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Within the framework of the pairing plus quadrupole interaction model and by using the tech-
nique of quasi spin formalism it is possible to determine the collective potential and kinetic energy-
surfaces as analytic functions of the particle number in the limit that single particle splittings are 
neglected. Pushing the quasi spin model in an extended version up to the 4 t h order in perturba-
tion theory the stiffness and mass parameters of harmonic and anharmonic terms for Dy. Er. Yb, 
and Hf-isotopes have been calculated. The theoretical particle dependence of collective quantities 
shows a good qualitative and even quantitative agreement with experimental data and former 
calculations. 

I. Introduction 

During the last years there has been considerable 
success of the collective model in its most extended 
version by Gneuss and Greiner 1. The ansatz for the 
Hamiltonian 

H = T+V, 

T= A [.-Tx--r][01+^xax.i][01 
4 D o 

+ X [ A X A ] M ] T ° L 
j 

+ [ [ a x a F x | > X : T ] [ ; I F ) 

+ P 4 [ [ . - R X . T ] [ 0 1 X + 

4- higher order terms, 
V = C,[ axa]W + C3[axaxa][°l (1) 

+ C 4 [ [ a x a ] [ ° l x [ a x a ] M ] 
+ higher order terms 

is dictated by principles of rotational and time in-
variance. It is ambiguous as far as one does not 
know where to stop with higher order terms. The 
answer is given practically by truncating the power 
series arbitrarily and fitting mass and stiffness 
parameters to energy spectra and transition prob-
abilities. Up to now, most calculations stopped with 
the third or even second power in the kinetic surface 
and with the sixth power in the potential surface. 

It is not clear whether this procedure is unique if 
one takes higher order terms into account and it is 
an open question how far the influence of kinetic 
terms can be simulated by potential terms and vice 
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versa. Moreover, it is a lengthy and difficult j ob to 
determine particle number dependences of potentia 
and kinetic surfaces by means of the fitting proce 
dure. 

The great success of the collective model in repro-
ducing spectra and transition probabilities justifies 
a microscopic approach to a solution of these ques-
tions. In this paper we attack the calculation of col-
lective quantities in their dependence on particle 
number. Kerman 2 and later Greiner3 have shown 
that one can determine explicitly the particle num-
ber dependence by treating the pairing plus quadru-
pole interaction in the quasi spin model. In Sect. II 
we give a short summary of the main ideas of the 
quasi spin model and show how all mass and stiff-
ness parameters up to the 4th power occurring in 
Eq. (1) can be calculated. For the application of the 
model to practical cases some extensions have to be 
done. The quasi spin model has to be applied 
simultaneously for protons and neutrons and a con-
tribution to the collective potential energy coming 
from the core and the Coulomb interaction has to 
be included. This is discussed in Section, III. 
Groundstate deformations, deformation energies, 
mass parameters and E (2+)-energies are calculated 
for several isotope sequences and compared with 
former calculations and experiments. 

II. The Quasi Spin Model 

The quasi spin model 2 ' 3 is based on three ideali-
zations of the atomic nulceus: 

1. There exists only one large /-shell above a closed 
spherical core. 



1132 H. Rafelski and B. Fink • Particle Number Dependence of Collective Properties of Nuclei 

2. The interaction of particles from the /-shell with 
the core is negligible. 

3. Only a pairing and quadrupole-quadrupole force 
is acting between the particles in the /-shell. 

Though statements 1 and 2 are very severe idealiza-
tions, they are consistent with the schematic type of 
force used and lead to a simple Hamiltonian 

H = HS + HQQ. (2) 

The seniority part H s is given by 

Hs= - G 2 + » + ( 3 ) 
m> 0 
>«'>0 

where the aj~m denote creation operators for a state 
with magnetic quantum number m in the /'-shell 
(/ will be omitted for convenience from now on). 
Instead of the quadrupole-quadrupole interaction 

H Q Q = - h x l Q f l + Q ß (4) 
n 

we shall actually use the well deformed seniority 
operator //[>§ [Equation (12 ) ] . 

The pairing Hamiltonian can be written in the 
form 

Hs=-GS+S_ (5) 

where S + and S_ are the components of a vector 
S = { S + , S _ , S 0 } = 2 { 5 ? , 5 » 5 ? } (6) 

;»>0 

and S'l , S™ , Sn0l are defined by 

S+ = ( - ) i + ma+a±m, S'l = ( S ? ) + , 
So = % (a»i am + a - 1 ) . (7) 

The components of the so-called quasi spin S obey 
the usual angular momentum commutator proper-
ties. Eigenstates of the square of the quasi spin and 
its projection to the z-axis are denoted by S S0). 
Now H$ can be expressed in the form 

/ / s = - G { ( S - S ) - 5 0 2 + 5 0 } (8) 

and is therefore diagonal in the states 5 S0). The 
projection S0 of quasi spin may be written in terms 
of the particle number N and the number of pos-

sible pairs Q = ( 2 / + l ) / 2 in the single /-shell 

S0 = h(N-Q). (9) 

Then the eigenvalues of Hs take the form 

- ( Y H V ) ; . 
(10) 

Instead of the quasi spin S the seniority quantum 
number v is often used, where 

S=h(Q-v). (11) 

Usually the pairing plus quadrupole Hamiltonian 
of Eq. (2) is substituted by the well deformed 
seniority operator 4 

HI)S = H s - x g 1 * ; Q , l (12) 

in which a collective deformation parameter afl is 
introduced and g is a constant with the dimension 
of a quadrupole moment. The eigenstates and 
energies of H^g , 

H o s M X n M = € » ( a „ ) z « ( a / i ) » ( 1 3 ) 

will be determined by perturbation theory in the 
basis of quasi spin eigenfunctions with the pertur-
bation term — x g J? afl

+ Qu through 4th order. Then 

in a second step we get an eigenvalue problem con-
taining the steady state classical parameters afl and 
their time derivatives aß 

Hj)§ (au , a^) ) ¥ a J 

where 
(14) 

H ' m = H D S - i h 2 * A W * J • ( 1 5 ) 

As usual the cranking problem is treated in the 
basis of eigenfunctions of HD$ (see Reference 5 ) . 

The groundstate expectation value e (a ß ,a f l ) is 
identified with the collective potential and kinetic 
energy surface whose form is predetermined by 
rotational and time invariance. Taking historical 
notations we have 

e ' ( a / 4 , c g = e ( 0 ) + V5 B[d X a] M + B'[a x a X a] M 

+ ß " [ a x a ] M [a x a] M - 5 B[a x a] W [a x a] M 

- ^ - C [ a x a ] [ » l - ] £ > [ a x a x a ] [ ° ] + | - F [ a x a ] [ 0 ] [ a x c t ] [ 0 l . 
2 3 4 

(16) 
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The coefficients are obtained by perturbation theory in the basis of quasi spin eigenfunctions as de-
scribed above 

r / \ •-> 50 , ()0 5 — 1 5 0 ; 

D=-(y.g)* 3 | 

F= (xg)*4 

\{SS0\Q0\S~IS())\2(S~IS0\Q0\S-IS^ 
35 [ £ ( 5 — 1 ) - £ ( 5 ) ] 2 

; s s 0 i q 0 s ~ i s 0 ) ! 2 

[ £ ( 5 - 1 ) - £ ( 5 ) ] 2 

| ( 5 - 1 5 0 ' < 2 0 j 5 - 1 5 0 ) | 2 

£ ( 5 - 1 ) - £ ( 5 ) 
|(5 — 1 50 < ? 0 | 5 - 2 5 0 ) i 2 | ( 5 5 0 j < 2 0 | 5 - 1 5 0 ) j 2 l 

£ ( 5 - 2 ) - £ ( 5 ) £ ( 5 - 1 ) - £ ( 5 ) 

B = 2 k U g ) [ £ ( 5 - 1 ) - £ ( 5 ) ] * 

35 , ( v ^ 3 | (5 50 Q 0 j 5 — 1 5 0 ) j2 
B' = 4 |/"J2J h2(xg) 

B" = 2h2(x g)i 

[ £ ( 5 - 1 ) - £ ( 5 ) ] 4 ( 5 - 1501 j 5 — 1 5( 0/ » 

l (5 5 0 i < ? 0 j 5 - 1 5 0 > | 2 | ( 5 - 1 5 0 <?o | 5 - 1 5 0 ) 
[ £ ( 5 - 1 ) - £ ( 5 ) ] 4 £ ( 5 - 1) - E ( S ) 

+ 2 1 (5 — 1 501 | S — 2 50)I2 _ 2 ;5 5 0 ! ( ? 0 : 5 - 1 5 0 ) ! 

B = K*(xgy 

£ ( 5 - 2 ) - £ ( 5 ) £ ( 5 - 1 ) - £ ( 5 ) 

(SS 0 Q0 5 - 1 5 0 ) | 2 1 ( 5 - 1 50 j <2o | 5 - 1 50)|2 

[ £ ( 5 - 1 ) - £ ( 5 ) ] 6 £ ( 5 - 1 ) - £ ( 5 ) 
! ( 5 - 1 5 q 1 ( ? 0 1 5 - 2 5 0 ) P 

E(S-2) - £ ( 5 ) 
l (5 5 0 l ^ 0 l 5 - 1 5 0 ) i 2 

£ ( 5 - 1 ) - £ ( 5 ) 

(17 a) 

(17b ) 

(17 c) 

(18a) 

(18b ) 

(18c ) 

(18 d) 

In these relations only the component ()0 enters 
since the expansion (16) is a unique one. Further-
more there exist terms with parameters B " ' be-
longing to intermediate angular momenta ] similar 
to the term with B" in (16) . 

Now the particle dependence of the matrix ele-
ments can be extracted by repeated use of Wigner-
Eckart Theorem in quasi spin space 

( S 5 0 | 0 „ | 5 - l S 0 ) = ] / ^ : ^ 

/ 2 - 2 - Q \ •is j (19a) 

N-P 
(S-1S0\Q0\S-1S0)=2__Q 

/ 2 - 0 2 - Q \ • ( s - l 2 (19b) 

( S - i s 0 i 9 „ ! s - 2 S o > = y M H 3 Z H 2 r 

/ 4 - . Q , 4 - Q\ 
' (S—l - Q0\S — 2 (19c ) 

In these formulas 5 is the quasi spin of the ground-
state of even-even nuclei, namely S = Q/2. We are 
left with matrix-elements belonging to particle num-
ber 2 and 4 which can be calculated only in configu-
ration space using many-particle functions with 
good angular momentum and seniority. This was 
done in the case of matrix elements for particle 
number 2. Matrix elements for particle number 4 
were calculated with states which had not been 
projected to good seniority states. This gives a 
fairly good estimation of their value and is suffi-
cient since the present model does not justify exten-
sive configuration space calculations. The four par-
ticle matrix element was adjusted in the near of its 
estimated value to one nucleus (it is the same for 
all nuclei of the treated isotope sequences). 

III. Extensions of the Quasi Spin Model 

To obtain a more realistic model some extensions 
of the quasi spin model have to be clone. This can 
be easily achieved by three more assumptions in 
addition to those state in Sect. II: 
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4. The quasi spin model is simultaneously applied 
to a /-shell filled up with neutrons and a /-shell 
which accomodates protons. 

5. Assumptions 2. and 3. in Sect. II are separately 
fulfilled by the neutron and the proton shell. 

6. Like in most BCS-calculations interactions be-
tween neutrons and protons are neglected. 

To get more realistic potential energy surfaces we 
include contributions from the core and from Cou-
lomb energy. In selfexplaining notation we then 
have 

#np = #core + + #coul • (20) 

For the calculation in the region of rare earth iso-
topes a Z = 50, N = 82 core has to be taken into 
account. The potential energy surface for the 
(50, 82)-core was calculated by Mosel 6 and can be 
very well approximated by a harmonic oscillator 
Hcore = Ccore «o2 with Cvore = 90 [ M e V ] . Because of 
this strong spherical contribution the potential 
energy surface is pushed to smaller values of de-
formation and the deformation energy is decreased. 
This influence is shown in Figure 1. 

eloü [MeV] 
110 

0.6 a„ 

Fig. 1. The influence of core contributions on the potential 
energy surface. 

The Coulomb energy can be treated as a function 
of proton and neutron number of the core and the 
outer shells and as a function of the collective co-
ordinates 6 

tfcoui(*o) = 0 . 7 2 4 2 

1 

( 2 core + Z ) 2 

(Zeore + Z + yVeore+TV)1 

1 , 19 
..-T a°" + 1680 

39 / 5 N ° 
8960 \ rr 

Its influence increases the groundstate deformation 
and the deformation energy as can be seen from 
Figure 2. 

11 f(j)=o.2i : 

[MeV] 
l10 

c 
N = 20 
i - 31 

5 1 \ 

[MeV] 
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c 
N = 20 
i - 31 

5 

/ 

© with ECoul : 

® n o E C o u l . -1 1 1 1 1 

-5 / 

-m, , , i i ^ 

a<i + • • (21) 
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Fig. 2. The influence of Coulomb energy on the potential 
energy surface. 

Naively one is tempted to associate the values j 
and / ' for the single shells with the realistic outer 
shells in the considered isotope sequences. But it 
was already stated in Ref. 3 that deformations start 
to built up only for / > 1 9 / 2 in the middle of the 
shells. From this it is clear that we need large 
/-values to describe the strongly deformed rare 
earths and that there is no connection with the 
/'-value of subshells occurring outside the core. On 
the other hand, one could be tempted to identify j 
and / ' with 43 /2 and 31/2 such that the shells can 
accommodate the 44 neutrons between neutron 
numbers 82 and 126 and the 32 protons between 
50 and 82. Doing so most of the rare earth nuclei 
fall into the first half of the shells with IX <Q 
which generate only oblate nuclei whereas in nature 
the prolate ones dominate. 

We can overcome this shortcoming of the quasi 
spin model by assuming that there are already 
some core nucleons in the single shells when we 
start filling up with outer nucleons. This is justified 
by the fact that the outer shells polarize the core 
and consequently their single particle levels start 
crossing with levels from the core. The number of 
core nucleons occupying places in the outer shells 
as well as the values of /' and / are arbitrary within 
certain limits. The results presented below could be 
also obtained with other /' and /'-values but conse-
quently different numbers of core nucleons in the 
/'-shells. These values serve only to fix the basis we 
are working in. The calculation for all isotope se-
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quences were done with / = 29/2 for the proton 
shell and / = 31 /2 for the neutron shell. We as-
sumed six core protons and two core neutrons in 
the outer shells. The four particle matrix element 
of Eq. (19 c) was estimated as described above. 
Using the reduced single particle matrix element qQq1 

of the quadrupole operator we split up in the fol- 8 
lowing form 

/ 4 _ O 4 _ O \ 7 
(s~\- -2-\Q,\S-2 2" / f(J) qu)' (22) 

6 
Then /(; ') has a value of approximately 0.22 for j 
around 31/2. We assumed / ( ; ) = / ( / ) = 0.22. In 5 

formulas (17) and (18) the quantity P = x-gq 
for protons and neutrons enters. They were fitted ^ 
to reproduce the potential energy surface of one 
Yb-isotope calculated by Mosel 6 within the Nilsson 
model. This gives values P„ = 56 MeV and P,, = 
37 MeV. 

With these parameters fixed we calculated the 
potential and kinetic energy surfaces of the Dy, Er, 
Yb and Hf-isotopes. Figure 3 gives a general view 
of the potential energy surfaces and their depen-
dence on particle number. From here we can ex-
tract important collective quantities like groundstate 
deformations and deformation energies. Ground-
state deformations were transformed to quadrupole 
moments using 0 

<?o~ 3 4 * ° A (23) 

1135 

and are compared with experimental values in 
Figure 4. The magnitude as well as the overall trend 
is very well reproduced. Finally we compare the 
deformation energies of the calculated isotope se-

Fig. 4. Comparison of quadrupole moments calculated with 
the extended quasi spin model and from experiment. 

quences with the semi-empirical analysis of Myers 
and Swiatecki8 and the calculations of Sobiczewski9 

in Figure 5. Again there is a strikingly good agree-
ment with them. 

With respect to the kinetic energy surface one is 
not able to extract quantities which have such an 
obvious meaning like groundstate deformations or 
deformation energies. In Fig. 6 we show mass para-
meters calculated only with one /-shell. It is impos-

[10 24 cm21 

Dy Er 

94 98 96 

Yb 

- • - from 0O quasi spin 
experiment 
from CL, ret.[7] 

104 -ff- J I_ 
104 108 
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-def [MeV] 

quasi spin model 
semi emp MS 
PBCS 

94 98 102 95 100 104 102 106 110 104 108 112 ' 

Fig. 5. Comparison of deformation energies with values from 
Myers and Swiatecki 8 and calculations of Sobczewski 

sible to compare them with quantities which can 
directly be related to experiments. In the middle of 
the shell B/h2 is about 40 M e V - 1 and B vanishes. 
Leaving the middle of the shell B decreases and B 
increases. This is in agreement with observations 
in the dynamical model where B has to be reduced 
as soon as B is turned on 10. The authors of 
Ref. 10 use a value of B/h2 = 60 MeV - 1 . 

Fig. 6. Mass parameters in the simple quasi spin model. 

The very interesting parameter B of the a4-term 
has been used very seldom. Reference 11 contains an 
intensive study of its effect on the collective energy 
spectra. Turning on this parameter the whole energy 
spectrum spreads and a slow reordering of the 
levels occurs. The effect is similar to the influence 
of B on energy spectra. In order to get a realistic 

energy of the first 2+-level in deformed nuclei the 
value of B/h4 must be smaller than 100 MeV-"1. 
Our values are in agreement with this upper limit. 

Wi th the mass parameters B and groundstate de-
formations of the extended quasi spin model we 
estimated moments of inertia by J = 3 B ß02 and 
from this E (2+) -energies. Of course, we cannot ex-
pect to get the right order of magnitude using only 
mass parameter B. At the average the E('2+) -ener-
gies turned out to be 2.3 times too large. Adjusted 
by a factor 0.44 they are compared with experimen-
tal values in Figure 7. The trend of the variation 
with neutron number is very well reproduced. 

94 98 102 102 106 104 108 

Fig. 7. Comparison of the E (2+ ) -energies in the extended 
quasi spin model adjusted by a factor 0.44 with experimental 

values. 

IV. Conclusions 

We have extended the schematic quasi spin model 
to include both protons and neutrons. Taking into 
account a contribution from the core and the Cou-
lomb energy and assuming that some core nucleons 
occupy places in the outer shells it is possible to 
describe collective properties of four rare earth iso-
tope sequences with one set of parameters. The 
extended quasi spin model yields explicitly the cor-
rect particle number dependence for different col-
lective quantities of interest like groundstate defor-
mations, deformation energies and E (2+) -energies. 
Therefore the particle number dependence of mass 
and stiffness parameters can be used as a guideline in 
the time-consuming search for best parameters in the 
dynamical model. The mass parameter of the a4-term 
turns out to be of a magnitude where this term has 
similar influence on collective energy spectra like 
the a2-term. Therefore it seems to be justified that 
the a4-term is usually dropped. 
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