barabasi-Albert-Netzwerkmodell. Im Hinblick auf eine

größere Praxisnähe kann die in dieser Arbeit durchgeführte Analyse erweitert werden, um

die Krankheitsausbreitung und Impfung in anderen sozialen Netzwerken und Small-World-

Netzwerkmodellen wie demWatts-Strogatz-Netzwerk unter Verwendung ähnlicher Szena-rien

und Protokolle zu untersuchen. Solche Netzwerkmodelle können miteinander verglichen und

die Ergebnisse analysiert werden. Daten über bekannte soziale Netzwerke wie Kontakt-

matrizen und Mischungsmuster können ebenfalls für weitere Analysen und Bewertungen

herangezogen werden.

In unseren numerischen Simulationen sind wir von einem optimistischen Zustand ausgegan-

gen, in dem alle infektiösen Personen identifiziert werden. In der Realität ist die Rück-

verfolgung von Kontakten im Verlauf einer laufenden Epidemie besonders schwierig. Im

speziellen Fall von SARS-CoV-2 haben sich sowohl herkömmliche, auf Befragungen basierende

Ansätze als auch neuere digitale Anwendungen zur Kontaktverfolgung als weniger effektiv

erwiesen. Die Identifizierung aller infektiösen Kontakte und ihrer Sekundärkontakte (ins-

besondere für die Ringimpfungsstrategie) ist daher schwierig und mit höheren Kosten ver-

bunden. In der Tat können diese Herausforderungen die Wirkung der Impfbemühungen

potenziell verringern. Außerdem geht das hier verwendete Modell von einer gleichmäßigen

Durchmischung der Individuen und ihrer Nachbarn im Netzwerk aus, während dies in der

Realität nicht der Fall ist. Folglich könnte dies zu einer geringeren Zahl von Infektionsfällen

und einer geringeren Durchimpfung der Bevölkerung führen.
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Balázs Horváth, Andrea Vörös, Róbert Busa-Fekete, Mónika Hrtyan, et al. Genome-

wide analysis captures the determinants of the antibiotic cross-resistance interaction

network. Nature communications, 5:4352, 2014. [Cited on pages 3 and 44.]
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Jesús López-Estrada. Within-host population dynamics of antibiotic-resistant m. tu-

berculosis. Mathematical Medicine and Biology, 24(1):35–56, 2007. [Cited on pages 25 and 30.]

[113] Roland R Regoes, Camilla Wiuff, Renata M Zappala, Kim N Garner, Fernando Ba-

quero, and Bruce R Levin. Pharmacodynamic functions: a multiparameter approach

to the design of antibiotic treatment regimens. Antimicrobial agents and chemotherapy,

48(10):3670–3676, 2004. [Cited on pages 25, 27, 28, and 30.]

[114] Klas I Udekwu and Howard Weiss. Pharmacodynamic considerations of collateral

sensitivity in design of antibiotic treatment regimen. Drug design, development and

therapy, 12:2249, 2018. [Cited on pages 25, 28, 30, and 44.]

[115] Femke de Velde, Johan W Mouton, Brenda CM de Winter, Teun van Gelder, and Bir-

git CP Koch. Clinical applications of population pharmacokinetic models of antibiotics:

Challenges and perspectives. Pharmacological research, 2018. [Cited on page 25.]

[116] Joseph L Kuti. Optimizing antimicrobial pharmacodynamics: a guide for your stew-
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