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Abstract

Melting inside Earth is a common phenomenon and can be observed in many differ-
ent regions where melt travels through the mantle and crust to eventually reach the
surface where it crystallizes to build large volcanic provinces, whole stratigraphic lay-
ers of flood basalts, or even the oceanic crust. Often, melt reaching the surface is a
good source of information. It can be used to achieve a better understanding about
processes taking place in deeper regions inside the mantle and it is therefore essen-
tial to fundamentally understand melting and melt percolation processes. In order to
achieve a deeper understanding, the aim of this thesis is to investigate processes that
are connected to melting by using numerical models.
The physical model used is a so called two-phase flow model which describes the ability
of melt to percolate through a viscously deforming, partially molten matrix. A famous
feature of two-phase flow are solitary porosity waves, which are waves of locally higher
porosity ascending through a partially molten background, keeping its shape constant,
driven by decompaction and compaction of the solid matrix in front and behind the
wave.
The viscosity law for shear- and volume viscosity was strongly simplified in most
previous studies that modeled solitary waves. Often the porosity dependency is un-
derestimated or its influence on the volume viscosity is even neglected, leading to too
high viscosities. In this work more realistic laws are used that strongly decrease for
small melt fractions. Those laws are incorporated into a 2D Finite Difference mantle
convection code with two-phase flow to study the ascent of solitary porosity waves.
The model results show that an initial Gaussian-shaped wave rapidly evolves into a
solitary wave with a certain amplitude, traveling upwards with constant velocity. Even
though strongly weaker viscosities are used, the effect on dispersion curves and wave
shape are only minor as long as the background porosity is rather small. The results
are still in agreement to semi-analytical solutions which neglect shear stresses in the
melt segregation equation. Higher background porosities and wave amplitudes lead
to significant decrease in phase velocity and wave width, as the viscosity is strongly
effected. However, the models show that solitary waves are still a possible mechanism
for more realistic matrix viscosities.
While the ascending of porosity waves are mostly described by the movement of fluid
melt, partially molten regions inside Earth trigger upwelling of both, solid and fluid
phases, which can be called diapirism. While diapirs can have a wide variety of wave-
lengths, porosity waves are restricted to a few times the compaction length. The
size of a melt perturbation in terms of compaction length therefore describes whether
material is transported by diapirism or porosity waves. In this thesis we study the
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transition from diapiric rise to solitary porosity waves by systematically changing the
size of a porosity perturbation from 1.8 to 120 times the compaction length. In case of
a perturbation of the size of a few times the compaction length a single porosity wave
will emerge, either with a positive or negative vertical matrix flux and if melt is not
allowed to move relative to the matrix a diapir will emerge. In between these physical
end members a regime can be observed where the partially molten perturbation will
split up into numerous solitary waves, whose phase velocity is low compared to the
Stokes velocity and the swarm of solitary waves will ascend jointly as a diapir, slowly
elongating due to a higher amplitude main solitary wave.
Solitary waves will always emerge from a melt perturbation as long as two-phase flow
is enabled, but the time for a solitary wave to emerge increases non-linearly with the
perturbation radius in terms of compaction length. In nature, in many cases this time
might be too long for solitary waves to emerge.
Another important feature when it comes to two-phase flow is the transport of trace
elements in melt. Incompatible elements prefer to go into the melt, which eventually
enriches the area where it crystallizes again. In order to model this redistribution,
the code FDCON was extended to allow for fully consistent transport of elements in
melt, including melting, freezing and re-equilibration with time. A 2D model, a sim-
ple representation of a volcanic back arc, is set up to investigate the behavior of trace
elements. The influence of retention number and re-equilibration time is examined.
Lava-lamp like convection can be observed in the lower part of the model, producing
melt, that eventually leads to enrichment in trace elements in the upper high-viscous
layer. The total enrichment in this layer approaches an asymptotic value and a 0D
model is introduced to recreate this behavior. Additionally to geochemical parameters
it incorporates parameters describing the movability of melt, the ratio of source area
to emplacement area, and the ratio of molten to umolten area in the source region, i.e.
the dynamics of the model. The amount of enrichment in the emplacement area will
reach an asymptotic value, that depends on the three additional parameters mentioned
above, the partition coefficient, re-equilibration and degree of melting. The time that
is needed to approach the asymptote only depends on the ratio of molten to unmolten
area in the source region, as this is an indicator on how strong the source becomes
depleted per melting event.
Solitary waves are also interesting when it comes to their mass transport capabilities.
In the past it was long thought that they are not able to transport mass, that they
just pass through material, during which the latter is slightly ascended. Recently, it
was shown that solitary waves are in fact able to encapsulate material in their cen-
ter and transport material until they vanish at one point due to obstacles. In this
work we could reproduce these mass transport capabilities, using the full two-phase
flow equations, allowing for the self consistent evolving of solitary waves. It could be
shown that the material trapped in the center of the wave is not from the melt source
region, but from a region slightly above, because the wave needs some time to build
up and to encapsulate material in it.

ii



Contents

Abstract i

Contents v

List of Figures viii

List of Tables ix

1 Motivation and Aim of this Thesis 1

2 Introduction 3
2.1 Partial Melting inside Earth and Melt Transport . . . . . . . . . . . . . 3
2.2 Diapirism and Solitary Porosity Waves . . . . . . . . . . . . . . . . . . 6
2.3 Trace Elements and their Behavior during Melting . . . . . . . . . . . . 11

3 Methods 21
3.1 General Equations of Two-Phase Flow . . . . . . . . . . . . . . . . . . 21
3.2 Equations of Trace Element Transport with Melt . . . . . . . . . . . . 27
3.3 Derivation of the Equations in the Publications . . . . . . . . . . . . . 30

3.3.1 Publication 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Publication 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Publication 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Unpublished Manuscript . . . . . . . . . . . . . . . . . . . . . . 35

4 Publication 1: The Effect of effective Rock Viscosity on 2D Magmatic
Porosity Waves 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 The effective Viscosity of a Porous Matrix . . . . . . . . . . . . 41
4.2.3 Methods and Model Setup . . . . . . . . . . . . . . . . . . . . . 42

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Dispersion Curves for varied Widths and Amplitudes . . . . . . 44
4.3.2 Effect of different Viscosity Laws for n=2 and 3 on Dispersion

Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



CONTENTS

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Publication 2: Magma ascent mechanisms in the transition regime
from solitary porosity waves to diapirism 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Numerical Approach . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 The Transition from Porosity Wave to Diapirism: Varying the

initial Wave Radius . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Effects on the Mass Flux . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Application to Nature . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Model Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Publication 3: Modeling trace element transport in melt using two-
phase flow: Investigation of element redistribution in the upper Earth 77
6.1 abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Governing Equations for Two-Phase Flow . . . . . . . . . . . . 79
6.3.2 Equations for Trace Element Transport . . . . . . . . . . . . . . 82
6.3.3 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Unpublished manuscript: Transport of volatiles and trace elements
in solitary porosity waves 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.1 Passing through an Enriched Layer . . . . . . . . . . . . . . . . 106
7.3.2 Origin of the Encapsulated Material . . . . . . . . . . . . . . . . 109

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Conclusions 115

9 Fazit 119

10 Zusammenfassung 123

Personal Contribution to Publications 129

iv



CONTENTS

Eidesstattliche Erklärung 131

v





List of Figures

2.1 Global distribution of volcanoes active in Quaternary. . . . . . . . . . . 4

2.2 Visualization of causes for melting inside the upper 250 km of the Earth. 5

2.3 Seismic section of a salt diapir in Angola from Schultz-Ela et al. (1993). 7

2.4 A photograph of a laboratory plume. . . . . . . . . . . . . . . . . . . . 8

2.5 Decay of a 1-D solitary wave into several 2-D waves. . . . . . . . . . . . 9

2.6 A swarm of elongated solitary waves, due to decompaction weakening. . 10

2.7 Ionic radius versus ionic charge for some important trace elements. . . . 15

2.8 Trace Element concentrations of fluid and solid during melting and crys-
tallization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 A simple phase-diagram for a two-component solid phase. . . . . . . . . 27

4.1 Shear and bulk viscosity for several aspect ratios as a function of the
melt fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 a) Non-dimensional melt fraction during the ascent of a solitary wave.
b) Horizontal cross section through the center of the initial wave and
the solitary wave at a later time. . . . . . . . . . . . . . . . . . . . . . 45

4.3 Dispersion curves for three models with an initial width bigger, smaller
and approximately equal to the resulting solitary wave. . . . . . . . . . 46

4.4 Dispersion curves for 44 models with 4 different initial amplitudes and
11 different initial widths each. . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Dispersion curves of solitary waves with different n and melt network
geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Non-dimensional half-width, plotted against non-dimensional phase ve-
locity for different viscosity laws. . . . . . . . . . . . . . . . . . . . . . 49

4.7 Matrix velocity in the center of a wave as a function of the aspect ratio
of the films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 a) Horizontal profiles through ascending waves and b) dispersion curves
with different background porosities but the same non-dimensional am-
plitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 The segregation to Stokes velocity ratio given as a function of initial
perturbation radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Depiction of a model with an initial perturbation radius of 12 times the
compaction length but with different numerical grid resolutions. . . . . 63

vii



LIST OF FIGURES

5.3 Melt ascent morphology as function of initial perturbation radius in
terms of compaction length. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Solitary wave phase velocity compared to Stokes sphere velocity. . . . . 66
5.5 Solid and fluid mass fluxes through solitary waves and the corresponding

melt fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Quantitative parameters as function of initial perturbation radius in

terms of compaction length. . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Comparison of numerical results to literature equations for fractional
and equilibrium melting and freezing. . . . . . . . . . . . . . . . . . . . 86

6.2 Typical model states of an uprising partially molten plume. . . . . . . . 87
6.3 Three time steps of the trace element concentration in a rising plume. . 88
6.4 Logarithmic total concentrations of a model with after four different

melting events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Conceptual sketch of a 0D model representing trace element redistribu-

tion in a closed convection system. . . . . . . . . . . . . . . . . . . . . 91
6.6 a) Horizontally averaged vertical profiles of the total concentration after

four different melting events. b) Comparison of 2D model results with
a 0D model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Horizontally averaged vertical profiles of 2D models with a) different
retention numbers and b) different reaction times. . . . . . . . . . . . . 95

6.8 Relative concentrations for different trace elements. . . . . . . . . . . . 97

7.1 The total concentration of a trace element at the point where the soli-
tary waves have reached z′ = 0.7. . . . . . . . . . . . . . . . . . . . . . 107

7.2 Non-dimensional phase and segregation velocity as a function of time
of a solitary wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Marker fields from the models already shown. . . . . . . . . . . . . . . 109
7.4 Trajectories of a few selected markers. . . . . . . . . . . . . . . . . . . 110
7.5 Marker fields a) in the beginning and b) at the end of a model with a

1D porosity wave initially placed at the bottom of the model box. . . . 111
7.6 Figure shows a zoom of Fig. 7.5b on the second solitary wave from the

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



List of Tables

4.1 Parameters to calculate the viscosities for a melt network consisting of
50% tubes and 50% films using Eqs. (4.26) and (4.27) . . . . . . . . . . 42

ix





Chapter 1

Motivation and Aim of this Thesis

Earth is to the most part a giant solid rock whose interior can be observed or inter-
preted using for example geophysical measurements like seismics or geomagnetics, but
those measurements represent only the current state and give only vague information.
Estimates about the past of rocks and minerals can be made using other measurements
and observations, but to better understand the physical processes that are happen-
ing deep below our feet, the scientific field of geodynamics uses numerical and analog
models. As computers became more powerful, numerical models became better, more
complicated and included more physical processes taking place inside Earth. One of
those processes is the generation and transport of melt through a viscous, partially
molten rock matrix, which is called two-phase flow. One big topic in this kind of mod-
eling is solitary porosity waves, which are a feature of two-phase flow and, although
they were heavily studied in the past 30–40 years, there are still open questions. In
this thesis I clarify a few of these questions:

How do solitary porosity waves react to different viscosity laws?

Most of the studies working on solitary waves used simple viscosity laws for
the effect of porosity on shear and volume viscosity (e.g. Scott and Steven-
son, 1984; Barcilon and Lovera, 1989; Wiggins and Spiegelman, 1995). More
realistic viscosity laws predict viscosities strongly decreasing for low porosi-
ties and complete disaggregation of the grains for much lower porosities
(Schmeling et al., 2012). Can solitary waves build up under these circum-
stances and how do their properties, like phase velocity and shape, change?

What happens to solitary waves on the transition regime between
solitary waves and diapirism?

While most studies either investigate one of these end-members (e.g. Simp-
son and Spiegelman, 2011; Bittner and Schmeling, 1995), it is still not fully
understood what happens at the transition. Do diapirs and solitary waves
overlay each other and are there regimes where one of these mechanisms
becomes dominant? Under which conditions are solitary waves able to build
up and what time do they need to build up? Are they able to build up under
natural circumstances or will diapirism always hold back their emergence?
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Another big topic with regards to modeling two-phase flow and/or melting is that of
trace elements. The measurements of these elements are often an important option
to get an idea on what is happening inside the Earth. During the process of melting,
chemical elements either prefer to stay in the minerals lattice or prefer to go into
the melt. Therefore, the process of melt percolation will lead to a redistribution of
these elements, which are observed by geochemists. It is obvious that modeling these
processes is of vast interest and there are still open questions:

How are trace elements transported with melt and what parameters
lead to enrichment of incompatible elements in the upper Earth?

Incompatible elements prefer to go into the melt during melting and are
then transported with the fluid to shallower regions inside the Earth. Trace
element concentrations are often used to get information on what has hap-
pened to melts and it is therefore important to better understand the dy-
namics happening and what parameters lead to which degree of enrichment.

What are the mass transport capabilities of solitary porosity waves?

For a long time it was thought that solitary waves are not capable of trans-
porting mass; that a wave just passes through material. But recently it was
shown that 2D waves are capable of doing just this (Jordan et al., 2018).
For some cases material gets encapsulated in the center of the wave and
is transported together with it. What parameters define these cases and,
if a solitary wave builds up, from where does the encapsulated material
originate?

In this thesis four manuscripts are presented that answer the four points stated above,
each manuscript tackling one of the group of questions asked. Before that, a small
introduction into the general topics concerning this thesis are given. After that, all
the equations describing these mechanisms and the methods used are presented. A
conclusion and a German abstract form the end.
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Chapter 2

Introduction

2.1 Partial Melting inside Earth and Melt Trans-

port

The Earth is a giant heat emitting rock that travels through space. It emits approxi-
mately 46 TW of heat (e.g. Lay et al., 2008; Jaupart et al., 2015; Pollack et al., 1993)
from which 8–28 TW comes from mantle cooling, prominently from the lower mantle,
and about 5–15 TW are heat flow from the core. Some older estimates (e.g. Sleep,
1990; Stacey and Loper, 1983) predicted only 3–4 TW from the core. Approximately
20 TW are produced by radiogenic heat production. In the early beginning of the
solar system a protoplanetary disk surrounded the newly formed sun (e.g. Armitage,
2011) and the dust, of which it consisted, aggregated with time (e.g. Koch et al., 2021;
Wood et al., 2006) to build up chondrules, planetesimals and eventually the planets
we know today. Energy of collisions happening during this accretion was transformed
to heat energy and as Earth grew bigger, gravity pulled material down towards the
center. This compression led to further increase of internal heat.
The cooling of Earth is the reason why mantle convection and plate tectonics take
place, which are in turn the main processes that lead to partial melting of rocks. On
Earth there are two types of volcanism: plate margin and intraplate volcanism. Most
volcanoes are connected to plate margins and on a map showing the distribution of
recently active volcanoes (Fig. 2.1) one can easily make out the margins (Schubert
et al., 2001). However, there are exceptions that are not laying on or at margins, but
in the inner regions of plates, and they are usually assumed to be connected to hot
mantle plumes. Before one digs deeper into where volcanism takes place one needs to
understand what are the processes and causes that lead to melting.
There are three main reasons for melting: decompression, heating and lowering solidus
temperature. In Fig. 2.2 the three causes are visualized by vertical temperature pro-
files.

Decompression melting Roughly the mantle temperature can be approximated to
decrease linearly with a certain slope the closer it comes to surface. But the solidus
temperature for peridotite (Takahashi, 1986) decreases faster and hot material rising
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2.1. Partial Melting inside Earth and Melt Transport

Figure 2.1: Global distribution of volcanoes active in Quaternary (Schubert et al.,
2001).

from depth will at some point cross the solidus and partial melting starts. While this
is true for relatively fast ascending material, slowly ascending material is cooled due
to conduction from the top and never reaches the solidus (see Fig. 2.2a).

Heat-induced melting In several cases material is heated up, which may lead to
temperatures exceeding the solidus (see Fig. 2.2b). One of these cases is the arrival
of a mantle plume beneath the lithosphere. A mantle plume is the upwelling of hot
material from the deep mantle up to the stiff lithosphere, where it spreads and heats
up surrounding material, which is the source of melting for hot spot volcanism like
the prominent locations of Hawaii or Iceland. Mantle plumes were first postulated by
Wilson (1963) and later further developed by Morgan (1971, 1972).

Flux melting When a volatile component like water is added to a rock its solidus
temperature can be greatly depressed. For example the solidus of a silicate melt in
fertile lherzolite, can be, following Katz et al. (2003), depressed by 150◦C for just a
water content of 500 ppm. During subduction the oceanic crust carries water into
the mantle. The water, which is stored mostly in hydrous minerals, is released into
the overlying mantle wedge by metamorphic dewatering (see Alt et al., 1996). Here,
magma is generated feeding the volcanic back arc behind the subduction zone.

All the melting that occurs inside the Earth can be related to these three causes. At
mid-ocean ridges mantle material erupts that was transported there from the deeper
mantle and builds the oceanic crust. On the way up the material becomes partially
molten due to decompression melting. As already mentioned, this oceanic crust gets
subducted at convergent zones, releasing the water previously incorporated into the
minerals, which in turn leads to flux melting at the volcanic back arc. Hot-spot vol-
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2. Introduction

Figure 2.2: Visualization of causes for melting inside the upper 250 km of the Earth
(Schmeling, 2000, taken from). Solidus temperatures are taken from Takahashi (1986).
Subplots show melting due to a) decompression, b) heating and c) lowering the solidus
temperature.

canism or intraplate volcanism like Hawaii or Iceland are the result of heat-induced
melting, as a consequence of a hot upwelling mantle plume, heating the lithosphere
above.
Above solidus usually a rock is not fully but partially molten. This is due to the fact
that a rock consists of several minerals and many of those minerals contain more than
one chemical component. This causes melting to start at a temperature called solidus
and to end at the liquidus, where a rock is fully molten. In between those tempera-
tures minerals coexist with melt (White, 2018). The Bowen’s reaction series (Bowen,
1922) describes this sequential behavior during freezing, where it is a major reason for
differentiation.
Another effect of this partial melting is that the fluid melt has to percolate through
the still solid residue of the rock, which can be described by the well known Darcy
equation:

Q = −kφA
µL

∆P, (2.1)

where Q is the volumetric flow rate, kφ is the permeability, A is the cross-sectional
area, µ is the dynamic fluid viscosity and ∆P is the pressure difference between the
distance L. In section 3 of this thesis it is shown how this equation can be used to
provide the velocity of a fluid percolating through a moving matrix.
One has to keep in mind that this equation is only applicable in the case of a laminar
flow, which means slow, viscous flow. The Reynolds number, Re, is suitable to see
whether the law can be used:

Re =
ρfvd

µ
. (2.2)

Here, ρf is the fluid density, v is the flow speed and d is a characteristic grain diameter
of the porous media. Low Re characterizes laminar flow, while high Re leads to
turbulent flow. Tests have shown that cases with Re < 10 can be well described by a
Darcy flow, even though the transition from laminar to turbulent flow takes place at
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2.2. Diapirism and Solitary Porosity Waves

Re ≈ 2200 (Turcotte and Schubert, 2014). In regions inside Earth, typical values for
the viscosity of melt are of the order of 1 Pas, densities lie around 2800 kg/m3, grain
sizes are in the order of 10−3 m and typical flow velocities are approximately 1 m/yr
(from McKenzie, 1984). Even though these parameters can have very big variations
they give Re ≈ 10−7 and are therefore way below the boundary of 10. So it should
be save to use the Darcy equation in most scenarios concerning the movement of melt
inside Earth.
The driving-force in the Darcy Law is the pressure difference due to gravity and for a
static fluid the pressure can be written as P = ρfgh, where h is the height of the fluid.
Therefore, an important parameter in the Darcy equation is the density of the fluid
ρf , which depends on various conditions. Silicate melt densities usually vary between
2800 kg/m3 for basaltic melts and 2200 kg/m3 for rhyolitic melts (Best, 2003). Other
than the composition of the melt, parameters like temperature, pressure and volatile
content influence the density. When the density of a melt is measured at a certain T
and P (e.g. Stolper and Walker, 1980) it can be corrected for different T and P using
the thermal expansion and the compressibility (Sigurdsson et al., 2015). The density
difference between the fluid and its surrounding solid is what drives the motion of melt
through a porous matrix and in most cases the melt density is smaller than the matrix
density, resulting in a melt percolating upwards. However, there are cases in which
the density difference becomes very small or even changes its sign. This might be the
case for melt rising from very deep regions (see Schmeling and Arndt, 2017).
A full set of equations that describe the percolation of a fluid through a moving viscous
matrix can be taken from McKenzie (1984) (see also Bercovici et al., 2001; Schmeling,
2000) where the movement of the fluid is based on the Darcy law. More insights on
these equations is given in section 3.

2.2 Diapirism and Solitary Porosity Waves

Diapirism and solitary porosity waves, both are possible end members for the transport
of melt. While diapirism is not solely connected to melt, solitary porosity waves can
only be observed when melt is able to move relatively to a compacting media. In this
section a small introduction is given into these two mechanisms.

Diapirism Diapirism is described by Turcotte and Schubert (2014) as the upwelling
of a rock due to its lower density or buoyancy into a high density overlying brittle
rock. Etymologically, the word comes from the Greek ”diaperein” meaning ”to pierce
through”. In general, the term diapirism is usually used for any kind of upwelling that
takes place inside Earth and can be of various scales in size.
Relatively small diapirism can be observed at salt deposits (Schultz-Ela et al., 1993;
Daudr and Cloetingh, 1994), where the light salt is upwelling through the sedimentary
rocks that have been deposited above it (see Fig. 2.3). A nice example for a Rayleigh-
Taylor instability, which is a gravitational instability of a high density layer lying on
top of a low density layer. A direct result of this instability is diapirism. In reality
the building of salt domes is probably not solely the result of diapirism but more a
combination of sedimentation on top of the salt and simultaneous upwelling of the
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salt, which is called down-building (e.g. Fuchs et al., 2011).
Large scale diapirism takes place in the mantle starting from the core-mantle boundary,

Figure 2.3: Seismic section of a salt diapir in Angola from Schultz-Ela et al. (1993).

or the D”-layer, up to the upper mantle, reaching the lithosphere. This diapirism is
called a mantle plume and was proposed by Wilson (1963) and later further developed
by Morgan (1971, 1972). These plumes are characterized by a thin tail and a bulky
head in which internal convecting leads to mushroom like shapes (see Fig. 6.3).
While diapirs are not restricted in some way in size, however, there are characteristic
or dominant wavelengths. In an isoviscous two-layer system with a layer thickness b
and the densities ρ1 and ρ2, where ρ1 belongs to the upper layer and ρ1 > ρ2, the
characteristic wavelength λ , following Turcotte and Schubert (2014), is equal to

λ = 2.568 b, (2.3)

depending only on the thickness of the layer, whereby the prefactor depends also on
boundary conditions among other things. However, the growth time is equal to

τ =
13.04 η

(ρ1 − ρ2)gb
. (2.4)

This states that the diapir needs a longer amount of time to build with higher viscosity
and smaller density differences.
With different viscosities in the upper and lower layer the wave length of an initial
diapir is

λ ∼ b

(
η1
η2

)1/3

(2.5)
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2.2. Diapirism and Solitary Porosity Waves

Figure 2.4: A photograph of a laboratory plume from Campbell and Griffiths (1990);
Key features are labeled.

and, therefore, is directly depending on the viscosity contrast (Schubert et al., 2001),
additionally to the initial layer thickness.
Another important factor for the dimension of diapirs are initial conditions or per-
turbations. It can be shown that the dominant and the characteristic wavelength of
an instability are not always equal but may differ immensely in special cases shown
by Schmeling (1987). For initial sinusoidal perturbations, high amplitudes may lead
to final wavelengths equal to the initial perturbation and not the characteristic wave-
length.

Solitary porosity waves In 1834 John Scot Russell, a Scottish civil engineer and
naval architect, carried out tests to find the best design for canal ships. During these
experiments he observed the occurrence of waves that traveled in front of the boats,
drawn by horses, and proceeded to travel once the boat stopped. He could follow the
wave keeping its shape and velocity for up to 2− 3 km, until it eventually dispersed.
He called this kind of wave wave of translation, but today is known by the name
solitary wave.
Solitary waves are a special case of solitons, which in turn are self-reinforcing waves
keeping their shape and velocity during movement. Drazin and Johnson (1989) gives
a relatively easy definition of solitons with the following three points:

1. They are of permanent form.
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2. They are localized within region.

3. They can interact with other solitons, and emerge from the collision unchanged,
except for a phase shift.

While a soliton fulfills all of these criteria, a solitary wave fulfills only the first two, as
it will change during the interaction with other solitary waves.
In geodynamics this type of waves is observed at partially molten regions inside Earth
where pore-space distributions ascend. They are called solitary porosity waves or Mag-
mons, based on Solitons, although this term is outdated because these waves are not
solitons, as it was originally thought.
Porosity waves are features of two-phase flow and shortly after McKenzie (1984) pub-
lished his description of two-phase flow Scott and Stevenson (1984) could show that
they are a possible solution for this mathematical description. Thereby, the shape
of a solitary wave is preserved by the cancellation of decompaction in front and the
compaction behind the wave. Due to the buoyancy of the fluid the pore-space wants
to diverge and the accompanied underpressure attracts the surrounding fluid, leading
to the apparent movement of melt with the ascending wave. What is actually trav-
eling in wave form is not the fluid but the pore-space, which is filled with the fluid
melt. Scott and Stevenson (1984) thought that these waves fulfill the criteria for a
Soliton, but it later could be shown by Barcilon and Richter (1986) that they do not.
The shape is not conserved perfectly and in higher dimension models this will become
more obvious. Scott and Stevenson (1986) showed that a fast wave overtaking a small
one will totally disturb the smaller one, but it still keeps its identity. The bigger one
stays mostly undisturbed.
Interestingly, 1-D waves in a higher dimensional model, meaning an infinitely extended
layer of melt, is not stable and will inevitably decay into several higher dimension
waves. In Fig. 2.5 this property is shown by a model of Scott and Stevenson (1986).
The same is valid for 3-D waves (Wiggins and Spiegelman, 1995), where the waves are
spherical objects of high porosity, decreasing with distance to the center. Until to this

Figure 2.5: Decay of a 1-D solitary wave into several 2-D waves, modeled by Scott
and Stevenson (1986). Plots show the contour lines for five different steps of the melt
fraction. Out of the noised up 1-D wave two 2-D waves emerged.

point solitary waves were only modeled under the assumption that the solid matrix
is not able to circulate, i.e. the divergenece free part of the velocity is zero. Scott
(1988) could show, that without this assumption solitary waves are still able to build
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up and furthermore, that this has interesting consequences for the matrix. While for
some cases the upward flow of the fluid is preserved by an equally large downward
flow of solid matrix, it was shown that for some cases, namely small ratios of shear to
compaction viscosity, this circulation becomes dominant, leading to an upward flowing
matrix in the center of the wave, which is preserved by a large scale downward flow at
the flanks of the wave. This corresponds to an increasing influence of diapirism.
In recent years it was established that for surface near regions plastic yielding around
pores may lead to decompaction weakening (Yarushina and Podladchikov, 2015). This
is of importance for solitary waves as fluid overpressure in front of the wave results
in effective weakening and pores open faster. As a result, waves are no longer per-
fectly spherical but elongated on the back side, the compacting part of the wave (e.g.
Yarushina et al., 2015; Omlin et al., 2018). Fig. 2.6 shows a solution from Omlin et al.
(2018) of a swarm of these elongated waves that emerged naturally from an initially
lens like porosity perturbation.
A lot of additional work was carried out on solitary waves (e.g. Yarushina et al., 2020;

Figure 2.6: A swarm of elongated solitary waves, due to decompaction weakening,
emerging from an initially lens like perturbation from Omlin et al. (2018)

.

Connolly and Podladchikov, 2007; Simpson and Spiegelman, 2011; Richard et al., 2012)
and even though they all used different assumptions, model setups or boundary con-
ditions, the size of a solitary wave is always of the order of 3–5 times the compaction
length, which is a typical length scale over which compaction takes place. Different to
diapirs these solitary waves cannot be found in all scales but are always restricted to
the compaction length. It depends on the solid matrix; inside Earth it is usually in
the order of 100–10000 m and, therefore, solitary waves will be always in this scale.
Since the discovery of porosity waves, being the solution of two-phase flow, it was
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thought that they are not able to transport mass, that material gets sucked into the
center of the wave but then is ejected after passing. Just recently Jordan et al. (2018)
could show that porosity waves are in fact able to transport material. In special
cases a recirculating area in the center of the wave builds up during emergence of the
wave. The material in this area is completely separated from its surroundings by a
circular dividing streamline. Whether a solitary wave is able to transport material or
not depends on the non-dimensional wave velocity. After Jordan et al. (2018), slow
waves with velocities smaller than 3 times the background fluid velocity are not able
to transport mass, while faster ones are capable.

2.3 Trace Elements and their Behavior during

Melting

A trace element is mostly defined as a chemical element that makes less than 0.1 wt%
or 1000 ppm of a rock. These trace elements usually substitute major elements in a
minerals lattice with similar sizes and equal charge.
In some cases there is no possible gap in a mineral and the element will leave as soon
as there is an option to do so. If so, they are called incompatible and prefer to go
into melt when melting occurs. Elements preferring to stay in the lattice are called
compatible. This behavior is strongly depending on melt compositions. For example
P is incompatible in mantle mineralogy but becomes compatible in granites where it
can be accommodated in apatite (Rollinson, 1993).
Trace elements can be divided into groups based on their position in the periodic table
of the chemical elements. Rare-earth elements (REE) are of interest for electronics
and consist of the elements with atomic numbers 57–71. Another group, the platinum
group elements (PGE) have the atomic numbers 44–46 and 76–79. The elements in
these groups usually have similar geochemical properties and therefore it is helpful to
look at these groups as a whole. However, in special cases geological processes lead to
different behavior within them.
As the radius and charge of an element have major influences on whether they can
be accommodated into a lattice it may be helpful to plot ion radius and charge into
a diagram (Fig. 2.7). Based on this, trace elements can be divided into small highly
charged cations, called high field strength elements (HFS), and large low charged
cations, called low field strength elements (LFS) or, more often, large ion lithophile
elements (LIL). Small, relatively low charge cations are usually more compatible, like
most major elements in rocks are.
The distribution of trace elements between phases can be given by so called distribution
coefficients (McIntire, 1963) and the most used is the so called Nernst distribution
coefficient, Kd. It is defined as

Kd =
cmineral
element

cmelt
element

, (2.6)

where c is the equilibrium concentration distribution of a trace element in a mineral
and a melt. If Kd = 1 then the element is equally distributed. For Kd > 1 the element
is compatible in the mineral and prefers to stay there during a melting event. Kd < 1

11



2.3. Trace Elements and their Behavior during Melting

refers to an incompatible element.
While the Nernst distribution coefficient is given for single minerals, for rocks the bulk
partition coefficient D can be calculated using Kd:

Di = x1K
i
d,1 + x2K

i
d,2 + x3K

i
d,3 + . . . =

N∑
j=1

xjK
i
d,j. (2.7)

Di is the partition coefficient for element i in a rock, calculated based on the Nernst
partition coefficient Ki

d,j of each mineral j in the rock. xj is the percentage proportion
of the mineral j.
Kd can either be measured in natural systems or in synthetic materials in experiments
in laboratories. In natural systems, minerals and their glassy matrix from a rapidly
cooled volcanic rock can be measured giving the trace element concentrations in both
parts (Schnetzler and Philpotts, 1970). These measurements are usually quite reli-
able, but to get partition coefficients for certain pressures and temperatures, synthetic
material can be enriched with an element of interest, which then can be melted pro-
viding exact concentrations (Irving, 1978). Henry’s law can be used to give partition
coefficients for other temperature and pressure conditions. The law states that at
equilibrium the activity of a trace element is directly proportional to its composition.
If mixing is ideal, which is often the case for trace elements in a host mineral, the
trace element activity is equal to its concentration, following Raoult’s law (Rollinson,
1993).
Several parameters influence the partition coefficients and by far the biggest influence
has the composition of the melt. Partition coefficients in studies are usually given
for a certain melt composition. For example, while Kd of REEs in a hornblende lies
around the order of 1 for basaltic melt, they are of the order of 10 for rhyolitic melt
(Rollinson, 1993).
The effect of temperature and pressure is also important but is hard to unravel because
solidus temperature strongly depends on pressure as well. In general it can be shown
that partition coefficients decrease with increasing temperature, while they increase
with increasing pressure. That has the consequence that both effects cancel out each
other to some extend (Green and Pearson, 1983; Irving, 1978).
The oxygen activity is only important for Eu. While this element’s partition coefficient
can be affected by one order of magnitude, other REEs are not affected at all (Drake
and Weill, 1975).
The water content in the melt has only minor influence on the partition coefficients,
even for high water contents of up to 10 wt%, and usually can be neglected (Green
and Pearson, 1986).
The correct choice of partition coefficients is very important for modeling partial melt-
ing of rocks, which usually is carried out on two end-members of melting: batch and
fractional melting.
Batch melting corresponds to equilibrium melting and describes the process of melting
during which the solid and melt are constantly reacting to keep the system in equilib-
rium until the melt gets extracted as a batch in once.
Fractional melting, or Rayleigh melting, describes the process of melting during which
each produced fraction of melt is instantly isolated from its source. Therefore, only
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each fraction is in equilibrium with the source at that time, but the whole bunch of
melt is not in equilibrium with the source rock.
The evolving trace element concentrations as a function of melt degree of both end
members can be described mathematically by simple equations (Rollinson, 1993). The
fluid concentration cf in the case of batch melting is given by

cf
c0

=
1

D + F (1−D)
, (2.8)

where c0 is the concentration of the source material and F is the degree of melting.
As solid and fluid are in equilibrium, the concentration of the solid can be given as

cs
c0

= D · cf =
D

D + F (1−D)
. (2.9)

It should be noted that the bulk partition coefficient in these equations is from the
source material before the melt was produced. Composition of residue and melt change
during the process of melting and more complex equations can be used to catch these
effects, but for relatively small degrees of melting the upper equations are valid.
In the case of fractional melting there are two equations for the fluid concentration:
One for the concentration of a melt increment produced at a certain melt degree, and
one for the accumulation of all these melt increments. The concentration of a melt
increment is given by

cf
c0

=
1

D
(1− F )(1/D)−1 (2.10)

and the remaining solid is in equilibrium to this melt increment, resulting in

cs
c0

= D · cf = (1− F )(1/D)−1. (2.11)

The concentration of the accumulated melt cf is given by

cf
c0

=
1

F

[
1− (1− F )1/D

]
. (2.12)

Again, these equations are valid for modal melting and can be extended for the case
of non-modal melting.
Which model is applicable for a certain case depends on the ability of a melt to separate
from its source. Fractional melting might be applicable for basaltic melts where small
fractions of melts can be rapidly extracted to the surface, while batch melting should
be applicable to higher viscous, felsic melts.
Similar to the processes described before during melting, processes appear during
freezing or crystallization.
During equilibrium crystallization all phases are in equilibrium, which is not very
likable but might be applicable to some special cases. The fluid concentration can be
calculated using the same equation as for equilibrium melting (Eq. (2.8)), but F now
is the remaining melt fraction and c0 is the trace element concentration of the initial
melt.
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Usually, it is assumed that crystals are removed from the melt after crystallization
and they are not in equilibrium with the remaining melt. Therefore, most scenarios
can be described by Rayleigh fractionation or fractional crystallization. Here the fluid
concentration is given by

cf
c0

= FD−1 (2.13)

and the concentration of an incremental crystal produced can be achieved by

cs
c0

= DFD−1. (2.14)

Again, the mean concentration of the accumulated crystals can be given by another
equation:

cs
c0

=
1− FD

1− F
. (2.15)

As both these end-members are not that strongly applicable to crystallization taking
place in nature, Langmuir (1989) derived equations for in situ crystallization, where
crystallization takes place in a magma chamber and solidified crystals form solidifica-
tion zones at the chambers walls and crystals do not just settle due to gravity at the
chambers bottom. Several further effects like zone refining and contamination can be
added to the equations.
In Fig. 2.8 the equilibrium and non-equilibrium cases of melting and crystallization
are shown. In general it can be seen that the fractional, non-equilibrium cases tend
to stronger depletion of the source material and change the concentrations over many
orders of magnitudes, while the equilibrium cases give concentration variations in the
order of the partition coefficient.
It might be counter-intuitive that more melting leads to smaller incompatible (i.e.
D < 1) trace element concentrations, but it becomes clear when the process is looked
at step-wise for example for fractional melting. The first melt increment produced has
a concentration that is in equilibrium to the solid giving cf = cs/D. The solid becomes
depleted in this element and the concentration decreases. The next melt increment
again is in equilibrium but now to the already depleted source material. This leads
to slightly lower concentrations for the fluid. The same applies to the equilibrium
case but the concentrations do not decrease as strongly. If all the material is molten
(F = 1) the fluid has the same concentration as the original source material, in the
equilibrium case, as well as in the accumulated melt in the fractional melting case,
which also explains why the concentrations have to decrease.
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Figure 2.7: Ionic radius versus ionic charge for some important trace elements. The
ion charge of 2 divides elements into high field strength elements (HFS) and low field
strength elements (LFS), also called large ion lithophile elements (LIL). Picture is
taken from Rollinson (1993).
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Figure 2.8: Trace Element concentrations of fluid (left) and solid (right) during melting
(top) and crystallization (bottom). In the case of melting, batch (solid lines) and
fractional melting (dashed lines) cases are shown as a function of melt degree for
different bulk partition coefficients D. Crystallization is divided into equilibrium (solid
lines) and fractional (dashed lines) crystallization and is shown for various D as well,
but now as a function of remaining melt. Please note that F decreases from left to
right.
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Chapter 3

Methods

This chapter gives an introduction into the equations describing two-phase flow and
the transport of trace elements or isotopes within melt. Further, it is shown how the
equations from the publications can be derived from the general formulation. To avoid
repetitions during the reading of this thesis, the governing equations sections of the
publications may be skipped. The comparison of segregation to Stokes velocity in
publication 2 is not treated here.

3.1 General Equations of Two-Phase Flow

Two-phase flow usually means the movement of two viscous phases relative to each
other. In our case these two phases are usually a deformable solid rock and its fluid
melt, which separates from its residual solid rock by percolation or segregation through
pores. The differential equations describing this physical process are shown in several
publications (e.g. McKenzie, 1984; Schmeling, 2000; Bercovici et al., 2001).
Our formulation consists of equations conserving the mass and the momentum, both
separately for the solid and the fluid, and one equation conserving the energy for the
solid-liquid mixture. This is suitable as we assume equilibrium temperature between
solid and fluid. All variables associated with the fluid have the subscript f and the
variables associated with the solid the subscript s. The conservation of the mass of
the fluid is given by

∂ρfφ

∂t
+ ∇⃗ · (ρfφv⃗f ) = Γ (3.1)

and the conservation of the solid is

∂ρs (1− φ)

∂t
+ ∇⃗ · [ρs(1− φ)v⃗s] = −Γ. (3.2)

φ is the melt fraction. ρs and ρf are the densities of the solid and the fluid, and may
be variable, depending on temperature or composition. v⃗s and v⃗f are the velocities of
solid and fluid. φ is the melt fraction. Γ is the melt generation rate, which couples
these equations. It describes the amount of mass that is either melted (Γ > 0) or
frozen (Γ < 0) per time. The equations show that the change of mass with time (1st

term) is equal to the change due to advection (2nd term) and the exchange of mass
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3.1. General Equations of Two-Phase Flow

between solid and fluid (3rd term). It is often assumed that the densities in these
equations (but not in the buoyancy term in the later equations) are constant and the
same, which is known as the Compaction Boussinesq Approximation (see Schmeling,
2000). For this approximation the densities can be eliminated from the derivatives
and adding up Eq. (3.1) and Eq. (3.2) leads to

∇⃗ ·

⃗̄v = 0. (3.3)

⃗̄v is the mixture velocity equal to φv⃗f +(1−φ)v⃗s. The divergence of the solid velocity
is not zero:

∇⃗ · v⃗s = −∇⃗ · [φ (v⃗f − v⃗s)] . (3.4)

This states that the divergence of the solid is equal to minus the divergence of the
Darcy velocity with v⃗f − v⃗s being the segregation velocity.
The momentum conservation of the fluid is achieved by using a generalized form of
the Darcy equation

v⃗f − v⃗s = − kφ
µ φ

(
∇⃗Pf − ρf g⃗

)
(3.5)

where µ is the fluid viscosity and Pf is the fluid pressure. kφ can have various forms but
for comparatively small melt fractions it is often suitable to use the Kozeny-Carman
relation (e.g. Costa, 2006)

kφ = k0φ
n. (3.6)

k0 and n are parameters depending on the geometry of the pores and grain size. n is
usually chosen between 2 and 3. In the case of not moving solid (vs = 0) Eq. (3.5)
becomes the Darcy law

v⃗fφ = −kφ
µ

(
∇⃗Pf − ρf g⃗

)
, (3.7)

where the parentheses is the hydraulic pressure, which is also called hydraulic head or
piezometric pressure.
The conservation of momentum in the mixture requires a more complicated definition
for the stresses

ρ̄g⃗ − ∇⃗Pf + ∇⃗ · τ = 0. (3.8)

ρ̄ is the density of the solid-melt mixture given by ρ̄ = (1 − φ)ρs + φρf . τ is the
effective viscous stress tensor of the matrix

τ = η

(
∂vsi
∂xj

+
∂vsj
∂xi

)
+

(
ζ − 2

3
η

)
δij∇ · v⃗s. (3.9)

η and ζ are the shear and volume viscosities, respectively. Eq. (3.9) includes the shear
(1st term on the right) and the compaction components (2nd term on the right) of the
matrix. In this equation it is assumed that the fluid viscosity is much smaller than
the matrix viscosity. Therefore the stresses within the fluid can be neglected and only
the solid velocities and viscosities appear.
It is notable that in both, Eq. (3.5) and Eq. (3.8) Pf is the pressure in the fluid and
they can be merged to eliminate the pressure leading to

v⃗f − v⃗s = −k0φ
n−1

µ

[
(ρs − ρf ) g⃗ (1− φ) + ∇⃗ · τ

]
. (3.10)
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From this equation it is obvious that the movement of the fluid is controlled by a
combination of buoyancy of the fluid and the viscous stresses in the matrix. While the
buoyancy term often dominates it is not always the case. In some cases the viscous
stress term becomes dominant. Obviously, as stated before, the density differences
here cannot be neglected with the Compaction Boussinesq Approximation, as they
are a major driving force.
A nice observation can be made when the melt fraction and the viscosities are kept
constant and the divergence of Eq. (3.10) is taken. It results in

−φ∇⃗ · (v⃗f − v⃗s) =
ζ + 4

3
η

µ
kφ∇2

(
∇⃗ · v⃗s

)
. (3.11)

Here the prefactor on the right side is called the compaction length δc

δc =

√
ζ + 4

3
η

µ
kφ. (3.12)

If Eq. (3.4) is used to eliminate φ∇⃗ · (v⃗f − v⃗s) Eq. (3.11) becomes

∇⃗ · v⃗s = δ2c∇2
(
∇⃗ · v⃗s

)
, (3.13)

which can be solved for ∇⃗ · v⃗s in 1D to give a solution of the form

∇⃗ · v⃗s = C1e
x/δc + C2e

−x/δc . (3.14)

This solution states that the compaction length δc is the characteristic length scale
over which compaction takes place.
Further, a crucial point in this kind of equations is the understanding of the pressure.
While Pf in the formulation is the pressure in the fluid, the pressure in the solid may
be defined as well. Following McKenzie (1984) or Spiegelman et al. (2007) it may be
defined as

Ps = −1

3
Tr (τ ) = Pf − ζ∇⃗ · v⃗s. (3.15)

Rewriting it as Ps − Pf = ζ∇⃗ · v⃗s implies that the difference of fluid to solid pressure
drives the compaction or decompaction. If the pressure difference is positive (i.e.
Pf > Ps) the divergence becomes positive and the matrix will expand or dilatate. If
Pf < Ps the matrix will contract or compact.
Usually it is convenient to reduce the number of unknown variables by expressing the
matrix velocity v⃗s as the sum of an incompressible, v⃗1, and a compressible part, v⃗2. v⃗1
and v⃗2 can be also stated as rotational and irrotational part, respectively. Following
Sramek et al. (2012) the solid velocity can be written as

v⃗s = v⃗1 + v⃗2 =

(
∂Ψ
∂z

−∂Ψ
∂x

)
+

(
∂χ
∂x
∂χ
∂z

)
(3.16)

where Ψ is known as the stream function and χ is the irrotational velocity potential,
which is defined by the Poisson equation

∇⃗2χ = ∇⃗ · v⃗s. (3.17)
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3.1. General Equations of Two-Phase Flow

The right side, the divergence term ∇⃗ · v⃗s can be taken from Eq. (3.4). This definition
for the solid velocity (Eq. (3.16)) can be put into the viscous stress tensor (Eq. (3.9))
and this into the Stokes equation (Eq. (3.8)). Eliminating the pressure by taking the
curl results in(

∂2

∂x2
− ∂2

∂z2

)[
η

(
∂2Ψ

∂x2
− ∂2Ψ

∂z2

)]
+ 4

∂2

∂x∂z

(
η
∂2Ψ

∂x∂z

)
= −g ∂ρ

∂x
+ A (χ) (3.18)

with

A (χ) = −2
∂2

∂x∂z

[
η

(
∂2χ

∂x2
− ∂2χ

∂z2

)]
+ 2

(
∂2

∂x2
− ∂2

∂z2

)(
η
∂2χ

∂x∂z

)
. (3.19)

For the energy conservation equations, two separate equations could be written down,
similar to the mass equations for solid and fluid (Eq. (3.1) and Eq. (3.2)). However,
heat can diffuse between the matrix and the fluid and therefore the heat content is
not conserved individually. Moreover, it is usually assumed that solid and fluid are
in thermal equilibrium and that heat conductivities and capacities are the same. The
assumption of thermal equilibrium is justified as the movement of fluid is usually much
slower than the temperature diffusion. However, there are exceptions (see Schmeling
et al., 2018). Under these assumptions, a single equation can be used for the solid-fluid
mixture

ρ̄cP

(
∂T

∂t
+ v⃗bar · ∇⃗T +

αg

cP
vzT

)
= ∇⃗ ·

(
λ∇⃗T

)
+ ρ̄H + ψ − LΓ. (3.20)

Here, cP is the specific heat capacity, T is the temperature, α is the thermal expansion
coefficient, λ is the thermal conductivity, H is the radiogenic heat generation rate per
mass, ψ is the viscous dissipation and L is the latent heat per mass. Advection of the
temperature is carried out using a barycentric velocity

v⃗bar =
ρfφv⃗f + ρs (1− φ) v⃗s

ρ̄
. (3.21)

Each of the terms in Eq. (3.20) describe a heat source or sink. The first two terms on
the left are associated with the change of heat due to temperature change and advec-
tion. The third term describes adiabatic heating, where the Boussinesq approximation
is not assumed. On the right the first term gives conductive heat changes, the second
term the additional heat due to radiogenic decay. The third term is the dissipated
heat:

ψ =
µφ2

kφ
(v⃗f − v⃗s)

2 + ζ
(
∇⃗ · v⃗s

)2

+
1

2
η

(
∂vsi
∂xj

+
∂vsj
∂xi

− 2

3
δij∇⃗ · v⃗s

)2

. (3.22)

The heat is produced due to relative movement between solid and fluid (term 1) and
internal friction within the matrix, which consists of volumetric changes (term 2) and
shear deformation (term 3). The last term in Eq. (3.20) is the latent heat, which is
the energy released or absorbed due to phase changes.
The five equations that describe a two-phase flow system are Eqs. (3.1), (3.2), (3.5),
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(3.8) and (3.20), but a few parameters need to be further addressed, because they
additionally depend on other variables and change with time in a model, making it
strongly non-linear. To address this problem, parameterizations for results of analogue
experiments, like deformation tests, or simple laws (sometimes not so simple) are used.
For example, the permeability of a rock depends on the porosity and the geometry of
the pore space already shown in Eq. (3.6). Here kφ is the result of a mathematical
model describing the flow through a prescribed geometry (see Costa, 2006).

Viscosity Another big topic in modeling flows in geodynamics is the rheology of
rocks. Rheology describes the flow capability of a certain material and can solely be a
topic for numerous doctoral theses. In this thesis only a small percentage of this topic
is addressed, namely the effect of melt fraction on the viscosity and a simple law for
the temperature dependence on the viscosity.
The melt fraction has a big influence on the shear and volume viscosity and this effect
is often described by a simple law of the form

η = η0 (1− φ) (3.23)

ζ = η0
1− φ

φ
. (3.24)

η0 is the intrinsic shear viscosity of the matrix with zero porosity. With increasing
melt fraction φ, the shear viscosity η decreases until it reaches 0 for φ = 1. The
volume viscosity ζ comes from infinite and decreases to 0 with φ = 1 as well. This is
a simple way to describe the viscosity, but experiments show that a typical material
reaches a complete disaggregation for much smaller porosities. At this point single
grains are no longer connected and the viscosity decreases strongly. Schmeling et al.
(2012) proposed new viscosity laws that assume ellipsoidal melt inclusions, melt films
or melt tubules embedded into a viscous matrix. Prescribing a geometry distribution,
this formulation is able to self-consistently predict viscous weakening of a solid matrix.
For a pore geometry consisting of solely films parameterized equations for the shear
and volume viscosity can be given

η = η0

(
1− φ

c1

)k1

for φ < c1 (3.25)

ζ = η0c2
(c1 − φ)k2

φ
for φ < c1 (3.26)

with k1 = a1 (a2 + α (1− a2)), c1 = b1α
1+b2αk3

, c2 = 4
3
αc−k21 · (c3 (1− α) + α) where

a1 = 0.97, a2 = 0.8, b1 = 2.2455, b2 = 3.45, k2 = 1.25, k3 = 1.29, c3 = 2, and α is the
aspect ratio of the ellipsoidal inclusions. This law predicts that the partially molten
material completely disaggregates at a certain (low) melt fraction, found to be φ = c1.
Here both viscosities become zero.
For a geometry distribution of 50% tubes and 50% films the viscosities can be calcu-
lated using

η = η0

(
1− φ

φmax

)k

(3.27)
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ζ = η0a2

(
φmax − φ

φ

)b2

. (3.28)

With the parameters in Table 4.1 they can be calculated for different aspect ratios
α. k is given by k = a1φ + b1. In Fig. 4.1 all the viscosities described until here are
shown. It can be seen that in contrast to the simple laws (Eqs. (3.23) and (3.24)), that
achieve full disaggregation at a melt fraction of 100%, the more realistic laws achieve
this at already very low melt fractions of about 20–40%. Melt network geometries
combining tubes and films tend to have lower viscosity and disaggregation thresholds
for a variety of aspect ratios of the films. Network geometries consisting solely of films
give larger differences in viscosity for different α.
As already mentioned, there are many parameters that influence the viscosity. A
major controlling parameter is the temperature. Usually the viscosity decreases with
increasing temperature and this behavior can be described by a simple equation given
by Turcotte and Schubert (2014):

η = ηT0 · exp

[
Ea
RT0

(
T0
T

− 1

)]
. (3.29)

Here, ηT0 is the viscosity at T = T0, Ea is the activation energy and R is the universal
gas constant equal to 8.314 J mol−1 K−1. Ea is a physical parameter that can be taken
from laboratory experiments for instance from Karato and Wu (1993) for olivine in
the upper mantle. The resulting viscosity from Eq. (3.29) can then be used as the
intrinsic shear viscosity η0 in the equations for the porosity dependence of the viscosity
to additionally take this effect into account.

The melting law The melting law usually used in our calculations is a simple
representation of a two-component phase-diagram as it is shown in Fig. 3.1 after
Schmeling et al. (2019), where melt and solid are always in thermodynamic equilibrium.
A similar melting law already was introduced by Ribe (1985). A phase-diagram gives
the melting temperature of a component A and a component B. A mixture of both of
them results in a splitting of Solidus- and Liquidus-curve. With a temperature below
the Solius-temperature both components are solid. Increasing the temperature and
passing the Solidus leads to a partially molten mixture, where both components melt
simultaneously but with different melt fractions. Above the Liquidus both components
are fully molten.
In reality Solidus and Liquidus are usually shaped like a cigar, but in our calculations
we approximate these curves by two parallel lines with a constant difference between
Solidus and Liquidus. This is a reasonable approximation as long as the concentrations
are not too near to the edges of the diagram.
If a solid has a concentration of component B, cB, and is heated above the Solidus the
concentrations in the fluid, cBf , and the concentration in the solid, cBs , change following
the diagram (Fig. 3.1). In equilibrium the melt fraction can be calculated following
the lever rule

φ =
cBs − cB

cBs − cBf
. (3.30)
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In a two-phase flow media, cBs and cBf are advected with different velocities and after
one time increment solid and fluid might no longer be in thermodynamic equilibrium.
The melt fraction then has to be adjusted to equilibrium, using a melting rate, given
by

Γ

ρ0
=
φ
Df cBf
Dt

+ (1− φ) D
scBs
Dt

∆c
. (3.31)

The operators Df

Dt
and Ds

Dt
refer to the substantial time derivatives equal to ∂

∂t
+ v⃗f · ∇⃗

and ∂
∂t
+ v⃗s · ∇⃗ respectively. ∆c is equal to the difference cBs − cBf .

Figure 3.1: A simple phase-diagram for a two-component solid phase. On the abscissa
the concentration of component B is given. The ordinate gives the temperature. The
lower line in the diagram is the Solidus- and the upper one the Liquidus-temperature
curve for a certain pressure as a function of concentration. After Schmeling et al.
(2019).

3.2 Equations of Trace Element Transport with Melt

The transport of a trace element or a volatile can be described similar to Eqs. (3.1)
and (3.2) and only the source term on the right side needs to be adapted to a different
kind of behavior following the definition of the partition coefficient Kd. If a material
is melted a trace element either prefers to stay in the solid or to go into the melt.
This behavior is described by Kd which can be calculated with the concentration in
the solid and fluid

Kd =
cs

cf
. (3.32)

Here, cs and cf are the concentrations of the trace element in solid and fluid, respec-
tively. A trace element that prefers to go into the melt is called incompatible, with
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Kd < 1 and a trace element that prefers to stay in solid is called compatible with
Kd > 1.
The following equations are stated in terms of trace element massper volume and not
concentration. The trace element mass per volume in solid is given by

ms = cs(1− φ)ρs. (3.33)

The trace element mass per volume in fluid by

mf = cfφρf . (3.34)

As the behavior of partitioning between the phases is contrary for the case of melting
and freezing, the exchange term needs to be changed for these cases. For melting
(Γ > 0) we get after Spiegelman (1996)

∂ms

∂t
+ ∇⃗ · (v⃗sm

s) = − Γms

Kdρs (1− φ)
+

1

tr

Kdm
f (1− φ)−msφ

φ+Kd (1− φ)
(3.35)

and
∂mf

∂t
+ ∇⃗ ·

(
v⃗fm

f
)
=

Γms

Kdρs (1− φ)
− 1

tr

Kdm
f (1− φ)−msφ

φ+Kd (1− φ)
. (3.36)

In addition to the first term on the right, describing the exchange between solid and
fluid due to melting, a re-equilibration term is introduced (2nd term on the right). This
term describes the exchange between solid and fluid due to re-equilibration, which
is not part of the equations in Spiegelman (1996). During melting and transport,
trace elements are no longer in equilibrium, but they will incessantly try to achieve
equilibrium by diffusion of elements through the solid-fluid boundary. tr is the reaction
time. To derive this term it is assumed that equilibrium can always be achieved
by exchanging a certain amount of mass, ∆m, between solid and fluid. Under this
assumption one can state that

Kd =
(ms +∆m)φ

(mf −∆m)(1− φ)
(3.37)

is always true. Solving for ∆m gives

∆m =
Kdm

f (1− φ)−msφ

φ+Kd(1− φ)
, (3.38)

which can be together with tr used as an exchange term in Eqs. (3.35) and (3.36).
This term needs to be solved using time steps much smaller than tr to achieve an
exponential behavior. At t = tr, (1 − e−1)∆m is already transferred. The numerator
of Eq. (3.38) is the difference between equilibrium and actual state. The denominator
is a scaling factor. For tr = ∞, equilibrium can never be achieved. tr = 0 assumes
instant equilibrium, which can be numerically achieved by setting 1/tr to 1 and not
iterating.
In the case of freezing (Γ < 0) incompatible elements prefer to stay in the melt and
the 1st term on the right of Eqs. (3.35) and (3.36) need to be inverted. This results in

∂ms

∂t
+ ∇⃗ · (v⃗sm

s) = −ΓKdm
f

ρfφ
+ kequ

Kdm
f (1− φ)−msφ

φ+Kd (1− φ)
(3.39)

28



3. Methods

and
∂mf

∂t
+ ∇⃗ ·

(
v⃗fm

f
)
=

ΓKdm
f

ρfφ
− kequ

Kdm
f (1− φ)−msφ

φ+Kd (1− φ)
. (3.40)

The change in the term can be better understood if we visualize what happens during
melting and freezing using the definition of the partition coefficient (Eq. (3.32)). Dur-
ing melting a produced melt increment is in equilibrium with the solid, thus, following
Eq. (3.32), cf is equal to cs

Kd
. But during freezing a frozen solid increment is produced

which is, again, in equilibrium with the fluid it originated from. Thus, the solid has
a concentration of cs = cf ·Kd. This in terms of trace element mass with Eq. (3.34)
gives

(
Kdm

f
)
/ (φρf ), which is, together with Γ, the first exchange term in Eqs. (3.39)

and (3.40).
In combination with the general equations for mass conservation (Eqs. (3.1) and (3.2))
one can eliminate the divergence of the velocities from the previous equations (Eqs. (3.35),
(3.36), (3.39) and (3.40)) and write them in terms of concentration and no longer in
terms of mass (see Spiegelman, 1996). The resulting equations for the case of melting
are

∂cs

∂t
+ v⃗s · ∇⃗cs = Γcs

(1− φ) ρs

(
1− 1

Kd

)
+ kequ

Dρfc
f − ρsc

s

φ2 (1− φ) +D (1− φ)2 φ
(3.41)

and

∂cf

∂t
+ v⃗f · ∇⃗cf = Γ

φρf

(
cs

Kd

− cf
)
− kequ

Dρfc
f − ρsc

s

φ2 (1− φ) +D (1− φ)2 φ
. (3.42)

In the case of freezing we get

∂cs

∂t
+ v⃗s · ∇⃗cs = Γ

(1− φ) ρs

(
cs − cfKd

)
+ kequ

Dρfc
f − ρsc

s

φ2 (1− φ) +D (1− φ)2 φ
(3.43)

and

∂cf

∂t
+ v⃗f · ∇⃗cf = Γcf

φρf
(Kd − 1)− kequ

Dρfc
f − ρsc

s

φ2 (1− φ) +D (1− φ)2 φ
. (3.44)

The advantage of these equations from a numerical point of view is that the divergence
of the velocities have not to be calculated, but during freezing the concentrations go
to infinity as φ goes to zero. The masses per volume go to zero, which is much easier
to handle.
However, analytic equations can be calculated to analyze the behavior of trace elements
in simple models. In a 0-D experiment where no re-equilibration takes place (i.e.
tr = ∞) Eqs. (3.41) to (3.44) can be reduced and the 2nd terms on the left and the
right are dropped. If the melt fraction φ is assumed to be a function of time in the
form of φ(t) = φ0+

Γ
ρ0
t, where φ0 is the initial melt fraction, the differential equations

can be solved with cs(t = 0) = cs0 to give

cs = cs0

(
1− φ0

1− φ(t)

)(
1− 1

Kd

)
, (3.45)
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which gives for φ0 = 0 exactly the literature results (Eq. (2.11)) for fractional melting,
but the equation is in a different form.
In the equation for the fluid cs can be found, which has to be treated as function of
time, what makes solving the differential equation rather unpleasant. If we only want
the melt increment concentration, cf can be calculated using cf (t) = cs(t)/Kd, which
is done in the literature equations (Eq. (2.10)). If we want the concentration of the
accumulated melt we can assume that cs is constant, which is valid for rather small
melt fractions. It gives

cf =
cf0φ0

φ(t)
+
cs

D

φ(t)− φ0

φ(t)
. (3.46)

This equation is only applicable for rather small melting degrees (φ(t) − φ0). For
bigger melting degrees cf has to be solved semi-analytically.
For freezing, similar calculations can be carried out. Here, the equation for the fluid
equation is not depending on solid equation and an exact solution can be calculated:

cf = cf0

(
φ(t)

φ0

)Kd−1

. (3.47)

Again, this equation is exactly the literature equation for fractional crystallization
(Eq. (2.13)), for φ0 = 1. cs can be calculated in a similar way while assuming cf is
constant:

cs = −c
s
0 (1− φ0)

1− φ(t)
− cfKd (φ(t)− φ0)

1− φ(t)
. (3.48)

3.3 Derivation of the Equations in the Publications

3.3.1 Publication 1

For the modeling of solitary porosity waves in publication 1, The effect of effective
rock viscosity on 2D magmatic porosity waves, the energy equation for the mixture
(Eq. (3.20)) is dropped and melting or freezing is forbidden (i.e. Γ = 0). The only
change of porosity then is due to advection. With Γ = 0 the right side of the mass
conservation equations (Eqs. (3.1) and (3.2)) are zero and the Compaction Boussinesq
Approximation is applied (i.e. densities are constant in the mass equations), leading
to

∂φ

∂t
+ ∇⃗ · (φv⃗f ) = 0 (3.49)

and
∂ (1− φ)

∂t
+ ∇⃗ · ((1− φ)v⃗s) = 0. (3.50)

The momentum equations (Eqs. (3.10) and (3.18)) stay as they are and no further
simplifications are carried out.
In this kind of solitary wave simulations the wave usually is placed into a partially
molten background with porosity φ0. The compaction length, permeability and shear
viscosity of this background is used to non-dimensionalize the general equations. For
the viscosities the simplified relations Eqs. (3.23) and (3.24) or the fast declining
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relations Eqs. (3.25) to (3.28), depending on the running model, is used. The viscosities
for φ0 are denoted ηsc and ζsc. The scaling permeability kφsc is calculated using
Eq. (3.6) for φ0. The scaling compaction length δsc then is defined as

δsc =

√
ηsc +

4
3
ζsc

µ
kφsc. (3.51)

The velocity is non-dimensionalized by the background separation velocity given by

vsc =
kφsc
µφ0

(ρs − ρf ) g. (3.52)

With these scaling parameters the set of scaling law is defined as

x⃗ = δscx⃗
′ v⃗ = vscv⃗

′ t =
δsc
vsc
t′ τij = ηsc

vsc
δsc
τij

′

η = ηs0η
′ ρ = ρsρ

′ φ = φ0φ
′ (ψ, χ) = (ψ′, χ′) · δscvsc

(3.53)

where non-dimensional parameters are primed.
In the mass equations, variables can be replaced by their non-dimensional counterpart,
giving

∂φ′

∂t′
+ ∇⃗′

· (φ′v⃗′f ) = 0 (3.54)

and
∂ (1− φ′)

∂t′
+ ∇⃗′

·

(
(1− φ′)v⃗′s

)
= 0. (3.55)

The momentum equations become(
∂2

∂x′2
− ∂2

∂z′2

)[
η′
(
∂2ψ′

∂x′2
− ∂2ψ′

∂z′2

)]
+ 4

∂2

∂x′∂z′

(
η′
∂2ψ′

∂x′∂z′

)
= φ2

0

ζsc +
4
3
ηsc

ηsc

∂φ′

∂x′
+ A (χ′)

(3.56)

with

A (χ′) = −2
∂2

∂x′∂z′

[
η′
(
∂2χ′

∂x′2
− ∂2χ′

∂z′2

)]
+ 2

(
∂2

∂x′2
− ∂2

∂x′2

)(
η′

∂2χ′

∂x′∂z′

)
(3.57)

and

v⃗′f − v⃗′s = φ′n−1

[
(1− φ0φ

′) e⃗z −
ηsc(

ζsc +
4
3
ηsc

) 1

φ0

∂τij′
∂xj′

]
. (3.58)

The whole equation system is described by Eqs. (3.54) to (3.58).
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3.3.2 Publication 2

In publication 2, Magma ascent mechanisms in the transition regime from solitary
porosity waves to diapirism, the transition between solitary waves and diapirism is
investigated. While the non-dimensionalization of publication 1 is useful for solitary
waves it can not be used for the diapirism end-member because the separation velocity
will tend to go to zero. Therefore, instead of the compaction length the initial radius
of the placed anomaly, r, is used. The background separation velocity is replaced by
the Stokes sphere velocity, vSt, of the initial perturbation and the background porosity
φ0 is replaced by the initial maximum porosity of the perturbation, φmax.
With this modification, the non-dimensionalization looks as follows:

(x, z) = (x′, z′) · r v⃗s,f = v⃗′s,f · vSt t = t′ ·
r

vSt

(τ , P ) = (τ ′, P ′) ·

η0vSt
r

(η, ζ) = (η′, ζ ′) · η0 (ψ, χ) = (ψ′, χ′) · rvSt
(3.59)

For the radius, r, the half-width of the initial perturbation, consisting of a 2D Gaussian
bell, is chosen. The Stokes sphere velocity can be calculated using the literature
equation (e.g. Turcotte and Schubert, 2014)

vSt = Cst
φmax∆ρgr

2

η0
. (3.60)

CSt can be achieved applying the analytic solution for an infinite Stokes cylinder within
another large cylinder, which describes our model setup sufficiently. This is necessary
as there is no analytic solution for a Stokes cylinder in an infinite medium. Following
Popov and Sobolev (2008) with the drag force derived by Slezkin (1955) CSt can be
calculated using CSt = ln (k) − k2−1

k2+1
, where k is the ratio of outer to inner cylinder

radius. For our model setup we arrive at CSt = 0.17.
In non-dimensional form the momentum equation (Eq. (3.10)) becomes

v⃗′f − v⃗′s = −δ
2
c

r2
1

η̃′φ

(
e⃗z
(1− φ)

φmax
+ ∇⃗′

· τ ′
)

(3.61)

where η̃′ is equal to ζ ′ + 4
3
η′. The momentum equation of the mixture becomes(

∂2

∂x′2
− ∂2

∂z′2

)[
η′
(
∂2ψ′

∂x′2
− ∂2ψ′

∂z′2

)]
+ 4

∂2

∂x′∂z′

(
η′
∂2ψ′

∂x′∂z′

)
=

1

φmax

∂φ

∂x′
+ A′ (χ′) .

(3.62)
All other equations can be taken from the previous section. The system is then de-
scribed by Eqs. (3.54), (3.55), (3.57), (3.61) and (3.62).
In Eq. (3.61) δ2c/r2 is the squared ratio of compaction length to initial perturbation
radius and is the main parameter describing the system. In the methods section of
publication 2, a comparison of segregation to Stoke velocity, based on this ratio, is
carried out and therefore, not shown here.
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3.3.3 Publication 3

Publication 3, Modeling trace element transport in melt using two-phase flow: Inves-
tigation of element redistribution in the upper Earth, concerns with modeling upper
mantle convection, which requires the full set of equations for two-phase flow, consist-
ing of two mass conservation equations for fluid and solid (Eqs. (3.1) and (3.2)), two
momentum conservation equations, one for the fluid (Eq. (3.5)), one for the solid-fluid
mixture (Eq. (3.8)), and one energy conservation equation for the mixture in thermal
equilibrium (Eq. (3.20)). The equation of energy conservation has to be solved as the
model is no longer isothermal. In this kind of convection model, thermal evolution
and the resulting effect on density due to thermal expansion is a major driving force
and has to be included.
Additionally, the transport of trace elements is modeled, using equations conserving
the mass per volume of the elements in solid and fluid separately (Eqs. (3.35), (3.36),
(3.39) and (3.40)). It should be noted again, that the source term of these equations
has to be changed whether material is freezing (Γ < 0) or melting (Γ > 0).
To achieve fully self consistent material exchange between the two phases a simple
two-component melting law is used (Eq. (3.31), Fig. 3.1).
Shear and volume viscosities are temperature and melt fraction dependent and their
functions are defined by

η = η0 · exp

[
Ea
RT0

(
T

T0
− 1

)]
·

(
1− φ

c1

)k1

, (3.63)

ζ = η0 · exp

[
Ea
RT0

(
T

T0
− 1

)]
· c2 (c1 − φ)k2/φ . (3.64)

The first part, with the exponential function, of both equations describes the depen-
dence of the temperature (Turcotte and Schubert, 2014) on the viscosity and contains
the activation energy Ea, the universal gas constant R and a reference temperature
T0, which is the temperature where η = η0.
The melt fraction dependence is described by the second part of the equations and
originates in the viscosity laws of Schmeling et al. (2012). These are based on numeri-
cal calculations for the viscous weakening of a prescribed melt geometry, merely build
of melt films (Eqs. (3.25) and (3.26)). The viscosity values can be calculated with
k1 = a1 (a2 + α (1− a2)), c1 =

b1α
1+b2αk3

, c2 =
4
3
αc−k21 · (c3 (1− α) + α) where a1 = 0.97,

a2 = 0.8, b1 = 2.2455, b2 = 3.45, k2 = 1.25, k3 = 1.29, c3 = 2. α is the aspect ratio of
the ellipsoidal inclusions equal to 0.03.
A different scaling has to be used here, as neither Stokes spheres nor porosity waves are
investigated. In convection models it is useful to use the thickness of the model box to
scale distance, and thermal diffusivity κ for time and eventually velocity. Additionally,
the model is no longer isothermal and temperature needs to be scaled. Concentrations
are scaled by the initial concentration of the model c0. The scaling law now looks like
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this:

(x, z) = (x′, z′) ·h v⃗s,f = v⃗′s,f ·

κ

h
t = t′ ·

h2

κ
T = T ′

·Tsc ρ = ρ′ · ρ0

(τ , P ) = (τ ′, P ′) ·

η0κ

h2
(η, ζ) = (η′, ζ ′) · η0 cs,f = c′s,f · c0 L = L′

· cPTsc.

(3.65)
To carry out parameter studies it is useful to introduce non-dimensional numbers,
based on the scaling parameters in Eq. (3.65):

Ra =
ρ0gα∆Th

3

η0κ
, Ram =

∆ρfgh
3

η0κ

Rae =
∆ρegh

3

η0κ
, Rt =

ηfh
2

η0k0
.

(3.66)

Ra, Ram and Rae are the Rayleigh numbers that represent the buoyancy due to
temperature, melt density and enrichment density, respectively. Rt is the retention
number and describes the resistance of a fluid to percolate through a porous matrix.
The densities that drive the buoyancy can be calculated using

ρ̄ = ρ0 − ρ0αT −∆ρfφ−∆ρef (1− φ) ,

ρs = ρ0 − ρ0αT −∆ρef (1− φ) ,

ρf = ρ0 − ρ0αT −∆ρf .

(3.67)

ρ̄ is the mixture density, ∆ρf is the density contrast between the solid and its melt, and
∆ρe is the difference between the initial and the completely enriched material. f is the
degree of depletion or enrichment, which is defined as the normalized concentration of
the solid as

f =
cBs

cBs − cBf
− cB0 . (3.68)

Note that cBs − cBf is constant in our simplified phase diagram. cB0 is the initial con-
centration of component B. f > 0 relates to an enrichment of component B, while
f < 0 relates to a depletion of component B.
Using the non-dimensional numbers and the scaling law in our two-phase flow formu-
lation we arrive for the momentum equations of the fluid (Eq. (3.5)) at

v⃗f
′ − v⃗s

′ = −φ
n−1

Rt

(
∇⃗′P ′

f −Rm · δi3

)
, (3.69)

where non-dimensional values are primed.
The non-dimensionalized momentum equation for the mixture (Eq. (3.8)) becomes

(Ra ·T ′ +Ram ·φ+Rae · f (1− φ)) δi3 − ∇⃗′P ′
f + ∇⃗′τ ′ = 0. (3.70)

The equation for conservation of energy can be non-dimensionalized, as well, to give

∂T ′

∂t′
+ ⃗vbar

′
· ∇⃗′T ′ = ∇⃗′

·

(
ρ′∇⃗′T ′

)
+ ρ0L

′Γ′. (3.71)
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3.3.4 Unpublished Manuscript

In this manuscript, Transport of volatiles and trace elements in solitary porosity waves,
the mass transport capabilities of solitary waves are investigated. The usual two-phase
flow equations for solitary waves, as applied in publication 1 and 2, are used. They
consist of mass conservation equations for the fluid (Eq. (3.50)) and solid (Eq. (3.49)),
both with the source term equal to zero, and a momentum conservation equation for
the mixture (Eq. (3.56)) and fluid (Eq. (3.58)). The model is assumed to be isothermal
again as melting and freezing is not allowed, and thermal expansion is neglected.
To observe the transport of mass, equations for the conservation of trace elements are
introduced

∂cs

∂t
+ v⃗s · ∇⃗cs = 0 (3.72)

and
∂cf

∂t
+ v⃗f · ∇⃗cf = 0. (3.73)

Those equations are solved using an explicit upwind scheme. cs and cf are concentra-
tions, but as melting and freezing is not allowed, no exchange is taking place between
solid and fluid, and the values are rather used to depict the origin of the markers.
Additionally, a marker field, following the fluid velocity, is introduced to allow for nu-
merical diffusion free advection. The equation is the same as Eq. (3.73), but is solved
using 4th order Runge-Kutta method.
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Publication 1

The Effect of effective Rock Viscosity on 2D Mag-
matic Porosity Waves

Solid Earth 10:2103-2113 (2019)

Janik Dohmen1, Harro Schmeling1 & Jan Philipp Kruse1

1Institute for Geoscience, Goethe University Frankfurt, Frankfurt, Germany

Abstract

In source regions of magmatic systems the temperature is above solidus and melt as-
cent is assumed to occur predominantly by two-phase flow which includes a fluid phase
(melt) and a porous deformable matrix. Since McKenzie (1984) introduced his equa-
tions for two-phase flow, numerous solutions have been studied one of which predicts
the emergence of solitary porosity waves. By now most analytical and numerical solu-
tions for these waves used strongly simplified models for the shear- and bulk viscosity
of the matrix, significantly overestimating the viscosity or completely neglecting the
porosity-dependence of the bulk viscosity. Schmeling et al. (2012) suggested viscos-
ity laws in which the viscosity decreases very rapidly for small melt fractions. They
are incorporated into a 2D Finite Difference mantle convection code with two-phase
flow (FDCON) to study the ascent of solitary porosity waves. The models show that,
starting with a Gaussian shaped wave, they rapidly evolve into a solitary wave with
similar shape and a certain amplitude. Despite the strongly weaker rheologies com-
pared to previous viscosity laws the effect on dispersion curves and wave shape are
only moderate as long as the background porosity is fairly small. The models are still
in good agreement with semi-analytic solutions which neglect the shear stress term in
the melt segregation equation. However, for higher background porosities and wave
amplitudes associated with a viscosity decrease of 50% or more, the phase velocity and
the width of the waves are significantly decreased. Our models show that melt ascent
by solitary waves is still a viable mechanism even for more realistic matrix viscosities.
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4.1. Introduction

4.1 Introduction

Magmatic phenomena such as volcanic eruptions on the Earth’s surface show, among
others, that melt is able to ascend from partially molten regions in the Earth’s mantle.
The melt initially segregates through the partially molten source region and then as-
cends through the unmolten lithosphere until it eventually reaches the surface. Within
supersolidus source regions at low melt fractions melt is assumed to slowly percolate by
two-phase porous flow within a deforming matrix (McKenzie, 1984; Schmeling, 2000;
Bercovici et al., 2001), followed by melt accumulation within rising high porosity waves
(Scott and Stevenson, 1984; Spiegelman, 1993; Wiggins and Spiegelman, 1995; Richard
et al., 2012) or focusing into channels which can possibly penetrate into subsolidus re-
gions. Stevenson (1989) carried out a linear stability analysis and found conditions at
which flow instabilities may arise, which may result in different 3D shapes like elon-
gated pockets, channels or porosity waves (Richardson, 1998; Wiggins and Spiegelman,
1995). Formation of 3D channels within a deforming matrix have been demonstrated
in Omlin et al. (2018) or Räss et al. (2014). Here we focus on the supersolidus source
region, and in particular on the dynamics of porosity waves. An essential parameter
controlling the width and phase velocity of porosity waves is the effective shear and
bulk matrix viscosity (Simpson and Spiegelman, 2011; Richard et al., 2012). Most of
the porosity wave model approaches used either equal bulk and shear viscosities, or
simple laws in the form of

ηs = ηs0 (1− φ) (4.1)

ηb = ηs0C
(1− φ)

φm
(4.2)

where ηs is the effective shear viscosity of the matrix, ηb the bulk viscosity, ηs0 the
intrinsic shear viscosity of the matrix, C a constant of order 1, φ the porosity, and
m = 0 for equal shear and bulk viscosities or m = 1 otherwise. There are also
recent models that use more complex pressure dependent weakening viscosities but
they still use the simplified equations mentioned above for the porosity dependence
of the viscosity (Omlin et al., 2018; Yarushina et al., 2015). Schmeling et al. (2012)
developed an effective viscosity model depending on a simplified geometry of the fluid
phase within a viscous matrix. Possible melt geometries include flat, ellipsoid-shaped
melt inclusions with an aspect ratio α and melt tubes with circular or triangular cross
sections with tapered edges. Comparison of the previous viscosity laws, Eqs. (4.1)
and (4.2), with the ones by Schmeling et al. (2012) clearly shows that for aspect ratio
1 and particularly for smaller α the effective matrix viscosities are significantly weaker,
and disaggregation of the solid occurs at melt fractions significantly smaller than 100%
as predicted by laws (4.1) and (4.2). Recent viscosity models based on microscopic
diffusion through grains, grain faces and the melt phase confirm the significance of
weakening with respect to Eqs. (4.1) and (4.2) (Rudge, 2018). The aim of this study is
to model 2D-porosity waves with the viscosity laws by Schmeling et al. (2012) and test
the influence of the weaker rheology on their shape and ascent velocity in the absence
of melting or freezing.
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4.2 Theoretical Approach

4.2.1 Governing Equations

The mathematical formulation of differential movement between solid matrix and melt
basically builds on that described in Schmeling (2000) and Schmeling et al. (2019) and
is applied here to a porosity wave. We solve the equations for mass and momentum
conservation for melt and solid. The formulation of the governing equations for the
melt-in-solid two-phase flow dynamics is based on McKenzie (1984), Spiegelman and
McKenzie (1987) and Schmeling (2000) and is valid for infinite Prandtl number (i.e.
neglecting inertia terms in the momentum equations), and small fluid to matrix vis-
cosity ratios. In the following all variables associated with the fluid (melt) have the
subscript f and those associated with the solid have the subscript s. Without melting
and freezing the equation for the conservation of the mass of the melt is

∂φ

∂t
+ ∇⃗ · (φv⃗f ) = 0 (4.3)

and the mass conservation of the solid is

∂ (1− φ)

∂t
+ ∇⃗ · [(1− φ)v⃗s] = 0. (4.4)

v⃗f and v⃗s are the fluid and solid velocities, respectively. The velocities are derived
from the momentum equations, which is a generalized Darcy equation for the fluid
separation flow

v⃗f − v⃗s = − kφ
ηf φ

(
∇⃗P − ρf g⃗

)
, (4.5)

and the Stokes equation for the solid-fluid mixture in the limit of zero fluid viscosity

ρg⃗ − ∇⃗P +
∂τij
∂xj

= 0. (4.6)

kφ is the permeability that depends on the rock porosity (i.e. melt fraction) with the
power n

kφ = k0φ
n, (4.7)

ηf is the dynamic melt viscosity, g⃗ is the gravitational acceleration, ρ is the density
of the melt – solid mixture, ρf is the density of the melt, P is the fluid pressure,
whose gradient is driving the motion, and τij is the effective viscous stress tensor of
the matrix

τij = ηs

(
∂vsi
∂xj

+
∂vsj
∂xi

)
+

(
ηb −

2

3
ηs

)
δij∇⃗ · v⃗s (4.8)

with the effective shear viscosity ηs and the effective volumetric or bulk viscosity ηb
of the porous matrix. The term

(
ηb − 2

3
ηs
)
∇⃗ · v⃗s is often referred to as compaction

pressure. The linearized equation of state for the mixture density is given as

ρ = ρfφ+ ρs (1− φ) (4.9)
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with the density of the matrix ρs. The fluid pressure in Eqs. (4.5) and (4.6) is the
same and can be eliminated by merging the two equations. Inserting the density of
the mixture, and using Eq. (4.7), Eq. (4.5) is recast into

v⃗f − v⃗s = −k0φ
n−1

ηf

(
g⃗(ρs − ρf ) (1− φ) +

∂τij
∂xj

)
. (4.10)

This equation states that the velocity difference between fluid and solid phase (i.e.
fluid separation flow, or the segregation velocity) is driven by the buoyancy of the
fluid with respect to the solid, and the viscous stress in the matrix which includes
the compaction pressure. Following Sramek et al. (2007) the matrix velocity, v⃗s, can
be written as the sum of the incompressible flow velocity, v⃗1, and the irrotational
(compaction) flow velocity, v⃗2, as follows:

v⃗s = v⃗1 + v⃗2 =

(
∂ψ
∂z

−∂ψ
∂x

)
+

(
∂χ
∂x
∂χ
∂z

)
(4.11)

with the incompressible velocity potential or stream function ψ and the irrotational
(compaction related) velocity potential, χ. From Eq. (4.11) it follows that the latter
is given as the solution of the Poisson equation

∇2χ = ∇⃗ · v⃗s (4.12)

The divergence term ∇⃗ · v⃗s can be derived from summing up Eq. (4.3) and Eq. (4.4)
to give

∇⃗ · v⃗s = −∇⃗ · [φ (v⃗f − v⃗s)] (4.13)

Eq. (4.12) represents a Poisson equation which can be solved for χ once the melt
porosity and segregation velocity are known. As boundary condition the normal ve-
locity of v⃗2, i.e. v2n, can be prescribed which is equivalent to a normal derivative of
χ, i.e. a Neuman boundary condition. If the normal velocity is constant along the
boundary, it automatically fulfils free slip. For sake of simplicity v2n = 0 was chosen.
Taking the curl of the matrix momentum Eq. (4.6) eliminates the pressure. Inserting
the viscous stress tensor (Eq. (4.8)), the density (Eq. (4.9)) and the matrix velocity
(Eq. (4.11)) into the resulting equation gives the momentum equation in terms of the
stream function ψ and the irrotational velocity potential χ(

∂2

∂x2
− ∂2

∂z2

)[
ηs

(
∂2ψ

∂x2
− ∂2ψ

∂z2

)]
+ 4

∂2

∂x∂z

[
ηs
∂2ψ

∂x∂z

]
= (ρs − ρf ) g

∂φ

∂x
+ A (χ)

(4.14)

with

A (χ) = −2
∂2

∂x∂z

[
ηs

(
∂2χ

∂x2
− ∂2χ

∂z2

)]
+ 2

(
∂2

∂x2
− ∂2

∂z2

)[
ηs
∂2χ

∂x∂z

]
(4.15)

The governing equations are non-dimensionalized by the compaction length, δc0, (McKen-
zie, 1984) and a scaling separation velocity, vsc0, both of which are taken at a reference
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state which assumes a constant background porosity φ0. The corresponding scaling
viscosities and the scaling permeability are denoted by ηb0, ηs0, and kφ0, respectively.
The compaction length is given by

δc0 =

(
ηb0 +

4
3
ηs0

ηf
kφ0

) 1
2

(4.16)

and is the length scale over which a variation in fluid flux gives a response on the
compaction. The scaling separation velocity is given as

vsc0 =
kφ0
ηfφ0

(ρs − ρf ) g. (4.17)

This defines the scaling law, where the primes denote non-dimensional values and the
subscript 0 refers to the background porosity

x⃗ = δc0x⃗
′ v⃗ = vsc0v⃗

′ t =
δc0
vsc0

t′ τij = ηs0
vsc0
δc0

τij
′

η = ηs0η
′ ρ = ρsρ

′ φ = φ0φ
′

(4.18)

The resulting governing equations for the mass are

∂ (1− φ′)

∂t′
+ ∇⃗′

· ((1− φ′) v⃗′s) = 0 (4.19)

∂φ′

∂t′
+ ∇⃗′

·

(
φ′v⃗′f

)
= 0 (4.20)

and for the momentum equations we get(
∂2

∂x′2
− ∂2

∂z′2

)[
ηs

′
(
∂2ψ′

∂x′2
− ∂2ψ′

∂z′2

)]
+ 4

∂2

∂x′∂z′

[
η′s

∂2ψ′

∂x′∂z′

]
= φ2

0

ηb0 +
4
3
ηs0

ηs0

∂φ′

∂x′
+ A (χ′)

(4.21)

A (χ′) = −2
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v⃗′f − v⃗′s = φ′n−1
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(1− φ0φ

′) e⃗z −
ηs0(

ηb0 +
4
3
ηs0

) 1

φ0

∂τij′
∂xj′

]
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with e⃗z as unit vector in z-direction (positive upward).

4.2.2 The effective Viscosity of a Porous Matrix

The effective viscosity laws proposed by Schmeling et al. (2012) assume ellipsoidal
melt inclusions, or melt films if the inclusions are flat, or melt tubules embedded
within an effective viscous medium. This self-consistent assumption is able to predict
viscous weakening of a solid matrix with a disaggregation melt porosity of the order of
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Table 4.1: Parameters to calculate the viscosities for a melt network consisting of 50%
tubes and 50% films using Eqs. (4.26) and (4.27)

α a1 a2 b1 b2 φmax
0.2 0.8074 2.595 0.7009 1.276 0.2428
0.3 0.7435 2.622 0.7082 1.278 0.2629
0.4 0.6958 2.645 0.7145 1.281 0.2730
0.5 0.6692 2.664 0.7182 1.284 0.2785

50% or less depending on the assumed melt geometry. From their numerical models
Schmeling et al. (2012) derive approximate formulas for the porosity dependence of the
dimensional effective matrix shear and bulk viscosities for a melt network geometry
consisting of 100% films

ηs = ηs0

(
1− φ

c1

)k1

for φ < c1 (4.24)

ηb = ηs0c2
(c1 − φ)k2

φ
for φ < c1 (4.25)

with k1 = a1 (a2 + α (1− a2)), c1 = b1α
1+b2αk3

, c2 = 4
3
αc−k21 · (c3 (1− α) + α) where

a1 = 0.97, a2 = 0.8, b1 = 2.2455, b2 = 3.45, k2 = 1.25, k3 = 1.29, c3 = 2, and α is
the aspect ratio of the ellipsoidal inclusions. At the disaggregation threshold found
as φ = c1 the partially molten material loses its cohesiveness and both viscosities
approach zero. For a melt network consisting of 50% tubes and 50% films the following
approximate equations have been derived from the model of Schmeling et al. (2012)

ηs = ηs0 ·

(
1− φ

φmax

)k

(4.26)

ηb = ηs0a2

(
φmax − φ

φ

)b2

(4.27)

The parameters needed to calculate these viscosities for different aspect ratios between
0.2 and 0.5 are given in Tab. 4.1. k is given by k = a1φ + b1. Figure 4.1 shows
the effective shear and bulk viscosities for different aspect ratios together with the
simplified previous laws (Eqs. (4.1) and (4.2)). Takei and Holtzman (2009) and Rudge
(2018) suggest that in the presence of an infinitesimal amount of connected melt the
effective viscosity undergoes a finite drop of the order of a few 10% of the intrinsic
matrix viscosity. In our approach we always have a finite melt porosity, thus we may
identify the zero porosity viscosity ηs0 in our formulation with the initially weakened
value of Takei and Holtzman (2009) or Rudge (2018).

4.2.3 Methods and Model Setup

For the model we use a square box (1 × 1), which is initially partially molten to a
certain degree, the background porosity. We place an initial porosity anomaly with
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Figure 4.1: Shear (solid) and bulk (dashed) viscosity for several aspect ratios as a
function of the melt fraction. Left: The viscosities are calculated for a melt network
consisting of 50% tubes and 50% films. Right: The network consists of 100% films.
The red lines show the simplified analytical viscosities (Eqs. (4.26) and (4.27)).

a higher porosity centered at x0 = 0.5 and z0 = 0.2 from which a porosity wave will
develop. As the shape and width of a solitary wave with a certain rheology law and
amplitude is not known a priori we use a Gaussian wave of the form

φ = A · exp

[(
x− x0
w

)2

−
(
z − z0
w

)2
]

(4.28)

for the perturbation and vary the initial width w of the wave. At the sides of the box
symmetric boundaries and at the top and the bottom free slip boundaries are used.
The in- and outflow velocities of matrix and melt at the top and bottom are prescribed
in terms of the analytical solution of the background porosity.
The influence of the boundaries on the ascending wave was investigated and found
to be fairly small. In Fig. 4.3 one can see the effect of the upper boundary on the
phase velocity. At the end, as the waves approach the upper boundary, the dispersion
curves slightly deviate from the supposed line. This error is smaller than 0.5% as long
as the distance of the center of the wave to the upper boundary is greater than 1.5
times its 10%-radius. This radius is defined as the radius at which the porosity has
decreased to 10% of the amplitude of the wave. For the side boundaries this distance
has to be larger. For distances greater than 3 times the 10%-radius this error is smaller
than 1%. In our models the waves have distances of 7–10 times the 10%-radius which
corresponds to errors between 0.2 and 0.05%.
The equations are solved on a 201× 201 grid by Finite Differences using the code FD-
CON (e.g. Schmeling et al., 2019). Resolution tests have been made with grids varying
from 101 × 101 to 401 × 401. They show that after a short transient time the phase
velocity and amplitude of the evolved porosity wave approach constant values for very
high resolutions for all viscosity laws used. The subsequently observed slow variations
of the phase velocity and amplitude of the wave along a quasi-steady state dispersion
curve can be attributed to numerical diffusion at finite grid resolution. The resolution
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test shows that 1) the quasi-steady state phase velocity and amplitude of the wave are
of error order 1, and 2) the dispersion curves obtained on a 201×201 grid overestimate
the extrapolated phase velocity values by about 10%. Time step resolution tests show
that the long-term temporal behavior of the porosity waves is significantly improved if
the time steps are chosen smaller than approximately 0.2 times the Courant criterion.
The amplitude and phase velocity of the evolving porosity wave is obtained at every
time step by quadratic interpolation of the porosity values on the FD grid and deter-
mining the value and velocity of the position of the maximum of the quadratic function.
The resulting phase velocity shows small oscillations in time, which are probably due
to the interaction of the 1st order error in time when solving Eqs. (4.3) and (4.4) and
the 2nd order error of the interpolation. These oscillations are smoothed by applying a
moving average including 50 neighboring points. The resulting time series of porosity
amplitude and phase velocity can be plotted as a curve with time as curve parameter
in an amplitude–phase velocity plot. This curve can be understood as a dispersion
curve because the phase velocity depends on amplitude and thus implicitly on the
width or wavelength of the porosity wave.
For the model series presented below the width and the amplitude of the initial wave,
the background porosity and the rheology law have been varied. All models were
carried out using n = 2 and n = 3 in the permeability-porosity law.

4.3 Results

4.3.1 Dispersion Curves for varied Widths and Amplitudes

As the shape of a two-dimensional porosity wave for a certain wave amplitude is not
known, the initial width is varied. In Fig. 4.2a we show a porosity wave of amplitude 8
initially positioned at x = 0.5 and z = 0.2 (left) as it rises through the model box. In
Fig. 4.2b a horizontal cross section through the maximum of an initial wave and the
resulting solitary wave at a late stage is shown. During the early stage the wave gains
some amplitude as the volume of an equivalent solitary wave with the same amplitude
would be smaller for this example. Then the amplitude of the ascending wave slowly
decreases again due to numerical diffusion and the evolving phase velocity – amplitude
curve describes the quasi-steady state dispersion relation. At this point the wave is
expected to be a solitary wave. The shape of this wave resembles a Gaussian bell curve
quite well but does not fit exactly. The upper part of the wave in this example fits
very well while the lower part is slightly wider.
To analyze the evolution of the ascending solitary wave the phase velocity and the
amplitude is tracked over the full rising time and plotted into a dispersion diagram. In
Fig. 4.3 the dispersion curves of a model with a starting wave width which is initially
larger than the resulting solitary wave, a model with a similar width, and a model with
a smaller initial width are shown. The curves start with high velocities for the Gaus-
sian bell shaped wave and then rapidly slow down until they approach a specific point
visible as a sharp kink from which they slowly follow a line. For the bigger and optimal
width models, after this kink the wave is expected to have reached the solitary wave
stage. For the bigger initial width this stage is reached at a higher amplitude than
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Figure 4.2: a) Non-dimensional melt fraction at 4 different time steps during the ascent
of a solitary wave with an initial amplitude of 8. The model was carried out for a melt
network geometry consisting of 100% films and an aspect ratio of 0.1. The background
porosity is 0.005 and n = 3. b) Horizontal cross section through the center of the initial
wave and the solitary wave at a later time.

initially assumed. It is important to note that, independent of the initial wave width,
after reaching a solitary wave stage the velocities and shapes of waves of a certain
amplitude are always equal, i.e. the three curves merge on one dispersion curve. For
comparison with semi-analytic 2-D solitary porosity wave solutions the dashed curves
in Fig. 3 and later Figures show dispersion curves with different power law n of the
permeability-porosity relation and different bulk viscosity laws with m = 0 assuming a
constant bulk viscosity, and m = 1 for a 1/φ proportionality (c.f. Eq. (4.2)) (Simpson
and Spiegelman, 2011). In contrast to our models these solutions a) use a stiff rheology
(”analytic viscosity” in Fig. 4.1), b) neglect solid shear (first term of the right hand
side of Eq. (4.8)) which is responsible for v⃗1 (c.f. Eq. (4.12)) in the matrix momentum
equation, and for an important contribution in the separation flow (Eq. (4.11)), and
c) apply the small porosity limit.
Based on this result one can carry out many models with different initial wave widths
and different initial amplitudes and get one empirical steady state solitary wave dis-
persion curve for one viscosity law for a wide range of amplitudes.
Fig. 4.4 shows the time-dependent dispersion curves of models with 4 different initial
amplitudes (4 to 10), and 11 different initial widths each. Depending on the initial
widths they either gain amplitudes as they approach the solitary wave stage or they
monotonously loose amplitude. Depending on the initial amplitude and width each
case is characterized by a certain total melt volume, corresponding to a specific steady
state solitary wave with a specific amplitude. Therefore the 44 models finally reach
one steady state solitary wave dispersion curve at different amplitudes. As discussed
in section 2, the amplitude of the waves slowly continue to decrease due to some small
amount of numerical diffusion. Yet, they continue following the steady state solitary
wave dispersion curve.
Although we use a different rheology law and do not apply the simplifications men-
tioned above, the steady state dispersion curve of our model is in general agreement
with the n = 3, m = 1 dispersion curve determined semi-analytically by Simpson
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Figure 4.3: Dispersion curves for three models with an initial width bigger, smaller
and approximately equal to the resulting solitary wave. Each model was carried out
for a melt network geometry consisting of 100% films and an aspect ratio of 0.1. The
background porosity is 0.005 and n = 3.

and Spiegelman (2011) (Fig. 4.4, dashed curve). However, given the 10% numerical
overestimation of phase velocities of our models (c.f. Sec. 4.2.2), for high amplitudes
our dispersion curve shows a significantly smaller slope and correspondingly smaller
phase velocities than the semi-analytical curve by Simpson and Spiegelman (2011).
Comparison of the simplified semi-analytical 1-D solution of Simpson and Spiegelman
(2011) with the full analytical 1-D solution of Yarushina et al. (2015) shows that for
low porosities these solutions fit very well together. For higher porosities the full solu-
tion becomes slower than the simplified one. Tentatively transferring this result to 2D
our decrease in the slope can probably be explained by the low porosity limitation of
the Simpson and Spiegelman (2011) solution which overestimates the velocity at high
porosities.

4.3.2 Effect of different Viscosity Laws for n=2 and 3 on Dis-
persion Curves

To investigate the effect of different viscosity laws, two melt network geometries are
chosen. The first one consists of 50% films/ellipsoidal melt pockets and 50% tubes,
the second of 100% films/ellipsoidal melt pockets. Furthermore the aspect ratio α is
varied, whereby a higher aspect ratio corresponds to compact melt pockets and leads
to stronger viscosities and to a higher disaggregation threshold (c.f. Fig. 4.1).
Waves with these different viscosity laws give only minor differences in the dispersion
curves (Fig. 4.5a, b). Especially with the films and tubes case the curves for different
aspect ratios (Fig. 4.5a) are not distinguishable, both during the transient and final
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Figure 4.4: Dispersion curves for 44 models with 4 different initial amplitudes (4 to
10) and 11 different initial widths each. All models were carried out for a melt network
geometry consisting of 100% films and an aspect ratio of 0.1. The background porosity
is 0.005 and n = 3.

stage. In contrast, the analytic viscosity case (Eq. (4.1) and (4.2)) propagates along
a different path and converges to a 4–6% higher final phase velocity curve. With
100% Films the differences among curves with the different viscosity laws in the final
velocity are higher and lie in the order of 6%. These differences are surprisingly small
if compared to the actual differences in effective shear viscosities of about 13% and
bulk viscosity of about a factor 4 (at 4% melt corresponding to a porosity amplitude
8). It is also to be noted that the steady state part of our dispersion curve calculated
with the analytical viscosity (Eq. (4.1) and (4.2)) excellently agrees with the semi-
analytical solution (dashed) by Simpson and Spiegelman (2011) for the same viscosity
law, if we account for the 10% numerical overestimation of our model phase velocity
(c.f. section 4.2.2). Thus, their neglect of shear stresses and other simplifications have
only a very minor effect compared to the effect of different viscosity laws. The overall
effect of weakening of matrix viscosity due to decreasing aspect ratio is to slow down
the phase velocity slightly.
Changing n of the permeability-porosity relation to 2 decreases the wave velocities
significantly (Fig.4.5c, d). This drop is consistent with the simplified semi-analytical
solitary wave solutions (n = 2, m = 1, dashed curves). In contrast to the n = 3 cases,
the n = 2 velocities are above the Simpson and Spiegelman (2011) solutions even if
the numerical 10% overestimation is considered. As for the n = 3 case, porosity waves
with the stronger analytical viscosity case (Eq. (4.1) and Eq. (4.2)) are slightly faster
than the new weaker viscosity cases.
While the ascending phase velocity of the wave is only slightly affected by the different
viscositiy laws, the width of the wave changes more strongly. In Figure 4.6 the half-
widths of the solitary waves of amplitude of 8 are plotted against the corresponding
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Figure 4.5: Dispersion curves of solitary waves with a) n = 3, films & tubes, b) n = 3,
films, c) n = 2, films & tubes, d) n = 2, films for different aspect ratios.

wave velocities for the different viscosity laws. For n = 2 (Fig. 4.6a) and 100% films
the wave gets wider for higher aspect ratios, while for the mixed geometry the widths
stay more or less constant. The velocity increases only slightly with the aspect ratio.
For n = 3 (Fig. 4.6b) and 100% films the width increases with aspect ratio but in
contrast to n = 2 the phase velocity decreases with increasing aspect ratio. For
the mixed geometry the velocity and half-width variations are minor again. These
results show that as long as melt tubes represent a significant portion of the total melt
volume (here 50%) they control the porosity wave dynamics and keep the porosity
wave properties rather fixed. Only in the absence of tubes compact melt pockets with
large aspect ratios significantly broaden the waves. For the stiff case of analytical
viscosity (Eqs. (4.1) and (4.2)) the half width of the wave is comparable to the weaker
0.2 films, but the velocities are larger (Fig. 4.6a,b, light brown symbols).
Another interesting phenomenon to observe is the matrix velocity in the center of the
wave, which increases for all geometries with aspect ratio (Fig. 4.7). While for 100%
films this increase is stronger, for both geometries the velocities are approximately
equal at an aspect ratio between 0.2 and 0.3. For n = 2 (Fig. 4.7a) the matrix velocities
are always positive, meaning that despite a slow negative background velocity of the
matrix, it rises in the center of the wave (together with the melt). Interestingly, for
n = 3 (Fig. 4.7b) and small aspect ratios (0.1 and 0.2, i.e. weaker effective matrix
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Figure 4.6: Non-dimensional half-width, plotted against non-dimensional phase ve-
locity for a porosity wave of amplitude 8 for different viscosity laws. The numbers
give the aspect ratios of the films/melt pockets. The background porosity is 0.5%. a)
Permeability-porosity exponent n = 2, b) n = 3

viscosities) the direction of flow of the matrix is changed and matrix in the center
flows downwards, i.e. against the direction of melt flow. Assuming constant matrix
shear and bulk viscosities, Scott (1988) observed a similar switch from negative to
positive matrix velocities in the center of a 2D solitary wave when the ratio of the
bulk to shear viscosity was increased from 1 to 9 for n = 3. We see this switch around
α = 0.25 corresponding to a bulk to shear viscosity at the center of the porosity wave
of about 16, and higher elsewhere. Such a switch can be explained by an increasing
role of diapiric flow, which is v⃗1-related, incompressible, and upward in the center of
the wave, with respect to the compaction flow, which is v⃗2-related, irrotational, and
downward in the center of the wave (c.f. Eq. (4.12)). Weakening of the bulk viscosity
within the porosity wave relative to the shear viscosity allows stronger decompaction
and compaction rates which amplify the downward compaction flow with respect to
the upward diapiric flow.
In the previous models the scaling background porosity of 0.005 and maximum wave
amplitudes of 10 to 12 imply maximum melt fractions of 5 to 6%. Thus, the matrix
shear viscosity decrease was only small, of order 10% for e.g. the aspect ratio 0.1
models and of order 5% for the stiffer analytical viscosity laws (Eqs. (4.1) and (4.2)).
This explains the rather mild rheology effect when comparing the effect of the different
viscosity laws. With the aim to reach higher maximum melt fractions associated with
stronger rheological effects we carried out a model series with increased background
porosities, both applying the analytical viscosity law (m = 1) and our weaker matrix
viscosities with 100% films with an aspect ratio 0.1 (Fig. 4.8). The increase in the
background porosity from 0.5% to 1.5% has only a minor influence on the behavior
of the solitary wave for models which use the analytical viscosity law (m = 1): The
half width of the wave is almost completely unaffected (by ∼ 1%), while the phase
velocity is increased by only approximately 2.5%. Using a viscosity law based on
a melt geometry consisting of 100% films and an aspect ratio of 0.1 the differences
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Figure 4.7: Matrix velocity in the center of a wave with an amplitude of 8 as a function
of the aspect ratio of the films for a) n = 2, b) n = 3. The background porosity for
all models was 0.005.

become significant. The half width decreases to ∼ 70% of its initial value and the
phase velocity decreases by up to 20% with increasing background porosity, i.e. with
an increased maximum porosity within the wave. Thus, the half widths and phase
velocities show a significant difference to the analytical viscosity law (Fig. 4.8). In
fact, the phase velocities show the opposite behavior to the analytical viscosity law
(see Fig. 4.8b). These models suggest that the high melt fractions within the waves
which are associated with a significant local matrix weakening, both for shear and
bulk viscosity, lead to effectively shortened compaction lengths within the wave, i.e.
to a narrowing and focusing of the wave. Such narrower waves contain less melt than
broader waves of same amplitude, i.e. less buoyancy, which slows down the rising
phase velocity.

4.4 Discussion

It is interesting to note that although the semi-analytic solutions of Simpson and
Spiegelman (2011) neglect the shear term in the matrix momentum equation and in
the separation flow equation they are in good agreement with the low φ0 models which
include this term. To understand this we made a test with a model with 100% films
and aspect ratio 0.1 and found that in the separation flow Eq. (4.11) the shear term
has a significant amplitude of about 50% compared to the compaction term. We then
switched off this term in the separation flow Eq. (4.11), which is equivalent to assuming
zero shear viscosity. Surprisingly it turned out that separation velocity changed only
insignificantly while the amplitudes of matrix divergence and convergence increases
by about 25%, and the compaction related term driving the separation velocity in
Eq. (4.11) increases by about 50%, i.e. by the same amount the shear term had be-
fore. Obviously, the buoyancy forces of the solitary wave are partitioned between the
decompaction pressure controlled by the bulk viscosity and the shear stresses, namely
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Figure 4.8: a) Horizontal profiles through ascending waves and b) dispersion curves
with different background porosities but the same non-dimensional amplitude of 7.
The dot-dashed curves were calculated with the simplified analytical viscosity law
(m=1). The solid lines were calculated with a viscosity law based on 100% films and
an aspect ratio of 0.1.

the vertical normal shear stresses. If these stresses are neglected by assuming a zero
shear viscosity, the buoyancy forces are balanced by the compaction pressure alone,
and the shear contribution of the downward segregation flow is taken over by the in-
creased compaction contribution.
Recently, Rudge (2018) developed a diffusion creep model based on microscopic dif-
fusion calculations in the presence of melt in textural equilibrium with truncated
octahedrons. Assuming infinite diffusivity in the melt phase he obtains a somewhat
stronger weakening of the shear viscosity at smaller melt fractions than in our model,
but comparable disaggregation porosities as in Fig. 4.1. However, due to the infinite
diffusivity assumption, the bulk viscosity remains finite (= 5/3 of the effective shear
viscosity) even at very small melt porosities, while in our model it increases infinitely
in the limit of zero porosity. We expect that our results with increased weakening ef-
fect (φ0 increased to 1.5%) might be applicable also to the rheology based on Rudge’s
(2018) analyses.
It should be noted that in our study the viscosity law has been varied by assuming
various melt geometries of melt films and films/melt pockets superimposed with tubes,
while the permeability-porosity has been varied independently between n = 2 corre-
sponding to the ideal case of only interconnected tubes and n = 3 corresponding to
the ideal case of interconnected thin films. Three-dimensional melt distributions of
partially molten mantle rocks have been studied e.g. by serial sectioning (Garapic
et al., 2013) identifying a network of melt tubes and films, and by microtomography
(Zhu et al., 2011) suggesting the predominance of melt tubes along grain edges. Yet, at
higher melt fractions the latter distributions are characterized by tapered edges of the
melt tubes partly or completely wetting grain faces between adjacent grains. From
the latter experiments Miller et al. (2014) determined the permeability by 3D-fluid
flow modeling and found an exponent of 2.6. Thus, our simplified melt viscosities
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and permeabilities cover quite well observed partially molten olivine-basalt systems in
textural equilibrium.
In Richard et al. (2012) it was observed that with increasing background porosities the
waves will widen and the phase velocities will slow down. In our models we observe
faster velocities with increasing background porosity if the analytical viscosity is used.
This can be explained by the different scaling which was used by Richard et al. (2012).
They used just the shear viscosity to calculate the compaction length and not the sum
of shear and bulk viscosity. If the same scaling is used, we get the same behavior for
the phase velocity. In contrast to Richard et al. (2012) we observe a narrowing effect of
the waves for larger background porosities, which cannot be explained by scaling. As
Richard et al. (2012) used a 1-D model, we suspect that 2-D effects such as including
the incompressible flow velocity, v⃗1, are responsible for the different shapes of the wave
at different background porosities.

4.5 Conclusion

As the shape of a solitary wave in our models cannot be described analytically, we
start with a Gaussian wave, which develops quite rapidly into a solitary wave with a
similar shape and a certain amplitude, depending on the initial width of the wave.
Even though the rheologies used are much weaker than the simplified analytical ones
the effect on dispersion curves and wave shape are only moderate as long as the shear
viscosity does not drop below about 80% of the intrinsic shear viscosity. This value
corresponds to a melt fraction of 5%, equivalent to 20% of the disaggregation value.
At this porosity the bulk viscosity is approximately 5–7 times the intrinsic shear vis-
cosity. In this case the phase velocity changes just slightly for all cases, while the
waves broaden in the absence of tubes with increasing aspect ratio.
In contrast, for higher melt fractions of about 12%, equivalent to 50% of the disaggre-
gation values, the shear viscosity decreases to 50% of the intrinsic viscosity, and the
bulk viscosity is of the order of the intrinsic shear viscosity. Then, our models predict
significant narrowing of the porosity waves and slowing down of the phase velocities.
For such conditions a strong discrepancy in solitary wave behavior between our vis-
cosity law and the analytical ones is found.
For low melt fractions our models are in good agreement with semi-analytic solutions
which neglect the shear stress term, because the matrix shear contribution of the down-
ward segregation flow is taken over by the increase of the compaction contribution.
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Abstract

In partially molten regions inside the Earth melt buoyancy may trigger upwelling of
both solid and fluid phases, i.e. diapirism. If the melt is allowed to move separately
with respect to the matrix, melt perturbations may evolve into solitary porosity waves.
While diapirs may form on a wide range of scales, porosity waves are restricted to sizes
of a few times the compaction length. Thus, the size of a partially molten perturbation
in terms of compaction length controls whether material is dominantly transported by
porosity waves or by diapirism. We study the transition from diapiric rise to solitary
porosity waves by solving the two-phase flow equations of conservation of mass and
momentum in 2D with porosity dependent matrix viscosity. We systematically vary
the initial size of a porosity perturbation from 1.8 to 48 times the compaction length.
If the perturbation is of the order of a few compaction lengths, a single solitary wave
will emerge, either with a positive or negative vertical matrix flux. If melt is not
allowed to move separately to the matrix a diapir will emerge. In between these end
members we observe a regime where the partially molten perturbation will split up
into numerous solitary waves, whose phase velocity is so low compared to the Stokes
velocity that the whole swarm of waves will ascend jointly as a diapir, just slowly
elongating due to a higher amplitude main solitary wave.
Only if the melt is not allowed to move separately to the matrix no solitary waves will
build up, but as soon as two-phase flow is enabled solitary waves will eventually emerge.
The required time to build them up increases non-linearly with the perturbation radius
in terms of compaction length and might be for many cases too long to allow for them
in nature. 55



5.1. Introduction

5.1 Introduction

In geodynamic settings such as mid-ocean ridges, hotspots, subduction zones or oro-
genic belts partial melts are generated within the asthenosphere or lower continental
crust and ascend by fluid migration within deforming rocks (e.g. Sparks and Parmen-
tier, 1991; Katz, 2008; Keller et al., 2017; Schmeling et al., 2019). Inherent tectonic
or rock heterogeneities in such systems may result in spatially varying melt fractions
on length scales varying over several orders of magnitudes. These length scales play
an important role in determining whether melt anomalies may rise as porous waves
(Jordan et al., 2018) or by other mechanisms such as diapirs (Rabinowicz et al., 1987),
focused channel networks (Spiegelman et al., 2001) or dykes (Rivalta et al., 2015).
Here we focus on the effect of the length scale on the formation and evolution of buoy-
ancy driven porous waves or diapirs.
The physics of fluid moving relatively to a viscously deformable porous matrix were
firstly described by McKenzie (1984) and it was later shown by several authors that
these equations allow for the emergence of solitary porosity waves (Scott and Steven-
son (1984); Barcilon and Lovera (1989); Wiggins and Spiegelman (1995)). Porosity
waves are regions of localized excess fluid that ascend with permanent shape and con-
stant velocity, controlled by compaction and decompaction of the surrounding matrix.
They have extensively been studied as mechanisms transporting geochemical signa-
tures or magma through the asthenosphere, lower and middle crust (e.g. Watson and
Spiegelman, 1994; McKenzie, 1984; Connolly, 1997; Connolly and Podladchikov, 2013;
Jordan et al., 2018; Richard et al., 2012). It has been shown that the dynamics of
porous waves strongly depends on the porosity dependence of the matrix rheology (e.g.
Connolly and Podladchikov, 1998; Yarushina et al., 2015; Connolly and Podladchikov,
2015; Omlin et al., 2017; Dohmen et al., 2019). Yet, one open question is how the
length scale of solitary porosity waves relates to an arbitrary length scale of a possible
porosity anomaly in given geodynamic settings.
The size of a solitary porosity wave is usually of the order of a few compaction lengths
(McKenzie, 1984; Scott and Stevenson, 1984; Simpson and Spiegelman, 2011), but this
length scale varies over a few orders of magnitude, depending on the shear and bulk
viscosity of the matrix, fluid viscosity and permeability (see Eq. (5.20)) with typical
values of 100-10000 meters (McKenzie, 1984; Spiegelman, 1993). However, partially
molten regions in the lower crust or upper mantle are prone to gravitational instabili-
ties such as Rayleigh-Taylor instabilities or diapirism (e.g. Griffiths, 1986; Bittner and
Schmeling, 1995; Schmeling et al., 2019). Originating from the Greek “diapeirein”,
i.e. “to pierce through”, diapirism describes the “buoyant upwelling of relatively light
rock” (Turcotte and Schubert, 1984) through and into a denser overburden. In the
general definition the rheology of the diapir and ambient material is not specified, both
can be ductile as in our case. Buoyancy may be of compositional or phase related ori-
gin, e.g., due to the presence of non-segregating partial melt (Wilson, 1989). In this
model we describe a diapir as a partially molten perturbation, whose rising velocity,
characterizable by the Stokes velocity, is lower than the corresponding solitary waves
phase velocity.
As characteristic wavelengths of Rayleigh-Taylor instabilities may be similar, but also
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of significantly different order of those of porosity waves, and the Stokes velocity is
strongly affected by the spatial expansion, the question arises how these two mecha-
nisms interact and how does the transition from a porosity wave to a rising partially
molten diapir look like. Scott (1988) already investigated a similar scenario. He calcu-
lated porosity waves changing the compaction length by altering the constant shear to
bulk viscosity ratio. In contrast, we vary the radius of a partially molten perturbation
in terms of compaction lengths but keeping the porosity dependent viscosity law the
same. While Scott (1988) was not able to reach the single-phase flow endmember due
to his setup, we can reach this endmember with our description and can explore the
transition.
In this work we will address the question of length scale of a partially molten re-
gion with respect to the length scale of a solitary porosity wave, by varying the sizes
of initial porosity perturbations. We further focus on the numerical implications on
modeling magma transport.

5.2 Methods

5.2.1 Governing Equations

The formulation of the governing equations for the melt-in-solid two-phase flow dy-
namics is based on McKenzie (1984), Spiegelman and McKenzie (1987) and Schmeling
(2000) assuming an infinite Prandtl number, a low fluid viscosity w.r.t. the effec-
tive matrix viscosity, zero surface tension, and the Boussinesq approximation. In the
present formulation the Boussinesq approximation assumes the same constant density
for the solid and fluid except for the buoyancy terms of the momentum equations for
the solid and fluid. In the following all variables associated with the pore fluid (melt)
have the subscript f and those associated with the solid matrix have the subscript s.
The equation for the conservation of the mass of the melt is

∂φ

∂t
+ ∇⃗ · (φv⃗f ) = 0, (5.1)

and the mass conservation of the solid is

∂ (1− φ)

∂t
+ ∇⃗ · ((1− φ)v⃗s) = 0. (5.2)

φ is the volumetric rock porosity (often called melt fraction), v⃗f and v⃗s are the fluid
and solid velocities, respectively. The momentum equations are given as a generalized
Darcy equation for the fluid separation flow

v⃗f − v⃗s = − kφ
µφ

(
∇⃗Pf − ρf g⃗

)
, (5.3)

where ρf is the fluid density and Pf is the fluid pressure (including the lithostatic
pressure), whose gradient is driving the fluid segregation by porous flow, µ is the melt
dynamic viscosity and g⃗ is the gravitational acceleration. kφ is the permeability that
depends on the rock porosity

kφ = k0φ
n, (5.4)
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with n being the power-law exponent constant, usually equal to 2 or 3. This relation
is known as the Kozeny-Carman relation (e.g. Costa, 2006). The Stokes equation for
the mixture is given as

ρ̄g⃗ − ∇⃗Pf + ∇⃗ · τ = 0. (5.5)

ρ̄ is the density of the melt – solid mixture and τ is the effective viscous stress tensor
of the matrix including both shear and compaction components

τ = η

(
∂vsi
∂xj

+
∂vsj
∂xi

)
+

(
ζ − 2

3
η

)
δij∇ · v⃗s. (5.6)

ζ is the volume viscosity. The linearized equation of state for the mixture density is
given as

ρ̄ = ρ0 (1− cfφ) (5.7)

with ρ0 as the solid density and cf =
ρ0−ρf
ρ0

. The shear and volume viscosity are given
by the equations

η = η0 (1− φ) (5.8)

and

ζ = η0
1− φ

φ
(5.9)

where η0 is the constant intrinsic shear viscosity of the matrix. As in both equations
(5.3) and (5.5) Pf is the fluid pressure (e.g. McKenzie, 1984, Appendix A), these
equations can be merged to eliminate the pressure resulting in

v⃗f − v⃗s = −k0φ
n−1

µ

(
ρ0cf g⃗ (1− φ) + ∇⃗ · τ

)
. (5.10)

This equation states that the fluid separation flow (i.e. melt segregation velocity) is
driven by the buoyancy of the fluid with respect to the solid and the viscous stress in
the matrix including compaction and decompaction. Following Sramek et al. (2012),
the Stokes equation (5.3) can be rewritten by expressing the matrix velocity, v⃗s, as
the sum of the incompressible flow velocity, v⃗1, and the irrotational (compaction) flow
velocity, v⃗2, as:

v⃗s = v⃗1 + v⃗2 =

(
∂ψ
∂z

−∂ψ
∂x

)
+

(
∂χ
∂x
∂χ
∂z

)
(5.11)

with ψ as stream function and χ as the irrotational velocity potential, given as the
solution of the Poisson equation

∇⃗2χ = ∇⃗ · v⃗s. (5.12)

The divergence term ∇⃗ · v⃗s can be derived from Eqs. (5.1) and (5.2) to give

∇⃗ · v⃗s = −∇⃗ · [φ (v⃗f − v⃗s)] . (5.13)

In the small fluid viscosity limit the viscous stresses within the fluid phase are ne-
glected, resulting in a viscous stress tensor in the Stokes equation of the mixture
(Eq. (5.5)), in which only the stresses in the solid phase are relevant. This is evident
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from the definition of the viscous stress tensor, which only contains matrix and not
fluid viscosities. Melt viscosities of carbonatitic, basaltic or silicic wet or dry melts
span a range from <1 Pa s to extreme values up to 1014 Pa s (see the discussion in
Schmeling et al., 2019), while effective viscosities of mafic or silicic partially molten
rocks may range between 1016 Pa s and 1020 Pa s, depending on melt fraction, stress,
and composition. Thus, in most circumstances the small fluid viscosity limit is justi-
fied.
In the limit of this small viscosity assumption, inserting the above solid velocity
(Eq. (5.11)) into the viscous stress (Eq. (5.6)), this into the Stokes equation ((5.5)),
and taking the curl of the x- and z equations the pressure is eliminated and one gets(

∂2

∂x2
− ∂2

∂z2

)[
η

(
∂2ψ

∂x2
− ∂2ψ

∂z2

)]
+ 4

∂2

∂x∂z

[
η
∂2ψ

∂x∂z

]
= −g ∂ρ

∂x
+ A (χ) (5.14)

with

A (χ) = −2
∂2

∂x∂z

[
η

(
∂2χ

∂x2
− ∂2χ

∂z2

)]
+ 2

(
∂2

∂x2
− ∂2

∂z2

)[
η
∂2χ

∂x∂z

]
(5.15)

To describe the transition from solitary waves to diapirs it is useful to non-dimensionalize
the equations. As scaling quantities we use the radius r of the anomaly, the reference
viscosity η0, and the scaling Stokes sphere velocity (e.g. Turcotte and Schubert, 1984)
based on the maximum porosity of the anomaly φmax

vSt = Cst
φmax∆ρgr

2

η0
(5.16)

resulting to the following non-dimensionalization where non-dimensional quantities are
primed:

(x, z) = (x′, z′) · r v⃗s,f = v⃗′s,f · vSt t = t′ ·
r

vSt

(τ , P ) = (τ ′, P ′) ·

η0vSt
r

(η, ζ) = (η′, ζ ′) · η0 (ψ, χ) = (ψ′, χ′) · rvSt
(5.17)

For r the half width of the prescribed initial perturbation, consisting of a 2D Gaussian
bell, is chosen. This is reasonable as the rising velocity in our code is best described
by the Stokes velocity, using this radius. The exact shape of the perturbation is given
later in the model setup.
CSt is calculated by using the analytic solution of an infinite Stokes cylinder within
another cylinder (Popov and Sobolev (2008), based on the drag force derived by Slezkin
(1955)), because, due to boundary effects, the cylinder gets effectively slowed. CSt is
calculated using CSt = ln (k) − k2−1

k2+1
, where k is the ratio of outer cylinder’s to inner

cylinder’s radius. For our model setup CSt is equal to 0.17.
With these rules the Darcy equation (5.10) is given in non-dimensional form

v⃗′f − v⃗′s = −δ
2
c

r2
1

η̃′φ

(
e⃗z
(1− φ)

φmax
+ ∇⃗′

· τ ′
)

(5.18)
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where e⃗z is the unit vector in z-direction and η̃′ is equal to ζ ′ + 4
3
η′. The momentum

equation of the mixture Eq. (5.12) is given by(
∂2

∂x′2
− ∂2

∂z′2

)[
η′
(
∂2ψ′

∂x′2
− ∂2ψ′

∂z′2

)]
+ 4

∂2

∂x′∂z′

[
η′
∂2ψ′

∂x′∂z′

]
=

1

φmax

∂φ

∂x′
+ A′ (χ′) .

(5.19)
δ2c/r

2 in Eq. (5.18) is the squared ratio of compaction length δc to the system length
scale r, which is the main parameter describing our system. The compaction length is
a natural length scale emerging from the problem and of particular importance in our
context, because 2D porosity waves have half width radii of the order of 3 · δc to 5 · δc
(Simpson and Spiegelman, 2011). It is defined as:

δc =

√
ζ + 4

3
η

µ
kφ (5.20)

All quantities in the other equations are simply replaced by their non-dimensional
primed equivalents (Eqs. (5.1), (5.2), (5.6), (5.11) to (5.13) and (5.15)).
We now compare the two limits, where segregation or two-phase flow dominates (soli-
tary wave regime), and where fluid and solid rise together with the same velocity as
partially molten bodies, which we identify with the diapir regime. We compare the
characteristic segregation velocity within solitary waves, which scales as

vsgr ≈
k0φmax

n−1

µ

(
∆ρg (1− φmax)− ∇⃗′

· τ
)
= Csgr

k0φ
n−1
max∆ρg (1− φmax)

µ
(5.21)

where Csgr is of the order 1/2 for 2D solitary waves (Schmeling, 2000), with the
characteristic Stokes sphere rising velocity given by Eq. (5.16). The ratio of these is
given by

vsgr
vst

=
Csgr
Cst

δ2c0
r2
φmax

n−2 (1− φmax)

η̃0
′φn0

(5.22)

Here η̃0
′ refers to η̃′ for the background porosity φ0 and δc0 to the compaction length of

the background porosity. In contrast to Scott (1988), who varies the volume viscosity
in his model series, we vary the ratio of initial Stokes radius to compaction length.
Thus, in the solitary wave limit

Csgr
Cst

δ2c0
r2
φmax

n−2 (1− φmax)

η̃0
′φn0

≫ 1 (5.23)

Darcy’s law Eq. (5.18) results in large segregation velocity, which scales as

v′sgr =
Csgr
Cst

δ2c0
r2
φmax

n−2 (1− φmax)

η̃0
′φn0

(5.24)

From Eq. (5.13) it follows that the irrotational part of the matrix velocity scales with

v1 ≈ −φmaxvsgr (5.25)
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while the rotational part is given by Eq. (5.19): In that equation A′ scales with χ′,
which, via Eqs. (5.12) and (5.13), scale with vsgr, i.e. with δ2c0/r2. In other words,
the second term on the RHS of Eq. (5.19) dominates for small r2/δ2c0 as the first term
is of the order 1. Thus, the rotational matrix velocity has the same order as the
irrotational compaction velocity and serves to accommodate the compaction flow. In
this limit the buoyancy term in Eq. (5.19), 1

φmax

∂φ
∂x′

, is of vanishing importance for the
matrix velocity and the matrix velocity, v⃗1 + v⃗2, is of the order of φmaxvsgr. In the
small porosity limit, matrix velocities are negligible with respect to fluid velocities.
In the diapir limit,

Csgr
Cst

r2

δ2c

φmax
n−2 (1− φmax)

η̃0
′φn0

≪ 1 (5.26)

and Eq. (5.18) predict vanishing segregation velocities. As A′ and χ′ scale with r2/δ2c0,
both vanish in the diapir limit, no irrotational matrix velocity occurs and Eq. (5.19)
reduces to the classical biharmonic equation (i.e. Stokes equation) driven by melt
buoyancy and describing classical diapiric ascent. Segregation velocities are negligible
with respect to matrix velocities.
In Fig. 5.1 the results of this simple analysis are shown, where we calculated the velocity

Figure 5.1: The segregation to Stokes velocity ratio, following Eq. (5.22), is given as a
function of initial perturbation radius r in terms of compaction length δc. Each colored
line refers to different values of perturbation amplitude φmax, given in the legend.

ratios as a function of initial perturbation radius for several perturbation radii. In our
models we use a φmax of 2%, for which we get a switch from solitary wave to diapir
dominant behavior at r = 48 · δc. Smaller amplitudes lead to a switch at a smaller
radius and larger amplitudes to a switch at a larger radius.
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5.2.2 Model Setup

The model consists of a L′×L′ box with a background porosity, φ0, of 0.5%. L′ is the
non-dimensional side length of the box and equal to 6 times the initial radius of the
perturbation. As initial condition a non-dimensional Gaussian bell-shaped porosity
anomaly is placed in the middle of the model at x′0 = 3 and z′0 = 3. The Gaussian
wave is given by

φ = φmax · exp

[
−
(
x′ − x′0
w′

)2

−
(
z′ − z′0
w′

)2
]
, (5.27)

where φmax is the amplitude equal to 0.02 in our models and w′ corresponds to the
width where φ has reached φmax/e. In our case w′ is equal to 1.2.
In our model series we vary the ratio of Stokes radius to compaction length from 1.8 to
48 to explore the transition from solitary wave towards diapiric regime. The resolution
of the models is chosen to be at least 201×201 grid points and was increased for higher
ratios of Stokes radius to compaction length so that the compaction length is resolved
by at least 3-4 grid points.
At the top and the bottom domain boundaries, we prescribe an out- and inflow for
both melt and solid, respectively, to prevent melt accumulations at the top. The seg-
regation velocity of the background porosity φ0 is calculated using Eq. (5.18) without
the viscous stress term. The corresponding matrix velocity is calculated using the
conservation of mass.
At the sides we enforce no horizontal flux boundary conditions. The permeability-
porosity relation exponent in our models is always n = 3.
To run models for a longer, practically infinite, amount of time we let the models
coordinate system follow the maximum melt fraction.

5.2.3 Numerical Approach

We discretize the set of equations using Finite Differences on a staggered grid and
solve the system using the code FDCON (Schmeling et al., 2019). Starting from the
prescribed initial condition for φ, and assuming A′ (χ′) = 0 at time 0, the time loop
is entered and the biharmonic Eq. (5.20) is solved for ψ′ by Cholesky decomposition,
from which v⃗′1 is derived. Together with v⃗′2 the resulting solid velocity is used to
determine the viscous stress term in the segregation velocity Eq. (5.18). This equation
and the melt mass Eq. (5.1) are solved iteratively with strong underrelaxation for
φ and v⃗′f − v⃗′s for the new time step using upwind and an implicit formulation of
Eq. (5.1). During this internal iteration these quantities are used, via Eq. (5.13), to

give ∇⃗ · v⃗s, the divergence of the matrix velocity, which is needed in the viscous stress
term (Eq. (5.6)). After convergence ∇⃗ · v⃗s is used via Eq. (5.12) to determine χ by
LU-decomposition and then to get v⃗′2. Now A′ (χ′) can be determined to be used on
the RHS of Eq. (5.19). The procedure is then repeated upon entering the next time
step.
Time steps are dynamically adjusted by the Courant criterion times 0.2 based on the
fastest velocity, either melt or solid.
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The model resolution is a critical parameter in this kind of numerical calculations and
should always be kept in mind. With increasing length scale ratio, the compaction
length in the model gets smaller and the resolution needs to be increased to keep it
equally resolved.
According to several authors (e.g. Räss et al., 2019; Keller et al., 2013), the compaction
length should be at least resolved by 4-8 grid points to solve for waves sufficiently
accurately. For small length scale ratios this is no problem, where, with a model
resolution of 201 × 201, up to nearly 30 grid points per compaction length can be
achieved. The highest resolution our code can run is 601 × 601, which is enough to
resolve the compaction length by three grid points for the model with a length scale
ratio of 48. Everything above that cannot be sufficiently resolved with respect to
studying solitary waves.
Fig. 5.2 shows the resulting models for a length scale ratio of 12 for six different

Figure 5.2: The six panels depict a model with an initial perturbation radius of 12
times the compaction length but with different numerical grid resolutions: a) 13× 13
b) 26× 26 c) 51× 51 d) 101× 101, e) 201× 201, f) 401× 401. In the lower left corner
in each figure the size of the compaction length in terms of grid length is given.

resolutions. The model states after φmax has risen approximately 0.25 times the initial
Stokes radius (t′ = 0.25) are shown. With increasing resolution, the maximum melt
fraction increases strongly from 101 × 101 to 401 × 401 by approximately 20% but
the velocity of φmax decreases by 7% (not shown in the figure). Both values converge
for resolutions higher than 51 × 51, corresponding to δc/dx = 1. Even though the
compaction length is not sufficiently resolved in Fig. 5.2d, one can still observe the main
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features of the model: A main solitary wave has emerged from the original gaussian
perturbation and secondary porosity waves are beginning to emerge within its wake.
Even with δc/dx = 1 these features can be observed but are clearly underresolved.
With even lower resolutions accumulations at the top of the perturbation can be seen,
which can be broadly interpreted as the attempt of a solitary wave to build up. With
δc/dx = 0.24, the model is too coarse and the results cannot be trusted anymore.
The solitary waves modeled with our code have been compared to the semi-analytical
solution of Simpson and Spiegelman (2011), and more benchmarking was carried out
in Dohmen et al. (2019).
In a single-phase flow case, where the melt is not allowed to move relatively to the solid,
the initial perturbation ascends, shortly after beginning, with a velocity of 0.95 times
the calculated Stokes velocity, and then slowly decreases as the original Gauss-shaped
wave deforms and loses in amplitude.

5.3 Results

5.3.1 The Transition from Porosity Wave to Diapirism: Vary-
ing the initial Wave Radius

In this model series we vary the initial wave radius to cover the transition from porosity
waves towards diapirism. As a reminder, due to our scaling the initial wave has
always the same size w.r.t. the model box, and “increasing the initial wave radius”
is equivalent to decreasing the compaction length or the size of the emerging solitary
waves w.r.t. the model box. In Fig. 5.3 the models are shown at t′ = 0.2. For small
radii (r ≤ 12 · δc) a single porosity wave emerges from the original perturbation. The
melt that is not situated within the emerging wave is left behind and has, for the most
part, already left the model region. For r = 2.4 · δc the emerged solitary wave is about
the size of the initial perturbation and even smaller radii would lead to too big waves
that would not fit into the model. With increasing radius, the emerging solitary wave
gets smaller. With r = 12 · δc, the resulting wave has just a size of 20% the initial
perturbation size.
We compare the observed solitary wave velocities of Fig. 5.3b-e to equivalent Stokes
velocities for a diapir based on Eq. (5.16). While the dimensional Stokes velocity
of a porosity anomaly is proportional to the amplitude of porosity and the square
of the radius, the non-dimensional Stokes velocity is always equal to 1. In Fig. 5.4
this non-dimensional Stokes velocity is indicated by the dashed line with the value 1.
The colored lines give 2D solitary wave velocities with their appropriate radii, given
by Simpson and Spiegelman (2011), normalized by the Stokes velocity corresponding
to different initial perturbation radii. These semi analytical solutions are in good
agreement to our solitary wave models and differ only by 3-5% percent in velocity, as
already shown in Dohmen et al. (2019). The velocities in this figure correspond to
ratios of solitary wave velocity to initial perturbation Stokes velocity. Inspection of
Fig. 5.4 reveals that for the first four cases of Fig. 5.3b-e with radii smaller or equal
12 · δc the phase velocities are always larger than the Stokes velocity. For example,
for r = 12 · δc, an emerging solitary wave with a typical radius of 4.5 · δc has a higher
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Figure 5.3: Melt ascent morphology as function of initial perturbation radius in terms
of compaction length. a) Initial conditions of the model valid for all cases apart of the
change in compaction length. b-j) Melt fraction distribution after t′ = 0.2 for length
scale ratios varying between 2.4 and 48. k) Diapiric rise resulting from a compaction
length of zero at t′ = 9. l) Models’ transition time as function of length scale ratios
varying between 1.8 and 120. The transition time gives the time after which the main
wave has reached a solitary wave status.

phase velocity than a r = 12 · δc melt anomaly rising by Stokes flow. Thus, the cases
are always in the solitary wave regime.
For greater radii (e.g. r = 18 · δc − 30 · δc, Fig. 5.3e-g) the phase velocities of solitary
waves are of the order of the Stokes velocity (see Fig. 5.4) and they therefore need
more time to separate from the remaining melt of the initial perturbation, still rising
with order of Stokes velocity. The amount of melt accommodated within the main
solitary wave is just a small percentage of the original perturbation and secondary
waves evolve in its remains. With further ascending, more and more solitary waves
build up and the former perturbation will sooner or later consist of solitary waves in
an ordered cluster or a formation. This formation elongates during ascent as the main
wave has a larger amplitude than all the following waves, whose amplitudes are also
decreasing with depth, as a higher proportion of melt accumulated at the top of the
perturbation. Similar formations of strongly elongated fingers can be also observed in
3D as shown by Räss et al. (2019) who used decompaction weakening. In the models
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Figure 5.4: The dashed line marks the velocity of the Stokes sphere (v′ = 1). The
colored lines refer to the velocity of a 2D solitary wave, calculated semi-analytically
by Simpson and Spiegelman (2011), in our non-dimensionalization, based on the radii
shown in the legend.

with smaller radii, the main solitary wave consisted of the majority of melt originally
situated within the perturbation and the emergence of secondary waves turns out zero
or small, but with greater radii enough melt is left behind to observe the emergence
of second and higher generations of solitary waves.
For greater radii (e.g. r = 24 · δc − 48 · δc, Fig. 5.3f – j) the phase velocities of solitary
waves are almost equal to the Stokes velocity (See Fig. 5.4). This leads to almost
no separation after t′ = 0.2. While for r = 36 · δc a solitary wave has already built
up and is rising just ahead of the perturbation, for r = 42 · δc and r = 48 · δc just
the accumulation of melt at the top of the perturbation can be observed, which will
eventually lead to a solitary wave. Secondary waves also build up with higher runtimes,
as can be already seen for r = 36 · δc.
For even greater radii the compaction length cannot be sufficiently resolved with our
approach, but tests with not sufficiently resolved models have shown that solitary
waves can be observed for r ≥ 48 · δc. At some point they do no longer appear,
probably due to lack of sufficient resolution, but our tests show that solitary waves
should always emerge, even if its phase velocity is way below the Stokes velocity. As
long as the ascending time is long enough and melt is able to move separately to the
matrix, independently of segregation velocity, a diapir will evolve into a swarm of a
certain number of solitary waves, based on the compaction length. Because the phase
velocities of each small solitary wave is small compared to the Stokes velocity of the
full swarm we consider such a rising formation of melt as a large scale diapir.
Fig. 5.3l shows the required time for the initial perturbation to build up a solitary
wave. This status is achieved after the dispersion relation of the main wave reaches a
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point from where it follows the solitary wave dispersion relation. This time increases
nearly linearly for small radii (r ≤ 48 · δc) but increases non-linearly for greater radii.
This might be due to lack of proper resolution, but a non-linear trend can be already
observed for small radii. The transition time for radii smaller than 30 · δc is smaller
than 0.2, the time at which the models in Fig. 5.3b-j are shown. The other models
already show solitary wave like blobs but did not yet reach their final form.
A classical diapir will evolve only in cases with zero compaction length (r = ∞ · δc),
i.e., melt is not able to move w.r.t. the matrix (Fig. 5.3k). Here, no focusing into
solitary waves can be observed and transition time is infinity.
Summarizing Fig. 5.4, the comparison of Stokes and porosity wave velocities explains
well our observations shown in Fig. 5.3: For small initial radii the solitary wave velocity
is clearly higher and will therefore build up and separate from the melt left behind
quickly. For cases with approximately equal perturbation to solitary wave radius
only one solitary wave will build up, which includes most of the melt of the initial
perturbation. With increasing perturbation radius, the velocity ratio decreases and
multiple solitary waves, requiring more time, will emerge, each including only a fraction
of the melt originally situated in the initial perturbation. But even with velocity ratios
smaller than 1, solitary waves emerge and, not able to separate, rise just ahead of the
remains, slowly elongating the initial perturbation.

5.3.2 Effects on the Mass Flux

It is important to study the partitioning between rising melt and solid mass fluxes in
partially molten magmatic systems because melts and solids are carriers of different
chemical components. Within our Boussinesq approximation we may neglect the den-
sity differences between solid and melt. Then our models allow to evaluate vertical
mass fluxes of solid or fluid by quantifying the vertical velocity components multiplied
with the melt or solid fractions, respectively:

q′sz = (1− φ) · v′szq
′
fz = φ · v′fz. (5.28)

Horizontal profiles of the mass fluxes through rising melt bodies at the vertical posi-
tions of maximum melt fraction at timesteps where the main wave has just reached
the status of a solitary wave are calculated (Fig. 5.5).
The mass fluxes of solid and fluid are strongly affected by the change of the initial ra-
dius from the solitary wave regime towards the diapiric regime. For r = 2.4 · δc, where
we observe a solitary wave, the fluid has its peak mass flux in the middle of the wave
and the solid is going downwards, against the phase velocity. In the center the fluid
flux is about 10 times higher than the solid net flux. The upward flow in the center
is balanced by the matrix dominated downward flow inside and outside the wave. For
r = 12 · δc the wave area is much smaller and the ratio between solid and fluid flux
is still around the order of 10. At the boundary of the wave the solid is nearly not
moving at all, but a minimum can be observed within the center of it. For r′ = 24 · δc
the solid flux is just above zero in the center and increases to a maximum towards the
flanks of the wave, that is still about ten times smaller than the maximum fluid flux.
With r′ = 48 · δc the solid flux is just about three times smaller than the fluid flux, but
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Figure 5.5: The upper row panels depict the solid and fluid mass fluxes of a horizontal
line cutting through the maximum melt fraction at time steps where the main wave has
just reached the status of a solitary wave. These timesteps are t′ = 0.02; 0.068; 0.155;
0.416 from left to right, respectively. The bottom row panels depict the corresponding
melt porosity fields. All quantities shown are non-dimensional.

most of the material ascent is accomplished by the solid. This suggests that diapiric
rise begins to dominate.
The transition from solitary waves towards diapirism on qualitative model observations
was so far only based on observations. We now invoke a more quantitative criterion.
In a horizontal line passing through the anomaly’s porosity maximum we define the
total vertical mass flux of the rising magma body by

∫
φ>φ0

(qf + qs) dx where the in-
tegration is carried out only in the region of increased porosity φ > φ0. This mass
flux is partitioned between the fluid mass flux,

∫
φ>φ0

qfdx, and the solid mass flux,∫
φ>φ0

qsdx. With these we define the partition coefficients

Csoli =

∫
φ>φ0

qfdx∫
φ>φ0

(qf + qs) dx
(5.29)

and

Cdia =

∫
φ>φ0

qsdx∫
φ>φ0

(qf + qs) dx
(5.30)

The sum Csoli + Cdia is always 1 and if Csoli > Cdia then the solitary wave proportion
is dominant, while for Csoli < Cdia diapirism is dominant. In Fig. 5.6a these partition
coefficients for several initial radii are shown. In red are the diapir and in blue the
solitary wave partition coefficients.
For r = 1.8 · δc, Csoli is equal to 5 and Cdia is equal to -4, i.e. we have a downward solid
flux. With increasing radius Cdia increases until it changes its sign, and the matrix
flows upward, at r ≈ 20 · δc. It eventually becomes bigger than Csoli at r = 36 · δc and
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Figure 5.6: Quantitative parameters as function of initial perturbation radius in terms
of compaction length. a) Solitary wave (blue) and diapir (red) partition coefficients
for several initial perturbation radii. b) Ratio of maximum fluid velocity to maximum
absolute solid velocity in the entire model.

then approaches 1 for bigger radii. Csoli changes so that the sum of both is always
equal to 1. Even though diapirism is dominant for r > 36 · δc, we still observe solitary
waves, yet their phase velocities are much smaller than the large-scale rising velocities
of the full melt formation.
The ratio of maximum fluid velocity (i.e. v⃗f ) to absolute matrix velocity (Fig. 5.6b)
shows, that for small radii, where Csoli ≫ Cdia, this ratio is approximately constant
with a high value of about 100. The absolute velocity maxima itself are not constant
but decrease with the same rate until the switch of negative to positive matrix mass
flux, where the absolute matrix velocity starts to increase, while the fluid velocity
keeps decreasing. At this zero crossing we would expect a ratio of infinity, but while
the zero crossing takes place within the center of the solitary wave, other regions near
the wave still have finite vertical velocities. This switch from negative to positive
mass flux was already observed by Scott (1988), but while they changed the viscosity
ratio as an independent constant model parameter, we change the radius and keep
the viscosity law the same, still evolving with φ. Both describe the transition from a
two-phase limit towards the Stokes limit, but in our formulation, we are able to reach
the Stokes limit while Scott’s formulation (1988) is restricted to two-phase flow. With
even greater radii the velocity ratio will eventually converge towards 1, where melt is
no longer able to move relatively to the matrix (i.e. v⃗f = v⃗s) and material will be
transported collectively as in single-phase flow. These last models are not sufficiently
resolved to obtain leading and secondary solitary waves, but still show the expected
behavior in terms of macroscopically rising partially molten diapir.
Based on these observations, the evolution of these models can be divided into two
regimes: (i) In the solitary wave regime (r ≤ 36 · δc) Csoli is larger than Cdia and
the initial perturbation emerges into waves that have the properties of solitary waves
and ascend with constant velocity and staying in shape. This regime can be fur-
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ther divided into (ia) (r < 20 · δc), where the solid mass flux is negative, and (ib)
(20 · δc ≤ r < 36 · δc), where the solid moves upwards with the melt. Waves in these
regimes are very similar but the further we are in regime (ia) the less solitary waves
will emerge out of the initial perturbation. For radii smaller than about 4.8 · δc only
one wave will merge. In regime (ib) the perturbation will always emerge into multiple
solitary waves.
In the diapirism-dominated regime (ii) (r ≥ 36 · δc), Cdia is larger than Csoli but, as
the fluid melt is still able to move relatively to the solid matrix, solitary waves build
up and the whole partially molten region will evolve into a swarm of them. The phase
velocities of these waves are very small compared to the Stokes velocity of the pertur-
bation and the whole swarm will rise as a diapir, whose buoyancy is still comparable
to the buoyancy of the initial perturbation’s.
The endmember of the second regime can be reached by prohibiting the relative move-
ment of fluid (r = ∞ · δc), for which the compaction length has not to be sufficiently
resolved. In this regime the initial perturbation will not disintegrate into solitary waves
but rise as a well-formed partially molten diapir. In every other case, in the present
model, where fluid is able to move w.r.t. the solid, at some point all diapirs will evolve
into a swarm of solitary waves which can be infinitely small compared to the initial
perturbation. However, this is expected to happen only after a long distance of diapiric
rise. In cases where the size of solitary waves is comparable to the perturbation (e.g.
regime (i)) this will occur sooner and in cases, where solitary waves are much smaller,
later. Their observation is mostly limited by resolution. For models that allow for the
diapir to grow (e.g. Keller et al., 2013) they may not dissolve into solitary waves, as
it approaches the single-phase limit.

5.4 Discussion

5.4.1 Application to Nature

While in our models the perturbation size in terms of compaction lengths was sys-
tematically varied but kept constant within in each model, our results might also be
applicable to natural cases in which the compaction length varies vertically. In the
case of compaction length decreasing with ascent a porosity anomaly might start rising
as a solitary wave but then at some point might enter the second regime where di-
apiric rise is dominant. If this boundary is sharp, the solitary wave might disintegrate
into several smaller solitary waves that rise as a diapiric swarm. If the boundary is a
continuous transition the wave should slowly shrink and become slower. The melt left
behind might also evolve into secondary solitary waves.
A decreasing compaction length could be accomplished by decreasing the matrix vis-
cosity or the permeability, or by increasing the fluid viscosity. Decreasing matrix vis-
cosity might be for example explainable by local heterogeneities, temperature anoma-
lies for example due to secondary convective overturns in the asthenosphere or by a
vertical gradient of water content, which may be the result of melt segregation aided
volatile enrichment at shallow depths in magmatic systems. This could lead to the
propagation of magma-filled cracks (Rubin, 1995) as already pointed out in Connolly
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and Podladchikov (1998). The latter authors have looked at the effects of rheology on
compaction-driven fluid flow and came to similar results for an upward weakening sce-
nario. The decrease of permeability due to decrease in background porosity might be
an alternative explanation. In the hypothetic case of a porosity wave reaching the top
of partially molten region within the Earth’s upper mantle or lower crust, the back-
ground porosity might decrease which would most certainly lead to focusing, because
the compaction length will decrease, and eventually, when reaching melt free rocks,
the solitary waves might be small enough and its amplitude might be high enough to
trigger the initiation of dykes.
Even though most diapirs should, according to our models, disintegrate into numerous
solitary waves, not all will inevitably. Within regime (i) solitary waves are possible
and most probably expected but the deeper we are in regime (ii) the less expected is
the disintegration because a long time is needed to build up. In nature, different from
our models, they cannot rise for an infinite amount of time. The time needed to build
up a solitary wave increases non-linearly with r (c.f. Fig. 5.3l). For example, while
for r = 4.8 · δc a solitary wave is completely evolved after t′ = 0.02, for r = 48 · δc it
needs until t′ = 0.4, i.e., equivalent to the diapiric rise time necessary to ascend the
distance approximately half the initial radii. Additionally, as already pointed out, if
a model setup allows for the diapir to grow, it could approach the single-phase flow,
prohibiting the emergence of solitary waves (cf. Keller et al., 2013).

5.4.2 Model Limitations

The introduced partition coefficients help to distinguish whether solitary wave or di-
apiric rise is dominant but cannot be solely consulted whether a solitary wave or a
diapir can be expected. As the fluid velocity and flux is still very high in the waves
center for diapiric dominant cases, small solitary waves will build up. However, the
net mass flux is dominated by the large scale rising solid, and the formation time of
small solitary waves might be long. Additionally, the internal circulation of diapirs
can be faster than the phase velocity which would smear out the emergence of solitary
waves and not allow for them to emerge. Due to limitations of our model, we are not
able to reach regions where solitary waves are small enough and their phase velocity
slow enough to observe this.
While the minimum size of solitary waves in nature might be in some way limited
by the grain size, in numerical models the minimum size is limited by the model’s
resolution. We restrict our models in this study to cases where the compaction length
is at least resolved by 3 grid lengths dx (i.e. δc ≥ 3 · dx) to get fairly resolved solitary
waves, but they can be also observed for much worse resolved compaction lengths.
The resolution test (Fig. 5.2) shows that, even though they are not solved decently,
probable solitary waves can be observed for cases with δc = dx. Smaller resolutions can
show indications of solitary waves but should not be trusted as other tests (not shown
here) with similar resolutions result in spurious channeling. For very poorly resolved
compaction lengths (δc < 0.25 · dx for our models) no indications of solitary waves can
be observed, and the partially molten perturbation ascends as a diapir. The deeper
we are in regime (ii), the more dominant are the dynamics of diapirism on a length
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scale of r compared to Darcy flow or solitary waves on the unresolved length scale of
δc. Thus, two-phase flow, either Darcy flow or solitary waves, becomes negligible for
r ≫ δc and partially molten diapirs can be regarded as well resolved.

5.5 Conclusion

This work shows, that depending on the extent of a partially molten region within the
Earth, the resulting ascent of melt may not only occur by solitary waves or by diapirs,
but by a composed mechanism, where a diapir splits up into numerous solitary waves.
Their phase velocities might become so slow that the whole swarm will ascend as a
diapir, just slowly elongating due to the main solitary wave having a higher amplitude
and therefore higher phase velocity than the following ones. Depending on the ratio of
the melt anomalies size to the compaction length, or rather the models length scale to
compaction length ratio, we can classify the ascent behavior into two different regimes
using mass flux and velocity of matrix and melt: (ia + b) Solitary wave a and b, and
(ii) diapirism-dominated. In regime (ia) the matrix sinks with respect to the rising
melt, in (ib) also the matrix rises, but very slowly. The further we are in this regime
the less solitary waves will emerge out of the initial perturbation until, eventually,
only one solitary wave will emerge. On first order these regimes can be explained
by comparing Stokes velocity of the rising perturbation with the solitary waves phase
velocity. If the solitary wave velocity is higher than the Stokes velocity a solitary wave
will evolve and, if lower, diapirism is dominant, but still solitary waves will build up
if the ascending time is long enough. The deeper we are in regime (ii), the more time
is needed to build up solitary waves and the less likely it is that they will appear in
nature. The endmember of regime (ii), pure diapirism, can be reached if fluid is not
allowed to move separately to the matrix.
Especially around the transition of the regimes numerical resolution plays an important
role as the compaction length may be under-resolved to allow for the emergence of
solitary waves. Hence it should be generally important for two-phase flow models to
inspect whether solitary waves are expected and if so, do they have a major influence
on the conclusions made.
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6.1 abstract

Measurements of trace elements in melts are an important tool to gain information
about what is happening inside the Earth, regarding melt and melt transport. Many
models have been introduced to explain concentrations at the surface as a function of
melt degree, equilibration and dynamics.
In this publication, we introduce a fully consistent 2D model for major as well as trace
element transport in melts, using a two-phase flow approach, including melting, freez-
ing and re-equilibration. A set of equations is presented that cover mass conservation
of major and trace elements in a solid and fluid separately, momentum conservation in
a fluid and mixture, and energy conservation for the mixture in thermal equilibrium.
Melting is accomplished using a binary melting law.
A possible application is a subduction-arc region; in a simple representation finite dif-
ference model, convection leads to a partially molten plume, eventually resulting in
redistribution of trace elements. It can be shown that in a closed system, the solid
trace element concentration in an emplacement zone approaches an asymptotic value
that depends on multiple model parameters. The approach time depends only on the
size ratio of the partially molten plume to the whole convection source region.
A numerical 0D model is introduced that can explain the 2D results, and a simple
equation is found that can be used to fit the results.
The retention number, giving the resistance of a fluid to percolate through a porous
matrix, has a major influence not only on the degree of enrichment but also on the
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dynamics of the whole system, ultimately leading to different enrichment elevation
depths.

6.2 Introduction

We are still unable to visually observe what is happening inside the Earth, and geo-
scientists are limited to observations that can be made near the surface to give pre-
dictions on deeper phenomena. One observation that can be made is measurements
of trace element concentrations in volcano lavas (Rollinson, 1993). Using this data,
forward models can be used to obtain an idea on the sources and the degree of melt-
ing. Batch and fractional melting models were introduced (Gast, 1968; Shaw, 1970)
that represent two end-members in a variety of different melt processes. Later, more
complicated models were established that assume more complex melt histories (e.g.
Plank and Langmuir, 1992; Holness and Richter, 1989; Langmuir et al., 1977; Mckenzie
and O’nions, 1992; Kimura, 2017). However, these models still neglect the actual fluid
dynamics of mass transport with melts. The relative movement of a melt to a solid
is of utmost importance, and models were introduced to address this two-phase flow
problem (McKenzie, 1984; Schmeling, 2000; Bercovici et al., 2001). Much research has
been carried out since then, looking at the importance of relative movement of solids
and melts in geodynamic processes (e.g. Ribe, 1985; Allen, 1985; Scott and Stevenson,
1986; Scott, 1988).
Fortunately, several studies coupled these fluid dynamical models with geochemical
ones. Iwamori (1993) examined a one-dimensional upwelling mantle model and pre-
dicted trace element concentrations for various melting scenarios. Spiegelman (1996)
gave a general overview on trace element transport in a two-dimensional model and
evaluated the sensitivity of fluid dynamics on trace element concentrations. Much
work has been carried out on the transport of volatiles in melts that can be described
by the same set of equations (e.g. Iwamori, 1998, 2007; Keller and Katz, 2016; Keller
et al., 2017). Recent work was carried out on the transport of trace elements in melts
(e.g. Ikemoto and Iwamori, 2014; Baitsch-Ghirardello et al., 2014), but the focus was
on pure geochemical modeling (e.g. Kimura, 2017).
All of these mentioned models either neglect the fluid dynamics of melt percolation
or give no fully self-consistent description for the trace element exchange between the
solid and fluid phases during melting and freezing, including re-equilibration.
Spiegelman (1996) derived full equations for the partition of trace elements between
solid and fluid but did not implement the possibility of freezing and gave only equa-
tions for either pure equilibrium or non-equilibrium melting.
Ikemoto and Iwamori (2014) assumed instantaneous partitioning between all phases
present and calculated the transport in fluid and solid respectively. Only equilibrium
partitioning was possible.
Solano et al. (2014) was the first to present a model of both major and trace element
transport in a mush while allowing for chemical reaction between the phases, but the
model was applied only to 1D columns.
Bo et al. (2018) gave equations for trace element transport, including melting and
re-equilibration, but neglected the possibility of freezing. A constant or variable (but
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always positive) melt generation was applied in a 1D column model, whereby the melt
generation rate was not a self-consistent result of the model.
The aim of the present work is to introduce a 2D model that allows for self-consistent
transport and partitioning of major as well as trace elements, including melting and
freezing, based on a two-component phase diagram. Re-equlibration of trace elements
between the solid and fluid with time is considered as well. The model is applied to a
volcanic subduction back arc.
In subduction arcs, water from the subducting plate percolates upwards (Wilson et al.,
2014; Iwamori, 1998), where it interacts with the mantle to greatly depress the solidus
and liquidus (Katz et al., 2003). Primitive arc melts are produced (Gaetani and Grove,
1998; Grove et al., 2006) that travel to the Earths surface to erupt in a volcanic arc.
The dynamics of a mantle wedge between subducting and overlying lithosphere have
been intensely researched (van Keken, 2003, and references therein).
In the present work, we use a simple 2D representation of a mantle wedge as a closed-
box model, allowing for convection, melting and material transport with the melt.
Ultimately, a 0D model is introduced to quantitatively explain the enrichment of trace
elements in a layer above the convection cells, recreating results of the 2D model.

6.3 Methods

6.3.1 Governing Equations for Two-Phase Flow

To model the transport of trace elements in a melt, the fluid melt has to be able to
move relative to the solid matrix. This is accomplished by using the general equations
of two-phase flow, where mass and momentum conservation are calculated separately
for the solid and fluid. The energy equation is expressed for the mixture of the solid
and fluid, assuming that they are always in thermal equilibrium.
The equations used here are based on McKenzie (1984); Schmeling (2000); Bercovici
et al. (2001), and in the following, the subscripts s and f denote variables associated
with the solid and the fluid, respectively. Conservation of mass for the fluid is given
by

∂ρfφ

∂t
+ ∇⃗ · (ρfφv⃗f ) = Γ (6.1)

and conservation of mass for the solid by

∂ρs (1− φ)

∂t
+ ∇⃗ · (ρs(1− φ)v⃗s) = −Γ. (6.2)

ρs and ρf are the densities, φ is the melt fraction, v⃗s and v⃗f are the velocities and Γ
is the melt generation rate, describing the mass exchange between the solid and fluid.
Γ is positive while melting and negative while freezing.
The momentum of the fluid is conserved by a generalized form of the Darcy equation

v⃗f − v⃗s = − kφ
µ φ

(
∇⃗Pf − ρf g⃗

)
. (6.3)

79



6.3. Methods

where µ is the fluid viscosity and Pf is the fluid pressure. The permeability kφ is given
by the Kozeny-Carman relation (e.g. Costa, 2006)

kφ = k0φ
n. (6.4)

k0 and n are parameters depending on the geometry of the pores and grain size, where
n is usually taken to be between 2 and 3.
The conservation of momentum for the solid-fluid mixture is given by

ρ̄g⃗ − ∇⃗Pf + ∇⃗ · τ = 0. (6.5)

Here, ρ̄ is the mixture density given by ρ̄ = (1− φ) ρs + φρf , and τ is the effective
viscous stress tensor of the matrix

τ = η

(
∂vsi
∂xj

+
∂vsj
∂xi

)
+

(
ζ − 2

3
η

)
δij∇ · v⃗s. (6.6)

where η and ζ are the shear and volume viscosity, respectively.
Note that in Eq. (6.3) and Eq. (6.5) Pf is the same. Therefore, both equations can be
merged to eliminate the pressure:

v⃗f − v⃗s = −k0φ
n−1

µ

(
∆ρf g⃗ (1− φ) + ∇⃗ · τ

)
. (6.7)

It is often useful to incorporate nondimensional numbers in this kind of equations:

Ra =
ρ0gα∆Th

3

η0κ
, Ram =

∆ρfgh
3

η0κ

Rae =
∆ρegh

3

η0κ
, Rt =

µh2

η0k0

(6.8)

Ra, Ram and Rae are the Rayleigh numbers that represent the buoyancy due to
temperature, melt density and enrichment density, respectively. Rt is the retention
number, giving the resistance of the fluid to percolate through the matrix. The sub-
script 0 denotes variables at φ = 0. In addition, α is the temperature expansion
coefficient, and κ is the thermal diffusivity. ∆T is the difference in temperature from
the top to the bottom of the model domain. ∆ρf is the density difference between
initial density and melt. ∆ρe is the density difference between initial density and the
density of a material completely enriched in major elements. These densities can be
used to calculate the mixture density

ρ̄ = ρ0 − ρ0αT −∆ρfφ−∆ρef (1− φ) , (6.9)

while the solid and fluid densities are

ρs = ρ0 − ρ0αT −∆ρef,

ρf = ρ0 − ρ0αT −∆ρf .
(6.10)

Here, f is the degree of enrichment or depletion in major elements and is further
described later in this section.
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Finally, a scaling law can be introduced to incorporate the nondimensional numbers
Eq. (6.8):

(x, z) = (x′, z′) ·h v⃗s,f = v⃗′s,f ·

κ

h
t = t′ ·

h2

κ
T = T ′

·Tsc

ρ = ρ′ · ρ0 (τ, P ) = (τ ′, P ′) ·

η0κ

h2
(η, ζ) = (η′, ζ ′) · η0

cs,f = c′s,f · c0 L = L′
· cPTsc.

(6.11)

Primed values refer to nondimensional values.
Using Eq. (6.11) and Eq. (6.8) with Eq. (6.3) gives

v⃗f
′ − v⃗s

′ = −φ
n−1

Rt

(
∇⃗P ′

f −Rm · δi3

)
, (6.12)

and with Eq. (6.5) gives

[Ra ·T ′ +Ram ·φ+Rae · f (1− φ)] δi3 − ∇⃗′P ′
f + ∇⃗′τ ′ = 0. (6.13)

The pressure eliminated equation (Eq. (6.7)) becomes

v⃗f
′ − v⃗s

′ =
φn−1

Rt

[
(Ram · (1− φ)−Rae · f (1− φ)) δi3 − ∇⃗′τ ′

]
. (6.14)

The energy conservation is given by an equation for the solid-fluid mixture

ρ̄cP

(
∂T

∂t
+ v⃗bar · ∇⃗T

)
= ∇⃗ ·

(
λ∇⃗T

)
− LΓ. (6.15)

Here, cP is the specific heat capacity, T is the temperature, λ is the thermal conduc-
tivity L is the latent heat per mass, and v⃗bar is the barycentric velocity

v⃗bar =
ρfφv⃗f + ρs (1− φ) v⃗s

ρ̄
. (6.16)

Eq. (6.15) can be nondimensionalized using Eq. (6.11) to give

∂T ′

∂t′
+ ⃗vbar

′
· ∇⃗′T ′ +

αgh

cP
v′zT

′ = ∇⃗′
·

(
ρ′∇⃗′T ′

)
+ L′Γ′. (6.17)

For the viscosities, a temperature and melt fraction dependent law is chosen:

η = η0 · exp

[
Ea
RT0

(
T

T0
− 1

)]
·

(
1− φ

c1

)k1

, (6.18)

ζ = η0 · exp

[
Ea
RT0

(
T

T0
− 1

)]
· c2 (c1 − φ)k2/φ . (6.19)

A power law for the shear rate dependency is neglected. The exponential functions
of Eq. (6.18) and Eq. (6.19) describe the temperature dependence taken from Tur-
cotte and Schubert (2014), stating that the viscosity is equal to η0 for T = T0. The
prefactor (Ea/R/T0) of the linear temperature term describes the rate of decrease or
increase with changing T and contains the activation energy Ea, the gas constant R
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and a reference temperature T0. For simplification, this factor is chosen to be 10 in
accordance to typical values for the upper mantle (e.g. Karato and Wu, 1993). T0
is 800 ◦C. The second part of the viscosity laws gives the melt fraction dependence
taken from Schmeling et al. (2012). This part is based on numerical models, pre-
dicting viscous weakening of a prescribed melt network geometry consisting of only
films. The equation is parameterized to fit the numerical results and can be used with
k1 = a1 (a2 + α (1− a2)), c1 =

b1α
1+b2αk3

, c2 =
4
3
αc−k21 · (c3 (1− α) + α) where a1 = 0.97,

a2 = 0.8, b1 = 2.2455, b2 = 3.45, k2 = 1.25, k3 = 1.29, c3 = 2. In addition, α is the
aspect ratio of the ellipsoidal inclusions, equal to 0.03.
The melting in our models is accomplished by using a simple phase diagram for a
two-component solid phase, where the solidus and liquidus are approximated by two
parallel lines. A similar melting law was introduced by Ribe (1985) and was fur-
ther explained in Schmeling et al. (2019). For a composition of matrix and melt the
concentration of a component B is cB and if the temperature rises above the solidus
temperature, the concentration of B in the fluid, cBf , and in the solid, cBs , change
according to the lever rule. If equilibrium is assumed, the adjusted melt fraction can
be calculated with

φ =
cBs − cB

cBs − cBf
. (6.20)

In a two-phase flow model, it is assumed that cBs and cBf are advected separately with
their according velocities. This might lead to thermodynamic disequilibrium; the melt
fraction is then adjusted with the melting rate, given by

Γ

ρ0
=
φ
Df cBf
Dt

+ (1− φ) D
scBs
Dt

∆c
. (6.21)

The operators Df

Dt
and Ds

Dt
are the substantial time derivatives equal to ∂

∂t
+ v⃗f · ∇⃗ and

∂
∂t

+ v⃗s · ∇⃗, respectively. The concentration difference ∆c is equal to cBs − cBf . Using
the concentrations, one can calculate the degree of enrichment or depletion, which is
defined as the normalized concentration of the solid as

f =
cBs

cBs − cBf
− cB0 . (6.22)

Please note that cBs − cBf is constant in our simplified phase diagram. In addition, cB0
is the initial concentration of component B, and f > 0 relates to an enrichment of
component B, while f < 0 relates to a depletion of component B.

6.3.2 Equations for Trace Element Transport

The equations for the transport of trace elements are similar to Eq. (6.1) and Eq. (6.2),
but the source term on the right side needs to be adapted to describe the behavior
of compatible or incompatible elements during melting. Whether an element tends to
stay in or to leave the solid is described by a partition coefficient Kd, which is the ratio
of the solid to fluid concentration of a trace element in geochemical equilibrium:
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Kd =
cTs
cTf
. (6.23)

Here, cTs and cTf are the concentrations of a trace element T in solid and fluid, re-
spectively. If Kd is greater than 1, the element tends to stay in the solid (compatible
element) and if Kd is smaller than 1, it leaves the solid as soon as possible (incom-
patible element). For modeling, it is assumed that trace elements in a produced melt
increment are in equilibrium with the solid they originated from and that the bulk par-
tition coefficient, D =

∑N
j=1 xjKd,j, can be used to apply this behavior to the source

term on the right of the equations. N is the number of minerals in a bulk rock and
D, as well as KD, are values for a certain trace element. This leads to

∂mT
s

∂t
+ ∇⃗ ·

(
v⃗sm

T
s

)
= − ΓmT

s

Dρs (1− φ)
+

1

tr

DmT
f (1− φ)−mT

s φ

φ+D (1− φ)
(6.24)

and

∂mT
f

∂t
+ ∇⃗ ·

(
v⃗fm

T
f

)
=

ΓmT
s

Dρs (1− φ)
− 1

tr

DmT
f (1− φ)−mT

s φ

φ+D (1− φ)
. (6.25)

mT
s and mT

f are the trace element mass per volume of element T equal to cTs (1− φ) ρs
and cTf φρf , respectively. The concentrations cTs and cTf are defined as the mass of the
trace element per total phase mass. In addition to the first term on the right sides,
which describe the element exchange due to melting, a second term is added that
describes the re-equilibration with time. The control parameter is tr, corresponding
to the reaction time. The term is derived using the assumption that equilibrium can
be achieved by exchanging mass between the solid and fluid. Under this assumption,
the equation (

mT
s +∆m

)
φ(

mT
f −∆m

)
(1− φ)

= D (6.26)

should be always fulfilled. ∆m is the trace element mass per volume that is exchanged
to achieve full geochemical equilibrium. Solving for ∆m leads to

∆m =
DmT

f (1− φ)−mT
s φ

φ+D (1− φ)
, (6.27)

which together with tr can be used as a re-equilibration term. Solving this term
numerically with time steps much smaller than tr leads to an approach to equilibrium
by a factor 1/e at t = tr. With a sufficiently small time step, the solution of this term
is done iteratively.
During freezing, the first terms on the right sides need to be changed as (for example)
an incompatible element now tends to stay in the melt and is not segregated to the
other phase. The resulting equations are

∂mT
s

∂t
+ ∇⃗ ·

(
v⃗sm

T
s

)
= −

ΓDmT
f

ρfφ
+

1

tr

DmT
f (1− φ)−mT

s φ

φ+D (1− φ)
(6.28)
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and

∂mT
f

∂t
+ ∇⃗ ·

(
v⃗fm

T
f

)
=

ΓDmT
f

ρfφ
− 1

tr

DmT
f (1− φ)−mT

s φ

φ+D (1− φ)
. (6.29)

As the first terms in Eq. (6.24) and Eq. (6.25) are derived using equilibrium during
melting, the same operation can be carried out for freezing. Using D = cTs /c

T
f , a

produced solid trace element concentration in equilibrium, originating from a fluid,
can be calculated with

cTs =
DmT

f

ρfφ
. (6.30)

Together with the mass production rate Γ, this equation can be used to give the first
term on the right sides in Eq. (6.28) and Eq. (6.29). The terms in the melting equations
are derived accordingly.
The equations shown here are based on Spiegelman (1996) but are extended for freezing
and re-equilibration and stated in terms of the trace element mass per volume, as they
are easier to handle during freezing this way.
To verify the validity of these equations, they can be solved for a simple 0D problem,
where the advection term is neglected. A constant melt generation rate is assumed that
leads to a melt fraction of 100% at t = 1. The resulting concentrations can be compared
to literature equations. In general, two end-members are described for melting and
freezing. During fractional melting or crystallization, the product is instantly removed
from the residuum and is therefore not in geochemical equilibrium. In the equilibrium
or batch melting/crystallization case, the solid and melt are assumed to always be in
equilibrium. In Eqs. (6.24), (6.25) and (6.28) to (6.29), this behavior is controlled by
the reaction time tr. For tr = ∞, the phase mixture is not able to achieve equilibrium,
and the results are comparable to the fractional cases. The relation tr = 0 is from
a physical point of view not realistic but can be numerically used to represent full
equilibrium. The numerical time step has to be much smaller than tr; this can be
achieved by using Eq. (6.27). For intermediate cases, tr is given in terms of the time
over which melting/freezing takes place. The re-equilibration term needs to be iterated
using much smaller time steps than tr. The literature equations can be taken from,
e.g., Rollinson (1993). The fluid and solid concentrations in the case of batch melting
are given by

cf
c0

=
1

D + F (1−D)
, (6.31)

cs
c0

=
D

D + F (1−D)
. (6.32)

For the case of fractional melting, the fluid concentration of a melt increment and the
accumulated melt can be calculated. The numerical results give the accumulated fluid
concentration, the literature equation is given by

cf
c0

=
1

F

(
1− (1− F )1/D

)
, (6.33)
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and the solid concentration is given by

cs
c0

= (1− F )1/D−1 . (6.34)

Equilibrium crystallization is described by the same equations as the ones for batch
melting. The accumulated solid concentration during fractional crystallization can be
calculated using

cs
c0

=
1− FD

1− F
(6.35)

and the fluid concentration is given by

cf
c0

= FD−1. (6.36)

Fig. 6.1 shows the comparison of numerical to literature equations for D = 0.1 and a
variety of tr values. As predicted, the tr = ∞ case exactly follows the fractional lines,
and the tr = 0 case follows the equilibrium lines. In fact, the fractional melting and
freezing literature equations can be directly derived analytically from Eqs. 6.24, 6.25,
6.28 and 6.29 with tr = 0. The intermediate cases lie between the two end members. It
can be seen that, especially for the solid concentrations, the degree of re-equilibration
has a large influence. For larger melt fractions, concentrations vary by an order of
magnitude for different reaction times. The influence on fluid concentration is not as
large but still significant. During freezing, the differences become larger for low melt
fractions.

6.3.3 Model Setup

The model consists of a nondimensional 1 × 1 box with constant nondimensional
temperature at the top (T ′ = 0) and at the bottom (T ′ = 1.5) and a linear increase
in between. A sinusoidal perturbation of the form ∆T = 0.01 · sin(z′π) · sin(x′π) is
added to the linear temperature field in order to initialize a first plume in the center
of the model. On the left and right, mirroring boundary conditions are applied. Free
slip is assumed at all boundaries. The shear and volume viscosity depend on the
temperature and melt fraction and are calculated using Eq. (6.18) and Eq. (6.19) with
η0 equal to 1021Pa s. To use this law, the nondimensional temperature is scaled with
Tsc = 1000◦C.
The initial density of the material is ρ′ = 1. The melt and enrichment density are
ρ′f = 0.8485 and ρ′e = 0.9091. Scaled with ρ0 = 3300 kg

m3 , these are typical densities
for peridotite (Boyd and McCallister, 1976), basaltic melt (Stolper and Walker, 1980)
and basalt (Schubert et al., 2001).
The depth-dependent solidus curve is calculated using

Tsol = 1060◦C + 3.75 · 10−3
◦C

m
· z, (6.37)

where z is the depth. The liquidus is parallel to the solidus with ∆Tli/so = 400◦C.
These curves are taken from Katz et al. (2003) for 300 ppm H2O. L

′ is equal to 0.64.
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Figure 6.1: Comparison of numerical results to literature equations for fractional and
equilibrium melting (left) and freezing (right). The brown lines give the concentrations
of the numerical results for a certain reaction time tr. The dashed-dotted lines give
the solid and the dashed line the fluid concentration. The red lines are the literature
equations for the equilibrium cases and the green lines give the fractional cases. All
results were calculated using D = 0.1 and are given normalized to an initial concen-
tration c0. Please note that the melt fraction on the right decreases from left to right.

For a possible application at a subduction arc with a height of the box of 120 km,
those values represent Rayleigh numbers of Ra = 2138, Rae = 5184 and Ram = 8640.
The retention number Rt is varied between 1 and 50. Each model is carried out with
two trace elements with a constant partition coefficient of 0.1 and 0.01. The nondi-
mensional reaction time is taken to be ∞ or between 0 and 1.2 · 10−3.
The equations are solved using finite differences on a 201×201 grid, and the numerical
strategy for the two-phase flow part is described in Schmeling et al. (2019). For the
trace element transport, the advection and source terms are solved separately. Advec-
tion is evaluated using a semi-Lagrange approach with 4th-order Runge-Kutta solution
on a four-times-finer grid. The Courant criteria is no longer fulfilled, but instabilities
with the semi-Lagrange approach are no problem. Such a fine grid violates the Courant
criteria but minimizes numerical diffusion. The source term is solved explicitly on a
broader grid and then interpolated to the fine grid, leading to numerical diffusion in
regions where the source term is not zero (i.e. inside the partially molten plume). As
this region is just a relatively small part within the model, the advantages of a finer
grid predominate over the disadvantages of the necessity to interpolate between the
grids.
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Figure 6.2: Typical model states of an uprising partially molten plume in a model with
Rt = 1 at a) t’=0.1125 and b) t’=0.2595. The background gives the nondimensional
temperature. White contour lines give melt fractions of 0.01, 0.03, 0.06, 0.08, from
outside to inside. Black and white vector fields show solid and segregation velocity,
respectively. In the upper right corner, a reference arrow is shown.

6.4 Results

After the model is initiated, hot material ascends in the box’s center (Fig. 6.2a) and
melts partially as the temperature crosses the solidus curve. Two convection cells
build up with cool, descending plumes at the model box’s sides. The viscosity in the
upper 30% of the model is too high to allow for visible movement, but as the partially
molten plume rises, it is able to pierce into this highly viscous layer because the shear
and volume viscosity decrease strongly with increasing melt fraction. However, the
plume is not able to reach the very top of the model, and the partially molten plume
decelerates until it finally disappears completely and the melt is no longer present.
During this process, the melt, which is enriched in the major element B, percolates
and freezes, leading to an enriched solid above the decelerating plume. As this enriched
material has a lower density, it stratifies to some degree in the high viscous layer at the
top. Due to strong convection caused by the highly buoyant melt, however, some of
that material is subducted again. As the melt fraction and melt’s buoyancy decreases,
convection weakens, and the buoyancy of enriched, less dense material at the flanks of
the model counteracts the buoyancy in the center, which is now mainly due to thermal
expansion. The direction of convection changes to the opposite direction. Hot material
ascends at the box’s sides and descends in the center of the model (Fig. 6.2b). This
behavior is also called lava-lamp mode convection (e.g. McNutt, 1999; Davaille, 1999).
In the model shown in Fig. 6.2 with Rt = 1, a reversal takes place every 5–6 overturns
and is accompanied by one melting event with melt fractions of up to 12%. Each of
these events leads to an enrichment in major and trace elements in the upper, highly
viscous layer.
In Fig. 6.3a-c, a rising plume and the accumulation of trace elements at the top
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Figure 6.3: Three time steps of the trace element concentration (background color) in a
rising plume. The time steps are a) shortly before the matrix overtakes the melt front,
b) approximately at the time of overtake, and c) after the overtake. The white contour
lines give melt fraction at 0.04, 0.08 and 0.12. d) gives the melt front velocity (blue)
at the boundary of the model and the matrix velocity (red) at the same point. The
dashed line shows the time at which the maximum concentration is reached. Pictures
are from a model with Rt = 1 and tr = ∞.

is shown. To understand how enriched material accumulates in the upper part of a
partially molten plume and how it eventually freezes, leading to enriched solid material,
it might be helpful to look at how fast the solid matrix moves compared to the front
of the partially molten plume. Fig. 6.3d shows the velocity of the melt front and
the matrix velocity exactly at that front. As long as the front ascends faster than
the matrix (Fig. 6.3a-b), new untouched material remains molten, incompatible trace
elements are accumulated at the top of the plume, and the enrichment increases. At
some point (t′ ≈ 0.163), the matrix becomes faster than the melt front (Fig. 6.3b-c)

88



6. Publication 3: Trace element transport

and the enriched layer still rises, while the partially molten plume is left behind, still
slowly ascending. At this point, the enrichment does not increase any further, and the
maximum value is reached. Even though the fluid is still moving faster than the matrix,
the constant competition between freezing and decompaction leads to a decelerating
melt front. In a nonfreezing model, the partially molten region typically ascends
until it reaches an impermeable overburden, constantly driven by decompaction and
compaction. In the model, unmolten material is typically completely impermeable, but
to allow for the melt to penetrate into this material, we apply a very small background
permeability. In some special cases, such a partially molten region can create a solitary
wave (e.g. Scott and Stevenson, 1984; Dohmen and Schmeling, 2021), but due to
the decreasing temperature to the top, freezing becomes stronger, and the viscosity
increases, leading to less intense decompaction. The enriched, now solid, layer ascends
upwards until the viscosity becomes too high to allow continued movement. In this
model the maximum enrichment decreases due to numerical diffusion, but the enriched
layer stays intact and remains in place.
The white lines in Fig. 6.3a-c are melt fraction contour lines that exhibit deformation
due to the change in the solidus and liquidus following enrichment and depletion of
major elements. The pictures shown here are taken from a second melting event; the
material is already depleted and has re-entered the convection cell, leading to regions
of higher and lower melt fraction within the rising plume.
In Fig. 6.4 trace element concentrations of a typical model with Rt = 1 is shown. Each
panel gives the total concentration redistribution of a trace element with D = 0.01,
each after a melting event. Shortly after model initiation, the first partially molten
plume ascends in the center of the model (Fig. 6.4a). Once the plume has reached
its maximum ascension height of approximately 0.725 and the material is enriched
in trace elements to a value of 8 times the initial concentration, the molten plume
retreats, impaired by the reversal of the convection cells. For D = 0.1 (not shown here)
the enrichment is approximately 5 times the initial concentration. While most of the
enriched material remains stagnant at the top, some of the material is reintroduced
into the convection cell, reducing the total degree of enrichment in the horizontal layer.
During one melting event, meaning the time between first and last occurrence of the
melt, the convection layer in the lower part of the model undergoes approximately 5
to 6 overturns, which constantly reintroduces already-depleted or -enriched material
back into the molten plume. One result of this behavior can be observed in the center
of the enriched layer, where the concentration is slightly lower than to the left and
right. During convection, some of the enriched material is traveling down and is then
brought to the center of the model, where it ascends again. At this stagnation point,
the local enrichment, surrounded by depleted material, raises the solidus, leading to
lower melt fractions and eventually to lower enrichment.
As already mentioned, the convection cell changes its direction of rotation, leading
to a period of time with no melt at all in the model. Plumes then rise at the left
and right boundary of the model, resulting in an enriched layer, slightly lower than
the previous one. After this melting event, the convection cell changes its direction
of rotation again, and a partially molten plume enriches the already enriched area in
the center. The plume again rises slightly lower than the previous ones, and a second
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Figure 6.4: Logarithmic total concentrations of a model with Rt = 1 and tr = ∞
after four (a-d) different melting events; no melt is present at those times. The initial
concentration of the whole model is 1. All pictures are from shortly after a melting
event.

enriched layer arises just below the first one. While this does not further increase
the maximum enrichment, it enriches the vertical mean concentration (Fig. 6.6a) and
therefore the total redistribution of trace elements into a narrow enriched horizontal
layer, resulting in a larger depleted convection layer below. After the fourth melting
event, additional enriched layers below the first ones at the boundaries of the model
are added.
The general behavior of the 2D model can be described by a 0D model, whose general
idea is sketched in Fig. 6.5. It is divided into two regions where two different processes
take place. Region I is the convection source region where melting takes place up to
a certain melt fraction φmax. It is subdivided into a solid (Ia) and a partially molten
part (Ib), the rising plume. The whole region I is constantly convection and remixing

90



6. Publication 3: Trace element transport

Figure 6.5: Conceptual sketch of a 0D model representing trace element redistribution
in a closed convection system. The model is divided into a convection source region
(I) and an emplacement zone (II). The source region is further divided into a solid (Ia)
and partially molten plume part (Ib). Green depicts enriched material, while brown
depicts depleted material.

the material, assuming homogeneous distribution of trace elements. The processes in
Ib are described by Eq. (6.24) and Eq. (6.25) in 0D, which become
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∂t
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for the solid. And
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for the fluid.
In region II, the emplacement zone, the melt freezes to φ = 0, leading to enrichment
in incompatible trace elements. Here, Eq. (6.28) and Eq. (6.29) in 0D become
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and
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s φ

φ+D (1− φ)
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For simplification reasons, the processes in I and II do not take place simultaneously
but one after another. That is, the melt is produced in I and is then transported, as a
single unit, to II, where it freezes again. During both these processes, re-equilibration
takes place according to tr. Additionally, three further parameters, namely, the melt
fraction φmax and the geochemical parameters D and tr, are introduced to cover the
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dynamics of the system:

Melt area ratio If material in region I is molten, the concentrations calculated with
the equations represent only region Ib and not the whole source region I. Therefore,
after the first melt event has taken place, the concentration of the source region is
not equal to the concentration calculated in Ib but to the concentrations of Ia and
Ib combined. For simplification, it is assumed that Ib becomes fully depleted after
each melting event, which is reasonable for small D and relatively large φmax. The
initial concentration for the melting is then calculated using c0 = Rk−1

MA, where k is
the number of the melting event and RMA is the melt area ratio, which represents the
ratio of the area of Ia to I.

Transport ratio The melt that is produced in the source region is not fully trans-
ported to the emplacement zone. Some of it freezes at depths that are too deep to
allow storage. This material is then transported with the convection, subducted and
eventually reintroduced back into the melting region (green material in region Ia of
Fig. 6.5). Therefore, the trace element mass that arrives in the emplacement zone
(II) is not equal to the one calculated during melting in Ib, but to RTP ·mT

f , where
mT
f is the trace element mass per volume in the fluid calculated in Ib and RTP is the

transport ratio, which is the ratio of the melt amount that is transported to II to the
melt amount produced in Ib.

Emplacement volume ratio The melt from the source region that arrives in the
emplacement zone is stored in just a very small area above the plume, compared to
the whole plume. Therefore, trace elements are accumulated, leading to local higher
concentrations, while the trace element mass is kept constant. The concentration of
the fluid is multiplied with the emplacement volume ratio, REV , to account for this
compression. REV is the ratio of the area of Ib to that of II.
The whole model can be summarized in the following steps:

1. Melting in region I

(a) Calculate the initial solid concentration (RMA)

(b) Calculate the fluid (Eq. (6.39)) and solid concentration (Eq. (6.38)) until
φ = φmax

2. Freezing in region II

(a) Calculate the amount of trace elements that arrives in the emplacement
zone (RTP )

(b) Account for compression into a smaller volume (REV )

(c) Calculate the solid (Eq. (6.40)) and fluid concentration (Eq. (6.41)) until
φ = 0
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Those two steps have to be repeated for each melting event.
To compare the results of the 2D to the 0D model, horizontally averaged vertical

Figure 6.6: In a) horizontally averaged vertical profiles of the total concentration after
four different melting events are shown of a 2D model with Rt = 10, tr = ∞ and
D = 0.01. b) compares the 2D model results with a 0D model. A time of 1 means
one melting event has happened. The stars give the maximum concentration of the
2D model for D = 0.01 (black) and D = 0.1 (orange). Solid lines give 0D model
concentrations of the solid in the emplacement zone for both D. Dashed lines show
the solid concentration of the source region. The background color shows whether
melting is taking place in the source region (red) or freezing is taking place in the
emplacement zone (blue).

profiles are used after each melting event (Fig. 6.6a). As already mentioned, the total
enrichment within the layer increases with every melting event, but the addition to
the enrichment also decreases with every event as the source region becomes depleted
during this process.
In Fig. 6.6b the two steps of melting and freezing are marked with a red (melting in the
source region) and blue (freezing in the emplacement zone) background, respectively,
and both steps together take a nondimensional time of t′ = 1. The figure gives the
results for a run with φmax = 0.12, tr = ∞ and D = 0.1 and 0.01. D and tr are taken
from the 2D model parameters, and φmax is the maximum melt fraction we achieve
in the model. The emplacement volume ratio is taken to be equal to 3, which is a
result from the 2D model as well and in general should be a function of the viscosity
law and the model geometry prescribed. The transport ratio can be estimated from
the result of the first melting event and is taken to be 0.4. This value is a function
of the permeability and melt density or Rm and Rt and means that 40% of the trace
element mass is transported into the emplacement zone. The last value, the melt area
ratio, is also taken to be 0.4, which is just a coincidence, as it is not directly related
to the transport ratio. This value can be estimated from the following melting events
and means that the initial trace element concentration of each melting event is just
40% of the previous event. All these values are either estimates from evaluating the
2D model or are chosen just to fit the results. The 2D model it is compared to uses
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Rt = 1 and the same parameters describing the trace elements.
The same fitting can be repeated for a model with different Rt. Changing Rt in a
model strongly influences the melt fractions. While Rt = 1 leads to φmax = 0.12,
Rt = 5 leads to φmax = 0.18. As the retention number gives the resistance of the
melt to percolate through a matrix, a higher value refers to less effective separation
between solid and melt. Therefore, in the 0D-model, the transport ratio needs to be
adjusted to a lower value. A selection of 0.2 gives a good fit.
All in all, there are 6 parameters that need to be fitted or chosen, but the results from
the 0D and 2D model can be fitted by a simple equation with just two variables of the
form

cs = casy ·

(
1− e−γnme

)
+ 1. (6.42)

Here casy is the increase from the source material (i.e., c0 = 1) to the asymptotic value
of cs, γ is the decay rate of the growth and nme is the number of melt events. Only the
melt area ratio has an influence on the decay rate, while all other parameters effect the
maximum enrichment. In addition, γ is decreased with higher melt area ratio, leading
to a slower increase and more melting events necessary to approach the asymptotic
value. Decreasing the partition coefficient sharply increases casy, and increasing any
of the transport, depletion and emplacement volume ratios increases the asymptotic
value linearly. Consequently, doubling these ratios lead to a doubling of casy. The
maximum degree of melting has an influence, as long as it is smaller or in the order of
D. Highly incompatible elements completely enter the melt for already small melt de-
grees. Therefore, it is irrelevant how high the degree of melting is after it has reached
this certain threshold value, as nearly all trace elements are already in the melt. The
2D models that are used to compare to the 0D model do not allow for re-equilibration,
but we can still obtain results by giving a finite tr in the conceptual model, leading to
a decrease in casy for stronger re-equilibration.
For example, the model in Fig. 6.6 with Rt = 10 leads to casy = 2 and γ = 0.9163,
while the model with Rt = 5 leads to casy = 0.8626 and the same γ.
In Fig. 6.7, the effect of Rt and tr on the redistribution is shown. The retention number
has a large influence, as it not only changes the maximum enrichment but also changes
the dynamics of the model and leads to different emplacement depths. Allowing for
two-phase flow strongly reduces the maximum melt fraction, and reducing Rt leads
to even lower fractions. The viscosity law used causes a rapid decrease in viscosity
for already low melt fractions, and reducing the retention number and ultimately the
melt porosity leads to much higher viscosity within the partially molten plume, mak-
ing penetration more difficult into the highly viscous overburden. Therefore, stronger
segregation (low Rt) leads to less highly elevated enrichment but nevertheless causes
higher degrees of enrichment. While the depth of maximum concentration might be
similar, the maximum elevation of enriched material and the thickness of the enriched
layer increases with decreasing Rt. Decreasing the retention number from 10 to 5
approximately doubles the degree of enrichment. Reducing it further from 5 to 1 leads
to a similar increase.
Re-equilibration has an influence not on the dynamics but on the degree of enrich-
ment. With full non-equilibrium (i.e., t′r = ∞) the highest degree of enrichment
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Figure 6.7: Horizontally averaged vertical profiles of 2D models with a) different re-
tention numbers, Rt, and b) different reaction times, tr. Both model series are carried
out using D = 0.01. In a), all models are carried out with tr = ∞ and in b), all models
are carried out with Rt = 1. All profiles are taken shortly after the first melting event.

with 1.4 is reached. This is the same model as Rt = 1 in Fig. 6.7a. Allowing for
re-equilibration leads to smaller concentrations, and tr = 0 refers to instantaneous
re-equilibration. In that case, the maximum degree of enrichment is decreased by 35%
to 0.9. Re-equilibration takes place only as long as the melt is present. Once the en-
riched material leaves the partially molten plume, there is no exchange possible, and
concentrations stay untouched until they are remelted. However, during the rise of a
plume, constant exchange of trace elements between the solid and fluid is taking place
and shorter reaction times have a large influence. All in all, re-equilibration becomes
more important the longer the melting event lasts.
The Damköhler number Da can be used to represent the amount of re-equilibration
taking place during advection. The nondimensional number is the ratio of the reaction
rate to the advective mass transport rate (Spiegelman et al., 2001) and can be also
stated in terms of time, where Da is equal to the advective time scale over reaction
time. The advective time scale can be stated as the time the fluid melt needs to
travel one compaction length, which is a typical length scale in compaction problems
(McKenzie, 1984). For tr = 0 (i.e., instantaneous equilibrium), Da becomes infinite.
For tr = ∞, Da is 0. In a typical model of ours in a rising plume with melt fractions
of approximately 10%, a nondimensional reaction time of t′r = 1.2 · 10−4 equals a Da
of approximately 30, and t′r = 1.2 · 10−3 yields Da ≈ 3. As the compaction length is
strongly changing in time and space, it is not suitable to use a constant Da value but
rather a constant reaction time.

6.5 Discussion

Choosing the parameters for the conceptual 0D model to fit a certain region inside the
Earth can be hard, often even impossible. In that case, 2D models are a good tool to
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achieve more insights on the processes in this region. However, some estimates can be
carried out. In the case of a mantle wedge, seismic imaging can be helpful to obtain
values for the melt area ratio. This value is in some way dependent on the ratio of
melt region to the whole source region, and from Wiens et al. (2008), one can see that
the melt is present in very wide areas from depths of 120 km up to 30 km. The whole
source region might be hard to estimate as constantly new material is brought there
due to convection, but converted to our model setup, this leads to ratios of approxi-
mately 50% or even higher. The transport ratio is mainly dependent on the retention
number, which is again dependent on permeability of the matrix and fluid viscosity.
Basaltic melts usually have viscosities between 10−1 and 103 Pa s (Best, 2003), but the
value can be much higher for other types of melt. The permeability depends on the
grain size a, with typical values of 10−3 m2 (Dannberg et al., 2017) and a geometric
factor K of order 100 (McKenzie, 1984) (k0 = a2/K). For our model setup, we then
obtain Rt at values between 1.4 · 10−4 and 1.4. With Rt = 1, which lies just at the
upper value, we can fit the results with a transport ratio of 0.4. For Rt = 5, a value
of 0.2 is found. Smaller Rt values, which tend to be more unstable in a model, lead
to higher transport ratios, but these ratios cannot be larger than 1. The emplacement
volume ratio depends on the size of the convection cell, which can be very different
depending on the area of observation. The emplacement area should be always of a
similar order in size. Emplacement volume ratios in the order of 1–10 are reasonable.
The proposed 2D model setup might be applicable to a volcanic arc of an oceanic
lithosphere subducting below another one. Between the two plates, a mantle wedge
becomes present, which is the topic of many studies (e.g. van Keken, 2003; Hirth and
Kohlstedt, 2003; Grove et al., 2006). Due to dehydration of the subducting slab (e.g.
Iwamori, 1998, 2007) the solidus temperature is decreased, and melting occurs, which
eventually leads to volcanic eruptions at the volcanic arc. Our model is not able to
transport melt to the very surface as it reaches a brittle region, where the melt is
usually transported through dykes, which are not covered by our model’s physical
description. However, our model is capable of describing the transport of melt from
the melt source region to the ductile-brittle boundary, where the melt accumulates,
leading to enrichment in trace and major elements. What is usually measured by
geochemists are the trace element concentrations in the melt that reaches the top,
but those are, among others, a result of the melt degree, partition coefficient and
source material concentration. Especially with regards to the melt degree and source
material, numerical models can be helpful to achieve better understanding of what
is happening. The model used in this work is rather simple and should be adjusted
in the future to better reflect nature, but one can already take fluid concentrations
out of the model and compare them with real measurements. In Fig. 6.8 melt con-
centrations are taken out of a first melt event from a model with different Rt and
t′r = 0. Partition coefficients are taken from Ayers et al. (1997) and the results are
compared to average arc values relative to MORB basalt from McCulloch and Gamble
(1991). To compare those values, it is assumed in our model that the whole model
starts with trace element concentrations equal to those of MORB. It can be seen that
higher retention numbers lead to better fits. Compatible elements in general are not
fitted adequately, and changing Rt gives only minor changes. However, incompatible
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elements can be fitted quite nicely, and the best fit can be achieved with Rt = 40,
which is, as shown above, too high. What needs to be addressed is that for our model
setup, Rt = 40 gives the best results, but different temperature profiles or melting
curves also have major influences on the concentrations, which might explain why Rt
is so high. Adjusting the model to better represent certain areas would probably give
smaller retention numbers.
As already mentioned, in our model, lava-lamp convection is achieved, which leads
to trace element enrichment horizontally distributed over the whole model. This is
probably not what we would expect below a volcanic arc. One difference in our model
compared to nature is that we use a constant depth-dependent solidus and liquidus
over the whole model, while in nature, these coexistence curves are strongly dependent
on the water content. During subduction, a plate dehydrates in a specific depth, which
leads to strongly depressed solidus curves just above this point. It is questionable how
the lava-lamp convection would react to this, but melting would most certainly occur
above the dehydration point only, even with reversed convection. Therefore, horizon-
tally distributed trace element enrichment is not probable, and the total enrichment
would increase slower, as only every other plume would create melt.
To further adjust the model, the model box should be changed, giving a mantle wedge

Figure 6.8: Relative concentrations for different trace elements, using partition coef-
ficients from (Ayers et al., 1997), in a model with different Rt and t′r = 1 · 10−5. The
fluid concentrations are the maximum value at the time of maximum melt fraction
during the first melting event. Brown lines show the 2D model results for different
retention numbers. The red line gives the average arc concentration relative to that
of MORB basalt from (McCulloch and Gamble, 1991).

with possible inflow from the one side, to allow for constant supply of fertile material.
Temperature profiles would have to be adjusted as well to fit the mantle wedge. In a
future model, transport of volatiles could be also implemented to allow for consistent
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feedback on the solidus. Calculation of partition coefficients, based on the tempera-
ture, pressure and composition, are possible with a physical description of our model
as an important step.

6.6 Conclusions

Models of various kinds are capable of explaining trace element concentrations of a
melt reaching the surface. While some models are rather simple, 2D or even 3D models
are helpful to obtain better insights on the processes taking place. In this work, we
show that our code is capable of giving a fully consistent redistribution of major and
trace elements, including melting, freezing, and re-equilibration of trace elements and
transport in 2D. In a simple representation of a volcanic back arc, lava-lamp convec-
tion can be observed, and the influence of the retention number and re-equilibration
on trace element redistribution are investigated. Different retention numbers not only
lead to different degree of enrichment but also change the whole dynamics of the sys-
tem, allowing for higher emplacement but lower enrichment with low Rt.
A numerical 0D model is introduced that can explain the 2D results for various model
parameters, and a simple function can be fitted to reflect it.
In a closed convection system, trace element concentrations reach an asymptotic value
that depends on many parameters such as the partition coefficient, re-equilibration,
mobility of melt and the ratio of the convection area to the emplacement area. The
time or the numbers of melting events that is needed to approach the asymptotic
value depends only on how large the partially molten region is compared to the whole
convection source region.
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Abstract

Magmatic phenomena such as volcanic eruptions on the Earth’s surface show, among
others, that melt is able to ascend from partially molten regions in the Earth’s mantle.
Thereby it firstly flows through the partially molten source region and then through
the unmolten lithosphere until it eventually reaches the surface. The governing pro-
cesses in this source region are poorly understood. Since McKenzie (1984) introduced
his equations for two-phase flow, which include a fluid phase (melt) and a porous
deformable matrix, the physics of this region are of broad interest. One of the fea-
tures which were studied is the emergence of solitary porosity-waves. Using these
two-phase flow equations the transport of volatiles and trace elements in ascending
magmas is investigated. To do this two additional mass equations for the concentra-
tion of a volatile or trace element in the solid and the fluid are solved. The equations
assume non-equilibrium, meaning re-equilibration between solid and fluid is not pos-
sible. Melting and freezing is not allowed, rather an initial concentration is assumed
that is transported with solid and fluid separately.
Before Jordan et al. (2018) showed that solitary porosity waves are able to transport
mass within its center it was thought that mass is just passed through these waves.
Our models can reproduce the outcomes of Jordan et al. (2018) using a full two-phase
flow approach which allows for self consistently evolving porosity waves. They show
that material slightly above the original melt source region gets captured within the
waves, as it needs some time to evolve from an arbitrary melt perturbation.
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7.1 Introduction

Shortly after McKenzie (1984) published his equations describing the movement of
melt and matrix of a partially molten system it was shown that these equations are
capable of producing solitary porosity waves (e.g. Scott and Stevenson, 1984; Barcilon
and Richter, 1986; Scott and Stevenson, 1986; Barcilon and Lovera, 1989). These
waves are regions of higher melt porosity that ascend with constant velocity and in
constant shape through a constant partially molten background. Their ascent is con-
trolled by decompaction of the matrix in front of the wave and compaction behind it.
Until today solitary porosity waves are of interest to the community and are still not
fully understood (e.g. Dohmen et al., 2019; Dohmen and Schmeling, 2021; Omlin et al.,
2018; Stubblefield et al., 2020; Yarushina et al., 2015). For a long time it was thought
that these waves are not able to transport mass because they migrate faster upwards
than the segregating melt within the wave (Watson and Spiegelman, 1994). While this
is true for solitary waves in 1D models it is not always the case in 2D. Jordan et al.
(2018) showed that for waves that are faster than three times the background velocity
a recirculating area within the wave builds up that is completely separated from its
surroundings. Material that is encapsulated in this area circulates and has effectively
higher velocities than the wave itself.

7.2 Governing Equations

The equations shown here describe a two-phase system, based on McKenzie (1984) and
Schmeling (2000) and are slightly simplified for the purpose of modeling solitary poros-
ity waves. More insights on these equations can be found in Dohmen et al. (2019) and
Dohmen and Schmeling (2021). Here we show the already non-dimensionalized equa-
tions using the background compaction length δc0 and the background fluid velocity
vsc. The compaction length is given by

δc =

√
ξ + 4

3
η

µ
kφ (7.1)

where ξ is the volume viscosity, η the shear viscosity, µ the viscosity of the fluid and
kφ the melt fraction dependent permeability. The permeability is given by

kφ = k0φ
n. (7.2)

φ is the volumetric melt fraction and n a power law exponent equal to 2 or 3. The
compaction length is a length scale naturally emerging from the equations.
The scaling velocity is given by

vsc =
kφ
µφ

∆ρg. (7.3)

∆ρ is the difference between solid and fluid density and g is the gravitational acceler-
ation.
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It is common to non-dimensionalize the melt fraction by the background melt fraction
φ0. Shear and volume viscosity are normalized by the intrinsic shear viscosity η0. The
viscosities are calculated using simple laws

η = η0 (1− φ) , (7.4)

ξ = η0
1− φ

φ
. (7.5)

With all these parameters we arrive for the mass conservation of the melt at

∂φ

∂t
+ ∇⃗ · (φv⃗f ) = 0 (7.6)

and for the solid at
∂ (1− φ)

∂t
+ ∇⃗ · ((1− φ) v⃗s) = 0. (7.7)

v⃗s and v⃗f are the solid and fluid velocity, respectively. The right-hand side of these
equations is equal to zero because we do not allow for melting or freezing.
For the momentum conservation of the melt we achieve

v⃗f − v⃗s = φn−1

[
(1− φ0φ) e⃗z −

η0
ξ0 +

4
3
η0

1

φ0

∂τij
∂xj

]
(7.8)

with

τij = η

(
∂vsi
∂xj

+
∂vsj
∂xi

)
+ δij

(
ξ − 2

3
η

)
∇⃗ · v⃗s. (7.9)

Here, τij is the effective viscous stress tensor of the matrix and δij is the Kronecker
delta.
The momentum conservation of the solid becomes(

∂2

∂x2
− ∂2

∂z2

)[
η

(
∂2ψ

∂x2
− ∂2ψ

∂z2

)]
+4

∂2

∂x∂z

[
η
∂2ψ

∂x∂z

]
= φ2

0

ξ0 +
4
3
η0

η0

∂φ

∂x
+A (χ) (7.10)

with

A (χ) = −2
∂2

∂x∂z

[
η

(
∂2χ

∂x2
− ∂2χ

∂z2

)]
+ 2

(
∂2

∂x2
− ∂2

∂z2

)[
η
∂2χ

∂x∂z

]
. (7.11)

To get Eqs. (7.10) and (7.11) the solid velocity is, following Sramek et al. (2012), split
into incompressible flow and irrotational (compaction) flow velocity, which eventually
allows us to solve for the stream function ψ and the irrotational velocity potential χ.
The latter is given by the Poisson equation

∇2χ = ∇⃗ · v⃗s. (7.12)

The divergence term can be achieved from

∇⃗ · v⃗s = −∇⃗ cot (φ (v⃗f − v⃗s)) . (7.13)
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The transport of trace elements or isotopes in term of concentration is described by
two mass conservation equations:

∂cs

∂t
+ v⃗s · ∇⃗cs = 0 (7.14)

∂cf

∂t
+ v⃗f · ∇⃗cf = 0 (7.15)

where cs and cf are the concentrations of the trace element in the solid and the fluid,
respectively. As we do not allow for freezing or melting there is no exchange between
the solid and the fluid. Non-equilibrium is assumed, meaning that no exchange between
solid and fluid is assumed in order to achieve equilibrium. The equations are solved
using an explicit upwind scheme.
Additionally to the concentration equations a marker, following the fluid velocity, is
added. Advection of the markers is solved for using Eq. (7.15) with the 4th order
Runge-Kutta method.

7.3 Results

7.3.1 Passing through an Enriched Layer

To test what happens when a solitary wave passes through a trace element enriched
layer we start with a 1x1 model box. The whole box is partially molten with a
background porosity φ0 of 0.5% and a small Gaussian bell shaped melt perturbation
is placed on top of it at x′ = 0.5 and z′ = 0.2. This perturbation does not exactly
represent a solitary wave but will during ascend inevitably evolve into one. To take
care of the buoyancy of the background melt an inflow of melt at the bottom and
an outflow at the top is prescribed. On the left and the right mirroring boundary
conditions are applied. Trace elements are equally distributed between solid and fluid,
in a way that the total concentration (ctot = cs (1− φ) + cfφ) is equal to 10−6 in the
whole model. Slightly above the initial wave an enriched layer is placed. Here the fluid
concentration is increased to give a total concentration of 2 · 10−6. Following Jordan
et al. (2018) the ascending wave will, depending on its non-dimensional velocity, either
encapsulate some of the enriched material of the layer or just pass through the layer,
slightly lifting the material. In our model we achieve these two cases by varying the
permeability-porosity relation exponent n between 2 and 3. For n = 2 the phase
velocity is, at least for our waves with maximum melt fractions of about 40 (non-
dimensional), always too slow (v′ ≈ 2) to incorporate material. In Fig. 7.1a one can
see how the wave has passed through the layer and lifted it to about the order of the
wave diameter. The wave itself is just slightly enriched after it has passed through the
layer, probably still from the layer. With further ascending it will leave this enriched
material behind.
In Fig. 7.1b the same model with n = 3 is shown. The wave has a velocity of about
8 times the background velocity. At the time where the wave arrives at z′ = 0.7, the
enriched layer just slightly ascended, as the wave is now much faster than this layer,
that travels with the background velocity. At the point where the wave has pierced
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through the layer it is totally disturbed. Material that was originally situated in the
layer has now traveled upwards together with the wave. In the wave itself it looks
like the material is situated within the wave, but as the wave is very fast, no material
should be encapsulated in the center of the wave. In fact, it can be seen, that the
center itself is slightly less enriched, compared to its surroundings. That we observe
enriched material in the center of the wave at all might be due to numerical diffusion.
Due to limited resolution a solitary wave in a Finite Difference model is never perfect

Figure 7.1: In color the total concentration of a trace element is shown at the point
where the solitary waves have reached z′ = 0.7. The red lines are contour lines of the
melt fraction and show the position of the solitary wave. a) shows a slow, non-mass
transporting solitary wave, using n = 2. b) shows a fast, mass transporting wave with
n = 3.

and will inevitably lose volume, leaving a trail of melt behind during ascent. The loss
in volume is compensated by a decrease in amplitude and as the phase velocity of
a porosity wave is dependent on the amplitude the wave will become slower. Both,
the maximum segregation velocity and the phase velocity decrease but the segregation
velocity decreases faster and at some point, in the case of the segregation velocity
being initially faster, the phase velocity will overtake and become dominant. Following
Jordan et al. (2018), at this point the segregation is not fast enough to maintain the
separated area in the wave and will no longer transport mass. In Fig. 7.2 both velocities
of a fast solitary wave that started in the mass transport regime is shown. With time,
both velocities decrease and at a velocity of about 3.6 the phase velocity becomes
faster and we observe a regime switch from mass transporting solitary wave to non-
transporting solitary wave. Jordan et al. (2018) observed this switch at a velocity of
3, but in contrast to them we did not neglect the solid shear (the first term on the
right side of Eq. (7.9)) and did not apply the small porosity limit simplification, which
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leads to a non-moving solid matrix.
A look at the marker field gives a better understanding of what happens to the material

Figure 7.2: Non-dimensional phase and segregation velocity as a function of time of
a solitary wave that is initially fast enough to transport mass but loses velocity and
phase velocity becomes faster at v′ = 3.6. The solitary wave shown needs some time
to build up and receives the status of a solitary wave at about t′ = 8 from where on
both velocities decrease nearly linearly.

and where it is seated after the wave has passed through it, as numerical diffusion is
not an issue. In Fig. 7.3 the marker fields to the models already shown in Fig. 7.1
are shown. The enriched layer is marked in brown while the background is yellow.
In Fig. 7.3a the slow solitary wave gives the enriched layer just a lift and leaves the
marker than behind after passing through. But in Fig. 7.3b one can see that the
enriched material is not situated within the center of the wave as one might expect
after investigating Fig. 7.1b. This supports the hypothesis that the enriched material
in the center of the wave in Fig. 7.1b is there due to numerical diffusion. The layer is
pushed upwards in front of the wave and is left behind at the sides of the wave. With
further ascending the enriched layer in front of the wave will most certainly become
thinner and thinner until it can no longer be seen in the marker field.
In Fig. 7.4 some marker trajectories are shown that explain what happens. The green
markers are placed within the initial wave perturbation and the red markers are placed
in the enriched layer. The green wave markers get trapped within the wave and stay
there to the end. By the time they reach the enriched layer no material can be added
to the wave center and the red layer markers make place to the wave by flowing to the
side. After that they flow back to the x-Position before they were affected. Only the
red marker directly in front of the wave travels all the way up in front of the wave,
which can be hardly seen in the picture. The nearer the markers are to the center the
further they travel upwards together with the wave.
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Figure 7.3: Marker fields from the models already shown in Fig. 7.2. The enriched
layer is shown in brown. The background is yellow. The contour lines are the melt
fraction and show the positione of the solitary wave. The marker field is passive and
has no influence on the model. a) n = 2, b) n = 3.

7.3.2 Origin of the Encapsulated Material

To investigate the origin of the material that gets trapped within the center of a soli-
tary wave the initial conditions of the model are changed slightly. In Fig. 7.5a the
model at t′ = 0 is shown. Close to the bottom of the model a horizontal layer with
a non-dimensional melt fraction of 8 is placed. Five different marker areas are intro-
duced that have no influence on the model and just give information on where they
were initially situated. The horizontal melt layer depicts a 1D wave in a 2D model
which will during ascent break up into several 2D solitary waves because 1D waves are
not stable in 2D (see Scott and Stevenson, 1986). To fasten this breakup a 1% white
noise is added to the initial porosity perturbation. The material that leaves the upper
boundary of the model enters the model again at the bottom.
In Fig. 7.5b the model is shown shortly before the solitary waves reach the upper
boundary. From the horizontal perturbation 7 solitary waves have build up that con-
tain material of the lower layers and pierce through the upper ones. Below the first
front of solitary waves 2 secondary solitary waves build up that used the remaining
melt that was not used for the first generation of solitary waves.
Zooming into one of these waves (Fig. 7.6) gives clearance about where the material in
the center originated. Most of the material is from the third layer from the bottom and
a smaller part is from the second layer. Nearly no material of the first layer, where the
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Figure 7.4: The figure shows trajectories of a few selected markers. The green markers
were originally situated within the initial melt fraction perturbation and the red ones
in the enriched layer. The colored background shows the melt fraction.

1D melt wave was placed, is situated in the wave and once the wave reaches the fourth
layer the process of building up the separated area is already finished and no material
from this layer can be build in. From this experiment one can expect that solitary
waves contain material not, at least in full non-equilibrium, from its original melt layer
but from a region that is 5-10 wave diameters above the original depth. Jordan et al.
(2018) shows that assuming equilibrium, the transport of elements depends on the
partition coefficient and some material from the original layer might be encapsulated
in that case as well. The region from where material is build in the wave, in our case
5–10 wave diameters above the original depth, depends on the time that is needed to
build up the wave. Dohmen and Schmeling (2021) shows that this time depends on
the diapiric proportion of the ascent. The greater it is, the longer the wave needs to
build up.

7.4 Conclusions

With our model, which solves the full equations without neglecting the shear stress
term and the small porosity limit, the results of Jordan et al. (2018) could be repro-
duced. But in contrast to Jordan et al. (2018) we get the switch from transporting to
non-transporting solitary waves at a non-dimensional velocity of 3.6 and not 3.
When a mass transporting wave travels through an enriched layer the enriched mate-
rial is transported together with the wave but is not placed within the center of the
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Figure 7.5: Marker fields a) in the beginning and b) at the end of a model with a
1D porosity wave initially placed at the bottom of the model box. The red lines are
contour lines of the melt fraction. The different colors of the markers have no influence
on the model and reflect only the original depth.

Figure 7.6: Figure shows a zoom of Fig. 7.5b on the second solitary wave from the
right.

wave. The separated area stays intact and pushes the enriched material in front of it,
but during ascent more and more of that material will get lost as it skids along the
flanks of the wave. Only the material that is situated in the center of the wave during
build up stays with the wave to the end. Material that is originally located at the
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flanks of the wave is lost during ascent as well, depending on the size of the separated
area.
Starting from a melt layer we can observe that the material which is transported with
the wave is not from the original melt layer but from an area that is 5–10 wave diame-
ters above this layer. This might be of particular importance for analyzing geochemical
observations.
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Chapter 8

Conclusions

In the framework of this thesis two-phase flow in general and features that are solely
connected to two-phase flow in particular were investigated. Namely, these features
are solitary porosity waves and the transport of trace elements with melt which were
examined using numerical models obtained by Finite Difference method. Several im-
portant observations and results could be obtained.
It could be shown that solitary porosity waves emerge out of a porosity perturbation,
despite using much more realistic, quickly decreasing viscosity laws for the porosity
dependence. These laws don’t have a big influence on phase velocity or shape of the
wave as long as the background porosity is rather small. However, bigger background
porosities lead to a narrowing of the wave and a strong discrepancy between our mod-
els and analytically solutions can be observed. In general, with low melt fractions
our models are in agreement to the analytical solutions that neglect the shear stress
term, because the matrix shear contribution of the downward segregation flow is taken
over by the increase of the compaction contribution. Furthermore, a switch of matrix
velocity direction can be observed for different viscosity laws. For very low viscosities,
the matrix in the center of the wave flows downwards contrary to the wave propagation
direction, but in most cases the matrix flows upwards.
Additionally, it could be shown that, depending on the extent of a partially molten
region the resulting ascent of melt may not solely occur by solitary waves or diapirism,
but by a composed mechanism, where a diapir splits up into several solitary waves
which then ascend together in formation. If the waves phase velocity is small, the
formation will stay in the shape of a diapir, just slowly elongating due to the bigger
main solitary wave at the very top. Depending on the ratio of the melt anomaly to
the compaction length the ascent behavior can be classified into two regimes: (ia+b)
Solitary wave a and b, and (ii) diapirism-dominated. In regime (ia) the matrix in the
center of the wave sinks, contrary to the wave, and in (ib) the matrix ascends together
with the wave, but very slowly. The further we are in regime (i) the less solitary waves
will emerge, until only one emerges. In regime (ii), even though diapirism is dominant,
solitary waves will emerge. Further in (ii), the time needed to build up a solitary wave
becomes longer. Only at the end member of (ii) no solitary waves will emerge, as
segregation is no longer possible.
When it comes to two-phase flow, not only solitary waves will appear, but redistri-
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bution of trace elements, due to their behavior during melting, will occur. In this
work, a model could be introduced giving a fully self-consistent physical description of
trace element transport with melt, including melting, freezing and re-equilibration. In
a closed convecting system, the convection cell will deplete in incompatible elements
and an enriched layer will build up above it. The degree of enrichment in this layer
will increase with every melting event, but eventually will reach an asymptotic value.
A numerical 0D model could be introduced to explain the 2D model results. This 0D
model consists of a convecting source region, where melting takes place, and an em-
placement zone where the produced melt freezes again. Three additional parameters
are introduced describing the ratio of molten material reaching the emplacement zone,
the ratio of emplacement zone to source region, and the ratio of the sizes of partially
molten region to whole source region. A simple equation can be used to fit the numer-
ical results. Only the ratio of melt- to source region describes the time needed to reach
the asymptotic value. All others, including trace element parameters, only affect the
maximum enrichment reached.
Whether solitary waves are able to transport material just recently was shown, as
they were thought to just pass through material during ascent. In this work it could
be demonstrated that solitary waves, without neglecting the shear stress term, are
able to transport material as well. The transition between mass transporting and
non-transporting waves depends on the phase velocity. While earlier studies saw this
switch at a non-dimensional velocity of 3, we, applying the full equations, see it at 3.6.
Starting from a melt layer it could be shown, that the material captured within the
wave is not from this melt layer, but from a region, depending on model parameters,
approximately 5 to 10 wave diameters above the original melt zone. As the wave needs
some time and distance to emerge and establish the separated area in the center, the
material is from the area where this transition is completed.
This thesis helped to achieve better insights on under which conditions solitary waves
build up and what parameters are important in this kind of modeling. In publication
1,2 and 4 solitary waves are observed while in publication 3 no solitary waves build up.
Here, a subduction back arc is modeled and melting and freezing is possible, which is
known to suppresses the emergence of solitary waves and might explain why we do net
observe them. Another point is that no background porosity is prescribed. In order
for solitary waves to build up it is necessary to make decompaction in front of the wave
possible, which is usually achieved by applying a background porosity. One could see
an uprising plume in the model as a partially molten background, but melt fractions
here are relatively high, leading to very large compaction lengths and resulting solitary
waves would be larger than the model domain. Additionally, diapiric rise might be
too dominant to allow for solitary waves to build up in the short time of the plume
rising as it was shown in publication 2. However, solitary waves might be possible in
back arcs where a broader area is partially molten to a smaller degree. In that case
numerical resolution might play an important role in order to sufficiently resolve the
small waves in such a broad model domain.
In publication 3 it could be shown that two-phase flow is an important tool to model
the transport of trace elements. Even though solitary waves cannot be observed here,
modeling these waves from publication 1 and 2, and adding the capability for trans-
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port of trace elements with melt, which is done in the unpublished manuscript, shows
that those waves might have significant influence on geochemical markers and further
work has to be carried out to get an idea on how this is important in a more realistic
model as in publication 3.
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Kapitel 9

Fazit

In Rahmen dieser Arbeit wurde Zwei-Phasen Strom im Allgemeinen, und im Spezi-
ellen Besonderheiten, die nur Zwei-Phases Strom zuzuordnen sind, untersucht.Zum
einen sind dies solitäre Porositätswellen und zum anderen der Transport von Spuren-
elementen in Schmelze, was mit Hilfe von numerischen Finite Differenzen Modellen
untersucht wurde.
Es konnte gezeigt werden, dass sich solitäre Wellen aus einer Porosiätsstörung her-
ausbilden können, und dies obwohl sehr viel realistischere, schnell abfallende Visko-
sitätsgesetze für die Prositätsabhängigkeit von Schmeling et al. (2012) genutzt wurden.
Diese Gesetze haben keinen großen Einfluss auf die Phasengeschwindigkeit und Form
der Welle, solange die Hintergrundporosität relativ klein ist. Höhere führen jedoch
zu einem Verengen der Welle und zu einer zunehmenden Diskrepanz zu analytischen
Lösungen. Im Allgemeinen sind unsere Modelle bei kleinen Schmelz-Porositäten im
Einklang mit den analytischen Lösungen, welche den Scher-Term vernachlässigen, da
der Scheranteil der Matrix durch einen Anstieg in der Kompaktion ausgeglichen wird.
Weiterhin konnte ein Wechsel der Richtung der Matrixgeschwindigkeit für verschie-
dene Viskositäten beobachtet werden. Für sehr kleine Viskositäten strömt die Matrix
im inneren der Welle nach unten, entgegen der Wellenausbreitungsrichtung. Allerdings
strömt sie in den meisten Fällen aufwärts.
Zusätzlich konnte gezeigt werden, dass, abhängig von der Ausdehnung der partiell
geschmolzenen Zone, der Aufstieg nicht alleine durch Diapirismus oder solitäre Wel-
len, sondern viel mehr durch eine Mischung von beiden geschieht. Dabei spaltet sich
die Störung in zahlreiche solitäre Wellen auf und steigt dann in Formation auf. Sind
die Phasengeschwindigkeiten der Wellen klein, behalten sie ihre Diapir-Formation bei
und werden nur etwas länger, da die Hauptwelle etwas größer ist als die anderen.
Abhängig vom Verhältnis der Größe der Schmelz-Störung und der Kompaktionslänge
kann der Aufstieg in zwei Regime unterteilt werden: (ia+b) Solitäre Wellen a und b,
und (ii) Diapirismus-dominierend. In Regime (ia) sinkt die Matrix im Inneren der Wel-
le, während sie in (ib) zusammen mit der Welle aufsteigt. Je weiter man in Regime (i)
ist, umso weniger solitäre Wellen entstehen. Zuletzt entsteht nur noch eine einzige. In
Regime (ii) entstehen, obwohl Diapirismus dominant ist, immer noch solitäre Wellen,
jedoch nimmt die Zeit zur Entwicklung einer Welle mit zunehmender Tiefe im Regime
zu. Nur im Endglied von (ii), wo Segregation nicht mehr möglich ist, können keine
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Wellen mehr entstehen.
Beim Zwei-Phasen Strom treten nicht nur solitäre Wellen auf, es findet aufgrund des
Verhaltens während der Schmelze auch eine Umverteilung von Spurenelementen statt.
In dieser Arbeit wird ein Modell eingeführt welches eine konsistente physikalische
Beschreibung von Spurenelement-Transport in Schmelze, einschließlich Aufschmel-
zen, Gefrieren und Re-Equilibrierung beschreibt. In einem geschlossenen konvektie-
renden System wird die Konvektionszelle an inkompatiblen Spurenelementen verarmen
und eine angereicherte Schicht darüber entsteht. Der Grad der Anreicherung nimmt
mit jedem Schmelzereignis zu, aber wird sich schließlich einem asymptotischen Wert
annähern. Ein numerisches 0D-Modell wurde eingeführt, welches die 2D-Ergebnisse er-
klärt. Es besteht aus einer konvektierenden Quellzone, in der Material aufgeschmolzen
wird, und einer Ablagerungszone, in der die Schmelze wieder gefriert. Drei zusätzliche
Parameter wurden eingeführt, die den Anteil der Schmelze, die die Ablagerungszo-
ne erreicht, das Verhältnis von Quellregions- zu Ablagerungszonen-Größe, und das
Verhältnis von partiell geschmolzener Region zu ganzer Quellregion, beschreiben. Zur
Beschreibung der numerischen Gleichung wird eine einfache Gleichung genutzt. Nur
das Verhältnis von Schmelz- zu Quellregion beeinflusst dabei die Zeit, die benötigt
wird, um sich dem asymptotischen Wert anzunähern. Alle anderen, einschließlich der
Spurenelement Parameter, beeinflussen nur den maximalen Grad der Anreicherung.
Dass solitäre Wellen Material transportieren können wurde erst kürzlich gezeigt. Zu-
vor wurde angenommen, dass eine Welle Material nur durchströmt. Das Verhalten für
das vollständige Gleichungssystem für Zwei-Phasen Strom, welche den Scherterm nicht
vernachlässigen, konnte in dieser Arbeit bestätigt werden. Der Übergang von transpor-
tierenden zu nicht-transportierenden Wellen wurde dabei bei einer non-dimensionalen
Phasengeschwindigkeit von 3.6 gefunden und nicht 3, für die einfacheren Gleichun-
gen. Startet man von einer Schmelzschicht konnte gezeigt werden, dass das Material,
das im inneren der Welle eingefangen ist, nicht von der ursprünglichen Schmelzschicht
stammt sondern von einer Schicht etwa 5 bis 10 Wellendurchmesser darüber. Da die
Wellen einiges an Zeit und Strecke benötigen, um sich zu bilden, und den abgetrenn-
ten Bereich aufzubauen, stammt das Material von dort, wo dieser Übergang vollzogen
wurde.
Diese Thesis hat dabei geholfen einen besseren Einblick darin zu erhalten unter welchen
solitäre Wellen entstehen können und welche Parameter dabei entscheidend sind. In
den Publikationen 1,2 und 4 konnte solitäre Wellen beobachtet werden, während in Pu-
blikation 3 sich keine gebildet haben. Hier wurde ein Subduktions Backarc modelliert
und Schmelzen und Gefrieren ist möglich, was, wie bekannt ist, das Aufkommen von
solitären Wellen verhindern kann. Das könnte das Fehlen dieser Wellen erklären. Ein
anderer Punkt ist, dass keine Hintergrund-Porosität vorgegeben ist. Um das Aufkom-
men von Porositätswellen zu ermöglichen, ist es nötig Dekompaktion vor der Welle
zu erlauben, was normalerweise durch ein porösen Hintergrund erreicht wird. Man
könnte den aufsteigenden Plume als einen partiell geschmolzenen Hintergrund anneh-
men, doch die Schmelzanteile sind vergleichsweise groß und führen zu sehr großen
Kompaktionslängen. Resultierende Wellen wären größer als die Modell-Domäne. Hin-
zu kommt, dass Diapirismus zu dominant sein könnte um Wellen zu erlauben in der
kurzen des Aufstiegs sich zu bilden. Solitäre Wellen können sich potenziell bilden, wenn
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9. Fazit

ein größerer Bereich im Modell zu einem geringen Teil geschmolzen ist. Dann spielt
die numerische Auflösung eine wichtige Rolle, da die kleinen Wellen in so einer großen
Modell-Domäne hinreichend aufgelöst werden müssten.
In Publikation 3 konnte gezeigt werden, dass Zwei-Phasen Strom ein wichtiges Werk-
zeug ist den Transport von Spurenelementen zu modellieren. Auch wenn sich hier
solitäre Wellen nicht bilden, konnten Modelle von diesen Wellen aus Publikation 1
und 2, zusammen mit der Möglichkeit des Spurenelement-Transports, was im letzten
Manuskript getan wurde, zeigen, dass sie einen signifikanten Einfluss auf geochemische
Marker haben können. Mehr Arbeit ist nötig um die Wichtigkeit bei realistischeren
Modellen wie in Publikation 3 zu untersuchen.
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Kapitel 10

Zusammenfassung

Das Schmelzen von Gesteinen im inneren der Erde ist ein häufig vorkommendes Phäno-
men und kann an vielen verschiedenen Orten auf der Oberfläche der Erde beobach-
tet werden. Hier ist die Schmelze durch den Mantel und die Kruste geströmt bis sie
schließlich die Oberfläche erreicht und dort Vulkane oder sogar ganze lithographische
Schichten, wie zum Beispiel die ozeanische Kruste, bildet. Oft ist diese Schmelze eine
gute Quelle von Informationen die wir aus den Tiefen der Erde ziehen können und es
ist daher unerlässlich die Prozesse des Schmelzens und deren Segregation durch die
feste Matrix zu fassen. Um ein besseres Verständnis davon zu erhalten, untersucht
diese Thesis sie mit Hilfe von numerischen Modellen.
Der benutzte Ansatz ist ein so genanntes Zwei-Phasen Strom Modell, welches die
Fähigkeit von Schmelze, durch eine viskos verformende, poröse Matrix zu segregieren,
beschreibt. Eine Besonderheit von Zwei-Phasen Strom ist das Auftreten von solitären
Porositätswellen. Dies sind Wellen von lokal erhöhter Porosität, die durch eine partiell
geschmolzene Matrix, mit konstanter Geschwindigkeit und gleichbleibender Form, auf-
steigen. Angetrieben werden sie durch Dekompaktion und Kompaktion vor und hinter
der Welle.
Ein Parameter beim Modellieren von porösen Wellen ist das Viskositätsgesetz für
Scher- und Volumenviskosität. In früheren Studien wurden diese meist stark verein-
facht, indem die Porositäts-Abhängigkeit unterschätzt oder sogar der Einfluss der Po-
rosität auf Volumenviskoität gänzlich vernachlässigt wird. In dieser Thesis werden
realistischere Modelle von Schmeling et al. (2012) verwendet. Sie basieren auf vorge-
gebenen Schmelzgeometrien, bestehend aus Filmen und Röhren, woraus Viskositäten
numerisch berechnet werden. Sie nehmen bei kleinen Porositäten bereits stark ab. Die
verwendeten Gesetze führen bereits bei Porosiäteten von 20–40% zu kompletter Dis-
aggregation. Die Ergebnisse der numerischen Berechnung wurden parametrisiert und
anschließend in einen bestehenden 2D Finite Differenzen-Mantel-Konvektions Code
mit Zwei-Phasen Strom eingearbeitet. Der Code, FDCON, wurde verwendet um die
Ausbreitung von Porositätswellen zu modellieren.
Eine Gauß-förmige Welle wurde mit einer vorgeschriebenen Amplitude und Weite in
eine partiell leicht aufgeschmolzene Region (Hintergrundporosität) platziert. Die Form
einer Gauß-Glocke entspricht nicht der einer solitären Welle, kommt dieser jedoch nahe
und wird verwendet, da die exakte Form einer zweidimensionalen solitären Welle nicht
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bekannt ist.
Es konnte gezeigt werden, dass eine anfängliche Gauß-Welle sich innerhalb kürzester
Zeit in eine solitäre Welle umwandelt, auch mit den neuen realistischeren Viskositäten.
Je nachdem wie groß die Anfangs-Welle im Vergleich zur letztendlichen Porositätswelle
ist, passt sich die Amplitude an. Nach dem Erreichen der Dispersionskurve, nimmt die
Amplitude aufgrund von numerischer Ungenauigkeiten ab und so können mit einigen
wenigen Modellen bereits große Teile der Dispersionskurve abgedeckt werden. Es konn-
te weiterhin gezeigt werden, dass, solange die Hintergrundporosität relativ klein ist,
sich die Wellen nicht stark von vereinfachten semi-analytischen Lösungen unterschie-
den. Mit zunehmender Hintergrundporosität nimmt der Unterschied jedoch drastisch
zu. Höhere Porositäten von bis zu 15% führen zu bis zu 20% geringeren Phasenge-
schwindigkeiten. Das liegt unter anderem daran, dass bei höheren Porositäten die
Disaggregations-Grenze erreicht werden kann. Die einzelnen festen Körner sind nicht
mehr mit einander verbunden und die Viskosität nimmt schlagartig ab. Dieses Ver-
halten ist, erstens, bei früheren Untersuchungen mit vereinfachten Viskositätsgesetzen
nicht berücksichtigt worden und, zweitens, unterliegt anderen physikalischen Gesetzen,
die in unserem Modell nicht berücksichtigt werden und eventuell das Aufkommen von
solitären Wellen sogar verhindern könnten.
Auch das Ändern der Geometrie des Schmelz-Netzwerks hat einen enormen Einfluss.
Bei 100% Filmen und variierenden Seitenverhältnissen der einzelnen Filme ändert sich
zwar die Phasengeschwindigkeit nicht signifikant, jedoch ändert sich die Weite der
Welle um über 25%. Bei eier Schmelzgeometrie bestehend aus 50% Filmen und 50%
Röhren, bleiben Geschwindigkeit und Weite der Welle nahezu konstant.
Die Matrix-Geschwindigkeit im Zentrum der Welle hat vergleichsweise wenig Einfluss
auf die Welle. Verringert man jedoch das Seitenverhältnis der Filme, führt das zu einer
Vorzeichenänderung in der Matrixgeschwindigkeit. Für mittel bis hochviskose Visko-
sitäten bewegt sich die Matrix mit der Welle nach oben. Niedrige Viskositäten führen
zu einem Absinken der Matrix, entgegen der Wellenbewegung.
Von besonderem Interesse bei solitären Porositätswellen ist, wann und wie sie entste-
hen. In bestimmten Fällen bilden sich Diapire, in anderen wiederum bilden sich eine
oder sogar mehrere solitäre Wellen aus einer einzigen Gauß-Glocken-förmigen Störung.
Hier ist wichtig zu erwähnen, dass solitäre Wellen immer eine gleiche Größe von etwa
3 bis 4 Kompaktionslängen haben, während Diapire jegliche Größenordnungen anneh-
men können. Die Kompaktionslänge ist eine charakteristische Länge beim Zwei-Phasen
Strom und gibt die Größenordnung wieder in der Kompaktion an einer impermeablen
Grenzschicht stattfindet. Sie hängt von der Permeabilität der Matrix, sowie der Matrix-
und Fluidviskosität ab. Ein Vergrößern der Anfangsstörung, bzw. das Verringern der
Kompaktionslänge, führt somit zu einer kleineren solitären Welle im Vergleich dazu.
Um den Übergang von Diapirismus zu solitären Wellen besser zu verstehen, kann man
Segregations- und Stokesgeschwindigkeit der Anfangsstörung bestimmen und verglei-
chen. Es zeigt sich, dass der Anfangsstörungs-Radius in Bezug auf die Kompakti-
onslänge hier entscheidend ist. Große Radien führen zu einer Stokes-dominierenden
Bewegung, während für kleinere Radien Segregation dominiert. Die Stokesgeschwin-
digkeit stellt dabei die Geschwindgkeit des aufsteigenden Diapirs durch Gravitation
dar. Auch die Amplitude der Störung spielt eine Rolle, wobei größere Amplituden eher
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solitäre Wellen bzw. Segregation stärken.
Zur besseren Untersuchungen wurden 2D-Modellierungen in einem sich bewegendem
Koordinatensystem durchgeführt. Die Auflösung der Kompaktionslänge im Modell ist
ein wichtiger Faktor, da diese hinreichend aufgelöst werden muss damit sich überhaupt
solitäre Wellen bilden können und deren Eigenschaften zufriedenstellend genau wie-
dergegeben werden. Zu grobe Auflösungen verwaschen die Welle, führen zu kleineren
Amplituden und erlauben nicht das Aufkommen von sekundären Wellen. Erst bei ei-
ner Auflösung, bei der eine Kompaktionslänge durch mindestens zwei Gitterlängen
aufgelöst wird, sind alle Eigenschaften erkennbar.
Es wurden verschiedene Anfangsstörungs-Radien in Bezug auf die Kompaktionslänge
gewählt. Mit der Zeit bilden sich daraus immer solitäre Wellen. Nur für den Fall einer
Kompaktionslänge von null, d.h. Segregation ist nicht möglich, kann sich auch über
lange Zeit keine solche Welle bilden. Selbst im Stokes-dominierenden Grenzbereich
bildet sich an der Spitze der aufsteigenden Störung eine Welle, die sich jedoch nur
unmerklich schneller bewegt und sich dementsprechend auch über längere Aufstiegs-
zeiten nicht von den Störung trennen kann. Im Übergangsbereich von Diapirismus
zu solitären Wellen bilden sich mehrere sekundäre Wellen, welche zusammen mit der
Störung aufsteigen. Die primäre Welle ist jedoch etwas größer und damit schneller,
was zu einer Verlängerung in der Vertikalen der Störung führt.
Auch wenn in allen Fällen, in denen Segregation möglich ist, sich irgendwann so-
litäre Wellen bilden, heißt das nicht, dass sich diese auch bilden. Mit zunehmenden
Störungsradius nimmt auch die Zeit zu, die benötigt wird, damit sich eine Welle aus-
bildet. Sie nimmt exponentiell zu und im Diapirismus-dominanten Bereich kann sie zu
groß sein, als dass sich in natürlichen Umgebungen welche bilden könnten.
Bei der Betrachtung vom Massenfluss von Matrix und Fluid, kann man den Einfluss
des zunehmend stärker werdenden Diapirismus bei zunehmendem Radius erkennen.
Bei einem Anfangsstörungs-Radius von 2,4 mal der Kompaktionslänge wird das Auf-
strömen des Fluids durch ein Herabströmen der Matrix kompensiert. Beides findet
hauptsächlich innerhalb der Wellenregion statt. Nimmt der Radius zu, wird die so-
litäre Welle kleiner. Das Aufströmen des Fluids findet fast ausschließlich innerhalb
der Wellenzone statt und wird durch ein Herabströmen der Matrix, hauptsächlich au-
ßerhalb der Wellenregion, kompensiert. Weiter zunehmender Radius führt zu einem
Aufströmen der Matrix in der Wellenregion, wird jedoch auch durch ein stärkeres Her-
abströmen an den Rändern kompensiert.
Mit der Hilfe von Massenfluss der Schmelze und Matrix, und der Geschwindigkeit der
Matrix werden Koeffizienten definiert, mit denen man wiederum zwei Regime bestim-
men kann. In Regime (ia) und (ib) sind solitäre Wellen dominant, wobei in (ia) die
Matrix im inneren der Welle nach unten sinkt, während sie in (ib) mit der Welle auf-
steigt. Je weiter man in diesem Regime ist, desto weniger solitäre Wellen bilden sich
aus der Anfangsstörung, bis sich zuletzt nur eine einzige ausbildet. In Regime (ii) ist
Diapirismus dominant, es bilden sich jedoch immer noch solitäre Wellen aus, die nur
unmerklich schneller sind als der Diapir. Je tiefer man in diesem Regime ist, desto
länger ist die benötigte Zeit zum Umwandeln in eine Welle. Das Endglied von (ii) ist
reiner Diapirismus, welcher jedoch nur erreicht wird wenn Segregation gänzlich ver-
hindert wird.
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Vor allem im Bereich des Übergangs von solitären Wellen zu Diapirismus-dominierend
spielt die räumliche Auflösung eine wichtige Rolle. Hier wird die Kompaktionslänge
so klein, dass sie nur schwierig hinreichend aufgelöst werden kann, solitäre Wellen
haben gleichzeitig aber immer noch einen großen Einfluss auf den Aufstieg. Weiter
im Diapirismus-dominierenden Regime kann zwar die Kompaktionslänge nicht mehr
aufgelöst werden, solitäre Wellen sind aber kaum noch relevant für den Aufstieg des
Diapirs als Ganzes.
Ein anderer wichtiger Aspekt von Zwei-Phasen Strom ist die mögliche Umverteilung
von Elementen. Inkompatible Elemente bevorzugen es während eines Schmelzvorgangs
vom Kristallgitter in die Schmelze zu gehen. Diese angereicherte Schmelze segregiert
wegen niedrigerer Dichte durch die poröse Matrix nach oben und sorgt so für eine
Umverteilung der Elemente hin zu höheren Lagen.
Als Teil dieser Arbeit wurde ein bestehender Zwei-Phasen Strom-Konvektions Co-
de, FDCON, erweitert um den Transport von Spurenelementen in der Schmelze zu
ermöglichen. Hierzu werden zwei weitere Massenerhaltungs-Gleichungen, eine für die
Element-Masse in der Schmelze und eine in der Matrix, voll konsistent gelöst. Dies be-
zieht Schmelzen, Gefrieren und Re-Equilibrierung ein. Der Quellterm der Gleichungen
beinhaltet die Konzentrationen des zu beobachtenden Elements in Matrix und Schmel-
ze und den Partitionierungs-Koeffizienten zwischen Matrix und Schmelze. Abhängig
ob gefroren oder geschmolzen wird, müssen unterschiedliche Quellterme gelöst werden.
Die Re-Equilibrierung wird unter Einsatz der Reaktionszeit berechnet. Dabei wird die
Differenz von aktuellen Konzentrationen hin zu Equilibrium-Konzentrationen berech-
net.
Ein Modell mit porositäts- und temperaturabhängiger Viskosität wurde erzeugt. Es
bildet sich eine Konvektionszelle im unteren, niedrig-viskosem Bereich des Modells, wo
sich von Zeit zu Zeit ein partiell geschmolzener Plume bildet, der in die hoch-viskose
Schicht darüber eindringen kann.
Hier konnte gezeigt werden, wie sich inkompatible Elemente in einem partiell geschmolz-
enen Plume am oberen Ende anreichern und schließlich abtrennen, um dort zu ver-
weilen. Während des Aufstiegs eines Plumes bewegt sich die Schmelzfront mit ei-
ner größeren Geschwindigkeit als die Matrix nach oben. Währenddessen sammelt
sich angereicherte Schmelze im oberen Teil des Plumes an und sorgt dort für eine
erhöhte totale Konzentrationen. Zu einem bestimmten Zeitpunkt überholt die Matrix-
Geschwindigkeit die der Schmelzfront und sorgt so für ein Abtrennen der angerei-
cherten Matrix von der Schmelze. Das Verzögern der Schmelzfront ist erklärbar durch
das Sinken der Temperatur und dem Anstieg der Viskosität, welche Dekompaktion
erschwert.
In einer konvektierenden Zelle wird jedes Schmelzereignis zu einer Anreicherung führen
und gleichzeitig die Quellregion verarmen. Ein 0D-Modell wurde erstellt, welches dieses
Anreicherungsverhalten widerspiegelt. Es besteht aus zwei Zonen: einer Quellregion in
der Material aufgeschmolzen wird und einer Ablagerungszone in der dieses Material
wieder gefriert und abgelagert wird. Dieses Modell beinhaltet sechs frei wählbare Pa-
rameter. Darunter fallen das Transportverhältnis, das Ablagerungs-Volumenverhältnis,
das Schmelzbereichsverhältnis und der maximale Schmelzgrad. Sie beschreiben Aspek-
te, die nur schwierig abzuschätzen sind. Dazu kommen Element-abhängige Parameter
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wie Partitionierungs Koeffizient und Re-Equilibrierungskonstante bzw. Reaktionszeit.
Es wird gezeigt, dass die Anreicherung einen asymptotischen Wert annimmt, welcher
von allen Parametern beeinflusst wird. Die Zeit, die benötigt wird, diesen zu erreichen
hängt jedoch nur vom Verarmungsverhältnis ab.
Die Retentionszahl, also der Widerstand den ein Fluid beim Segregieren durch die
poröse Matrix erfährt, hat einen enormen Einfluss auf den Grad der Anreicherung.
Eine niedrigere Retentionszahl, d.h. stärkere Segregation, führt zu kleineren Schmelz-
graden. Diese führen wiederum zu deutlich höheren Viskositäten, was das Eindringen
in die hoch viskose Schicht darüber erschwert. Das hat einen enormen Einfluss auf die
Dynamik des Modells und führt zu geringeren Eindringtiefen. Der Grad der Anreiche-
rung nimmt jedoch trotzdem mit abnehmender Retentionszahl zu.
Die Reaktionszeit, also die Zeit die zur Re-Equilibrierung benötigt wird, hat keinerlei
Einfluss auf die Dynamik des Modells, führt jedoch zu unterschiedlichen Graden der
Anreicherung. Kleinere Reaktionszeiten, also schnellere Re-Equilibrierung, führen zu
deutlich kleineren Anreicherungen.
Auch wenn das Modell nicht den Transport von Schmelze and die Oberfläche ermöglicht,
können dennoch die Fluid-Konzentrationen im Modell genutzt werden, um sie mit
realen Messungen zu vergleichen. Der Modellaufbau könnte beispielsweise für einen
Vulkan-Bogen an einer Subduktionszone genutzt werden. Hier zeigt sich, dass bei un-
seren Modellen eher große Retentionszahlen zu passenderen Werten führen. Kleinere
Retentionszahlen sind jedoch wahrscheinlicher in der Natur. Diese Diskrepanz lässt
sich womöglich durch den Modellaufbau und die Rahmenbedingungen erklären, die
diesem Bogen nicht gut genug entsprechen.
Auch solitäre Porositätswellen können Material transportieren. Dies wurde erst kürzlich
bestätigt und wurde für viele Jahre für nicht möglich gehalten. Es wurde gezeigt, dass
es einen Übergang, abhängig von der non-dimensionalen Geschwindigkeit der Welle,
gibt. Bei langsamen Wellen wird Material in die Welle eingezogen, aber sofort auch
wieder ausgetragen. Bei schnellen Wellen bildet sich allerdings ein abgetrennter Be-
reich im inneren der Welle, welcher Material einschließt und mit sich mitträgt bis die
Welle irgendwann zerfällt. Mit unseren vollen Gleichungen ohne Vereinfachungen er-
halten wir diesen Übergang bei 3.6.
Benutzt man Marker, um den Ursprung des Materials im inneren der Welle zu unter-
suchen, stellt man fest, dass es nicht aus der ursprünglichen Schmelzschicht stammt,
sondern aus einem Bereich etwas oberhalb. Eine solitäre Welle benötigt Zeit bis sie
sich aus einer Schmelzschicht in mehrere Wellen aufspaltet. Bis dies nicht passiert ist,
ist auch der abgetrennte Bereich nicht im Stande Material aufzunehmen. Es stammt
aus einer Schicht etwa 5 bis 10 Wellen-Durchmessern oberhalb der Schmelzschicht.
Im Rahmen dieser Arbeit konnten zahlreiche Erkenntnisse bezüglich Zwei-Phasen
Strom und dessen Besonderheiten gewonnen werden. Insbesondere konnte gezeigt wer-
den, unter welchen Bedingungen sich solitäre Porositätswellen bilden und wann diese
wichtig für das gesamte Modell sind. Es konnte gezeigt werden, dass sich solitäre
Wellen auch bei realistischeren Viskositätsgesetzen bilden und wie groß der Einfluss
auf Form und Geschwindigkeit der Welle ist. Weiterhin konnte gezeigt werden, dass
solitäre Wellen auch mit der vollen physikalischen Beschreibung in der Lage sind Mate-
rial zu transportieren. Es konnten Einsichten in den Ursprung des Materials innerhalb
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der Welle gewonnen werden. Zuletzt konnte eine voll konsistente Beschreibung für
den Transport von Spurenelementen in Schmelze mit Hilfe von Zwei-Phasen Strom
eingeführt werden, welche Schmelzen, Gefrieren und Re-Equilibrierung beinhaltet.
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