Da zwischen der Durchflußmenge und dem Druckgradienten nach <sup>12</sup> ein linearer Zusammenhang besteht, scheint der Einfluß der Turbulenz auf unsere Ergebnisse nur gering zu sein.

Die Frage, wie stark die nur ungenau bekannte Wandtemperatur unsere Ergebnisse beeinflußt, wurde dadurch beantwortet, daß einmal nach Formel (5) mit drei verschiedenen  $T_w$ -Werten gerechnet wurde, zum anderen  $T_w$  für alle Stromstärken konstant gesetzt wurde. Die Ergebnisse sind in Abb. 3 wiedergegeben. Die Abhängigkeit der mittleren kinematischen Zähig-

## Non-Local Shell Model Parameters for Nuclear Bound States

## W. ULRICI and G. SÜSSMANN

Institut für Theoretische Physik, Frankfurt a. M., Germany

(Z. Naturforschg. 21 a, 845-846 [1966]; received 21 May 1966)

By fitting shell model parameters to the mass defects of the nuclei the model is found to be strongly non-local,  $\beta = 1.30...$ 1.50 fm,  $V_0 = 120...150$  MeV.

We made the attempt to determine the parameters of a non-local shell model by fitting the binding energies of the protons and the charge radius of the nucleus, together with its mass defect. The latter has been strongly underestimated in calculations using a local shell model. The model is the same as in <sup>1</sup>.

From the charge distribution

$$\varrho(\mathbf{r}) = \frac{1}{4\pi} \sum_{\substack{\text{proton}\\ \text{levels}}} n_i \, \psi_i(\mathbf{r})^2 \,,$$

 $n_i$  being the number of nucleons in the *i*-th level  $\varepsilon_i$ ,  $\psi_i$  the corresponding radial wave function, we get the equivalent radius

$$r_{\rm eq} = \sqrt{\frac{5}{3}} \left[ \frac{4 \pi}{Z} \int_{0}^{\infty} \mathrm{d}r \, r^4 \, \varrho \left( r \right) \right]^{\frac{1}{2}} \cdot A^{-\frac{1}{3}}.$$

15 /

The mass defect is obtained from the formula

$$D = -\frac{1}{2} \sum_{\substack{\text{all nucleon} \\ \text{levels}}} n_i(\varepsilon_i + t_i);$$
  
$$all nucleon \\ \text{levels}$$
$$t_i \equiv \langle i \mid t \mid i \rangle = \frac{\hbar^2}{2m} \int_0^\infty dr \left[ l_i(l_i+1) \ \psi_i(r)^2 + r^2 \ \psi_i'(r)^2 \right]$$

is the mean value of the kinetic energy in the single particle state i.

The medium weight and heavy nuclei the equivalent radii of which are known from electron scattering

- <sup>1</sup> H. MELDNER, G. SÜSSMANN, and W. ULRICI, Z. Naturforschg. **20 a**, 1217 [1965].
- <sup>2</sup> R. HOFSTADTER, Rev. Mod. Phys. 28, 214 [1956].
- <sup>3</sup> J. H. E. MATTAUCH, W. THIELE, and A. H. WAPSTRA, Nucl. Phys. 67, 1 [1965].

keit von der Wandtemperatur nimmt wie erwartet mit zunehmendem Bogenstrom ab. Die berechneten mittleren kinematischen Zähigkeitswerte, die verschiedenen Wandtemperaturen zugeordnet sind, liegen innerhalb der Meßgenauigkeit.

Wir danken dem Rechenzentrum der Universität Bonn für die Bereitstellung von Rechenzeit auf der IBM 7090 und den Herren H. KRINGS und A. ZIMMERMANN für ihre Hilfe bei der Programmierung.

experiments <sup>2</sup> are <sup>32</sup>S, <sup>40</sup>Ca, <sup>51</sup>V, <sup>59</sup>Co, <sup>115</sup>In, <sup>121, 123</sup>Sb, <sup>197</sup>Au, <sup>208</sup>Pb, and <sup>209</sup>Bi. We know their mass defects <sup>3</sup>, and for A < 60 the binding energies of the 2s protons are determined by (p,2p)-experiments <sup>4</sup>. For the other nuclei we estimated the magnitude of the binding energy of the last proton from its separation energy. The last information is given only for odd-A nuclei, therefore we have not studied <sup>208</sup>Pb.

In order to fit the experimental values we had to determine six parameters:  $V_0$ ,  $\sigma$ ,  $\tau$ ,  $\beta$ ,  $r_0$ , and a. The spin-orbit coupling constant  $\sigma$  was roughly fixed to 0.55 from the splitting of the d-levels in  ${}^{40}\text{Ca.}$  A variation of  $\sigma$  has approximately no effect on the values of the mass defect and of the equivalent radius. The isospin parameter  $\tau$  was kept<sup>1</sup> equal to 2. The parameters  $V_0$ ,  $\beta$ , and  $r_0$  were determined for several a, and it turned out that if a was too high or too low, the position of the d-center relative to the s-level in  ${}^{40}\text{Ca}$  or the level order versus mass number for  ${}^{121}\text{Sb}$  and  ${}^{123}\text{Sb}$  was wrong. Thus we chose a to be about 0.65 to 0.70 fm; this choice agrees with fits to nucleon-nucleus scattering <sup>5</sup>.

This method did not work for <sup>51</sup>V and <sup>59</sup>Co: with a=0.65 fm, the radius parameter  $r_0$  went to 0.90 fm. Thus we tried it the other way round and determined a,  $\beta$ , and  $V_0$  for  $r_0=1.07$  fm ( $=r_0$  of the charge distribution). We do not think this had much success.

The results are given in table 1.

Compared with the parameters found in optical model studies <sup>5</sup> ( $\beta = 0.85$  fm,  $V_0 = 71$  MeV) our values essentially indicate a remarkably larger non-locality  $\beta$  of 1.30 to 1.50 fm and correlated with it a potential depth of 110 to 140 MeV. These parameters are consistent with those determined in a similar attempt <sup>6</sup>, using the equivalent radii, the proton knock-out reaction data, and the electron scattering results for light and medium weight nuclei as the data to be fitted.

Our values need not be a concentration to the optical model parameters: they indicate a certain dependence of  $\beta$  on the energy. In Fig. 1 we see the energy dependence of the equivalent local potential <sup>5, 7</sup> using

- <sup>4</sup> M. RIOU, Rev. Mod. Phys. 37, 375 [1965].
- <sup>5</sup> F. PEREY and B. BUCK, Nucl. Phys. 32, 353 [1962].
- <sup>6</sup> A. Swiff and L. R. B. ELTON, to be published, and L. R. B. ELTON, private communication.
- <sup>7</sup> W. E. FRAHN, Nucl. Phys. 66, 358 [1965].

NOTIZEN

| Nucleus                         | <i>r</i> <sub>0</sub><br>(fm) | a<br>(fm) | β<br>(fm) | V <sub>0</sub><br>(MeV) | Proton binding energies<br>(MeV)                               |                                          |                                        | Mass defect<br>(MeV) |      | Equivalent<br>radius (fm) |      |
|---------------------------------|-------------------------------|-----------|-----------|-------------------------|----------------------------------------------------------------|------------------------------------------|----------------------------------------|----------------------|------|---------------------------|------|
|                                 |                               |           |           |                         | State                                                          | care.                                    | exp.                                   | care.                | exp. | carc.                     | exp. |
| <sup>32</sup> <sub>16</sub> S   | 1.04                          | 0.65      | 1.38      | 137                     | 2 s 1/2<br>1 d 5/2<br>1 p 1/2<br>1 p 3/2<br>1 s 1/2            | 8.7<br>16.5<br>35.0<br>43.5<br>76.0      | 8.8<br>16.1<br>33.5?<br>70-80          | 280                  | 272  | 1.298                     | 1.30 |
| <sup>40</sup> 20Ca              | 1.07                          | 0.70      | 1.53      | 137                     | 1 d 3/2<br>2 s 1/2<br>1 d 5/2<br>1 p 1/2<br>1 p 3/2<br>1 s 1/2 | $8.9 \\11.0 \\19.1 \\38.2 \\45.4 \\76.8$ | 8.4<br>11.1<br>19.0<br>36.8?<br>70-80? | 339                  | 342  | 1.320                     | 1.32 |
| <sup>51</sup> <sub>23</sub> V   | 1.07                          | 0.50      | 1.73      | 157                     | 1 f 7/2<br>2 s 1/2                                             | 2.8<br>14.6                              | 8.1<br>14.7                            | 449                  | 446  | 1.251                     | 1.25 |
| <sup>59</sup> 27Co              | 1.07                          | 0.47      | 1.78      | 157                     | 1 f 7/2<br>2 s 1/2                                             | 4.5<br>15.8                              | $9.5 \\ 13,2$                          | 475                  | 517  | 1.254                     | 1.27 |
| <sup>115</sup> <sub>49</sub> In | 1.07                          | 0.65      | 1.56      | 149                     | 1 g 9/2                                                        | 9.2                                      | 9.3                                    | 970                  | 979  | 1.188                     | 1.19 |
| <sup>121</sup> <sub>51</sub> Sb | 1.15                          | 0.65      | 1.30      | . 114                   | 1 g 7/2<br>2 d 5/2                                             | 5.0<br>5.5                               | 5.8                                    | 1011                 | 1026 | 1.199                     | 1.20 |
| <sup>123</sup> <sub>51</sub> Sb | 1.17                          | 0.65      | 1.30      | 112                     | 2 d 5/2<br>1 g 7/2                                             | 6.7<br>6.8                               | 6.6                                    | 1036                 | 1042 | 1.202                     | 1.20 |
| <sup>197</sup> <sub>79</sub> Au | 1.08                          | 0.65      | 1.67      | 157                     | 2 d 3/2                                                        | 5.2                                      | 5.8                                    | 1510                 | 1559 | 1.179                     | 1.18 |
| <sup>209</sup><br>83Bi          | 1.17                          | 0.65      | 1.41      | 118                     | 1 h 9/2                                                        | 3.8                                      | 3.8                                    | 1647                 | 1640 | 1.203                     | 1.20 |

Table 1. Non-local shell model parameters, and comparison of calculated quantities with experimental ones.  $\tau$  and  $\sigma$  were kept fixed at 2.0 and 0.55, respectively.

a GAUSSIAN non-locality distribution. The true energy dependence seems to be somewhat like the  $\beta = 1.30$  fm one for low energies and like the  $\beta = 0.90$  fm one for high energies. Non-locality distributions other than GAUSSIAN should be able to reproduce this behaviour.



Fig. 1. Approximate energy dependence of the local potential equivalent to a non-local one <sup>7</sup> using a Gaussian non-locality distribution.

<sup>8</sup> U. AMALDI, G. CAMPOS VENUTI, G. CORTELLESSA, C. FRONTEROTTA, E. REALE, P. SALVADORI, and P. HILLMAN, Phys. Rev. Letters For <sup>51</sup>V, <sup>59</sup>Co, <sup>115</sup>In, and <sup>197</sup>Au, the parameters  $\beta$ and  $V_0$  are extremely high. A possible explanation is most easily seen for <sup>51</sup>V, where the f 7/2 level is poorly fitted: The experimental one lies much deeper than the calculated one. This is a characteristic of a spherical model treating non-spherical nuclei. Accordingly we should conclude that these nuclei are non-spherical. The model seems to be rather sensitive for deviations from sphericity. In our calculations we found it necessary to increase  $V_0$  and  $\beta$  in order to keep the mass defect if the separation energy had to be lowered.

The model explains the (e,e'p)-data of the Rome-Frascati group <sup>8</sup> with <sup>32</sup>S and <sup>40</sup>Ca in a natural way. It is not able to predict the energies of the levels above the FERMI energy. The reason may be seen from Fig. 1: The level distances in that region are too large because of the strong energy dependence of the potential. Again this indicates an energy dependence of the parameter  $\beta$ .

This work is partly sponsored by the Deutsche Forschungsgemeinschaft. We thank the Deutsches Rechenzentrum, Darmstadt, for the use of the IBM 7090 computer. It is a pleasure to one of us (W. U.) to thank the Istituto Superiore di Sanità at Rome for a scholarship and for the use of the computer facilities; he acknowledges gratefully the warm hospitality enjoyed there.

8, 171 [1964], and private communication on preliminary results with  $^{40}$ Ca.