Supplementary Materials

"Neural Correlates and Reinstatement of Recent and Remote Memory: A Comparison Between

Children and Young Adults"

Iryna Schommartz^{a,i}, Philip F. Lembcke^{b,c}, Javier Ortiz-Tudela^a, Bauer^b, M., Angela M. Kaindl^{c,d,e,f}, Claudia Buss^{b,h*}, and Yee Lee Shing^{a,i*}

* Yee Lee Shing and Claudia Buss should be considered joint senior author.

^aDepartment of Psychology, Goethe University Frankfurt, Frankfurt, Germany

^b Charité – Universitätsmedizin Berlin, Department of Medical Psychology, Berlin, Germany

°Charité – Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany

^dCharité – Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany

°Charité – Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Berlin, Germany

^fCharité – Universitätsmedizin Berlin, Department of Pediatric Surgery, Berlin, Germany

^hDevelopment, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, USA

ⁱCenter for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt, Germany

*Corresponding authors at: Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany, Theodor-W.-Adorno-Platz, 6, 60323

E-mail adresses: schommartz@psych.uni-frankfurt.de (I. Schommartz),

shing@psych.uni-frankfurt.de (Y.L. Shing)

S1. Supplementary Methods

S1.1. Assessment of demographic and cognitive covariates

Other cognitive covariate tasks, such as cognitive switching and object-location memory, were run on each session but they are not included in the current paper.

Day 0: After the experimental task, several subtests of the K-ABC II Test *(e.g., Atlantis, Rover, Rebus, Riddle and Atlantis delayed) were administered to children, while young adults were tested with the WAIS-IV Test.

Day 1: In addition, children performed several subtests of the K-ABC II Test *(e.g., Expressive Vocabulary, Triangles, Pattern Reasoning), and a cognitive switching task.

Day 14: Children performed several subtests of the K-ABC II Test *(e.g., Patterns, Verbal Knowledge, Word Order), and a object-location memory task.

In addition to the experimental paradigm, a sleep diary to assess the quality and duration of sleep was completed daily for the 14-day period between learning and long-delay.

S1.2. FMRI data pre-processing

The following description of the fMRI data pre-processing was generated by fMRIPrep 22.0.0:

Results included in this manuscript come from preprocessing performed using *fMRIPrep* 22.0.0 (Esteban et al., 2018, 2019; RRID:SCR_016216), which is based on *Nipype* 1.8.3 (Gorgolewski et al., 2011; Gorgolewski et al., 2016); RRID:SCR_002502).

S1.2.1. Preprocessing of B_0 inhomogeneity mappings

A total of 2 fieldmaps were found available within the input BIDS structure for this particular subject. A B_0 -nonuniformity map (or *fieldmap*) was estimated based on two (or more) echoplanar imaging (EPI) references with topup (Andersson et al. (2003); FSL 6.0.5.1:57b01774).

S1.2.2. Anatomical data preprocessing

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al. (2008); RRID:SCR 004757). The T1wreference with a *Nipype* implementation was then skull-stripped of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR 002823; Zhang et al., (2001)). A T1w-reference map was computed after registration of 2 T1w images (after INU-correction) using mri robust template (FreeSurfer 7.2.0; Reuter et al., (2010)). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym, MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w

reference and the T1w template. The following templates were selected for spatial normalization: *FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model* [Evans et al. (2012); RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], *ICBM 152 Nonlinear Asymmetrical template version 2009c* [Fonov et al. (2009); RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym].

S1.2.3. Functional data preprocessing

For each of the 5 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was performed. First, a reference volume and its skull-stripped version were generated by aligning and averaging 1 single-band references (SBRefs). Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) are estimated before any spatiotemporal 6.0.5.1:57b01774; filtering using mcflirt (FSL Jenkinson et al. (2002)).The estimated *fieldmap* was then aligned with rigid-registration to the target EPI (echo-planar imaging) reference run. The field coefficients were mapped on to the reference EPI using the transform. BOLD runs were slice-time corrected to 0.346s (0.5 of slice acquisition range 0s-0.693s) using 3dTshift from AFNI (Cox & Hyde, (1997); RRID:SCR 005927). The BOLD reference was then co-registered to the T1w reference using mri coreg (FreeSurfer) followed by flirt (FSL 6.0.5.1:57b01774; Jenkinson & Smith (2001) with the boundary-based registration (Greve & Fischl, 2009) cost-function. Co-registration was configured with six degrees of freedom. First, a reference volume and its skull-stripped version were generated using a custom methodology of *fMRIPrep*. Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three regionwise global signals. FD was computed using two formulations following Power (absolute sum of relative motions, Power et al. (2014) and Jenkinson et al. (2002) (relative root mean square displacement between affines). FD and DVARS are calculated for each functional run, both using their implementations in Nipype (following the definitions by Power et al. (2014)). The three global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for component-based noise correction (CompCor; Behzadi et al. (2007)). Principal components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, a mask of pixels that likely contain a volume fraction of GM is subtracted from the aCompCor masks. This mask is obtained by thresholding the corresponding partial volume map at 0.05, and it ensures components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, the k components with the largest singular values are retained, such that the retained components' time series are sufficient to explain 50 percent of variance across the

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from consideration. The head-motion estimates calculated in the correction step were also placed within the corresponding confounds file. The confound time series derived from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. Additional nuisance timeseries are calculated by means of principal components analysis of the signal found within a thin band (crown) of voxels around the edge of the brain, as proposed by Patriat et al. (2017). The BOLD time-series were resampled into several standard spaces, correspondingly preprocessed following *spatially-normalized*, generating the BOLD runs: MNI152NLin6Asym, MNI152NLin2009cAsym. First, a reference volume and its skullstripped version were generated using a custom methodology of *fMRIPrep*. Automatic removal of motion artifacts using independent component analysis (ICA-AROMA; Pruim et al. (2015)) was performed on the preprocessed BOLD on MNI space time-series after removal of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding "non-aggresively" denoised runs were produced after such smoothing. Additionally, the "aggressive" noise-regressors were collected and placed in the corresponding confounds file. All resamplings can be performed with *a single* interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were performed using mri vol2surf (FreeSurfer). Many internal operations of fMRIPrep use Nilearn 0.9.1 (Abraham et al. (2014); RRID:SCR 001362), mostly within the functional processing workflow.

S2. Supplementary results

S2.1. Supplementary behavioural results

S2.1.1. Learning process analysis

Concerning the learning duration, a LME model revealed a significant *Group* effect, $F_{(1,563)} = 23.65$, p < .0001, w² = .04, with children needing more learning cycles to reach the learning criteria in comparison to adults t(563) = -3.70, p = .0002. The number of learning cycles did not differ between sessions as revealed by non-significant *Session* effect and *Group x Session* interaction (all p > .63).

S.2.1.2. Memory retention analysis

Table S1Statistical overview of the linear mixed effects model for memory retention rates.

Memory Retention

Predictors	Estimates	CI	р
(Intercept)	81.25	77.50 - 85.00	<.001
Session	-4.88	-8.221.54	.004
Item Type	-4.55	-7.721.38	.005
Group	17.29	12.19 - 22.39	<.001
IQ	0.16	0.01 - 0.32	.037
Sex	2.56	-1.31 - 6.43	.194
Handedness(right vs left)	-5.17	-14.50 - 4.15	.276
Handedness(right vs ambidextrous)	-1.35	-12.18 - 9.48	.806
Session x Item Type	-13.45	-18.058.86	<.001
Session x Group	3.43	-1.47 - 8.33	.169
Item Type x Group	0.02	-4.64 - 4.69	.993
Session x Item Type x Group	-4.17	-10.97 - 2.62	.228
Random Effects			
σ^2	58.91		
τ ₀₀ subNo	65.58		
ICC	0.53		
N subNo	88		
Observations	320		
Marginal R ² / Conditional R ²	0.557 /		
e	0 790		

Notes. Subject was included as random intercept. Group (children and young adults), Session (Day 1, Day 14), Item Type (recent vs remote) were included as fixed effects. IQ, Sex, Handedness were included as covariates. ^aThe following reference levels where used: for Session, Day 1; for Group, Children; for Item Type; for Sex, male; for Handedness, right-side handedness. IQ = Intelligence Quotient; $\sigma 2$ – residuals, $\tau 00$ – variance of the random intercept. Type III Analysis of Variance Table with Satterthwaite's method. *p < .05; ** <.01, ***<.001 (significant difference).

Table S2

Statistical overview of model-based post-hoc tests for memory retention rates.

v 1	v	•					
Contrasts	Estimates	95% CI	SE	DF	t ratio	р	
Day 1 vs 14 Children (Recent)	4.88	[.31 – .9.45]	1.72	247	2.83	.029	
Day 1 vs 14 Children (Remote)	18.33	[13.83 - 22.83]	1.70	246	10.81	<.0001	
Day 1 vs 14 Adults (Recent)	1.45	[-3.45 - 6.35]	1.85	242	0.78	.967	
Day 1 vs 14 Adults (Remote)	19.08	[14.85 - 23.97]	1.85	242	10.33	<.001	
Day 1 vs 14 Children vs Adults (Recent)	3.43	[-3.27-10.13]	2.52	245	1.35	.686	
Day 1 vs 14 Children vs Adults (Remote)	74	[-7.39-5.91]	2.51	244	-0.30	.999	

Notes. Results were averaged over the levels of sex and handedness. Degrees of freedom were adjusted based on Kenward-Roger methods. P values were adjusted based on Sidak adjustment for 6 comparisons. *p < .05; ** < .01, *** < .001 (significant difference).

S3.1. Supplementary fMRI univariate analysis

Table S3

Regions exhibiting stronger activation for remote vs. recent items in (i) young adults, (ii) children, (iii) children vs young adults, and (iv) young adults vs children on Day 1 (short delay). To capture the involved brain region better, local maxima are presented in addition to cluster maxima for the largest clusters.

Day 1 (Short Delay)					
	Young adults				
Region	X	у	х	Z-max	# voxels

Left Middle Frontal Gyrus	- 44	2	40	6.67	2990
Left Insula Cortex	- 34	22	2	6.58	
Left Inferior Frontal Gyrus, Pars Opercularis	- 44	6	34	6.03	
Left Lateral Occipital Cortex	- 28	- 76	36	6.82	2272
Left Superior Parietal Lobule	- 34	- 50	44	5.11	
Left Fusiform Gyrus	- 44	- 60	- 12	6.7	1661
Left Parahippocampal Gyrus	- 34	- 34	- 16	4.58	
Right Cerebellum	30	- 60	- 28	6.03	1049
Right Lateral Occipital Cortex	34	- 72	40	5.96	943
Right Inferior Parietal Lobule	38	- 78	26	4.3	
Right Parahippocampal Gyrus	32	- 34	- 16	5.29	718
Right Inferior Temporal Gyrus	52	- 54	- 10	5.17	
Left Superior Frontal Gyrus	- 4	16	48	5.04	405
Right insular cortex	30	24	2	5.25	279
Right Middle Frontal Gyrus, Pars Triangularis	40	30	20	3.61	
Right precentral Gyrus	42	2	30	4.97	146
Right Middle Frontal Gyrus, Pars Opercularis	50	16	32	3.41	
Left Frontal Orbital Cortex	- 26	32	- 10	4.51	123
Left Cingulate Gyrus	- 4	2	28	4.86	103
Childr	·en				
Right Temporal Occipital Fusiform Cortex	26	- 44	- 8	5.1	658
Right Parahippocampal Gyrus	30	- 36	- 16	4.93	
Right Precuneus	8	- 52	6	4.79	
Left Temporal Fusiform Gyrus	- 34	- 42	- 12	5.59	500
Left Parahippocampal Gyrus	- 18	- 42	- 10	4.91	
Left Precuneus Cortex	- 14	- 60	10	4.47	160
Left Lateral Occipital Cortex	- 36	- 84	26	4.95	112
Children > Yo	ung Adu	ılts			
Right precuneus	4	- 48	30	5.25	1051
Left precuneus	- 4	- 48	40	4.68	
Right Superior Parietal Lobule	12	- 32	50	4.99	203
Right Parietal Operculum Cortex	54	- 30	24	3.32	149
Young Adults	> Childı	ren			
			10	1.6	501
Lett Precentral Gyrus, Middle Frontal Gyrus	- 44	2	40	4.8	501
Lett Interior Frontal Gyrus	- 54	14	10	3.39	• • • •
Lett Frontal Operculum Cortex	- 34	22	2	5.48	260
Right Cerebellum	12	- 76	- 20	4.7	141
Left Medial Frontal Gyrus	- 2	16	48	4.2	118
Left/Right Insular Cortex	32	22	2	4.66	113
Left/Right Lateral Occipital Cortex	- 26	- 74	36	4.5	107

Table S4

Regions exhibiting stronger activation for remote vs. recent items in (i) young adults, (ii) children, (iii) children vs young adults, and (iv) young adults vs children on Day 14 (long delay). To capture the involved brain region better, local maxima are presented in addition to cluster maxima for the largest clusters.

Day 14 (Long Delay)					
Youn	g Adults				
Region	X	У	Х	Z-max	# voxels
Left/Right Occipital Fusiform Gyrus	- 46	- 58	- 16	7.62	19227

Left Lateral Occipital Cortex	- 30	- 60	- 14	7.25	2800
Left Superior Frontal Gyrus, Pars Opercularis,	6	12	56	/.1/ 6.78	2890
Right Inferior Frontal Gyrus Pars Opercularis Pars	- 0 46	12	28	6	691
Trinagularis	40	12	20	0	071
Left Insular Cortex	- 32	22	2	6.7	501
Left Caudate	- 10	4	10	5.58	456
Right Frontal Orbital Cortex	34	28	0	6.11	298
Right Cerebellum	16	- 44	- 46	4.97	250
Right Caudate	8	12	2	5.27	215
Left Cerebellum	- 34	- 68	- 54	6.1	211
Childr	en				
	24	26	24	4.01	590
Left Temporal Fusitorm Gyrus	- 34	- 20	- 24	4.91	580
Left anterior Paranippocampal Gyrus, Hippocampus	- 30	- 18	- 24	4.4	
Left Lateral Occipital Cortex	- 48	- 58	- 10 19	4.25	110
Right Letowal Occipital Fusitorm Cortex	40 50	- 54	- 18	4.34	448
Right Lateral Occipital Cortex	50	- /0	- 12	4.2	
Children > You	ıng Adu	ılts			
Right/Left angular gyrus	62	- 40	44	4.8	847
Right/Left Lateral Occipital Cortex	46	- 66	48	4.44	
Right Superior Frontal Gyrus	20	30	58	4.58	640
Right/Left Superior Temporal Gyrus				4.73	493
Right Precuneous	8	- 52	30	4.51	332
Right Medial Frontal Cortex	8	50	- 2	4.35	287
Right Middle Temporal Gyrus	66	- 18	- 20	4.17	203
Left Middle Frontal Gyrus	- 20	36	38	4.31	154
Left Cingulate Gyrus	- 14	- 50	30	4.36	138
Young Adults >	> Childı	en			
8					
Right/Left Cerebellum	14	- 72	- 22	5.77	3162
Left Occipital Fusiform Gyrus	- 20	- 90	- 14	5.22	1229
Left Lateral Occipital Cortex	- 30	- 80	36	5.62	620
Left Middle Frontal Gyrus, Inferior Frontal Gyrus	- 44	12	30	4.8	387
Right Precuneous	18	- 58	20	4.39	205
Left Superior Frontal Gyrus	- 6	12	56	5.12	165
•					

Table S5

Regions exhibiting stronger activation for remote vs. recent items that decreases over time (i) in young adults stronger than in children (ii) children stronger than in adults; that increases over time (iii) in young adults stronger than in children, and (iv) in children stronger than in young adults. To capture the involved brain region better, local maxima are presented in addition to cluster maxima for the largest clusters.

Decrease Across Time

Young Adults > Children Region Z-max # voxels X у X Right Superior Parietal Lobule, Agular Gyrus 42 - 50 3.69 946 58 Right Middle Frontal Gyrus 42 56 2 4.16 546 Left Middle Frontal Gyrus - 38 24 48 3.9 379

Right Superior Frontal Gyrus	8	48	30	3.44	329
Children > A	Adults				
Left Lateral Occipital Cortex Left Hippocampus, Posterior Parahippocampal Gyrus Right Lateral Occipital Cortex, Occipital Fusiform Gyrus, Lingual Gyrus	- 32 - 30 30	- 88 - 30 - 86	6 - 6 4	4.81 4.09 4.73	4474 1717
Increase Over Time					
Voung Adults >	Childre	n			
Toung Munts -	Ciniti				
Left Lateral Occipital Cortex Left Hippocampus Left Lingual gyrus Right Lateral Occipital Cortex, Occipital Fusiform Gyrus, Precuneus	- 32 - 30 - 10 - 30	- 88 - 30 - 56 86	6 - 6 - 6 4	4.81 4.09 4.04 4.73	4474 1717
Children > You	ng Adult	S			
Right Superior Parietal Lobule, Angular Gyrus Right Middle Frontal Gyrus Left Middle Frontal Gyrus, Superior Frontal Gyrus Right Superior Frontal Gyrus, Paracingulate Gyrus	42 42 - 38 8	- 50 56 24 48	58 2 48 30	3.69 4.16 3.9 3.44	946 546 379 329

Table 6

Statistical overview of LME-model based Sidak corrected post hoc comparisons for neural activation differences (based on LME-model described in Table 2).

Model-based post hoc comparisons*										
Comparisons	b	$t_{(DF)}$	95% CI	р						
Posterior Parahippocampal Gyrus										
YA > CH	.05	2.28(87)	[.00609]	.025						
Day 1 < Day 14 (CH)	02	08 ₍₈₇₎	[08 – .03]	.66						
Day 1 < Day 14 (YA)	.09	3.19(83)	[.0215]	.006						
Day 1 < Day 14 (CH) < Day 1 < Day 14 (YA)	.11	3.06(85)	[.0220]	.009						
Medial	Prefrontal Cort	tex								
YA > CH	07	-2.27(88)	[14 – .009]	.026						
Ventrolater	al Prefrontal C	Cortex								
YA > CH	.14	5.64(86)	[.09 – .19]	<.001						
Day 1 < Day 14	.08	3.64(85)	[.04 – .13]	.005						
C	erebellum									
Day 1 < Day 14	.04	2.09(86)	[.00207]	.04						
Day 1 < Day 14 (CH)	01	05(88)	[07 – .05],	.96						
Day 1 < Day 14 (YA)	.09	3.24(84)	[.0215]	.005						
Day 1 < Day 14 (CH) < Day 1 < Day 14 (YA)	.10	$2.71_{(86)}$	[.0118]	.024						
Retro	splenial Cortex	C C								
Day 1 < Day 14 (CH)	08	-3.13 ₍₈₈₎	[14 –02]	.007						
Day 1 < Day 14 (YA)	.03	$1.15_{(84)}$	[03 – .10]	.584						
Day 1 < Day 14 (CH) < Day 1 < Day 14 (YA)	.11	3.00(86)	[.0220]	.012						
I	Precuneus									
YA > CH	053	$2.60_{(86)}$	[10 –01]	.012						
Day 1 < Day 14	054	$2.60_{(86)}$	[10 –01]	.011						

Later	ral Occipital Co	ortex		
YA > CH	.05	2.30(87)	[.00609]	.024
Day 1 < Day 14	.08	4.45(84)	[.0412]	<.001
Day 1 < Day 14 (CH)	.03	1.39(86)	[03 – .09]	.424
Day 1 < Day 14 (YA)	.13	4.76(82)	[.0619]	<.001
Day 1 < Day 14 (CH) < Day 1 < Day 14 (YA)	.092	2.57(84)	[.00518]	.035

Notes. Degrees of freedom were adjusted based on Kenward-Roger methods. P-values were adjusted based on Sidak adjustment. YA – young adults; CH – children; b – Beta values; t – t-value; DF – degrees of freedom; p – p-value; CI – confidence interval; *p < .05; ** < .01, *** < .001 (significant difference).

Table S7

Test of scene-specific reinstatement index for significance (higher than zero).

	Recent P	re-activation	Short-Delay Pre-activation		Long-Delay Pre-activation	
				Children		
ROI	mean	$p_{(FDRadj)}$	mean	$p_{(FDRadj)}$	mean	$p_{(FDRadj)}$
mPEC	488	< 001	295	< 001	099	123
vipec	.400 543	< 001	318	< 001	204	< 001
HC	606	< 001	251	< 001	161	026
DHG	582	< 001	269	< 001	1/18	.020
CE	.582	<.001	.209	<.001	121	.001
DC	560	<.001	.105	<.001	105	.041
	.309	<.001	.264	<.001	.105	.078
KSC	.040	<.001	.289	<.001	.090	.281
LOC	.534	<.001	.262	<.001	.271	<.001
			Ye	oung Adults		
	mean	$p_{(FDRadj)}$	mean	$p_{(FDRadj)}$	mean	$p_{(FDRadj)}$
mPFC	.654	<.001	.375	<.001	.396	<.001
vlPFC	.561	<.001	.291	<.001	.198	<.001
HC	.758	<.001	.416	<.001	.497	<.001
PHG	.695	<.001	.334	<.001	.353	<.001
CE	.639	<.001	.367	<.001	.321	<.001
PC	.700	<.001	.440	<.001	.401	<.001
RSC	.771	<.001	.476	<.001	.377	<.001
LOC	.715	<.001	.463	<.001	.347	<.001

Notes. To test for significance we used one-sample permutation t-test for more robust calculations with Monte-Carlo permutation percentile confidence interval. All p-values for False Discovery Rate (FDR) corrected for 48 comparisons. ROI – region of interest; p – p-value; FDRadj – False Discovery Rate adjustment; mPFC – medial prefrontal cortex; vlPFC – ventrolateral prefrontal cortex; HC – hippocampus; PHG – parahippocampal cortex; CE – cerebellum; PC – precuneus; RSC – retrosplenial cortex; LOC – lateral occipital cortex. *p < .05; ** <.01, ***<.001 (significant difference).

Table S8Test of category-based reinstatement index for significance (higher than zero).

	Recent Pr	Recent Pre-activation		Short-Delay Pre-activation		elay Pre-activation
				Children		
ROI	mean	$p_{(FDRadj)}$	mean	$p_{(FDRadj)}$	mean	p (FDRadj)
mPFC	.379	<.001	.310	<.001	.568	<.001
vlPFC	.207	<.001	.095	.151	.243	.006
HC	.081	.047	.018	.601	.210	.003

PHG	.078	.036	.078	.069	.214	<.001
CE	.268	<.001	.252	<.001	.215	.015
PC	.112	.039	.059	.335	.161	.035
RSC	.102	.018	.089	.151	.199	.018
LOC	011	.957	.098	.151	.109	.151
			Y	oung Adults		
	mean	$p_{(FDRadj)}$	mean	$p_{(FDRadj)}$	mean	p $p_{(FDRadj)}$
mPFC	017	.997	066	.997	.038	.512
vlPFC	028	.997	027	.997	.018	.745
HC	039	.997	027	.997	096	.997
PHG	030	.997	079	.997	132	.997
CE	022	.997	079	.997	003	.946
PC	095	.997	025	.997	017	.982
RSC	055	.997	041	.997	012	.957
LOC	004	.957	003	.957	025	.997

Notes. To test for significance we used one-sample permutation t-test for more robust calculations with Monte-Carlo permutation percentile confidence interval. All p-values for False Discovery Rate (FDR) corrected for 48 comparisons. ROI – region of interest; p – p-value; FDRadj – False Discovery Rate adjustment; mPFC – medial prefrontal cortex; vlPFC – ventrolateral prefrontal cortex; HC – hippocampus; PHG – parahippocampal cortex; CE – cerebellum; PC – precuneus; RSC – retrosplenial cortex; LOC – lateral occipital cortex. *p < .05; ** <.01, ***<.001 (significant difference).

Table 9

Statistical overview of LME-model based Sidak corrected post hoc comparisons for scene-specific reinstatement differences (based on LME-model described in Table 3).

Model-based post hoc comparisons*							
Comparisons	b	$t_{(DF)}$	95% CI	р			
Hippocampus							
YA > YC	.22	5.53 ₍₈₆₎	[.14 – .30]	<.001			
Recent > Remote (Day 1)	.35	7.46(161)	[.24 – .45]	<.001			
Remote (Day 1) > Remote (Day 14)	.005	.10(171)	[11 – .12]	.994			
	Parahippocampal Gyru	15					
YA > YC	.13	3.04 ₍₈₇₎	[.05 – .21]	.003			
Recent > Remote (Day 1)	.34	7.30 ₍₁₆₁₎	[.23 – .44]	<.001			
Remote (Day 1)> Remote (Day 14)	.05	$1.05_{(170)}$	[06 – .16]	.504			
Medial Prefrontal Cortex							
YA > YC	.18	3.90 ₍₈₇₎	[.09 – .27]	<.001			
Recent > Remote (Day 1)	.24	5.34(160)	[.13 – .34]	<.001			
Remote (Day 1) > Remote (Day 14)	.09	1.82(168)	[02 – .19]	.136			
Ventrolateral Prefrontal Cortex							
Recent > Remote (Day 1)	.25	6.07 ₍₁₆₁₎	[.16 – .34]	<.001			
Remote (Day 1) > Remote (Day 14)	.10	2.35 ₍₁₇₀₎	[.004 – .20]	.039			
Cerebellum							
YA > YC	.19	4.88(86)	[.11 – .26]	<.001			
Recent > Remote (Day 1)	.30	6.54 ₍₁₆₁₎	[.19 – .40],	<.001			
Remote (Day 1) > Remote (Day 14)	.05	.95(173)	[06 – .15]	.567			
Retrosplenial Cortex							
YA > YC	.20	4.85 ₍₈₆₎	[.12 – .29]	<.001			
Recent > Remote (Day 1)	.33	6.67 ₍₁₆₁₎	[.2244]	<.001			
Remote (Day 1) > Remote (Day 14)	.15	2.77 ₍₁₇₃₎	[.03 – .26]	.012			
Precuneus							
YA > YC	.20	4.92 ₍₈₆₎	[.12 – .27]	<.001			
Recent > Remote (Day 1)	.27	5.84 ₍₁₆₁₎	[.17 – .38]	<.001			

Remote (Day 1) > Remote (Day 14)	.11	2.23 (171)	[001 – .22]	.053		
Lateral Occipital Cortex						
YA > YC	.16	3.88 (87)	[.0824]	<.001		
Recent > Remote (Day 1)	.26	6.46 (160)	[.17 – .35]	<.001		
Remote (Day 1) > Remote (Day 14)	.05	1.29(169)	[0415]	.358		

Notes. Degrees of freedom were adjusted based on Kenward-Roger methods. P-values were adjusted based on Sidak adjustment. YA – young adults; CH – children; b – Beta values; t – t-value; DF – degrees of freedom; p – p-value; CI – confidence interval; *p < .05; ** < .01, *** < .001 (significant difference).

Table 10

Statistical overview of LME-model based Sidak corrected post hoc comparisons for category-based reinstatement differences (based on LME-model described in Table 4).

Model-based post hoc comparisons*							
Comparisons	b	$t_{(DF)}$	95% CI	р			
Hippocampus							
YA > YC	.16	4.14 ₍₈₈₎	[.0824]	<.001			
Recent vs Remote (Day 1) for YC > YA	07	99 ₍₁₆₂₎	[24 – .10]	.540			
Remote (Day 1) vs Remote (Day 1) for YC > YA	.26	3.44(170)	[.09 – .44]	.002			
Parahippocampal Gyrus							
YA > YC	.21	5.14 ₍₈₈₎	[.13 – .29]	<.001			
Recent vs Remote (Day 1) for YC > YA	.05	.77(162)	[10 – .21]	.690			
Remote (Day 1) vs Remote (Day 1) for YC > YA	.20	2.73 ₍₁₆₈₎	[.03 – .36]	.014			
Medial Prefrontal Cortex							
YA > YC	.43	7.92 ₍₈₇₎	[.33 – .54]	<.001			
Recent > Remote (Day 1)	06	96(163)	[20 – .08]	.565			
Remote (Day 1) > Remote (Day 14)	.18	2.81(172)	[.04 – .33]	.011			
Ventrolateral Prefrontal Cortex							
YA > YC	.20	3.68 (88)	[.09 – .31]	<.001			
Cerebellum							
YA > YC	.29	5.34(88)	[.18 – .39]	<.001			
Retrosplenial Cortex							
YA > YC	.17	3.98 ₍₈₈₎	[.08 – .25]	<.001			
Precuneus							
YA > YC	.16	3.41 ₍₈₈₎	[.0726]	.001			

Notes. Degrees of freedom were adjusted based on Kenward-Roger methods. P-values were adjusted based on Sidak adjustment. YA – young adults; CH – children; b – Beta values; t – t-value; DF – degrees of freedom; p – p-value; CI – confidence interval; *p < .05; ** < .01, *** < .001 (significant difference).

References

- Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikitlearn. *Frontiers in Neuroinformatics*, 8. https://doi.org/10.3389/fninf.2014.00014
- Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. *NeuroImage*, 20(2), 870–888. https://doi.org/10.1016/S1053-8119(03)00336-7
- Avants, B., Epstein, C., Grossman, M., & Gee, J. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. *Medical Image Analysis*, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004
- Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. *NeuroImage*, 37(1), 90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042
- Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. *NMR in Biomedicine*, 10(4–5), 171–178. https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
- Esteban, O., Blair, R., Markiewicz, C. J., Berleant, S. L., Moodie, C., Ma, F., & Isik, A. I. (2018). *fMRIPrep 22.0.0*.
- Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. *Nature Methods*, 16(1), 111–116. https://doi.org/10.1038/s41592-018-0235-4
- Evans, A. C., Janke, A. L., Collins, D. L., & Baillet, S. (2012). Brain templates and atlases. *NeuroImage*, 62(2), 911–922. https://doi.org/10.1016/j.neuroimage.2012.01.024
- Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. *NeuroImage*, 47, S102. https://doi.org/10.1016/S1053-8119(09)70884-5
- Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python. *Frontiers in Neuroinformatics*, 5. https://doi.org/10.3389/fninf.2011.00013
- Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B. N., Nichols, T. E., Pellman, J., ... Poldrack, R. A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. *Scientific Data*, *3*(1), 160044. https://doi.org/10.1038/sdata.2016.44
- Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundarybased registration. *NeuroImage*, 48(1), 63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060
- Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. *NeuroImage*, *17*(2), 825–841. https://doi.org/10.1006/nimg.2002.1132
- Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. *Medical Image Analysis*, 5(2), 143–156. https://doi.org/10.1016/S1361-8415(01)00036-6

- Lanczos, C. (1964). Evaluation of Noisy Data. *Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis*, 1(1), 76–85. https://doi.org/10.1137/0701007
- Patriat, R., Reynolds, R. C., & Birn, R. M. (2017). An improved model of motion-related signal changes in fMRI. *NeuroImage*, 144, 74–82. https://doi.org/10.1016/j.neuroimage.2016.08.051
- Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. *NeuroImage*, 84, 320–341. https://doi.org/10.1016/j.neuroimage.2013.08.048
- Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. *NeuroImage*, *112*, 267–277. https://doi.org/10.1016/j.neuroimage.2015.02.064
- Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. *NeuroImage*, 53(4), 1181–1196. https://doi.org/10.1016/j.neuroimage.2010.07.020
- Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., & Wolf, D. H. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. *NeuroImage*, 64, 240– 256. https://doi.org/10.1016/j.neuroimage.2012.08.052
- Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie Zheng, Egan, A., Yushkevich, P. A., Gee, J. C., Zheng, Y., Egan, A., Yushkevich, P. A., Gee, J. C., Yuanjie Zheng, Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 Bias Correction. *IEEE Transactions on Medical Imaging*, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908
- Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. *IEEE Transactions on Medical Imaging*, 20(1), 45–57. https://doi.org/10.1109/42.906424