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A careful investigation of different corrections to binding energies of electrons in almost critical 
fields is performed. We investigate quantitatively the influence of the nuclear charge parameters, 
nuclear mass, degree of ionization on the value of the critical charge of the nucleus. Rather quali-
tative arguments are given to establish the contribution of the quantumelectrodynamic corrections, 
which are found to be small. Some phenomenological modifications of QED are quantitatively in-
vestigated and found to be of negligible influence on the value of the critical field. For heavy ion 
collisions with ZlJrZ2^> Z c r the critical separations between ions are given as results of precise 
solutions of the relativistic two coulomb center problem. Corrections due to electron-electron inter-
action are considered. We find (with present theoretical accuracy) Z c r = 173 + 2, in the heavy ion 
collisions RCT(U-U) = 34.7 ± 2 fm and RCT (U-C f) = 47.7 ± 2 fm. We shortly consider the pos-
sibility of spontaneous muon production in muonic supercritical fields. 

1. Introduction 

If the binding energy of a state is greater than 
2 me c2, while this state is vacant spontaneous free 
positron creation occurs and the vacuum becomes 
charged1 - 3 . The external electromagnetic potential 
for which the spontaneous positron creation may 
occur is called critical. In order to investigate the 
positron creation in a heavy ion collision it is 
necessary to know the precise least nuclear charge 
which produces the corresponding critical potential. 

The solution of the Dirac equation in the case of 
a pure Coulomb potential leads to the Sommerfeld 
finestructure formula which allows for lsj/o electrons 
only solutions for Z < a - 1 = h c/e2 = 137.03602. 
Beyond this value of Z no lsi/9 state is found in 
the discrete spectrum. 

For extended nuclei the Dirac equation was first 
solved by Pomeranchuk and Smorodinsky 4 (Their 
work suffered from various numerical errors) and 
by Pieper and Greiner 5. The nuclear charge distri-
bution was given by a homogeneous charge sphere 
with a radius 

where r0 = 1.2fm. The atomic mass A has been 
approximated for superheavy elements by 

A = 0.00733 Z2 + 1.3 Z + 63 .6 . (1.2) 

The Is i/o state was found for values of Z 169. 
At this point the binding energy of the lsi/2 state 
reached 2 me c2. For the 2pi/o electron the critical 

R 

8 71 

value was found to be Z = 182. If the critical value 
of Z could be increased by more than 15 units due 
to nuclear properties, the electron - electron inter-
action and quantumelectrodynamical effects the as-
sociated experiments1'2 may become impossible. 
The exact theoretical and experimental determina-
tion of the critical charge seems also to be a valuable 
test for relativistic quantum mechanics and quan-
tum electrodynamics of strong fields. By a precise 
measurement of electronic transition energies in 
superheavy atoms or quasiatoms formed during the 
collision of heavy ions with Zx + Z.2~ Z c r , it may 
be possible to decide if selfenergy- and vacuum-
polarization corrections are described well within 
the frame of the generalized Hartree-Fock equation 

(1.1) given by Reinhard 6 and also Rafelski and Müller 7 
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with 

F ( \ x - z \ , e p - e q , s g ( p ) ) = f d?< si' 
sin(<jr' |X — Z |) 

+ sg (p ) {q'-ia) 
(1.4) 

; (P ) = 
+ 1 if P > F , 
- 1 if p<F, 

F means the Fermi energy. 
This paper is organized as follows. In the next 
section we discuss the one center problem in the 
frame of the Dirac equation. We present several 
numerical results concerning the influence of dif-
ferent parameters on the critical potential. In Sect. 3 
we solve the two center problem and approximate 
the electron-electron interaction and obtain nu-
merical results for critical radii. In Sect. 4 we then 
consider the quantum electrodynamical corrections 
for one and two center potentials. In the following 
section we discuss the possibility of muonic super-
critical states and show, that they cannot be created 
in heavy ion collisions. We close our discussion of 
the possible effects which could change the value of 
the critical nuclear charge discussing several phe-
nomenological modifications of classical electro-
dynamics and QED in Section 6. We show that no 
essential change of the critical quantities is to be 
expected from such modifications if the values of 
the phenomenological parameters are restricted by 
present experiments. In the last section we sum-
marize our results and give a short outlook on 
future calculations. 

2. Zcr within the Framework of the Dirac 
Equation 

In our calculations we use a realistic nuclear 
charge distribution of a Fermi type with the surface 
thickness parameter t fixed usually to 2.2 fm and 
the half density parameter c which was derived 
from the equivalent radius 

= r0 Äh (2.1) 

with r0 = 1 . 2 f m . The nuclear mass A was chosen 
according to Eq. (1.2) of Pieper and Greiner4 . In 
order to take into account the electronic interaction 
we first employed a Thomas-Fermi-approximation8. 
We found numerical solutions for the lsi/o state for 
Z 172 (c = 9 .234 f m ) , the binding energy for 
Z = 172 is - 1 0 1 8 . 1 3 9 keV. That means a shift by 

1.5 units of the critical value for positron creation 
when including the electron-electron interaction in 
the Thomas-Fermi approximation. Numerically it is 
possible to find bound state wavefunctions up to 
the region Z = Z e r — 0.01. In Fig. 1 one can see the 

Z = 172 .U, 
E = -1021.966 keV 

IWI2-102 

Fig. 1. The radial density | r |2 of the l s j / j electron and 
the nuclear charge distribution is shown for an assumed 
nucleus with Z = 172.44. The binding energy differs only by 

44 eV from the critical value —2 m c2 . 

radial density of the lsj/9 electron of Z = 172.44 
(c == 9.9 fm, t = 2.2 fm, £ = - 1 0 2 1 . 9 6 4 keV) in 
comparison to the nuclear charge density assumed. 
A very remarkable fact is the relatively localized 
appearance of the wave function. For the diving 
velocity defined as = AE/dZ\z=Zor we obtain 
30.1 keV/unit charge. 

In Fig. 2 the maximum of the radial density 
' xpr 2 of the lsj/o electron as function of the nuclear 
charge is shown. For Z ZCT it reaches a value 
of about 25 fm. 

In a high energy collision of heavy naked nuclei 
with Z = Z1 + Z 2 > 137 one could assume because of 
compression of nuclear matter that it is possible to 
observe positron creation for example in a Pb + Pb 
(Zx + Z 2 = 164 < Z c r ) collision or with even lighter 
projectiles. In Fig. 3 we show the binding energy 
of the lsj/2 electron as a function of Z where we 
have assumed as charge distribution two concentric 
superposed homogeneously charged spheres with in-
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Fig. 2. The maximum of | ip r ]2 of the lsx /2 electron as 
function of Z. 

Fig. 3. The energy eigenvalue of the lsj/o electron as func-
tion of Z in a high energy heavy ion collision. The nuclear 
charge distribution consists of superposed homogeneous 
charge spheres of the collision partners with increasing 

charge in the smaller nucleus. Diving occurs at Z = 1 6 7 . 

creasing charge in the smaller particle. Diving then 
occurs at Z = 1 6 7 . Thus the effect of the nuclear 
compression may shift the critical value of Z down 
by at most 5 units of charge. 

Even under the assumption that superheavy 
nuclei with Z ~ Z c r are stable it is not possible to 
determine the critical value better than two units 
because of the unknown nuclear charge parameters. 
However, measuring several transition energies one 
will be able to attempt a best fit of nuclear charge 
distribution as it is done today in the muonic atom 
experiments. 

For Z > 137 one can always define for each Z a 
critical radius for positron creation (we may com-
press the nucleus in a Gedanken Experiment till the 
critical value of R is reached). In Fig. 4 a the criti-

cal equivalent radius of a fermi charge distribution 
with t = 2.2 fm as function of Z is shown. W e note 
that a change in the nuclear radius of 10% corre-
sponds to a shift in the diving point by one unit. 
As the equivalent radius is determined from the 
atomic mass, we can also plot the A dependence of 
the energy of the lsj/2 state — see Figure 4 b. In 

Fig. 4. a) The critical equivalent radius of a fermi charge 
distribution with t = 2.2 fm as function of Z. b) and c) 
Energies of the lsj/2 state as function of the atomic mass 
number A and of the surface thickness t of the nucleus for 

Z = 171. 

Fig. 4 c one can further see the energy as function 
of the surface thickness parameter t, where c was 
fixed to 9.218 fm and Z = 1 7 1 . With the value of 
the diving velocity = 30.1 keV/charge unit it is 
easy to recover the corresponding effect on the shift 
in the value of Z c r . The determination of Z c r seems 
to be uncertain by one unit due to uncertainties in 
the nuclear charge distribution. As an example of a 
numerical solution to an overdimensioned nucleus 
we show the radial density \iyr 2 of the lsj/g elec-
tron for Z = 184 (9 2U + 9 2U) in Fig. 5 with a as-
sumed nuclear radius corresponding to c = 20.3 fm. 
The maximum of the electronic charge distribution 
lies at about 40 fm. 

If one uses the relativistic Hartree-Fock-Slater 
formalism as a more realistic model for the elec-
tronic interaction one can find bound state solutions 
for all electrons up to Z = 1 7 3 . Thus, the Thomas-
Fermi approximation seems to underestimate the 
electron-electron interaction at the critical value. 
For the description of the HFS-ansatz we refer to 
Reference 9 . The selfconsistency criterion has been 
reached in our numerical code when the potential 
which was generated from the electronic density 
satisfied the condition 

V o l d 

VoM 
<<5 = 10~6 
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Fig. 5. The radial density | r ;2 of the K electron of an 
overdimensioned nucleus with Z = 184. Such a big nucleus 
can be understood as an approximation of the resulting 

effect of two colliding U ions separated by about 20 fm. 

which is one order of magnitude better than in 
Reference 9. The binding energy of the lsj/2 electron 
of Z = 1 7 3 was found to be — 1006.175 keV with 
the maximum of \yj r 2 at 23.545 fm. In Table 1 
the HFS energies of the first three electron shells of 

Table 1. The binding energies (eV) of the electrons of the 
first 3 shells calculated with a relativistic Hartree-Fock-
Slater program of the noble gas Z = 172 (c = 9.243 fm, 
t = 2.2 fm) are shown. In the last column the Thomas-

Fermi results are shown. 

Orbital Number of Hartree-Fock- Thomas-Fermi 
electrons Slater energies energies 

l S l / 2 2 9 7 6 5 8 3 1018139 
2S1/2 2 2 4 5 9 0 3 262196 
2PI/2 2 5 2 4 6 9 8 564852 
2p3/2 4 7 3 6 2 9 80776 
3s l / 2 2 66548 73045 
3PI/2 2 8 8 9 0 5 98621 
3 p 3 / 2 4 23411 26254 
3d 3 / 2 4 2 1 7 9 3 24864 
3d5 / 2 6 18521 20882 

the noble gas with Z = 172 (A = 504, c = 9.243 fm) 
are listed and can be compared with the correspond-
ing Thomas-Fermi results. The Thomas-Fermi bind-
ing energies are in each case greater than the HFS 
ones. The sum of the energy eigenvalues for Z = 172 
was found to be 4705.411 keV; the contribution 

from the exchange term is 75.065 keV. We would 
like to mention, that for all elements from Z = 47 
to Z = 1 7 3 the nuclear charge distribution, the nu-
clear potential, the binding energies, the innerelec-
tronic potential energy, the electronic exchange 
energy, the electronic density, the resulting poten-
tial, the principal maximum of I y.'r 2 of each elec-
tron and the maxima in the total density have been 
computed 10. In Fig. 6 one can see for example for 
Z = 170 the total radial density of the neutral atom. 
The maxima are at 25, 910, 2839, 6409 and 
13997 fm. 

Fig. 6. The total radial density \y>r\2 of Z = 170. Observe 
the big principal maximum in comparison with those atoms 
with lower Z which are shown by Fricke and others 9. Note 

half logarithmic scale. 

Critical potentials will be first experimentally 
realized in a heavy ion collision where the ion beam 
can be assumed to be highly ionized (20 — 25 elec-
trons removed)11. During the collision further ioni-
zation will occur — more than 100 electrons can be 
missing in the quasimolecule. For the neutral atom 
with Z = 170 the relativistic HFS energies for the 
Is]/? and the 2pa 2 electrons are —919.638 keV and 
— 71.566 keV. The change of the binding energy 
of the lsj/2 electron due to ionization is shown in 
Figure 7. In our calculations the outer electrons 
were removed step by step. Only for a degree of 
ionization d greater than 100 the influence on the 
diving point seems to be important. The change of 
the 2p;> 2— 1 sj/2 transition energy is less than 200 eV 
for d< 100 and is less than 3 keV for d< 150. In 
order to create positrons it is necessary to have at 
least one vacancy in the K shell 3. If one assumes 
only one vacancy in the K shell of Z = 1 7 2 the 
binding energy of the lsi/2 electron would rise by 
13.666 keV. We conclude noting that the effects of 
the electron configuration of a neutral atom with 
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ionization. 

Z ~ Z c r (which determines in general the chemical 
behaviour) are negligible with regard to the diving 
point. An estimate of the magnetic energy contribu-
tion to the binding energy following along the lines 
of Fricke et al.1 2 (which is for m greater than 
the quantumelectrodynamic corrections) increases 
the diving point by about 0.5 units. 

3. Two Center Calculations 

The electronic levels in the molecular system 
with two Coulomb centers Zx and Z 2 are obtained 
solving the Two-Center-Dirac equation 

{cap+ßmc* + Vx{r-R) +V2{r + R))y = Exp. 
(3 .1) 

V\ and V2 are obtained from finite size charge 
distributions of the collision partners. The eigen-
states and eigenenergies are obtained by diagonali-
zation of Eq. (3.1) in a suitable basis1 3 in the 
adiabatic approximation as function of the two 
Coulomb center distances R. For critical systems 
the asymptotic spectrum of the united system is 
reached only when the two nuclei come very close 
(R<K-shell radius of the united system ~ 3 0 f m ) . 
As no real Two-Center-Hartree-Fock calculations are 
available as yet, we estimate the electron screening 
effects by shifting the function E (R) according to 
the results of the HFS-calculations of the asymptotic 
limits R^ 0 and R — o o . For the lowest levels this 

approximation should be better than few per cents. 
In Fig. 8 the function E (R) is shown for the under-
critical 53I + 79AU collision. The dashed lines demon-
strate the HFS results. Only for higher levels 
( t i > 2 ) a drastic change in the correlation diagram 
due to electron-electron interaction are found. How-
ever, for our purpose, the outlined approximation 
is fully sufficient. 

R[fm] 10A 103 tf 10 

.1 -
7QAU relativistic molecular orbitals 

Fig. 8. The electronic energies of the lowest levels of the 
molecular system with the two Coulomb centers 53I and 79Au 
as function of the distance R. The dashed lines in the 
asymptotic limits denote the HFS-results. The dashed curve 
demonstrate an approximation of the Two-Center-Hartree-
Fock-Dirac result due to linear interpolation of the asymp-
totic HFS values and the function E(R) of Müller and 

others 13. 

4. Quantum Electrodynamic Corrections 

The most unknown facts in the determination of 
the critical Z are the quantumelectrodynamic cor-
rections such as vacuumpolarization and selfenergy. 
Calculations of the associated energy shifts are car-
ried out commonly in a perturbation expansion 
where the small parameter is Z a. This approach 
yields satisfactory results for all known ele-
ments 1 2 ' 1 4 . Even for Fm (Z = 100) one gets for the 
binding energy of the lsi/9 electron ( £ ' ~ 1 4 2 k e V ) 
only a shift of 484 eV due to selfenergy and 
— 154 eV due to vacuumpolarization12. Neverthe-
less it is, of course, questionable to extend these 
calculations to atoms with Z a > l . The QED cor-
rections for strong fields are under investigation 
within the frame of Equation (1.3) 15. One knows 
from heavy muonic atoms that in strong fields, but 
for Z a < l vacuumpolarization corrections of high-
er than linear order are only a per cent effect com-
pared to the effect of the Uehling potent ia l 1 6 - 1 8 

which we will evaluate further below. It is our pre-
sent strong belief, that use of the Uehling potential 
is justified as long as Z < Z c r . For Z > Z c r however, 
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one has to take into account the fact, that also a 
real charge is included in the vacuum. For further 
discussions we refer to References 2> 3. The Uehling 
potential for radial symmetric charge distribution is 
given by 19 

oo 

V x v = - e ^ f 2 f Q^'){Zx{\r-r' j ) 

- Z 1 ( r + / ) ) d r (4.1) 

with the structure function 

* , < > ! ) - / « p { - £ | r | f ) 

where is the electron Compton wavelength. We 
have used the following constants %e = 386.1592 fm. 
a"1 = 137.03602 and e2 = h c a = 1.4399784 MeV 
fm. In this calculation we have made no other per-
turbation expansion. The structure function as well 
as the resulting potential are integrated numerically. 
The attractive vacuumpolarization potential was 
added to the Coulomb potential for extended nuclei 
before integrating the Dirac equation. We establish 
that our code calculates Vyp with an accuracy better 
than 2%. For the lsj/o electrons in Z = 1 7 1 we 
found AE = — 11.834 keV. However, for the known 
elements selfenergy is the dominant quantum electro-
dynamic correction for K electrons. For example 
for looFm the Lambshift effect is by a factor 3 larger 
than the effect of the Uehling potential1 2 '1 4 because 
electrons are still relatively far from the inducing 
nuclear charge distribution. The influence of the 
vacuum fluctuation on electronic binding energies 
of superheavy elements was earlier estimated by 
Fricke2 0 in a questionable model calculation. A shift 
of the diving point of 5 units results in his calcula-
tions. Our finding is considerably smaller. Our cal-
culation is based on a formula given by Erickson21 . 
The energy shift agrees for Z = 80 with the unper-
turbive result of Desiderio and Johnson2 2 . For 
Z = 1 7 3 we found zl£' = 2 .9keV this is equivalent 
to a change of Z c r by AZ = 0.1. The selfenergy ef-
fects are of comparable size to the vacuum polariza-
tion shift and of opposite sign. The use of the per-
turbation expansion of Erickson is certainly not 
completely justified. More careful evaluation along 
the lines of Desiderio and Johnson is in preparation. 

So far we attribute an uncertainty of one unit due 
to the perturbative determination of QED effects. 

5. Supercritical Muonic States? 

Beside the electrons an atom may contain muons. 
These particles are fermions, too, and are subject 
to exactly the same interactions as the electrons, 
from which they only differ by mass. Consequently, 
one would expect the phenomena described above 
to happen in the very same way in superheavy 
muonic atoms, and more easily observable since the 
muonic K shell is usually (in all non-inuonic atoms) 
unoccupied. But the muonic K shell radius lies for 
atoms with Z > 1 0 0 inside the nucleus (see Fig. 9) 

Fig. 9. The radial density \ipr\2 of the Is, 2 muons of the 
presumable stable superheavy elements a) Z = 114 and 
b) Z = 164 and the corresponding nuclear charge distribu-
tion. Only the Coulomb potential for extended nuclei and 
reduced mass effects are considered but no QED corrections 

are included. The K-shell radius lies inside the nucleus. 

Fig. 10. The energy eigenvalue of the lsj/2 muon as function 
of Z. Diving occurs at the utopic value of Z = 2200. where 
we have assumed A = 2.5 Z, Rcq = 1.2 A1/» and t - 2.2 fm. 
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and therefore the binding energies increase very 
slowly compared to the electronic ones. The energy 
eigenvalue of the lsj/o muon as function of Z is 
shown in Figure 10. The diving point wre found at 
the utopical value of Z = 2200 where wre have as-
sumed A = 2.5 Z, Re(} = 1.2 A,/s and t = 2.2 fm. Even 
in the case of very high compression of the nuclear 
charge density in a high energy collision for ex-
ample U + U the energy of the lsj/2 muon would 
reach the lower continuum only for nuclear radii 
R < 1 fm, see Fig. 11, where we showT the lsj/2 

8 10 Rn [fm] 

Fig. 11. The energy eigenvalue of the lsj/2 muon of Z = 184 
(U+U) as function of the nuclear radius. 

muonic state in a Z = 184 atom as a function of the 
nuclear radius. An experimental creation of posi-
tively charged particles with /n> /n e and only 
electromagnetic interaction is therefore impossible. 
Nevertheless one can learn much from the muonic 
atom measurements when investigating the proper-
ties of superheavy nuclei, which because the calcu-
lations of Refs. 23) 24 and 25 should be stable in the 
regions around Z = 1 1 4 and probably around Z = 
164. The cross section for capture of muons in 
atoms is proportional to Z4 or ZD. Thus an experi-
ment may be easier done even with a low concen-
tration of superheavy elements. 

6. Phenomenological Modification of QED 
and Electrodynamics 

The nonlinear electromagnetic field theories of 
Born-Infeld type which are described by the follow-
ing class of Hamiltonian densities H (n) if the 

magnetic field B = 0, 

E02(n) 
2 n 

D2 

EoHn) 
- 1 (6.1) 

D is the electric displacement, E0(n) is a parameter 
of the theory, are not able to prevent the diving of 
the 1 sj/2 state26. These nonlinear field theories have 
the remarkable property that they lead to a finite 
selfenergy value26 of a point charge for n < 0.75 
and that they reduce to the Maxwellian Hamiltonian 
density whenever D2 ^ E02. From high precision 
measurements in muonic atoms 2 7 ' 2 8 it results that 
one has to choose £ ' r a a x>2-IO2 0 Volt/cm in order to 
avoid disagreements with experimental data. With 
this maximal electric field strength the diving point 
is shifted by no more than 2 units 29~31. In general 
limiting electromagnetic field theories are not ca-
pable to prevent diving because the potential which 
is responsible for the binding energy of the elec-
trons has no upper bound. 

In the frame of limiting potential theories based 
on the Lagrange function 

2 = */KI/K1 V{A0Ae) - 4 ; K (AhA<) (6.2) 

with 
AK 

/KI = ^ i / K - ^ K / I , ^ K = fVV(AtA')dAK 
Ak(OO) 

it would be possible that the binding energy of the 
electrons is less than 2 m c2 for each Z 32. This 
Lagrangian density leads to the field equation 

| K [ V r m 

- 2 I" I"'" yy A ' ( 6 ' 3 ) 

Due to the continuity equation one has the con-
dition 

3 3S f = 0 (6.4) 

with 

dxK dAK 

£F = * / K I f K l V ( A 0 A ? ) . (6.5) 

In the case of purely electrostatic fields 

A r = (0 , 0 , 0 - ^ 9 ) 

the field equation has the solution 

<£ = / yrTV)dp= fo(r') 
dV 

(6.6) 

(6.7) 
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V(A0A*) = l + <5 (6.8) 

where 90 can be obtained from special choices of V. 
With the parametrization = i 1) 

A
q
Ag' 

<Po2 

(limiting potentials results if <5 = + 1 ) one finds for 
n = - 2, <5 = + 1 

rp = tan h (Z e/cp0 r) . (6.9) 

If one chooses 

(p0 = 2mec2/e (6.10) 

it follows e cp e (p0 = 2 mP c2. As the binding 
energy of the lsj/g state has to be smaller than ecp, 
that means that the binding energy of an electron 
cannot reach the critical value 2 m c2 in such a 
theory. These theories are not gauge invariant and 
are ruled out by present experiments in atomic 
physics. Solution of the Dirac equation 

{yK[pK - (e/c) Ak] -m0c}y = 0 (6.11) 

leads for the 2p;]/?— lsj/2 transition energy in lead 
(Z = 82) to 64.531 keV which differs of about 
14 keV from the usual value for the Coulomb po-
tential. Because of precise measurements 33 in elec-
tronic looFm one is forced to set e fp0 ^ 1000 me c2. 
This lower bound of limiting potentials increases by a 
factor of 104 in order to avoid discrepancies in the 
calculation of transition matrix elements in nuclei. 
Therefore it can be expected that there exists no 
observable shift of the diving point due to the 
limiting potential theories. 

The coupling of the potential of Eq. (6.11) to 
the Dirac field is not unique. In the case of a pure 
electrostatic potential the Dirac equation for mixed 
scalar and vector (Coulomb) potential can be writ-
ten (h = c = 1) 

[ap + ß(m + V2) - ( E - V 1 ) ] y = 0 . (6.12) 

It was shown that this equation admits analytic 
solutions 34 for any V1,V2~1 /\r\. Choosing 

V1= — ajr, V2=-a/r (6.13) 

and a = — a the energy spectrum becomes 

2(a/n)2 
E = m 1 -

l + i (a /n ) 
(6.14) 

For a - > c o the energies approach the negative 
energy continuum and no positron creation would 
appear. However, the limits on the scalar coupling 
constant are set by atomic precisions experi-

ments 27' 28' 33. One obtains the maximal size of the 
scalar coupling constant a' = 2 . 5 - 1 0 - 8 per unit 
charge. These scalar potentials can be understood 
as the effect of the exchange of a massless or almost 
massless scalar boson analogous to the suggestion 
of Sundaresan and Watson 10 of a massive (8 MeV) 
scalar boson coupled to the fi+ /«"-field in order to 
explain present discrepancies in muonic experi-
ments 27, 28. Any displacement of electronic binding 
energies in superheavy elements due to different 
forms of potential couplings can therefore be ruled 
out. 

Considering the Heisenberg field equation 30 

yv 3 v y ± l 2 y„ y5 y (y yv y5 y) 0 (6.15) 

and the associated one particle equation with elec-
tromagnetic interaction 

yv(i 3 v - e A v ± l 2 y yv y)y - m y = 0 (6.16) 

small corrections to the electronic energies cannot 
be excluded3G. The introduction of the density-
dependent term of the form y 3 would correspond 
to energy shifts AE ~ I2 fy4 d3x where I is a para-
meter with a dimension of a length. Concerning the 
present discrepancies in muonic atoms 2 7 , 2 8 the 
maximal value of / can be determined to be 
I ~ 0.024 fm yZ. From numerical solution of Eq. 
(6.16) follows an upper bound to a change of the 
diving point of half a unit from this kind of self-
interaction 36- 3 ' . 

7. Conclusions and Outlook 

In this paper we have discussed quantitatively 
all contributions which would affect the value of the 
critical nuclear charge or critical separation in 
heavy ion collisions. Most of these contributions are 
negligible — the important ones being a) electron-
electron (HF-effects) interactions ( ± 0 . 5 units), 
b) uncertainty in the charge distribution ( + 1.0 
units), c) magnetic energy ( + 0 . 5 + 0.25 units), d) 
vacuum polarization and selfenergy ( + 1 units) 
shifts. Therefore we believe that the most realistic 
value for the critical nuclear charge is Z = 1 7 3 + 2 
where the uncertainty mainly comes from the still 
unprecise value for the QED effects. The critical 
separation in heavy ion collision was found to be 
R(U-U) = 34.7 + 2 fm, R(U-Cf) = 4 7 . 7 ± 2 f m . 
The uncertainty corresponds to an assumed 60 keV 
uncertainty in the determination of the molecular 
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state e n e r g y d u e to the est imates o f the H F - and 
Q E D ef fects . T h e uncer ta inty in the nuc l ear charge 
d i s t r ibut ion is n e g l i g i b l e in this case . W e w o u l d l ike 
to stress aga in that o u r ca l cu la t i ons a lways inc lude 
the f inite nuc l ear size a n d are exac t so lut i ons o f the 
relativist ic D i r a c e q u a t i o n . 

In the fu ture v e r y t e d i o u s ca l cu la t i ons are neces-
sary to c o m p u t e m o r e prec i se ly all the a f o r e m e n -
t ioned ef fects , such as v a c u u m po lar i za t i on , self-
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