Science
 MIAAAS

Supplementary Materials for

Flexible control of vocal timing in bats enables escape from acoustic interference

Ava Kiai ${ }^{1 *}$, Jan Clemens ${ }^{2}$, Manfred Kössl ${ }^{1}$, David Poeppel ${ }^{3,4}$, Julio Hechavarría ${ }^{1 *}$
Corresponding author: ava.kiai@stud.uni-frankfurt.de, hechavarria@bio.uni-frankfurt.de

The PDF file includes:
Materials and Methods
Figs. S1 to S7
Tables S1 to S17
References (33, 35-37)

Materials and Methods

Animals

72 adult bats (24 female) of the species Carollia perspicillata were used in this study. Bats were taken from a breeding colony at the Institute for Cell Biology and Neuroscience at Goethe University Frankfurt in Frankfurt am Main, Germany. All experiments were conducted in accordance with the Declaration of Helsinki and local regulations in the state of Hessen (experimental permit FU1126 and FR2007, Regierungspräsidium Darmstadt). Animals had access to food (a mixture of banana pulp, oatmeal and honey) and water ad libitum when recordings were not taking place. 48 bats (16 female) were used in experiment 1 , while 24 (8 female) were used in experiment 2.

Stimuli

Experiment 1

Two types of masking noise were generated for this experiment, a broadband white noise (carrier frequencies $10-96 \mathrm{kHz}$) "full-band masker" and a narrower-band (carrier frequencies $50-96 \mathrm{kHz}$) "half-band masker" (60 seconds each). Each noise segment was then duplicated and amplitude modulated at 8 and 15 Hz , separately. The carrier frequencies for the broadband white noise were selected in order to spectrally mask the peak frequencies used by Carollia perspicillata bats for communication calls and echolocation pulses, and only echolocation pulses, respectively (1, 2). Amplitude modulation rates were chosen to query temporal rates above and below the peak temporal modulation rate of the colony's spontaneous calling, based on previous analysis of acoustic recordings made in the colony $(\sim 11 \mathrm{~Hz})$ (Fig. S1).

Experiment 2

A 90 second segment of the full-band masker noise (carrier frequencies $10-96 \mathrm{kHz}$) was generated and calibrated to account for the dB roll-off induced by the speaker. The calibration curve used to calibrate the stimuli was computed using a custom Matlab GUI (MathWorks), by playing various pure tones through the speaker which were picked up by a Brüel \& Kjær microphone positioned roughly at the location in the experimental chamber where the bats tended to congregate. The full-band masker noise was then used to generate eight masking noises with different modulation rates: $4,8,16,25,33,40,50$, and 80 Hz . For each modulation rate, we then generated a 7.5 minute long audio file. The eight 7.5 minute files were then randomly permuted and concatenated together to form a 60 minute acoustic stimulus. We then generated a 15 minute long "random masker" by randomly permuting and concatenating together single amplitude modulation cycles for each rate. This was done four times, and the 15 minute sequences were randomly permuted and concatenated together to form a 60 minute acoustic stimulus. The precise sequence in which stimuli were presented was determined by two randomizations, each of which was presented to two groups of bats.

Procedure

Experiment 1

Audio and video were recorded from each of eight groups of bats (4 males, 2 females in each group) in an anechoic chamber over five consecutive recording days. On each day, recordings were first made in three onehour blocks ("playback conditions"): a silent baseline was followed in the second and third blocks by acoustic playback of the full-band and half-band masking noise ("masking conditions"). (Presentation order of the two masking noises was counterbalanced across groups). Full- and half-band masking noise played to each group of bats was either amplitude modulated at 8 or 15 Hz . Hence, each group only ever heard playback noise modulated at one temporal rate, but with different spectral components.

A computer running Matlab 2021a and Avisoft ultrasound recording software (Avisoft-RECORDER USGH, version 4.3.00) controlled simultaneous audio playback, video acquisition and audio recording. A custom Matlab script played the 60 -second audio stimuli ($16-\mathrm{bit}, 192 \mathrm{kHz}$ sampling rate) 60 times to a directional speaker via a RME Fireface 400 FireWire soundcard and amplifier. Stimuli were played at $\sim 70 \mathrm{~dB}$ SPL measured at a distance of $\sim 20 \mathrm{~cm}$ from the speaker. A webcam with infrared filter removed was placed in the cage with a view to the bats' roosting corner and illuminated by an infrared LED light. Two trigger channels were used to synchronize audio and video recordings with the start of acoustic playback or, in the silent condition, the start of the recording block: the first sent a TTL pulse to the Avisoft recording device (UltraSoundGate 116 Hm), which in turn triggered the recording software to begin acquisition from a condenser microphone (250 kHz sampling rate, Avisoft-Bioacoustics CM16); the second illuminated a red photodiode placed in view of the webcam for aligning video and audio offline.

Experiment 2

Procedure was similar to that in experiment 1, with the following exceptions: Four groups of bats were tested, each of which was presented with the same acoustic conditions. Acoustic playback in the second and third recording blocks consisted of the steady-state and random masker noise. Precise presentation order and randomizations were counterbalanced between groups. A custom Matlab script controlled simultaneous audio playback, video acquisition and audio recording. 60 minute audio stimuli were played to the speakers.

Data Analysis

Experiment 1

First, any silent periods preceding or following the onset and offset of the masking noise were manually removed (except for groups $1 \& 2$ in the 8 Hz context, see below). Raw audio files (60 minutes long) were split into segments of 7.5 minutes in duration (all groups except groups $1 \& 2$ from the 8 Hz condition, for which the raw audio files were 1 minute in duration).

For groups $1 \& 2$ in the 8 Hz context only: raw data files were saved as 60 second long audio files and featured a brief silence ($\sim 250 \mathrm{~ms}$) at the end of each file, corresponding to the delay caused by the program re-initializing for the next stimulus presentation. These brief silences were trimmed by cross-correlating the amplitude envelope at the end of each file with the amplitude envelope of a recording of the auditory stimulus in the experimental booth without any animals present ("envelope cross-correlation"). Trimmed audio files were visually checked to make sure the end of the file corresponded with the trough of the last amplitude modulation cycle in the file. For files recorded in the silent condition, the final 250 ms of each file was trimmed. For all other groups in this experiment, raw data files were 60 minute long audio files and featured a brief, silent preand post-trigger period (~ 2 and 0.75 s , respectively). These brief silences were trimmed via envelope crosscorrelation. For files recorded in the silent condition, the first 2 and final 0.75 seconds were removed. Files were visually checked and manually edited where the envelope cross-correlation failed to adequately remove artifactual silences.

Vocalization events were detected using Deep Audio Segmenter (DAS, v0.28.3)(3), a deep neural network developed for the annotation of acoustic signals, and Python (v3.8.3). First, a subset of the dataset was manually annotated. Next, training and test datasets were created from these annotations for the silent and masking conditions, separately. We trained several DAS models using different hyperparameters until we achieved satisfactory prediction and/or a plateau in model improvement. Performance was calculated as the F1 score, the geometric mean of precision and recall. Prediction parameters the same for all runs: 1 ms minimum event duration and 0.9 ms minimum time between event boundaries. Precision, recall, F1 scores, and temporal errors for call onset detection were calculated based on a tolerance of 1.5 ms . Call offsets were detected and used to estimate call durations for the purpose of gaining a broad impression of the proportion of echolocation to communication calls, but otherwise not analyzed, since offsets in our dataset were not very well-defined (i.e. calls frequently featured a decay rather than a sharp offset, or appeared "smeared" due to the appearance of the
echo on the recording following the echolocation pulse). Hyperparameters and model performance measures are reported in Tables $1 \& 2$, respectively.

Finally, we labelled each vocalization event detected in the masking conditions with a value corresponding to the instantaneous phase of the amplitude modulation at the time of call onset. Each audio file was bandpass filtered ($10.1-10.5 \mathrm{kHz}, 3^{\text {rd }}$ order butterworth filter) to remove acoustic artifacts. The Hilbert envelope of the filtered audio was then downsampled by a factor of 10 and passed through a temporal bandpass filter (modulation rate $\pm 1 \mathrm{~Hz}, 2^{\text {nd }}$ order butterworth filter) to preserve the amplitude modulation signal while removing other acoustic features. The signal was then demeaned and zero-padded at both ends (20 samples). Next, we detected the troughs of the amplitude modulation signal and used these to reconstruct a phase model ($0: 2 \mathrm{pi}$) of the amplitude modulation envelope, with each trough as the beginning of the next cycle. Time differences between detected troughs were used to estimate the temporal accuracy of the instantaneous phase model (fig. S6). Detected vocalizations were finally tagged with the corresponding phase value at call onset. For audio files from the silent condition, calls were tagged according to a simulated instantaneous phase signal modelled as a cosine aligned to the start of the file. This cosine model featured the same modulation rate as the corresponding playback conditions.

	Condition	Chunk [samples]	STFT downsample	TCN stacks	Kernel size [samples]	Kernel
Experiment 1	Silence	8192	$16 x$	2	16	32
	Masking	8192	16 x	4	16	32
Experiment 2	Silence	8192	16 x	2	32	32
	Masking	8192	16 x	2	16	32

Table 1. Hyperparameters for final models

		Call Onset Detection			
		Precision	Recall	F1 score	Median temporal error (ms)
Experiment 1	Silence	0.97	0.64	0.77	0.35
	Masking				
	predict 8 Hz	0.94	0.65	0.75	0.37
	predict 15 Hz	0.96	0.45	0.61	0.38
Experiment 2	Silence	0.90	0.62	0.73	0.32
	Masking	0.90	0.61	0.73	0.21

Table 2. Model performance and temporal error in predicting test set

Experiment 2

First, any silent periods preceding or following the onset and offset of the masking noise were manually removed. For audio files from the silent condition, the first and final 2.2 seconds (corresponding to the preand post-trigger period) was removed. Raw audio files from the silent and steady-state conditions were then split into segments of 7.5 minutes in duration, in the latter case corresponding to the playback duration of each individual modulation rate. Files from the random conditions were split into segments of 15 minutes, corresponding to the duration of pseudo-random blocks of modulation rate sequences.

The same procedure was used as in experiment 1 to detect the vocalization events. Model hyperparameters and performance measures are reported in Tables $1 \& 2$, respectively. To ensure that the model was not biased towards detecting (or failing to detect) vocalizations at particular phases of the amplitude envelope, we
computed the instantaneous phase of a subset of predicted call events in the test set (from recordings during the random masker playback, which included samples from all modulation cycles), and grouped them by whether DAS detected a true positive, false positive, or false negative. We found no prominent bias in the detection of call events at any particular phase (fig. S7).

The same procedure was used as in experiment 1 to label vocalization events with the instantaneous amplitude phase for call detected in the silent and stead-state conditions. For calls detected in the random condition: Each audio file was bandpass filtered ($15-60 \mathrm{kHz}, 3^{\text {rd }}$ order butterworth filter) to remove acoustic artifacts. The Hilbert envelope of the filtered audio was then downsampled by a factor of 10 and passed through a temporal lowpass filter ($70 \mathrm{~Hz}, 2^{\text {nd }}$ order butterworth filter) to preserve principally the amplitude modulation signal. The signal was then smoothed with a 12 -point moving average filter. The sequence of amplitude modulation cycles that comprised the stimulus in each audio file was then used to construct a cosine phase model, which was cross-correlated with the derived modulation signal to obtain an amplitude envelope fit to the recorded audio file. This signal was then demeaned and zero-padded at the ends (20 samples). Next, we detected the troughs of the amplitude modulation signal and used these to reconstruct a phase model ($0: 2 \mathrm{pi}$) of the amplitude modulation envelope, with each trough as the beginning of the next cycle. Time differences between detected troughs were used to estimate the temporal accuracy of the instantaneous phase model (fig. S6). Detected vocalizations were finally tagged with the corresponding phase value at call onset. For the random condition, data from all modulation cycles of the same temporal rate were pooled together.

Statistical Analyses

All statistical analyses were carried out in R (v4.2.1) and RStudio (v2022.7.2.576).
To determine if the presence of amplitude modulated noise affected the timing of emitted calls, we compared the density distribution of call onsets within the real/simulated modulation cycle for each playback condition and modulation rate. To describe the distributions in each condition, we computed a battery of circular summary statistics including the angular mean, mean resultant vector length, circular variance, circular standard deviation, and maximum likelihood bootstrapped von Mises parameters μ (sample mean) and κ (sample concentration).

We used Rayleigh's test of uniformity to compare distributions in each condition to the null hypothesis of a circular uniform distribution. We used Mardia-Watson-Wheeler non-parametric tests to test for overall differences between playback conditions within each modulate rate. To test for differences in the angular means or in the resultant vector lengths (polar concentrations) of call onset distributions between playback conditions within each modulation rate, we computed Rao's test of homogeneity. To determine which playback conditions varied significantly from each other on either measure, we computed post-hoc Rao's tests on pairs of conditions where omnibus Rao's tests were significant for either means or concentrations. These tests were carried out on the entire dataset despite differences in sample size between comparison groups, since the smallest group across both experiments had a sample size of over 5,000 and frequentist circular statistics are only sensitive to sample size at very small $\mathrm{Ns}(4)$.

To determine whether masking noise influenced the rate of calling, we modelled the number of observed calls in each experimental block (group x recording day x playback condition) using a negative binomial regression using playback condition as predictor, for each modulation rate separately, as follows:

$$
\ln \left(\widehat{n}_{l}\right)=\text { Intercept }+\beta_{1} I\left(\text { condition }_{j}=2\right)+\beta_{2} I\left(\text { condition }_{j}=3\right)
$$

Where n is the number of observed call events, I is the predictor variable of playback condition with two levels j as well as an Intercept (silence), and i is the modulation rate.

In R, models are implemented as follows:

$$
n \sim 1+\text { condition, data }=\text { data }[\text { data\$modulation }==x,] .
$$

The negative binomial regression was selected for this analysis, since a Poisson model with the same formula yielded highly over-dispersed models. Dispersion for all models used was close to 1. A Type II, partial likelihood ratio ANOVA was computed on the negative binomial models to determine significant predictors. Incidence rates and confidence intervals derived from the model were used to estimate the degree to which calling behavior increased or decreased for a given combination of predictors. Post-hoc comparisons evaluated differences in estimated marginal means (predicted calling rates) between pairs of masking conditions. This analysis was repeated for the temporally overlapping calls.

Wherever multiple hypothesis tests were carried out, p-values were adjusted for multiple comparisons by Bonferroni correction. For all hypothesis tests, an alpha level of 0.05 was used.

For the linear discriminant classification analysis, two measures of call onset timing were first computed from bootstrapped angular means as follows:

$$
\begin{array}{ll}
\text { (1) } t \text { from peak }=\mu-\frac{1 / f}{2} & \text { (2) } t \text { to trough }=\frac{1}{f}-\mu
\end{array}
$$

where μ is the angular mean computed from an MLE von Mises distribution and f is the modulation rate of the current cycle. Thus, time-from-peak values were positive if call onsets occurred on average after the modulation peak in the latter half of the cycle, and negative if call onsets occurred before the peak. Time-to-trough values give the time remaining between average call onset and the final moment in the cycle, the terminal trough. Data from the broadband masking conditions only (experiment 1: full-band masker, experiment 2 : steady-state and random masker) was then divided into a training and validation set with 0.6:0.4 split.

Next, three models were fed the training data ($0.6: 0.4$ split stratified on modulation rate groups) and asked to determine modulate rate classes predicted by either or both measures, as follows:

$$
\begin{aligned}
& \text { full model: modulation } \sim t_{\text {trough }}+t_{\text {peak }} \\
& \text { troughs model: modulation } \sim t_{\text {trough }} \\
& \text { peaks model: modulation } \sim t_{\text {peak }}
\end{aligned}
$$

Models (using the $l d a$ algorithm implemented in the caret package) were trained using 10 -fold cross-validation (repeated 10 times) and predictors were centered and scaled. Each model was then used to predict modulation rate classes for the validation set. Confusion matrices for observed versus predicted classes from the validation data is shown in Figure 4.

We then computed ROC curves and AUC values for each model from each experiment.

Manipulated Variables

In experiment 1 , one half of the bat groups (4 of 8) were housed together starting on the first recording day and subsequently only for the duration of the experiment (5 days). The other four groups were housed together for a seven-day "familiarization period" prior to the first recording day (12 days in total). An early hypothesis was that groups that did not have the familiarization period may vocalize more, since at the time of data collection all bats that were not part of the experiment were housed separately by sex. Thus, a mixed-sex group could lead to an unusually high level of vocal activity. No clear difference between these two groups emerged based on preliminary results from experiment 1 . All analyses were done without respect to this grouping variable.

Data Exclusion for Experiment 1

For groups $1 \& 2$ in the 8 Hz context, some recording blocks had buffer issues which caused improper logging of data. Audio files for these blocks were visually checked and sections with corrupted data were removed from the corresponding file if the error was minor (i.e. < 1 second long, or < 3 times per file). If errors were more extensive, the file was removed from analysis. Altogether, approx. 15 minutes of data was removed from the raw data for these two groups combined. For all remaining groups, the first 15 hours of recordings were visually checked for buffer issues. As only a few such occurrences were found, we did not proceed with the visual check. Original raw data for this experiment amounted to 120 hours of audio recording (approx. 105 hours after data exclusion).

Supplementary Figures

Temporal modulation rate of spontaneous vocalizations in C. perspicillata colony is $\boldsymbol{\sim} \mathbf{1 1} \mathbf{~ H z}$. (A) Audio recordings made in our colony of Carollia bats (160 minutes total) were highpass filtered (10 kHz) before amplitude envelopes were extracted via the secant method (interpolation over every 5,000 points). The power spectrum density (PSD) of the envelope was computed for each audio segment (10 s each) and averaged across segments. A "control" PSD was computed by randomly permuting sections of the amplitude envelopes in each segment and averaging the permuted-segment PSDs. The "control" PSD was subtracted from original average PSD to produce a power spectrum normalized for ambient noise/power in the signal. The peak of this power spectrum was at $\sim 11 \mathrm{~Hz}$ (inset), indicating the temporal modulation rate of spontaneous calling in the colony.

Fig. S2.
Experiment 1: Anti-phase calling is present in all groups and all recording days.

B

$\stackrel{N}{N}$	
$\stackrel{N}{\sim}$	
∞	$\stackrel{N}{n}$
\bullet	\bullet

$\stackrel{N}{N}$	
$\stackrel{N}{\sim}$	
∞	$\stackrel{N}{n}$
\bullet	\bullet

Fig. S3.
Bootstrapped von Mises parameters mean (μ) and concentration (κ) in the cartesian plane. (A) Parameters from experiment 1 data. (B) Parameters from experiment 2 data.

Fig. S4.
Experiment 2: Anti-phase calling is present in all groups for modulation rate conditions 4, 8 and 16. 25 Hz context reveals a slight modulation in calling pattern for some groups between the two masking conditions.
A

B

33 Hz

16 Hz

silence full-band masker half-band masker

D

Fig. 55.
Temporal overlap between calls is reduced in the presence of noise. (A) Angular vectors indicate angular mean and concentration for overlapping calls. Shaded segments indicate 95% confidence intervals for angular means. Significant clustering is seen in the 8 Hz full-band and 15 Hz half-band masking condition. (B) For experiment 1 , mean number of overlapping calls observed per hour are reduced in broadband masking noise compared to baseline. (C) For experiment 2, overlapping calls are significantly clustered only at 8 and 16 Hz in the steady-state condition. (D) For experiment 2 , mean overlapping calls dropped significantly between silent baseline and masking conditions for all modulation rates except 4 Hz .

Fig. S6.
Temporal and cycle-wise accuracy of instantaneous phase models. (A) For experiment 1, the median deviation error between expected modulation periods $(1 / f)$ and derived periods in the instantaneous phase model for all cycles across the entire data set. Errors were mostly between 0 and 3 ms for both modulation rate contexts. (B) For experiment 1, the number of true cycles in each one-hour recording block vs. the number of detected cycles in the instantaneous phase model. On average, 5 more cycles were detected in recording blocks in the 8 Hz context, and 19 fewer cycles were detected in the 15 Hz contexts. (C) For experiment 2 , median deviation error between expected and derived periods for each modulation rate were less than $\pm 0.3 \mathrm{~ms}$ for all rates in both masking conditions. (D) For experiment 2, true vs. detected number of cycles were almost perfectly matched for the steady-state condition. On average, detected cycles were ± 2 cycles from expected values (estimated per 7.5 minute block). For the random condition, true vs. detected cycles were calculated irrespective of modulation rate, but were accurate to $0:-4$ cycles per 15 minute block (file).

Fig. 57.
DAS-predicted call events by class, as a function of call onset phase. Phase tagging of detected call events from a representative test set (experiment 2: random masker) showed that DAS is not strongly biased to detect calls at particular phases in the amplitude modulation cycle.

Supplementary Tables

Table S1.

Estimated proportion of echolocation to communication calls. A total of 2,673 calls were classified as echolocation or communication calls by visual inspection of spectrograms from all four masking conditions used in both experiments (spectrogram segments sampled from randomly selected groups and files). A weighed average of the proportion of echolocation pulses to communication calls (weighted by the total duration of audio data inspected for each condition) was then computed.

	Playback Condition			
Silence	Full-band masker/Steady- state masker	Half-band masker	Random masker	
Total duration scanned (s)	180	240	90	90
Condition-wise mean prop. echo Weighted mean prop. echo	0.79	0.96	0.94	0.78

Experiment 1: Circular statistics for call onsets with respect to the amplitude modulation cycle
Circular Statistics

modulation	condition	Summary Statistics					Rayleigh's Test			MLE von Mises			
		n	$\overline{\boldsymbol{\theta}}$	$\overline{\boldsymbol{r}}$	Vm	sd	R		p $\boldsymbol{P}_{\text {Bonferroni }}$	$\mu_{\text {MLE }}$	CI_{10}	C $\mathbf{I}_{\text {hi }}$	$\kappa_{M L E}$
8 Hz	silence	325,333	0.738	0.001	0.999	3.722	0.001	0.279	1	0.738	4.534	4.327	0.002
8Hz	full-band masker	146,187	5.752	0.067	0.933	2.324	0.058	0.000	<0.001	5.752	5.698	5.808	0.135
8Hz	half-band masker	229,311	2.579	0.012	0.989	2.989	-0.010	1.000	1	2.579	2.295	2.836	0.023
15 Hz	silence	202,822	3.933	0.001	0.999	3.661	-0.001	0.709	1	3.933	1.962	0.506	0.002
15Hz	full-band masker	78,197	5.403	0.051	0.949	2.442	0.032	0.000	<0.001	5.403	5.306	5.504	0.102
15Hz	half-band masker	443,217	1.042	0.002	0.998	3.524	0.001	0.170	1	1.042	6.003	2.560	0.004

Table S2.
$\mathrm{N}=$ number of observations. $\bar{\theta}=$ Mean resultant direction. $\bar{r}=$ Mean resultant length. $\mathrm{Vm}=$ circular variance. $\mathrm{sd}=$ circular standard deviation. $\mathrm{R}=$ test statistics for Rayleigh's test of uniformity. $\mathrm{p}=\mathrm{p}$ value. $\mathrm{P}_{\text {Bonferoni }}=$ Bonferroni corrected p-values for the family of all tests in the table. $\mu_{M L E}=$ Mean parameter estimated from the maximum likelihood von Mises distribution. $\mathrm{CI}_{\mathrm{I}}, \mathrm{CI}_{\mathrm{hi}}=$ Boostrapped upper and lower thresholds for the 95% confidence interval for the MLE mean parameter. $\kappa_{M L E}=$ Concentration parameter estimated from the MLE von Mises distribution.

Table S3.
316 Experiment 1: Rao's test for differences in angular means or dispersions in distributions of call onsets

between playback conditions

Rao test for homogeneity of angular means $\&$ dispersions within mod rates

modulation	condition	test	statistic	df	\boldsymbol{p}	$\boldsymbol{P}_{\text {Bonferroni }}$
8 Hz	Omnibus	polar vectors	0.477	2	0.788	1.000
8 Hz	Omnibus	dispersions	346.680	2	0.000	<0.001
15 Hz	Omnibus	polar vectors	2.708	2	0.258	0.516
15 Hz	Omnibus	dispersions	100.345	2	0.000	<0.001
8 Hz	silence vs. Full-band masker	polar vectors	0.422	1	0.516	1.00
8 Hz	silence vs. Full-band masker	dispersions	332.013	1	0.000	<0.001
8 Hz	silence vs. Half-band masker	polar vectors	0.444	1	0.505	1.00
8 Hz	silence vs. Half-band masker	dispersions	14.766	1	0.000	<0.001
8 Hz	full-band masker vs. Half-band masker	polar vectors	0.054	1	0.817	1.00
8 Hz	full-band masker vs. Half-band masker	dispersions	307.346	1	0.000	<0.001
15 Hz	silence vs. Full-band masker	polar vectors	0.739	1	0.390	0.78
15 Hz	silence vs. Full-band masker	dispersions	100.231	1	0.000	<0.001
15 Hz	silence vs. Half-band masker	polar vectors	0.045	1	0.832	1.00
15 Hz	silence vs. Half-band masker	dispersions	0.193	1	0.660	1.00
15 Hz	full-band masker vs. Half-band masker	polar vectors	1.975	1	0.160	0.32
15 Hz	full-band masker vs. Half-band masker	dispersions	100.029	1	0.000	<0.001

Observed calls per hour in 15 Hz modulated noise			
Predictors	Incidence Rate Ratios	CI	p
(Intercept)	10674.84	6729.32-18413.99	<0.001
condition [full-band masker]	0.39	0.19-0.79	0.008
condition [half-band masker]	2.19	$1.07-4.46$	0.030
Observations	57		
R ${ }^{2}$ Nagelkerke	0.395		
Deviance	67.547		
AIC	1171.104		

Note that the p-values in the table above are not Bonferroni corrected, as they represent p-values for model coefficients.

Table S5.
328 Experiment 1: Incidence rate ratios derived from negative binomial models
Incidence Rate Ratios

modulation	coefficient	Estimate	$\mathbf{2 . 5} \boldsymbol{\%}$	$\mathbf{9 7 . 5}$ \%
8 Hz	(Intercept)	16266.65	10048.04	28874.24
8 Hz	full-band masker	0.45	0.21	0.95
8 Hz	half-band masker	0.70	0.33	1.49
15 Hz	(Intercept)	10674.84	6729.32	18413.99
15 Hz	full-band masker	0.39	0.19	0.79
15 Hz	half-band masker	2.19	1.07	4.46

331 Table S6.
332 Experiment 1: ANOVA Analysis of variance for the predictor of playback condition for each modulation 333 rate model, separately.

		Type II Analysis of Deviance		
model	predictor	LR Chi-square	df	\boldsymbol{p}
8 Hz	condition	4.37	2	0.11
15 Hz	condition	21.34	2	<0.001

Table S7.

Experiment 2: Estimated marginal means of call incidence rates per condition
Estimated Marginal Means

modulation	contrast	IRR	se	$\mathbf{C I}_{\mathbf{l o}}$	$\mathbf{C I}_{\mathbf{h i}}$	\mathbf{Z} ratio	\boldsymbol{p}
8 Hz	silence / (full-band masker)	2.22	0.84	0.90	5.50	2.12	0.10
8 Hz	silence / (half-band masker)	1.42	0.54	0.57	3.51	0.92	1.00
8 Hz	(full-band masker) / (half-band masker)	0.64	0.24	0.26	1.58	-1.19	0.70
15 Hz	silence / (full-band masker)	2.59	0.94	1.09	6.15	2.64	0.03
15 Hz	silence / (half-band masker)	0.46	0.16	0.19	1.08	-2.17	0.09
15 Hz	(full-band masker) / (half-band masker)	0.18	0.06	0.07	0.42	-4.81	<0.001

$I R R=$ Incidence rate ratios.

Experiment 2: Circular statistics for call onsets with respect to the amplitude modulation cycle
Circular Statistics

		Summary Statistics				Rayleigh's Test				MLE von Mises			
modulation	condition	n	$\overline{\boldsymbol{\theta}}$	$\overline{\boldsymbol{r}}$	Vm	sd	R	p	$\boldsymbol{P}_{\text {Bonferroni }}$	$\boldsymbol{\mu}_{\text {MLE }}$	CI_{10}	$\mathrm{CI}_{\text {hi }}$	$\kappa_{M L E}$
4 Hz	silence	59,635	6.203	0.003	0.997	3.388	0.003	0.134	1	6.203	4.212	3.124	0.006
4 Hz	steady-state masker	28,938	5.246	0.074	0.926	2.282	0.038	0.000	<0.001	5.246	5.140	5.358	0.148
4 Hz	random masker	$\begin{gathered} 105,99 \\ 0 \end{gathered}$	5.245	0.054	0.946	2.416	0.027	0.000	<0.001	5.245	5.170	5.319	0.108
8 Hz	silence	62,203	5.480	0.002	0.998	3.462	0.002	0.270	1	5.480	3.523	2.293	0.005
8 Hz	steady-state masker	65,446	5.795	0.057	0.943	2.395	0.050	0.000	<0.001	5.795	5.702	5.891	0.114
8 Hz	random masker	51,939	5.459	0.061	0.939	2.366	0.041	0.000	<0.001	5.459	5.356	5.554	0.122
16 Hz	silence	65,769	0.858	0.003	0.997	3.376	0.002	0.213	1	0.858	5.075	3.812	0.007
16 Hz	steady-state masker	60,482	5.732	0.042	0.958	2.520	0.036	0.000	<0.001	5.732	5.603	5.871	0.084
16 Hz	random masker	25,543	5.376	0.046	0.955	2.486	0.028	0.000	<0.001	5.376	5.178	5.575	0.091
25 Hz	silence	67,403	4.819	0.003	0.997	3.373	0.000	0.448	1	4.819	2.541	0.274	0.007
25 Hz	steady-state masker	32,743	4.535	0.032	0.968	2.618	-0.006	0.928	1	4.535	4.299	4.766	0.065
25 Hz	random masker	16,600	5.056	0.027	0.973	2.689	0.009	0.050	1	5.056	4.653	5.478	0.054
33 Hz	silence	78,179	0.895	0.004	0.996	3.313	0.003	0.153	1	0.895	5.646	2.632	0.008
33 Hz	steady-state masker	34,843	5.359	0.008	0.992	3.093	0.005	0.092	1	5.359	4.466	0.165	0.017
33 Hz	random masker	12,830	4.688	0.034	0.966	2.599	-0.001	0.552	1	4.688	4.358	5.069	0.068
40 Hz	silence	68,797	0.196	0.001	0.999	3.668	0.001	0.331	1	0.196	4.283	2.335	0.002
40 Hz	steady-state masker	34,176	4.486	0.020	0.980	2.801	-0.004	0.877	1	4.486	4.063	4.874	0.040
40 Hz	random masker	10,531	4.241	0.015	0.985	2.891	-0.007	0.844	1	4.241	3.404	5.347	0.031
50 Hz	silence	61,956	5.052	0.002	0.998	3.564	0.001	0.419	1	5.052	2.940	1.454	0.004
50 Hz	steady-state masker	25,425	3.302	0.013	0.987	2.937	-0.013	0.999	1	3.302	2.584	4.017	0.027
50 Hz	random masker	8,487	1.776	0.009	0.991	3.055	-0.002	0.599	1	1.776	5.797	3.788	0.019
80 Hz	silence	75,144	0.679	0.002	0.998	3.457	0.002	0.221	1	0.679	4.565	3.322	0.005
80 Hz	steady-state masker	30,675	5.427	0.007	0.993	3.166	0.004	0.139	1	5.427	3.897	0.352	0.013
80 Hz	random masker	5,260	4.324	0.002	0.998	3.561	-0.001	0.527	1	4.324	1.952	2.322	0.004

344 Table S9.

345 Experiment 2: Watson-Wheeler tests for the circular homogeneity of distributions of call onsets

Watson-Wheeler test for homogeneity of groups (within modulation rates)			
modulation	statistic	\boldsymbol{p}	$\boldsymbol{P}_{\text {Bonferroni }}$
4 Hz	281.693	<0.001	<0.001
8 Hz	273.637	<0.001	<0.001
16 Hz	143.040	<0.001	<0.001
25 Hz	45.416	<0.001	<0.001
33 Hz	32.695	<0.001	<0.001
40 Hz	20.606	<0.001	<0.001
50 Hz	8.775	0.067	0.536
80 Hz	2.286	0.683	1.000

Table S10.
349 Experiment 2: Rao's test for differences in angular means or dispersions between playback conditions

Omnibus tests were carried out for each modulation rate to test if differences existed between the three playback conditions. For all tests with significant differences in either polar vectors or polar dispersions, posthoc tests were computed on pairs of playback conditions.

Rao test for homogeneity of angular means \& dispersions

modulation	condition	test	statistic	df	p	$\boldsymbol{P}_{\text {Bonferroni }}$
4 Hz	Omnibus	polar vectors	3.110	2	0.211	0.422
4 Hz	Omnibus	dispersions	232.370	2	<0.001	<0.001
8 Hz	Omnibus	polar vectors	18.883	2	<0.001	<0.001
8 Hz	Omnibus	dispersions	199.932	2	<0.001	<0.001
16 Hz	Omnibus	polar vectors	6.895	2	0.032	0.064
16 Hz	Omnibus	dispersions	77.400	2	<0.001	<0.001
25 Hz	Omnibus	polar vectors	3.853	2	0.146	0.292
25 Hz	Omnibus	dispersions	22.588	2	<0.001	<0.001
33 Hz	Omnibus	polar vectors	1.668	2	0.434	0.868
33 Hz	Omnibus	dispersions	7.870	2	0.020	0.040
40 Hz	Omnibus	polar vectors	0.897	2	0.639	1.000
40 Hz	Omnibus	dispersions	7.848	2	0.020	0.040
50 Hz	Omnibus	polar vectors	0.106	2	0.948	1.000
50 Hz	Omnibus	dispersions	2.521	2	0.284	0.568
80 Hz	Omnibus	polar vectors	0.806	2	0.668	1.000
80 Hz	Omnibus	dispersions	0.492	2	0.782	1.000
4 Hz	silence vs. steady-state masker	polar vectors	2.985	1	0.084	0.168
4 Hz	silence vs. steady-state masker	dispersions	79.850	1	0.000	0.000
4 Hz	silence vs. random masker	polar vectors	3.087	1	0.079	0.158
4 Hz	silence vs. random masker	dispersions	153.051	1	0.000	0.000
4 Hz	steady-state masker vs. random masker	polar vectors	0.000	1	0.983	1.000
4 Hz	steady-state masker vs. random masker	dispersions	15.231	1	0.000	0.000
8 Hz	silence vs. steady-state masker	polar vectors	0.046	1	0.830	1.000
8 Hz	silence vs. steady-state masker	dispersions	104.750	1	0.000	0.000
8 Hz	silence vs. random masker	polar vectors	0.000	1	0.985	1.000
8 Hz	silence vs. random masker	dispersions	95.520	1	0.000	0.000
8 Hz	steady-state masker vs. random masker	polar vectors	18.858	1	0.000	0.000
8 Hz	steady-state masker vs. random masker	dispersions	0.944	1	0.331	0.662
8 Hz	silence vs. steady-state masker	polar vectors	0.046	1	0.830	1.000
8 Hz	silence vs. steady-state masker	dispersions	104.750	1	0.000	0.000
8 Hz	silence vs. random masker	polar vectors	0.000	1	0.985	1.000
8 Hz	silence vs. random masker	dispersions	95.520	1	0.000	0.000
8 Hz	steady-state masker vs. random masker	polar vectors	18.858	1	0.000	0.000
8 Hz	steady-state masker vs. random masker	dispersions	0.944	1	0.331	0.662

Table S11.

356 Experiment 2: Incidence rate ratios derived from negative binomial models

Incidence Rate Ratios				
modulation	coefficient	Estimate	2.5 \%	97.5 \%
4 Hz	(Intercept)	2981.75	1675.19	6085.74
4 Hz	steady-state masker	0.49	0.19	1.21
4 Hz	random masker	1.78	0.71	4.45
8 Hz	(Intercept)	3110.15	1655.22	6909.31
8 Hz	steady-state masker	1.11	0.40	3.12
8 Hz	random masker	0.83	0.30	2.31
16 Hz	(Intercept)	3288.45	1895.48	6456.38
16 Hz	steady-state masker	0.92	0.38	2.20
16 Hz	random masker	0.39	0.16	0.93
25 Hz	(Intercept)	3370.15	1815.43	7344.02
25 Hz	steady-state masker	0.51	0.19	1.41
25 Hz	random masker	0.25	0.09	0.67
33 Hz	(Intercept)	3908.95	2136.58	8324.83
33 Hz	steady-state masker	0.45	0.17	1.17
33 Hz	random masker	0.16	0.06	0.43
40 Hz	(Intercept)	3620.89	2003.11	7568.02
40 Hz	steady-state masker	0.50	0.19	1.28
40 Hz	random masker	0.15	0.06	0.37
50 Hz	(Intercept)	3097.80	1667.09	6760.91
50 Hz	steady-state masker	0.41	0.15	1.11
50 Hz	random masker	0.14	0.05	0.37
80 Hz	(Intercept)	3757.20	2122.84	7602.55
80 Hz	steady-state masker	0.41	0.16	1.01
$\underline{80 \mathrm{~Hz}}$	random masker	0.07	0.03	0.17

Table S12.
Experiment 2: ANOVA. Analysis of variance for the predictor of playback condition for each negative 361 binomial model, separately.

	Type II Analysis of Deviance			
	model	predictor	LR Chi-square	$\mathbf{d f}$
4 Hz	condition	7.55	2	\boldsymbol{p}
8 Hz	condition	0.31	2	0.02
16 Hz	condition	5.07	2	0.86
25 Hz	condition	7.55	2	0.08
33 Hz	condition	12.74	2	0.02
40 Hz	condition	15.16	2	<0.001
50 Hz	condition	14.36	2	<0.001
80 Hz	condition	27.63	2	<0.001

Table S13.
Experiment 2: Estimated marginal means for incidence rates of calling

Estimated Marginal Means							
modulation	contrast	IRR	se	CI_{10}	$\mathrm{CI}_{\text {hi }}$	Z ratio	p
4 Hz	silence / (steady-state masker)	2.06	0.95	0.69	6.20	1.57	0.35
4 Hz	silence / random masker	0.56	0.26	0.19	1.69	-1.25	0.63
4 Hz	(steady-state masker) / random masker	0.27	0.13	0.09	0.82	-2.82	0.01
8 Hz	silence / (steady-state masker)	0.90	0.47	0.26	3.10	-0.20	1.00
8 Hz	silence / random masker	1.20	0.61	0.36	4.04	0.36	1.00
8 Hz	(steady-state masker) / random masker	1.33	0.68	0.39	4.55	0.55	1.00
16 Hz	silence / (steady-state masker)	1.09	0.48	0.38	3.10	0.19	1.00
16 Hz	silence / random masker	2.58	1.13	0.90	7.34	2.16	0.09
16 Hz	(steady-state masker) / random masker	2.37	1.04	0.83	6.75	1.97	0.15
25 Hz	silence / (steady-state masker)	1.96	0.99	0.58	6.54	1.33	0.55
25 Hz	silence / random masker	4.06	2.02	1.23	13.36	2.82	0.01
25 Hz	(steady-state masker) / random masker	2.08	1.05	0.62	6.94	1.45	0.44
33 Hz	silence / (steady-state masker)	2.24	1.09	0.70	7.16	1.67	0.29
33 Hz	silence / random masker	6.09	2.95	1.91	19.44	3.73	<0.001
33 Hz	(steady-state masker) / random masker	2.72	1.32	0.85	8.66	2.06	0.12
40 Hz	silence / (steady-state masker)	2.01	0.95	0.65	6.26	1.48	0.42
40 Hz	silence / random masker	6.88	3.22	2.24	21.08	4.12	<0.001
40 Hz	(steady-state masker) / random masker	3.42	1.60	1.11	10.47	2.62	0.03
50 Hz	silence / (steady-state masker)	2.44	1.22	0.74	8.04	1.79	0.22
50 Hz	silence / random masker	7.30	3.64	2.21	24.08	3.99	<0.001
50 Hz	(steady-state masker) / random masker	3.00	1.49	0.91	9.88	2.20	0.08
80 Hz	silence / (steady-state masker)	2.45	1.11	0.82	7.28	1.97	0.15
80 Hz	silence / random masker	14.29	6.50	4.80	42.50	5.84	<0.001
80 Hz	(steady-state masker) / random masker	5.83	2.66	1.96	17.35	3.87	<0.001

modulation	contrast	IRR se	CI_{10}	C ${ }_{\text {hi }}$	\mathbf{Z} ratio	p
silence	$4 \mathrm{~Hz} / 8 \mathrm{~Hz}$	0.960 .47	0.20	4.49	-0.09	1.00
silence	$4 \mathrm{~Hz} / 16 \mathrm{~Hz}$	0.910 .45	0.19	4.24	-0.20	1.00
silence	$4 \mathrm{~Hz} / 25 \mathrm{~Hz}$	0.880 .44	0.19	4.14	-0.25	1.00
silence	$4 \mathrm{~Hz} / 33 \mathrm{~Hz}$	0.760 .38	0.16	3.57	-0.55	1.00
silence	$4 \mathrm{~Hz} / 40 \mathrm{~Hz}$	0.820 .41	0.17	3.93	-0.39	1.00
silence	$4 \mathrm{~Hz} / 50 \mathrm{~Hz}$	0.960 .48	0.21	4.50	-0.08	1.00
silence	$4 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.790 .39	0.17	3.71	-0.47	1.00
silence	$8 \mathrm{~Hz} / 16 \mathrm{~Hz}$	0.950 .47	0.20	4.43	-0.11	1.00
silence	$8 \mathrm{~Hz} / 25 \mathrm{~Hz}$	0.920 .46	0.20	4.32	-0.16	1.00
silence	$8 \mathrm{~Hz} / 33 \mathrm{~Hz}$	0.800 .39	0.17	3.72	-0.46	1.00
silence	$8 \mathrm{~Hz} / 40 \mathrm{~Hz}$	0.860 .43	0.18	4.10	-0.30	1.00
silence	$8 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.000 .50	0.22	4.70	0.01	1.00
silence	$8 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.830 .41	0.18	3.87	-0.38	1.00
silence	$16 \mathrm{~Hz} / 25 \mathrm{~Hz}$	0.980 .48	0.21	4.57	-0.05	1.00
silence	$16 \mathrm{~Hz} / 33 \mathrm{~Hz}$	0.840 .42	0.18	3.94	-0.35	1.00
silence	$16 \mathrm{~Hz} / 40 \mathrm{~Hz}$	0.910 .46	0.19	4.34	-0.19	1.00
silence	$16 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.060 .52	0.23	4.97	0.12	1.00
silence	$16 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.880 .43	0.19	4.10	-0.27	1.00
silence	$25 \mathrm{~Hz} / 33 \mathrm{~Hz}$	0.860 .43	0.18	4.04	-0.30	1.00
silence	$25 \mathrm{~Hz} / 40 \mathrm{~Hz}$	0.930 .47	0.20	4.44	-0.14	1.00
silence	$25 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.090 .54	0.23	5.09	0.17	1.00
silence	$25 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.900 .44	0.19	4.20	-0.22	1.00
silence	$33 \mathrm{~Hz} / 40 \mathrm{~Hz}$	1.080 .54	0.23	5.16	0.15	1.00
silence	$33 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.260 .62	0.27	5.90	0.47	1.00
silence	$33 \mathrm{~Hz} / 80 \mathrm{~Hz}$	1.040 .51	0.22	4.87	0.08	1.00
silence	$40 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.170 .58	0.24	5.58	0.31	1.00
silence	$40 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.960 .48	0.20	4.60	-0.07	1.00
silence	$50 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.820 .41	0.18	3.86	-0.39	1.00
steady-state masker	$4 \mathrm{~Hz} / 8 \mathrm{~Hz}$	0.420 .21	0.09	2.05	-1.71	1.00
steady-state masker	$4 \mathrm{~Hz} / 16 \mathrm{~Hz}$	0.480 .24	0.10	2.29	-1.47	1.00
steady-state masker	$4 \mathrm{~Hz} / 25 \mathrm{~Hz}$	0.840 .43	0.17	4.10	-0.34	1.00
steady-state masker	$4 \mathrm{~Hz} / 33 \mathrm{~Hz}$	0.830 .42	0.17	3.97	-0.37	1.00
steady-state masker	$4 \mathrm{~Hz} / 40 \mathrm{~Hz}$	0.800 .41	0.16	3.93	-0.43	1.00
steady-state masker	$4 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.140 .57	0.24	5.44	0.26	1.00
steady-state masker	$4 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.940 .47	0.20	4.51	-0.12	1.00
steady-state masker	$8 \mathrm{~Hz} / 16 \mathrm{~Hz}$	1.140 .58	0.23	5.56	0.26	1.00
steady-state masker	$8 \mathrm{~Hz} / 25 \mathrm{~Hz}$	2.001 .03	0.40	9.95	1.35	1.00
steady-state masker	$8 \mathrm{~Hz} / 33 \mathrm{~Hz}$	1.981 .00	0.41	9.65	1.34	1.00
steady-state masker	$8 \mathrm{~Hz} / 40 \mathrm{~Hz}$	1.920 .98	0.38	9.54	1.26	1.00
steady-state masker	$8 \mathrm{~Hz} / 50 \mathrm{~Hz}$	2.711 .38	0.56	13.22	1.96	1.00
steady-state masker	$8 \mathrm{~Hz} / 80 \mathrm{~Hz}$	2.251 .14	0.46	10.96	1.59	1.00
steady-state masker	$16 \mathrm{~Hz} / 25 \mathrm{~Hz}$	1.750 .89	0.36	8.56	1.11	1.00
steady-state masker	$16 \mathrm{~Hz} / 33 \mathrm{~Hz}$	1.740 .87	0.36	8.30	1.10	1.00
steady-state masker	$16 \mathrm{~Hz} / 40 \mathrm{~Hz}$	1.680 .85	0.34	8.20	1.02	1.00
steady-state masker	$16 \mathrm{~Hz} / 50 \mathrm{~Hz}$	2.381 .19	0.50	11.37	1.73	1.00
steady-state masker	$16 \mathrm{~Hz} / 80 \mathrm{~Hz}$	1.970 .99	0.41	9.43	1.35	1.00
steady-state masker	$25 \mathrm{~Hz} / 33 \mathrm{~Hz}$	0.990 .50	0.20	4.83	-0.02	1.00
steady-state masker	$25 \mathrm{~Hz} / 40 \mathrm{~Hz}$	0.960 .49	0.19	4.77	-0.08	1.00
steady-state masker	$25 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.360 .69	0.28	6.62	0.60	1.00
steady-state masker	$25 \mathrm{~Hz} / 80 \mathrm{~Hz}$	1.120 .57	0.23	5.48	0.23	1.00
steady-state masker	$33 \mathrm{~Hz} / 40 \mathrm{~Hz}$	0.970 .49	0.20	4.73	-0.06	1.00

Estimated Marginal Means						
modulation	contrast	IRR se	CI_{10}	$\mathrm{CI}_{\text {hi }}$	Z ratio	p
steady-state masker	$33 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.370 .69	0.29	6.55	0.63	1.00
steady-state masker	$33 \mathrm{~Hz} / 80 \mathrm{~Hz}$	1.140 .57	0.24	5.43	0.25	1.00
steady-state masker	$40 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.420 .72	20.29	6.91	0.68	1.00
steady-state masker	$40 \mathrm{~Hz} / 80 \mathrm{~Hz}$	1.170 .60	0.24	5.72	0.31	1.00
steady-state masker	$50 \mathrm{~Hz} / 80 \mathrm{~Hz}$	0.830 .42	0.17	3.96	-0.38	1.00
random masker	$4 \mathrm{~Hz} / 8 \mathrm{~Hz}$	2.040 .88	0.53	7.82	1.66	1.00
random masker	$4 \mathrm{~Hz} / 16 \mathrm{~Hz}$	4.151 .78	1.08	15.89	3.31	0.03
random masker	$4 \mathrm{~Hz} / 25 \mathrm{~Hz}$	6.382 .74	41.67	24.46	4.31	<0.001
random masker	$4 \mathrm{~Hz} / 33 \mathrm{~Hz}$	8.263 .55	52.16	31.65	4.91	<0.001
random masker	$4 \mathrm{~Hz} / 40 \mathrm{~Hz}$	10.064 .33	2.63	38.56	5.37	<0.001
random masker	$4 \mathrm{~Hz} / 50 \mathrm{~Hz}$	12.495 .37	3.26	47.85	5.87	<0.001
random masker	$4 \mathrm{~Hz} / 80 \mathrm{~Hz}$	20.158 .67	5.26	77.22	6.98	<0.001
random masker	$8 \mathrm{~Hz} / 16 \mathrm{~Hz}$	2.030 .87	0.53	7.79	1.65	1.00
random masker	$8 \mathrm{~Hz} / 25 \mathrm{~Hz}$	3.131 .34	0.82	11.98	2.65	0.22
random masker	$8 \mathrm{~Hz} / 33 \mathrm{~Hz}$	4.051 .74	41.06	15.51	3.25	0.03
random masker	$8 \mathrm{~Hz} / 40 \mathrm{~Hz}$	4.932 .12	121.29	18.90	3.71	0.01
random masker	$8 \mathrm{~Hz} / 50 \mathrm{~Hz}$	6.122 .63	1.60	23.45	4.21	<0.001
random masker	$8 \mathrm{~Hz} / 80 \mathrm{~Hz}$	9.874 .25	2.58	37.84	5.32	<0.001
random masker	$16 \mathrm{~Hz} / 25 \mathrm{~Hz}$	1.540 .66	60.40	5.89	1.00	1.00
random masker	$16 \mathrm{~Hz} / 33 \mathrm{~Hz}$	1.990 .86	0.52	7.63	1.60	1.00
random masker	$16 \mathrm{~Hz} / 40 \mathrm{~Hz}$	2.431 .04	40.63	9.29	2.06	1.00
random masker	$16 \mathrm{~Hz} / 50 \mathrm{~Hz}$	3.011 .29	0.78	11.53	2.56	0.29
random masker	$16 \mathrm{~Hz} / 80 \mathrm{~Hz}$	4.862 .09	1.27	18.61	3.67	0.01
random masker	$25 \mathrm{~Hz} / 33 \mathrm{~Hz}$	1.290 .56	60.34	4.96	0.60	1.00
random masker	$25 \mathrm{~Hz} / 40 \mathrm{~Hz}$	1.580 .68	0.41	6.04	1.06	1.00
random masker	$25 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.960 .84	40.51	7.50	1.56	1.00
random masker	$25 \mathrm{~Hz} / 80 \mathrm{~Hz}$	3.161 .36	6.82	12.10	2.67	0.21
random masker	$33 \mathrm{~Hz} / 40 \mathrm{~Hz}$	1.220 .52	0.32	4.67	0.46	1.00
random masker	$33 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.510 .65	0.39	5.79	0.96	1.00
random masker	$33 \mathrm{~Hz} / 80 \mathrm{~Hz}$	2.441 .05	50.64	9.35	2.07	1.00
random masker	$40 \mathrm{~Hz} / 50 \mathrm{~Hz}$	1.240 .53	30.32	4.76	0.50	1.00
random masker	$40 \mathrm{~Hz} / 80 \mathrm{~Hz}$	2.000 .86	0.52	7.68	1.61	1.00
random masker	$50 \mathrm{~Hz} / 80 \mathrm{~Hz}$	1.610 .69	0.42	6.19	1.11	1.00

Number of temporally overlapping calls across both experiments in each condition

	Silent	Full-band masker (Steady-state masker)	Half-band masker	Random masker
Experiment 1	17,645	5,627	19,346	-
Experiment 2	24,903	4,093	-	2,946

Table S15.

Table S16.

377 Estimated marginal means for overlapping calls. Estimated marginal mean differences in call incidence 378 rates calculated on negative binomial models for overlapping calls for each modulation rate, separately.

experiment	Estimated Marginal Means							
	modulation	contrast	IRR	se	CI_{10}	$\mathrm{CI}_{\text {hi }}$	\mathbf{Z} ratio	p
1	8 Hz	silence / (full-band masker)	2.40	1.28	0.66	8.65	1.63	0.31
	8 Hz	silence / (half-band masker)	1.40	0.74	0.39	4.94	0.63	1.00
	8Hz	(full-band masker) / (half-band masker)	0.58	0.32	0.16	2.17	-0.98	0.98
	15 Hz	silence / (full-band masker)	4.73	2.19	1.56	14.36	3.35	<0.001
	15 Hz	silence / (half-band masker)	0.37	0.17	0.12	1.11	-2.17	0.09
	15 Hz	(full-band masker) / (half-band masker)	0.08	0.04	0.03	0.24	-5.44	<0.001
2	4 Hz	silence / (steady-state masker)	4.58	3.04	0.94	22.45	2.29	0.07
	4 Hz	silence / random masker	2.33	1.33	0.60	9.11	1.49	0.41
	4 Hz	(steady-state masker) / random masker	0.51	0.34	0.10	2.58	-1.00	0.96
	8 Hz	silence / (steady-state masker)	1.92	1.21	0.43	8.65	1.04	0.90
	8 Hz	silence / random masker	5.36	3.16	1.31	21.96	2.85	0.01
	8 Hz	(steady-state masker) / random masker	2.79	1.78	0.60	12.88	1.61	0.32
	16 Hz	silence / (steady-state masker)	2.21	1.16	0.63	7.77	1.52	0.39
	16 Hz	silence / random masker	6.56	3.32	1.95	22.02	3.72	0.00
	16 Hz	(steady-state masker) / random masker	2.96	1.60	0.81	10.83	2.00	0.14
	25 Hz	silence / (steady-state masker)	5.14	3.10	1.21	21.80	2.71	0.02
	25 Hz	silence / random masker	9.89	5.80	2.43	40.26	3.91	0.00
	25 Hz	(steady-state masker) / random masker	1.93	1.27	0.40	9.37	0.99	0.96
	33 Hz	silence / (steady-state masker)	5.72	3.07	1.58	20.69	3.24	0.00
	33 Hz	silence / random masker	14.70	7.47	4.35	49.66	5.28	0.00
	33 Hz	(steady-state masker) / random masker	2.57	1.50	0.64	10.41	1.62	0.32
	40 Hz	silence / (steady-state masker)	6.48	3.29	1.92	21.87	3.68	0.00
	40 Hz	silence / random masker	18.39	9.20	5.55	60.93	5.82	0.00
	40 Hz	(steady-state masker) / random masker	2.84	1.53	0.78	10.35	1.93	0.16
	50 Hz	silence / (steady-state masker)	11.27	6.43	2.88	44.16	4.25	0.00
	50 Hz	silence / random masker	27.70	$\begin{array}{r} 15.5 \\ 1 \end{array}$	7.26	105.80	5.93	0.00
	50 Hz	(steady-state masker) / random masker	2.46	1.45	0.60	10.12	1.52	0.38
	80 Hz	silence / (steady-state masker)	7.69	3.88	2.30	25.73	4.04	0.00
	80 Hz	silence / random masker	26.34	$\begin{array}{r} 13.5 \\ 6 \end{array}$	7.68	90.35	6.35	0.00
	80Hz	(steady-state masker) / random masker	3.43	1.94	0.89	13.24	2.18	0.09

Call timings relative to acoustic landmarks

		Mean Call Onset Timings time from peaks (ms)			time to trough (ms)

