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We examine the possibility of reformulating quantum theory (QT) as a deterministic ensemble 
theory which (a) interprets observables as objective properties of physical systems and (b) 
coincides with Q T in all quantitative statements. As will be demonstrated, such an Ensemble-
Quantum-Theory (EQT) can only be constructed if (1) one accepts a modified observable-concept, 
and (2) as long as the theory of measurement is left out of account. A correct treatment of the 
measuring process is impossible within such an EQT. Consequently, there exist no Hidden-
Variable Theories with the properties (a) and (b ) . 

1. Introduction 

In this paper we examine the possibility of a 
deterministic reformulation of quantum theory (QT) 
which has the following features: 

(a) Like in classical physics, the "observables" of 
a physical system should be interpretable as ob-
jective properties of the system, i.e. they should 
always have, independently of an eventual mea-
surement, a definite value which can also be as-
certained by a measurement; 

(b) the deterministic reformation should exactly 
reproduce all quantitative statements of QT; 

(c) the problem of the "reduction of the state 
operator", still not satisfactory solved, should find, 
in the frame of the theory considered, a simple, 
formal solution by basing the reduction of the state 
operator entirely on the revision of the statistical 
"macro-description" of the system required by the 
increase of formation provided by "reading the 
scale". 

This problem originated in the Differential-Space 
Quantum Theory (DSQ) 1 - 5 , an attempt by Wiener 
and Siegel to reformulate QT in analogy to sta-
tistical mechanics as a classical ensemble theory 
with the above properties: In DSQ every quantum 
state is represented by an ensemble of virtual sys-
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tems in dispersion-free micro-states in which every 
observable has a definite value. All micro-states 
evolve deterministicly, and an appropriate prob-
ability distribution ensures that the ensemble mean 
values coincide with the expectation values of QT 
for all observables. The reduction of the state op-
erator at the end of a measurement results from the 
reduction of the ensemble corresponding to the in-
crease of information by reading the scale and does 
not require an additional postulate inside DSQ. 

Now, an analysis of DSQ6 reveals serious dis-
crepances between the physical ideas of this theory 
and its mathematical formalism so that not even 
the properties (a) and (b) can be considered as re-
alized in DSQ. But since this "failure" of DSQ 
proves nothing about the possibility of such a 
theory, the problem remains whether an Ensemble-
Quantum-Theory (EQT) is possible which realizes 
the physical ideas of DSQ, in particular the features 
(a) to (c), while avoiding its deficiencies7. To solve 
this problem, one must first precisely formulate the 
physical concepts of such a "DSQ-like" EQT, and 
from these a formal system of axioms must be ex-
tracted establishing the mathematical structure of 
EQT as far as implied by the physical concepts. 
Finally, one must check whether this axiom system 
is free of contradictions. 

4 A . SIEGEL, The Differential-Space Theory o f Quantum 
Systems, in: Differential-Space, Quantum Systems and 
Predict ion, ed. by N. WIENER, Cambridge (Mass.) 1966. 

5 W . OCHS, Helv . Phys. Ac ta 43, 668 (1970). 
6 W . OCHS, Helv . Phys. Acta 43, 686 [1970]. 
7 Accord ing to the characteristics (a) to (c) o f E Q T , none 

o f the Hidden- Variables Theories developped b y D. BÖHM 
and his co-workers belongs to the class o f E Q T s and will 
therefore no t be considered in this paper ; this applies in 
particular to the theory o f BOIIM and BUB8 which disa-
grees with all o f these three characteristics o f EQT. 

8 D . B Ö H M a n d J . B U B , R e v . M o d . P h y s . 3 8 , 4 5 3 [ 1 9 6 6 ] . 



This program was initiated in a previous paper9 

where we investigated the possibility to associate 
to every physical system a micro-state in which 
every observable has a definite and measurable 
value, and to represent all quantum states by 
Gibbsian ensembles of such micro-states. As has been 
shown by many authors 10~13, this first step in de-
velopping an EQT already leads to a contradiction, 
if the observable-concept of QT is retained un-
changed. Hence we introduced in 9 a new, more 
operative concept of observables14 which takes 
more account of the measuring device: 

According to QT, the state operator W2 resulting f rom 
an incomplete measurement o f the first k ind 1 6 is in general 
no t uniquely determined b y the value o f the measured 
observable, but can also depend on the quantum state Wo 
o f the ob ject before the measurement 1 5 , 1 7 . According as the 
coherence o f the state vectors in the eigenspaces o f the 
measured observable is destroyed b y the measuring device, 
the former state Wo will leave more or less traces in the 
state operator Wo. In the ideal case o f a strictly conservativ 
(A = a)-filter, the coherence in all eigenspaces o f A is com-
pletely maintained, and Wo has the form 

W2 = [Tv(WoPa)]-1PaWoPa5 (1.1) 
in this case the traces o f Wo are strongest. In the other 
extreme o f a completely separating A-instrument, we have 
( f rom the viewpoint o f the interaction) in fact a complete 
measurement and W2 takes the form 

W2 = [Tr(WoPa)]-1 2 | i><i | Wo | i><i | ; (1.2) 
I i) <i I <Pa 

9 W . OCHS, Z . N a t u r f o r s c h . 2 5 , 1 5 4 6 [ 1 9 7 0 ] . 
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1 3 S . K O C H E N a n d E . P . SPECKER , J . M a t h . M e c h . 17 , 5 9 

[1967], 
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the critical v iew on the " innocence " o f condition (B) 
in 1 2 , and 2. b y the discussion o f the various forms o f 
the projection-postulate o f Q T in part C o f 1 5 . 
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H e f t 88 [1958]. 

1 6 For the notion o f the measurement of the first (and second) 
kind, see: W . PAULI, Die allgemeinen Prinzipien der 
Wellenmechanik, in : Handbuch der Physik, ed. b y S. 
FLÜGGE, Vol . Y/1, Berlin 1958. Because measurements o f 
the first kind can be used to prepare eigenstates o f the 
measured observable we will also call them preparative 
measurements. 

17 J. M. JAUCH, Foundations o f Quantum Mechanics, 
Reading (Mass.) 1968. 

1 8 A partition of unity (PU) is a set a = { Qi \ i e Ka} o f pro-
ject ion operators o f a Hilbert space with the properties 

(y i,je Ka) Qi Qj = öij Qi, 2 Qt = 1. 
ieKa. 

here the coherence is completely destroyed in all eigen-
spaces and only the poor reading-mechanism makes the 
measuring device an A-instrument. Between these t w o 
extremes there are in principle instruments with an arbi-
trary separation-character15. 

These considerations led us to the following new, 
weakened concept o f an observable 9 : 

An EQT-observable is, in general, not completely 
determined by an associated operator but can be 
characterized furthermore by the separation-
character of the A-instrument. This "more detailed" 
observable-concept obviously also implies a new 
mathematical representation of the EQT-obser-
vables. Following the above considerations, we as-
sociate to every observable A exactly one pair (A, a) 
composed of the operator A, which QT also asso-
ciates to the A-instrument, and of an A-finer19 

partition of unity18 a which indicates the separation-
character of the A-measuring device2 0 . This new 
observable concept has important consequences: 

a) In the representation of EQT-observables 
there only occur operators with a discrete spectrum. 
QT-observables X with a more general range (like 
the position observable) are replaced in EQT by a 
family of discrete, coarser observables / ( X ) which, 
depending on the respective measuring device, con-
form to the actually measured quantity. 

In the fol lowing, we consider the sets a as ordered in an 
arbitrary w a y ; and since E Q T confines itself to separable 
Hilbert spaces, we can presume Ka — { 1 , . . . , N) in case 
o f | a | = N, and Kx — { 1 , 2 , . . . } = N in case o f | a | = oo. 

1 9 Let A be an arbitrary self-adjoint operator with the 
purely discrete spectrum a and the spectral representation 
A = 2 a Pa . A P U ct = {Qi\ ieKa.} is called A-finer, if 

ae a 
(y ie Ka) (3 a e a) Q i ^ P a . 

T o each observable A with discrete range, we have ac-
cordingly in E Q T t w o distinguished representations o f 
the associated operator A: (1) the spectral representation 
A = 2 a Pa and (2) the separation-representation 

ae a 
A = a a (i) Qi; here a a is a surjective m a p o f Ka. onto 

ieÄa 
the spectrum a with the property Qi ^ Pa^ a a (i) = a. 

2 0 The expression "separat ion-character" ( introduced in 1 5 

for a more precise description o f measurements o f the 
first kind) might indicate that the new observable-
concept is meaningful only for observables corresponding 
to measurements o f the first kind. B u t this is not the 
case. W i t h more general measurements, we also interpret 
the separation-character o f an A-instrument as the ex-
tent to which subspaces o f the eigenspaces o f A are 
1-1-correlated t o orthogonal instrument-states (even if 
this correlation can only partially be recorded b y the 
reading mechanism). Loosely speaking, a characterizes 
the extent to which the A-instrument measures more 
than it records. 



b) By analogy with the new observable-concept, 
a new concept of macro-states (or quantum states) 
also emerges in EQT, since macro-states are pro-
duced by preparative measurements. 

c) As a decisive consequence of the new observ-
able-concept, a new compatibility-relation follows: 
Two EQT-observables A (A, a) and B {B, ß) 
are EQT-compatible if and only if a = ß. Hence two 
observables are, intuitively speaking, compatible, if 
(in principle) they can be measured by the same mea-
suring device. Only this extremely narrow com-
patibility concept makes it possible after all to re-
gard EQT-observables as objective properties of 
physical systems. 

d) From the new observable-concept one finally 
obtains a more general projection-formula, com-
prising the two extreme cases (1.1) and (1.2): An 
ideal preparative measurement of the observable 
A -*+{A, a) = ( 2 a Pa, {Qi | i^K*}) with the out-

aea 
come A = b reduces the state operator Wo to the 
operator 

W2(b) = [ T r ( ^ o P o ) ] - 1 2 QiWoQt. (1.3) 

As was shown in 9, the new observable-concept 
makes possible the representation of all macro-
states by Gibbsian ensembles of virtual systems 
whose micro-states are uniquely determined by 
assigning a value to each EQT-observable. 

Starting from that result, in the present paper we 
analyse the possibility of a complete EQT in which 
also the temporal evolution is treated and related to 
an appropriate motion of the ensemble elements. 
According to the two kinds of temporal change 
existing in QT 2 1 , we face two different problems: 
(1) Can the continuous and uniquely determined 
evolution 

W(t) = U(t,f) W(t') UUW) (1-4) 
of the state operator of a closed system (given by a 
continuous one-parameter group of unitary oper-
ators) be represented by a deterministic and con-
tinuous motion of the elements of the ^'-ensemble ? 
(2) Can the reduction of the state operator in the 

2 1 J . v . NEUMANN, Mathematical Foundations o f Quantum 
Mechanics, Princeton 1955. 

2 2 B y a proper observable we understand an observable 
that can take on at least two different values. In addi-
tion we introduce (as improper observables) the " a b -
surd" observable 0 and the family c • 1 o f " t r i v ia l " 
observables; we define that every improper observable 
is uniquely determined b y the corresponding operator 
and is EQT-compat ib le with all observables. 

quantum theory of measurement be explained by a 
reduction of the corresponding ensemble ? 

To solve these problems we discuss in Sect. 2 all 
the physical ideas and hypotheses underlying the 
EQT. From these hypotheses, we then abstract an 
axiom system for the mathematical structure of 
EQT. In Sect. 3 and 4 we examine the compatibility 
of these axioms, arriving at the following results: 

1. Every continuous evolution of a state operator 
in accordance with Eq. (1.4) can be represented by 
an invertible and continuous "phase-flow" of the 
ensemble elements in an appropriate state space. 

2. On the other hand, it proves impossible within 
the scope of EQT to explain the reduction of a state 
operator by an ensemble-reduction. 

2. The General Assumptions of EQT 

In this section we shall compile all the postulates 
which a reformulation of QT must satify in order to 
realize in a consistent way the physical ideas of 
DSQ and, in particular, to show the features (a) to 
(c) of Sect. 1. To begin with, we repeat the general 
assumptions of DSQ as far as they make precise its 
physical concepts without anticipating their mathe-
matical realisation. In contrast to DSQ, we pre-
suppose however from the outset the new concepts 
of observables and macro-states9 as sketched in the 
introduction. 

(Po 1) To each physical system, a complex, sep-
arable Hilbert space J f is associated and there exists 
a bijective map g of the set of all proper22 observ-
ables of tl e system onto the set of all pairs (A, a) 
composed of the operator A which QT also asso-
ciates to this observable, and of an .4-finer PUa. The 
map g satisfies the ralation 

Q(A) = (A,x)=>Q[f(A)] = (f(AU) 

for all finite real functions / . 

(Po 2) Every physical system is in a micro-state 
in which all observables have definite values23. The 
only possible values of an observable are the eigen-
values of the corresponding operator. 

2 3 D S Q supposed in addition that the totality o f all ob -
servable-values already determines uniquely the micro-
state o f a system. This means that, in DSQ, all para-
meters defining the micro-state o f a system can be 
measured — though not simultaneously. W e drop this 
assumption for the E Q T as the generalisation (induced 
b y it) does not influence our results. 



(Po 3) Every observable permits an exact mea-
surement that ascertains the value of the observable 
existing before (and independent o f ) the mea-
surement; and at least some proper observables 
permit measurements of the first kind that ascertain 
the observable-value without changing it. 

(Po 4) The micro-states of a physical system 
change deterministicly; in particular, the evolution 
of the micro-states of a closed system (closed in the 
sense of QT) is uniquely determined by the struc-
ture of the system. 

(Po 5) Every physical system allows a corre-
spondance between its micro-states and the points 
of an appropriate metric space Q that makes Q a 
state-space. With this correspondance, the temporal 
evolution of a closed system induces a continuous 
"phase-flow" in Q . 

(Po 6) The existence of incompatible observables 
limits the available knowledge about the micro-state 
of a system to the information contained in its 
macrostate. Accordingly, the EQT describes every 
macro-state by a Gibbsian ensemble of virtual sys-
tems in definite micro-states and derives the char-
acteristic dispersions of the measurement results 
from the probability distribution of the ensemble 
elements. 

(Po 7) There exists a bijective map I) of the set of 
all macro-states on the set of all pairs ( W , e) com-
posed of the trace-operator 24 W, which QT also as-
sociates to this macro-state, and of a IF-finer PU e. 
The mean value of the observable A = g -1(^4,a) in 
the macro-state W = fp 1 (W, e) is given by 

<A>w* = Tr (A W). 

(Po 8) To every closed physical system a continu-
ous one-parameter group {Ut\ te R} of unitary 
operators is associated, governing the temporal 
evolution of the macro-state (Wt, £t) by the for-
mulas 2 5 

Wt=UtW0U] 
et: = ut (e0) : = b[Ut] (e0) = {UtQi U\ \ Qt e £ o } • 

2 4 A trace-operator is a positive, semi-definite, self -adjoint 
operator W with Tr(JF) = 1 . 

2 5 The relation « ( e ) : = {UQiU^ | Qi e e} associates t o 
every unitary operator U a permutation t> ( U ) — u o f A; 
the correspondance b is a homorphism o f the group o f 
all unitary transformations o f J f into the permutation 
group o f A . 

A nonclosed system with negligible reaction on his 
environs is characterized b y a two-parameter family 
{Ut.t' | t,t's R} o f unitary operators (depending on external 
conditions) which determines the evolution o f the macro-
state {Wt, £t) b y the analogous equations 

Wt=UtyWt,Uir, et = ut,t'{et'). 
(Po 9) While the evolution of an EQT-ensemble is 

uniquely determined, according to (Po 5), by the 
"phase-flow" of the ensemble elements, the tempo-
ral development of the corresponding macro-state 
is given by (Po 8). Hence the consistency of the EQT 
requires an exact coordination between both laws 
of evolution in order to make the equivalence be-
tween macro-states and ensembles time-indepen-
dent. 

These are the general postulates of DSQ, already 
modified through the introduction of the new 
observable-concept to make possible a consistent 
formulation of EQT. 

In a previous paper6 we have pointed out three 
decisive deficiencies of DSQ which must be avoided 
in E Q T : 

(1) To every macro-state, DSQ constructs a spe-
cific state space. This entails in particular that DSQ 
can not describe the temporal evolution of an en-
semble as a continnous flow of the ensemble ele-
ments in one state space. 

(2) The relation between the observable-values of 
a micro-state in DSQ differs critically from the 
observable-structure of physical systems in QT. 
Hence the ensemble elements of DSQ can not be 
interpreted as virtual copies of an original system. 

(3) In the treatment of preparative measure-
ments, DSQ arrives at quite a different result than 
QT. In the description of an ideal preparative 
measurement of the observable 

A = g - i ( 2 aPa,{Qi\iEKa}) 
ae a 

within QT, two phases can be distinguished15: 
(a) the proper interaction between object and in-
strument, which is represented by an unitary op-
erator UM. in the Hilbert space of the composed 
system object & A-instrument and described by 2 6 

2 6 The superscr ipts 1 » 2 , 3 refer t o the ob ject , the instrument 
and the composed system respectively. Eq . (2.1) de-
scribes the 1-1-correlation, characteristic o f the ideal 
measurement o f the first kind, between object-states 
and instrument-states in the quantum state o f the com-
posed system at the end o f the measurement ; Eq . (2.2) 
imports that objects-eigenstates corresponding to dif-
ferent values o f the measured observable produce ortho-
gonal instrument-states. B o t h equations become more 
transparent if one consideres pure states in particular 



Wo = Wo X iV» ~> W i = Um Wo Utu 

= I Qi WoQ] x W[i,j] (2.1) 
i.jeKx 

with 

Tr (W[i,j]) = öi], (2.2) 

and (b) the "pointer-reading" of the outcome A = b 
resulting in the reduction 

W, -> W2(b) = [ T r ( W o P b ) ] ' 1 I QtWoQi X W[i,i] 
Qi^Pt, 

(2-3) 
of the state operator W\. 

In the description of the same measuring process 
in the frame of DSQ (or EQT) 3 , 6 two analogous phases 
can be distinguished: (a) the interaction between ob-
iect and instrument causes a continuous motion of the * 3 

elements of the Wo-ensemble and finally results in a 
Wi-ensemble, in the virtual composed systems of 
which the value of the object-observable A is fixed 
in the instrument; (b) the "pointer-reading" of the 
result A = b at3the original system induces a re-
duction of the >Vi-ensemble onto the subset of all 
ensemble elements with the property value of A — b. 
In the frame of DSQ (or EQT), the subensemble 
resulting from this ensemble-reduction represents the 
macro-state of the original system after the mea-
surement. For a quantitative agreement of DSQ (or 
EQT) and QT, it is therefore necessary and sufficient 
that the equivalence between ensemble and macro-
state is preserved in both phases of the measuring 
process. But this is not the case in DSQ 6. 

In order to exclude these deficiencies in EQT, one 
must impose, besides above postulates, some ad-
ditional conditions on EQT. To avoid the first two 
defects, we introduced in 9 the following postulates: 
P (Po 10) The construction of the state space does 
not depend on the macro-state of the system. 

(Po 11) The probability distribution of the ele-
ments of an EQT-ensemble is uniquely determined 
by the corresponding macro-state. 

(Po 12) The observable-values of a micro-state 
satisfy the relation 

value of f (A) — f (value of A) 

for all finite real functions / . 
For a correct description of the measuring pro-

cess of the first kind in the frame of EQT, it is 
necessary that the reduction of the Wi-ensemble 
onto the subset of all ensemble elements with the 

property value of X = b yields a subensemble which 
is equivalent to the reduced state operator W2(b) 
given by QT. This leads to the last postulate: 

(Po 13) For all observables C of the composed 
system, the ensemble mean values of the reduced 
Wx-ensemble coincide with the expectation values 
Tr {CW2) of the reduced state operator W2. 

Herewith we have compiled all the intended de-
mands on EQT. In order to analyse the purely 
mathematical problem of compatibility of these 
postulates, it is advisable to leave their physical 
meaning completely out of consideration. Accord-
ingly we construct in the following a formal axiom 
system which determines only the mathematical 
structure of EQT as far as is implied by the above 
postulates. 

Axiom (I) To every complex separable Hilbert 
space J f , a measurable space (Q, exists with the 
properties: 

( la) To each pair (.4, a) composed of a self-adjoint 
operator A of J f with discrete spectrum and of an 
A-finer PU a, a surjective immeasurable map 
Aa : Q H-» a of Q onto the spectrum a of A can be 
associated. 

( lb) The relation f(A^) = f(A)a holds for all maps 
A a and all finite real functions / . 

( lc ) To each pair (W, e) composed of a trace-
operator W and of a IF-finer PU e, one can associate 
a probability /usw on (Q, J?) . 

Axiom (2) All pairs27 (A, a) and (W, e) from 
axiom (1) satisfy the relation 

\ A* d/i^r = Tr (̂ 4 W). 
ii 

Axiom (3) (3a) There exists an injective homo-
morphism I of the group of all unitary operators 
of J f into the group of all permutations of Q, which 
are ^-measurable in both directions. 

(3b) All macro-states (IF, e) and all unitary 
operators U of J f satisfy the relation25 

Ä t H ^ l W ) - 1 - ] . 
(3c . l ) Let {Ut | t e R} be an arbitrary one-para-

meter continuous group of unitary operators and 
let 3F be the Boolean algebra generated by all the 
sets of the form {x e Q | A*{x) = a} ; then the rela-
2 7 According to its envisaged physical interpretation, we 

call the pairs (^4. a) "observables" and the pairs (W, e) 
"macro-states". These names have no physical meaning 
in the context of our axiom system, but are mere nominal 
definitions. 



tion 
lim ^w(\(Ut)M AHUt')M) = 0 (2.4) 

|«-<'|-»0 
holds for all M e & and all ( W , e). 

(3 c.2) Moreover a metric d (x,y) exists in Q with 
the property 

lim d ( l ( £ / , ) * , ! (Ut')x) = 0, (2.5) 
\t-t'\->0 

^^7-almost everywhere for all (W, e). 

(a) All macro-states (W, e) of satisfy the relation 

Axiom (4) T o at least one observable {A, a) 
= ( I a P f l , {Qi I » £ # « } ) of -JT with | a | > 2 

aea „ „ 
there exists an observable {A, a) = ( 2 a Pa> a) and 

aea 2 

a macro-state (X , £) of a second Hilbert space 
together with an unitrary operator Uu in 
J f : = Jt? (x) Jf5 having the following properties: 

Vi: = UM (W x X) Ut, = 2 (©» W Qj) x If [»,?], 
i.j'eiva 

where the W [i, j] are operators of J f with the property: 

T r ( P W\i ill _ j l i f i = ? a n d 
^ "-Ml) — |Q otherwise 

(b) The macro-states2 5 -2 8 ( F i , £) = (^M (IF X X) U^, uM (e X £)) of JT satisfy the equation 

{ « e ß | (A X l ) a X l ( * ) = (1 X i ) l x " a (ar ) } = 1 . 
3 

(c) For all be a and all observables (C ,y ) of J f , the relation 

l A | (1 X i ) 1 * « = 6 } ] - i J O d / 4 = Tr (CF 2 (6)) 
{a; |(1 x i ) » « = 6 } 

holds with v2(b): = [Tr ( l F P b ) ] - i 2 (Q{ WQt) X W [i,i]. 
Q.gPi. 

(2.6) 

Axiom (4) compiles some restrictions which the existence 
of even one measurement of the first kind imposes on the 
mathematical structure of the E Q T . In our formalism, 
(A, ä) denotes the distinguished instrument-observable 
(like a pointer setting or a digital read-out) the value of 
which is the result of the measurement, and (X, denotes 
the instrument-state at the start of the measurement. 
Axiom (4a) concerns the influence of the measurement 
interaction on the quantum state of the composed system; 
it requires a 1-1-correlation between the elements Qi of the 
P U a of the observable {A,a) to measure and the possible 
instrument-states W[i, i] at the end of the measurement, 
and it guarantees that every instrument-state W[i,i] im-
plies the corresponding value of (A, a.). Axiom (4b) concerns 
the influence of the interaction on the micro-states of the 
composed system and postulates that, in accordance with 
axiom (4 a), the value of the measured observable becomes 
fixed in the instrument. Axiom (4 c) concerns the reduction 
of the macro-state (V\, £) and simply expresses (Po 13) in 
terms of an ensemble theory. 

Obviously, these axioms are not uniquely determined by 
the above postulates; especially is axiom(3) stronger than 
necessary. But in the authors opinion, none of the changes 

28 If ei = {Qi\ie KCl} and e, = {Rj \ j e KCl} are PUs 
o f J f i and Jfo respectively, { Q t x Bj \ (i, j) e Kti x Kez) 
is a P U of i ® J f 2 which we denote by ei X f2 • 

in the axiom system which are admissible with regards to 
our postulates, has any considerable influence on the re-
sults of this paper. 

In detail, the following relations hold between the four 
groups of axioms and the thirteen postulates: 

axioms — > postulates 

( la ) 1 , 2 , 5 and 10 
( l b ) 1 and 12 
( lc ) & (2) 6, 7 and 11 
(3a) 4 and 8 
(3b) 9 
(3c) 5 
(4a) 3 and 8 
(4b) 3 
(4 c) 13 

Each model satisfying these four axioms can be 
interpreted as the mathematical formalism of a 
consistent EQT. 

3. A Model Realizing the Axioms (1) to (3) 

In the following we analyse the compatibility and 
independence of the axioms laid down in Sect. 2. 



To begin with, we construct a model satisfying the 
axioms (1), (2) and (3). 

Definition: Two PU's a = {Ri \ i e Ka}, ß = 
{Sj | j e Kß} are called equivalent (a ~ ß), if a 
unitary transformation U in J f exists with the 
property 

(VieK*)(3jeKp]) U Rt = S}. 

Accordingly we restrain the so far arbitrary indexing 
of the elements of a PU by the condition 

« ~ ß^(3U)(VieKa) URiUi = St. 

The equivalence relation ~ induces a partition of A 
in classes of equivalent PU's ; we denote the class 
containing oc by <a), the set of all equivalence-
classes by A and the unit sphere {x e J f | |! x ]| < 1} 
by H 

To every projection operator Qr e y we now as-
sociate a set 

Ny: = {xEH\\\x\\^<(x\Q1\xy} if r = l , 

Ny: = {xeH\ 2 <x \ Qt | a;) <|| a: ||4 

i=i 

< 2 <«| Qi\x)} if r > 1 , (3.1) 
i= l 

and we introduce the Boolean algebra and 
the a-algebra = CT^~<a>> generated by all the 
sets Ny with r e Ky, ye (a.) . 

Let P be an arbitrary elementary projection oper-
ator, Lp the eigenspace of P, f : C h> R2 the usual 
representation of C as the "complex plane" and m L 

the two-dimensional Lebesgue measure. Then all 
the sets f (Ny n LP) with r e Ky, y e <a> are con-
centric circular rings in R2 and accordingly the 
function 

<pP(M) = ±mL{KM nLP)} (3.2) 

is a probability on (H, ^<a>). 

Next we choose at random a definite rule29 which 
associates to every projection operator R + 0 a 
unique partition in elementary projection operators. 
According to axiom (lc) , every macro-state ( W , e) 
with e — {Ri | i E KE} has a unique separation-
representation19 W = 2 hRi with A i > 0 , 

ieKe 
2 AjTr(i?i) = 1 . Hence, if we apply our rule to 

ieKe 

2 9 For an example of such a rule, see the last appendix. 

all elements Ri E e, we obtain a unique £-dependent 
representation of W in the form 

Tr(i?f) dim T̂ 
W= 2 2 wUpa= •• I WrPr (3.3) 

ieKe 7 = 1 r = l 
Tr(iJi) 

with T r ( P i } ) = 1 , 2 P y = Ri} wtJ = li , 
J = I 

Ti(Rt) 
y 2 Wi] = 1 .With the help of this representation 

ieKe j= 1 

we can associate to every macro-state (W ,e) a 
uniquely determined probability 

dim 3>e 
*ir,<«>: = 2 wr(fPr (3.4) 

r= 1 

on and we have thus constructed a prob-
ability space (H, îF,<a>) to every macro-state 
(W, e) and each element <a> e A . 

The intended probability spaces can now be de-
fined as 

(fl,J2?,/iV):= <g> (Hi,J?i,vew>i) 
ieÄ 

= ( X . H i , ® ^ i , ® v e w , i ) - (3-5) 
ieA ieA ieA 

The set Q consists of all maps x : A ^ - > H , the 
images of which (i.e. the i-th component of the 
"po int" x) are denoted by X{ or x(i). Obviously, the 
construct (3.5) satisfies axiom ( l c ) . 

Next, we associate to every projection operator 
Erey, y G A the subset 

My : = Ny x (XHi)iei,»*<y> (3.6) 

of Q and define the corresponding characteristic 
function Evr: — Ch (Myr). For an arbitrary observ-
able (A, a) = ( 2 aPa, {Qi | i e Z a } ) , the sep-

ae a 
aration-representation of A reads 

^ 4 = 2 « 2 Qi= 2 Qi • 
ae a Qi^Pa ieKa 

With the help of this representation we associate to 
every observable (A,a) an observable-function 

A * : — 2 OA(i)Qt. (3.7) 
ieKa 

Obviously, A01 is a surjective map of Q onto the 
spectrum a of A and is uniquely determined by 
(A, a). All functions Eyr are if-measurable by de-
finition; hence all abservable-functions are, be-
cause of (V y E A) Ky c N , also J*?-measurable. 
Accordingly, the entities (Q, =£?) and Aa satisfy 
axiom (la). 



By restricting its domain to H, an unitary oper-
ator U of J f induces an isometric permutation of H, 
which we also denote by TJ. To every unitary oper-
ator TJ of J f we now associate a transformation l ( t / ) 
in Q by the definition 

(VieA)[l{U)x](i) : = TJx(i) (3.8) 

Evidently, l(t7) is a permutation of Q for every TJ. 
Finally we define the function 

d (x,y): = sup || xt — 
ieÄ 

(3.9) 

on Q x Q, ]j . . . I standing for the norm in J f . As 
one easily checks, d is a metric of Q . 

Theorem 1: The axioms (1) to (3) are compatible. 
In particular they are realized in the above model 
formed by Q, JSf, fxEw, A«, I and d.3« 

Lemma 1: Each of the axioms (2), (3b) and (3c) 
is independent of the respective remainder of the 
axioms (1) to (3).30 

Lemma 2 : In the model constructed above, all 
macro-states, observables and unitary operators 
satisfy the relations30 

(a) A*{\(U)x) = [U^A {x), and 

From axiom (2), (3b) and lemma (2a) it follows: 

TT(UWUU) = 
ß 

= $A«(x)dSw[UU)-ix] 
ß 

= jA*{l(U)x)dpew (3.10) 
£i 

= j l u u u r - 1 ^ d j u e w . 
ß 

Hence in our model a complete symmetry exists 
between the Schrödinger-picture and the Heisenberg-
jpicture, in accord with QT. 

Lemma (2 b) signifies that two observable- func-
tions Ax, Bß with <a> 4= </?> are independent 
random variables. But this fact prevents our model 
from satisfying axiom (4) even approximately: I f 
we choose in axiom (4) (C,y) = (Pe x 1 ,y) with 
e g a, e 4= b, <y> 4= <1 X ä>, the left side of 
Eq. (2.5) yields the expression 

O U U xi)lx~a = &}]-! / (PeX l ) v d / 4 
{(lxjjixä^fc} 

_ / 4 ( { ( 1 x A)lx* — 6 } n {{Pe X l )v =1}) 

/ 4 ( { ( 1 x i r = 6 } ) 

= PvA{{Pe X 1 ) V = 1 } ) 

= Tr (Pe X 1 - 2 QiWQi X W[i,j]) 
i,jeKoL 

= 2 Tr(P.QtWQ,)Ti(W[i,j]) 
i.jeKa. 

= 2 Tv(QiWQi) = Tr(PeW), 
Qi^Pe 

which can be made arbitrarily close to one by an 
appropriate choice of W. On the other hand, the 
right side of Eq. (2.5) yields 

[Tr (W Pb) ] _ 1 Tr (Pe x QtWQtX W[i,i]) 
Qi^Pb 

0 

for arbitrary W because of Pe Pb = 0. 
The same result applies all the more to the model 

of the axioms (1) and (2) constructed in 9, where 
two observable-functions Ax, are already in-
dependent if a 4= ß . 

4. The Complete Axiom System 

As we will see, the invalidity of axiom (4) is not 
caused by the special measures constructed in the 
models of 9 and Sect. 3; but axiom (4) is incom-
patible with the other axioms. To see this, we add 
both sides of the equation 

\1 xoc b}) Tr (OF2 {b)) (2.6)= J Cv dA = A ( { ( l x ^ ) ] 

{(1x2)1x5=5} 

over all eigenvalues of A. The addition of the left sides yields 

2 / Cvd/4= J Cr&peri = j C v d A = Tr (CFi ) = T r [ C 2 QiWQj X W[i,j]] ; 
~ , 3 i i fT . 

(44) 
3 0 The proofs are in the appendix. 
3 1 From axiom ( la) and ( lb) results9 

A = SAP« => A*(x) = ZaP«(x), 

i,jeK a 

and therefrom it follows 

{xeh\ (1 x Ä)ixä(x) = a)} = {xeQ\ (1 x P«)1 X*(x) = 1}. 



adding the right sides of Eq . (2.6)*, we get 3 1 

2 / 4 ( { l x i ) l x i = a } ) T r ( ( 7 F 2 ( a ) ) 
ae a 

= 2 T r [ ( l x P « ) F i ] Ä ( 0 F 2 ( a ) ) 
ae a 

= 2 [ T r ( l F P a ) ] - i T r [(1 x Pa) 2 QtWQj X W[i,j]] Tr {C 2 QtWQt X 1F[M]} 
aea i . jetf« Q i < P a 

= 2 [Tr( IF Pa)]'1 2 T r ( ^ l F ^ ) T r ( P a l F [ i , ? - ] ) 2 Tr {C • QtWQt X W[i,i]} 
aea i J e K * Qt^Pa 

= 2 1 T r [ C ( £ f T F & x W[i,i])]= 2 T r [ C ( & P F & x J F [ M ] ) ] . (4.2) 
aea Q t < P a ieKe. 

A comparison of Eqs. (4.1) and (4.2) finally gives the result 

2 { [ C v d ^ F l - / F l ( { ( l x ^ ) l x a = a } ) T r ( C F 2 ( a ) ) j = I Tr [C(QtWQj x W[i,j])] (4.3) 
a e a { (1x1) ' »=« } i*jeK« 

which is in general different from zero. So we arrive at 

Theorem 2 : The axioms (1), (2), (4a) and (4c) are having this structure. Now, if in an ensemble a 
incompatible. certain observable-relation is valid, this relation c a n 

Corrolary: The postulates (Po 1) to (Po 13) are o b v i o u s l y n o t b e cancelled by the reduction of this 
incompatible and hence a consistent E Q T is im- ensemble to a subensemble; but exactly this contra-
possible diction is implied by axiom (4), as the following 
P ° T h e formal reason for this contradiction is, ac- e x a m P l e s h o w s : L e t u s c o n s i d e r a preparat ive mea-
cording to Eq. (4.3), due to the existence of the surement of the observable3 3 Q = g~HQ, « ) (with 
interference-terms in Fi . The incompatibility of Q2 - Q ~ Q a n d « - { - « < | » e A ' « } ) on an 
axiom (4) with the remaining axioms can also be o b j e c t i n t h e macro-state W = f p 1 (\<F> <<P I > «) wlth 

confirmed intuitively within the physical inter- t h e r e s u l t Q = B e f o r e a n d a f t e r t h e P o i n t e r ' 
, , • r .i • j * v • reading of the result 0 = 1 , we have the state-pretation of the axiom system: As we have seen m & " ' 

a previous paper 3 2 , every (W, e)-ensemble in EQT °P e r a tors 
has, in addition to the relation / M a ) = /(^4)a valid V\ = 2 (Ri I V> I fy) x W[i,j] and 
in all of Q, a specific observable-structure in order l ' j e K a 

to satisfy axiom (2). This ensemble-specific ob- F 2 ( l ) = «991 Q \ y))-1 2 (Ri I <P> <<P | X JP [».»]• 
servable-structure results through the concen- R i 

tration of the measure /usw on a set of micro-states For the observable C = (C, y) with the properties 

C= 2 ÄtlvXvl^iX W[k,t], <<p\ip> = 0 , ((p J Rr I y>y + 0 , Rr<Q, (4.4) 
IcJeK* 

the axioms (2) and (4) yield the following ensemble mean values: 

f Cv = Tr (V\C) — 0 , 
h 

j C y d ^ V l = ^ V l ( { ( 1 X Q)lx^ — 1}) Tr [ C F 2 ( 1 ) ] 
{(1 X Q)1xa = l} 

= 2 I I Pf I 12 Tr (X 2 ) > I 1 P r I y) 12 Tr (X2) > 0 . 
Rt^Q 

32 W . OCHS, Z . N a t u r f o r s c h . 2 6 a . 2 0 4 [ 1 9 7 1 ] . 
3 3 (Po2), (Po3) and (Pol2) imply that all observables / (A) can be measured by the same instruments as A ; hence 

(Po3) guarantees the existence of a 0-1-valued observable Q permitting a measurement of the first kind. 



Whereas, according to axiom (2), the non-negative34 

function Cv vanishes / /^-almost everywhere in Q, 
it is claimed by axiom (4) that Cv is greater than 
zero on a set of positive measure fi j^. 

So we arrive at the following conclusion: The 
reduction of the state-operator, introduced in QT 
as an independent postulate ,can not be explained 
by an ensemble-reduction in an E Q T ; accordingly, 
the idea of S I E G E L and W I E N E R 3 , to avoid the diffi-
culties inherent in the quantum theory of mea-
surement35 by constructing an EQT, can not be 
realized. On the contrary: According to theorem 1, 
QT can be reformulated as an EQT only as far as 
QT can be considered to be without problems; and, 
significantly, the EQT breaks down exactly at the 
only point where it would be „superior" to QT, if 
the four axioms were compatible. 

To maintain E Q T would mean to regard the ensemble-
reduction as the genuine description of correcting the macro-
state after "reading the scale". In this case, the projection-
postulate of QT would be incorrect; but it could still serve 
as an elegant approximation of the complicated formula 
for the ensemble-reduction, if the interference-terms are 
negligible for all really occuring observables C . 

In conclusion, we want to demonstrate that the 
assertion of theorem 2 remains valid also under 
much weaker assumptions: 

a) The validity of theorem 2 does not depend on 
the special observable-concept of axiom (1), because 
the projection-postulate (1.3) (related to our new 
observable-concept) is not vital to the proof while 
the "parameters" y and £ do not even enter the 
proof of theorem 2 at all. Hence any other observ-
able-concept complying with (Po 2) and (Po 12) (and 
adhering to the quantitative laws of QT) necessarily 
leads to the same result. 

b) Actually, one does not even need a measure-
ment of the first kind to prove theorem 2, but it 
suffices to presuppose at least one measurement of 
the second kind. (In this case, axiom (4b) has to be 
abolished completely and the axioms (4a) and (4 c) 
must be weakened correspondingly by a more 
general expresison for I72(&)36.) Even then, theo-

3 4 According to axiom(4a) , we have C = UM(| xp)(xp | X 
X) UfM ; hence the spectra of C and | y X v I x X are 
equal. On account of the relation spectrum (| y X v 7 | X 
X) c [0,1] and of axiom ( la) , it follows Cv(x) ^ 0 . 

3 5 A . FINE, Phys. Rev. D2 , 2783 (1970). 
3 6 B. d'EsPAGNAT, Nuovo Cim. Suppl. 4, 828 [1966]. 
3 7 J. M. JAUCH and C. PIRON, Helv. Phys. Acta 86, 827 

[1963]. 
3 8 S. GUDDER Proc. A m . Math. Soc. 19, 319 [1968]. 

rem 2 remains valid since the existence of the 
interference-terms (vital to the proof) is not affected 
by this generalisation. 

c) Finally, the validity of theorem 2 neither 
depends on the existence of infinitely many ob-
servables (of the composed system) nor on the 
existence of "indecomposable" observables [as 
that considered in Eq. (4.4)]. For even the restric-
tion on a sufficiently dense, finite set of "product-
observables" (C, y) = (Y X Z, ß X d) does not 
make the expression 

2 T r { ( 7 x 2 ) (Qi WQj x W[i,j}) 

i,jeKa 

= 2Tr(7&WQ,)Tr(ZW[ifj]) 

vanish in general. 

5. Conclusions 

In this paper we arrived at the following results: 

(1) By an appropriate modification of the ob-
servable-concept, all quantum states can be re-
presented by Gibbsian ensembles of virtual systems 
in dispersion-free micro-states which, having de-
finite values for all EQT-observables, obey the 
(weaker) quantum ordering of EQT. Accordingly, 
these modified observables can be interpreted as 
objective properties of physical systems. 

(2) Moreover, the continuous temporal evolution 
of the quantum states can be traced to a continuous 
and deterministic "phase-flow" of the ensemble ele-
ments in an appropriate state-space. 

(3) On the other hand, every Hidden-Variable 
Theory (HVT) with property (1) arrives in the de-
scription of preparative measurements at results 
different from QT. 

Hence a consistent EQT is impossible. This result 
extends previous "impossibility-theorems 21 >37> 38> 
10-13 f o r HVTs in so far as it excludes HVTs not 
covered by these theorems39. This extension became 

3 9 In § 5 of 13 , Kochen and Specker considered the general 
case (including E Q T ) that QT-observables, in a H V T , 
can split into several new observables, and they tried to 
prove that this case, too, is already excluded by (Pol2 ) 
(corresponding to their Eq. (1.4)). But as is shown by 
theorem 2 of 9 or theorem 1 of the present paper, this 
assertion is wrong. 



possible only by taking also the theory of mea-
surement into account which supplies additional re-
strictions on HVTs exceeding the conditions on the 
observable-structure of micro-states or on the mean 
values of ensembles of micro-states (exclusively 
considered in the above cited papers). 

As the above results show, every H V T either has 
to differ quantitatively from QT or must abandon 
the idea that observables are object-properties. 

6. Appendixes 

Proof of Theorem 1 

To proof theorem 1, one must show that the 
entities Q, , Ax, I and d defined in Sect. 3 
satisfy the axioms (1), (2) and (3). In the construc-
tion of the probability spaces (Q, & , /uew) and the 
observable-functions A x , we established already 
that they realize the axioms (la) and (lc) . 

In Eq. (3.7) we defined to each observable (A,a) 
an observable-function 

A«= Z <7A(i)Q? (6.1) 
ieKa 

and40 

<pPrm 

The Eqs. (6.7) and (6.8) yield 
dimJf 

!U£w(M«) = I wrTr(PrQi) = Tv(WQi) 

r= 1 

and with Eq. (6.6) we finally arrive at 

&fSw= 2 aA(i)TT(WQi) = Tr(WA) P ieKa 

with the properties 
Z Q « ( X ) = 1 , ( V i * 7 G * a ) g ? « ? = 0 . (6.2) 

ieKa 

Equations (6.1) and (6.2) yield 
f(A*) = 2 f[<rA{i)]Qt (6.3) 

ieKa 

for every finite real function /. On the other hand, 
the operator f(A) has the spectral-representation 
f(A)=2f(a)Pa; consequently, the observable 

ae a 
(f(A),ct) has the separation-representation 

/M) = 2 *fu)MQ* = 2 /[<*(»)] Qt (6.4) 
ieKa ieKa 

with the corresponding observable-function 

/ w = 2 f[0A(i)](R. (6.5) 
ieKa 

The Eqs. (6.3) and (6.5) imply f(A*) = f{A)*, and 
our model satisfies axiom (1). 

Let (A,a) be an observable with the separation-
representation A — 2 <?A (i) Qi and let ( W , e) be 

ieKa 
an arbitrary macro-state with the representation 

dim*? 
w = 2 wr Pr, (V r) Tr (P r ) = 1 specified in Eq. 

r= 1 
(3.3). Then from Eqs. (3.1) to (3.7) results 

(6.6) 

(6.7) 

(6.8) 

= Tr (PrQi). 

thus establishing axiom (2). 
From the definition of the map I (U) it follows 

immediately, that 1 is an injective homomorphism 
of the group of all unitary operators of J f into the 
permutation group of Q. I f a = {Fr | r e K^} is an 
arbitrary PU, U an unitary operator and U = b{U) 
the permutation of A induced by U, we get 

2 f <R&p'w= 2 orA(i) txew(M?) , 
Q ieKa ö ieKa 

dimje 
v w ( m ) = *k<«> to = 2 W r TPr m 

r = 1 

mL 

I i — l i 
LPrn\xeH | 2 | Qk \ x) || x I]4 < 2 <x\Qk\x} 

I l 
1 / I <-1 i ] 

= f \xELPr I 2 <x \ Qk\xy<-\\x\\*< 2 <x\Qk\x}, 
71 \ I k = 1 i = l J 

mL\Ux,y)e R2 | 2 T r (prQk) <- (x2 + y2) < I Tr (PrQk) 
k = 1 / f c = l 

4 0 To allow for the fallunterscheidung in Eq. (3 . 1) , we define the notation 
I a <b a * 0 , 

a ^ b if 



Q U A N T U M T H E O R Y A S A C L A S S I C A L E N S E M B L E T H E O R Y ? 

( l U F r U Y * ) - 1 (1) = = N f * X ( X H i ) ^ - ^ ^ , 
r-1 

t=i 

= \xeH\ 'Z <U*x\Fi | C71" 1| Ufx\\*< 2 <ü*x\Ft | Z7+or>l 
I t=l i=i ) 

= \uyeH\ r2<y\Fi\yy^\\y\\*< 2 (y \ Fi \ y>\ = UN? . 
( »' = ! »=1 ) 

(6.9) 

Equations (6.9) yield 

i ( u ) - ! M«= i/;<_1<a>, i ( t / ) ^ = J / «<«), 

[{(£/) a;] = [U^Fr U]»-1^ (*), F? [[{U)~ix] = [UFrU*]uM {x). (6.10) 

By construction, the class of all sets M* (r e a e / 1 ) generates the <7-algebra and, according to 
Eq. (6.10), this generating system is invariant under all transformations 1 (U). Hence every map 1 (U) is 

measurable, which establishes axiom (3 a). 
If a r = {Q[r) | i e Kß), r = 1, n, are n arbitrary different PU's with <ai> = . . . = <are> and if P 

is an arbitrary elementary projection operator, we find 

<PUPU1 ( n ^n) = ^ (t \LVPtf n n ^nj) 

= 1 mL (T \X e LUPÜ t | max ("j? (x | Qf> | x>\<- || a: ||4 < min ( Z <x \ Qf | x})]) 
71 \ { i=l,...,w \ j=l J 1=1,...,» V=1 / j / 

= JL mL (x, y) 6 R2 I max ^ f<2 Tr (U P U* Qf) j a:2 + y2 < min ^ 2 T r U P j j 

= ±mL[\\x£LP\ max f 2 | E71" Qf U | x>\+- || x ||4 < min ( 2 <« I & Qf U I (6-U) 
71 \ { i=l,...,w\?=l / " i= 1 n \ A / I / 

= 1 mL (j JLp n n 1 ( a , )}) = VP { n • 
Hence from Eqs. (6.11) and (3.4) results 

(V (IF, a)) (V M 6J^<a>) W ^ "V,<«> (C^-1 • 

We consider next n different elements ay e / I with 

(6.12) 

i= l , . . . , e ; j = 1, . . . , m ( i ) ; 2 m ( » ) = w 5 (Vi) <aa> = ••• = <aiwt(i)> . (6.13) 
» = 1 

The Eqs. (6.12), (6.13) and (3.5) yield 

\i, i 

and hence we get 

) = n « , t < a < 1 > ( n )=n 
;= i 

m ( i ) 

i = 1 

m(i) U-1 Pl ^ KC/)-1 ( P r a 

(6.14) 

for all Jf of the Boolean algebra F = ® Now, both / / ^ p t a n (^ a r e m e a s u r e s o n 

ieÄ 
= ; and since a measure defined on an algebra can be extended in at most one way to a 

measure on , it follows from Eq. (6.14) that 

establishing axiom (3 b) . 



If Ui, TJ2 are two unitray operators, P an elementary projection operator and Fr an element of the 
PU a, we find 

and 

<fp ( N ? A U2Nf) = <pP(Ui N* n U2N?) + cpP{TJl N? n U2N°r 

= (pP ( N p w n ArrM2(a)) + (fP (A^ l (a ) n (6.15) 

(fP (iVrMl(a) n iVrM2(a)) = 2 yp n AT"2(a)), 
i*r 

ieKa 

= 1 2 m J ( s , y ) e R 2 | m a x ( ' l Tr ( f f i ^ 17} P ) , Tr (U 2 Fk U\ P) 
i— 1 

(6.16) 

(x2 + y2) < min ( 2 Tr(£7iP£7{ P ) , 2 Tr (U2FUf2 P) 

Now, if {Ut | t e R} is an arbitrary continuous one-
parameter group of unitary operators, it follows 
immediately from Eqs. (6.15) and (6.16) that 

lim cpP(UtN« A Ut„ N?) = 0 (6.17) 
t-*ta 

for all t0E R. Then the Eqs. (6.17), (3.4) and (3.5) 
yield the relation 

lim ^ ( l ( { J f ) I ? A i a ^ ) = 0 (6.18) 
t-*to 

for all (W,e) and all sets of the type MErom Eq. 
(6.18) and the identity 

(M1 X M2) A (tf i H ^2) £ (Mi A Ni) U (M2 A N2) 

we finally arrive at Eq. (2.3). 
If Ui, U2 are two arbitrary unitary operators 

of it follows from Eqs. (3.8) and (3.9) that 

d( l (E7i )z , \(U2) x) = sup I Uixt — U2xt || 
ieÄ 

< s u p 1 ( C 7 i - U2)y\\ = 1 U\ U2 «op, 
yeH 

which proofs Eq. (2.4) for all x e Q. 

Proof of Lemma 1 

To proof this lemma, we have to construct a 
model for each of the following three groups of 
properties: 

(I) axiom (1) A | axiom (2) A axiom (3) 

(II) axiom (1) A axiom (2) A axiom (3 a) A 
axiom (3b) A axiom (3 c) 

(III) axiom (1) A axiom (2) A axiom (3a) 
A ~~I axiom (3b) A axoim (3c). 

ad (I): W e choose an arbitrary unitary operator 
V 4= 1 and associate, in contrast to the model of 
theorem 1, to every macro-state (IF, e) a new mea-

sure %FW : = jutyfyyt. If we let all the other definitions 
unchanged, the entities Q , SC, A a , -/w, d obvi-
ously form a model with the properties (I). 

ad (II): One obtains a model with the properties 
(II), if the metric d of our original model is replaced 
by the trivial metric 

r{x,y): = 

ad (III): To realize the properties (III), we intro-
duce new permutations I (£7) of I?, defining 

(V i e A, i 4= <y>) [ f ( U ) x] (i) = [1 (U) x] (i) = Ux(i) 

[ ! > ) * ] (<y>) = x (<y>) . (6.19) 

With E r e y , the Eqs. (3.6) and (6.19) yield 

fa ( t ( f f ) - i Ml) = fa (My) = Tr (WEr), 

^tiut (My) = Tv(UWU^Er), 

thus cancelling axiom (3b). Since the change from 
1 to I does not affect any other relation, we so obtain 
a model with the properties (III). 

Proof of Lemma 2 

Lemma (2a) results from the Eqs. (3.7) and (6.10). 
Lemma (2 b) follows immediately from definition 
(3.5). 

Rule referred to in Footnote22 

Such a rule can be constructed e.g. with the help 
of a certain basis a\, 02, . . . of J f : If Lp denotes the 
eigenspace of the projection operator R 4= 0, the sets 

N0= {xeLr\ I a: 1 = 1}, 
N2i-i = {xeN2i_2 I Re (x I Of) = sup Re (y | a£>} , 

yeNu-2 



N2i = {x e NZt-11 Im <a; | = sup Im <y | a*>} 
yeXzi-i 

form (for i = 1, 2, . . . ) a monotonically decreasing 
sequence of sets, whose intersection consists of 
exactly one unit element E LR. The repetition of 
this procedure applied to the projection operators 

RM: = R-\nXri\,..., = |r„><rw| 
obviously yields a unique partition of R in ele-
mentary projection operators | r i ) ( j i | . 
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Modelle kraftfreier Magnetfelder 
R . W A G N E R * 

Lehrstuhl für Theoretische Physik B Technische Universität Braunschweig 

(Z. Naturforsdi. 26 a, 1753—1762 [1971] ; eingegangen am 1. April 1969) 

A method for computing force-free magnetic fields of known anomality a =§= const is described. 
The procedure is introduced by treating plane fields; thereby it is proved that force-free fields of 
constant strength are alyaws plane. In general case the surfaces a=const are chosen as coordinate 
surface of an orthogonal curvilinear coordinate system. In this system the magnetic field is des-
cribed by a linear partial differential equation which can be solved numerically. Making use of 
simplifying assumptions about symmetries in the coordinate systems, analytic solutions are found 
which are extended on constant a. 

The formulae derived can be used to decide if to a given geometry a force-free field does exist. 
Existing fields can be computed immediately. The results are illustrated by examples. 

Im Jahre 1 9 5 1 wies L U N D Q U I S T 1 erstmals darauf 
hin, daß die magnetohydrostatischen Gleichungen 
die Existenz von Magnetfeldern zulassen, in denen 
der sie erzeugende Strom in Magnetfeldrichtung 
fließt. In diesen Feldern verschwindet die Lorentz-
Kraft, weswegen man von „kraftfreien Magnetfel-
dern" spricht. Ist ] die Stromdichte, f) die magneti-
sche Feldstärke, so gilt also: 

i x f ) = o ( l i 
bzw. wegen rot f) = j , 

| = rot f) = a f ) . (2) 

Dabei ist a ein ortsabhängiger Proportionalitäts-
faktor. (Behandelt man dynamische Probleme, so 
ist a auch zeitabhängig. Im folgenden wollen wir 
uns jedoch auf den statischen Fall beschränken, in 
dem j, f) und daher audi a zeitunabhängig sind.) 

Wegen divf} = 0 (3) 

folgt aus ( 2 ) : (f), grad a) = 0 . (4) 

* Jetzige Adresse: Porz-Lind, Im Linder Bruch 68. 
1 S . LUNDQUIST, A r k . F y s i k 2 , 3 6 1 [ 1 9 5 1 ] . 
2 R . LUST u. A . SCHLÜTER, Z . A s t r o p h y s . 3 1 , 2 6 3 [ 1 9 5 4 ] . 
3 A. SCHLÜTER, Z. Naturforsch. 12 a, 855 [1957]. 
4 S. CHANDRASEKHAR, Proc. Nat. Acad. Sei. USA 42, 1 

[1956]. 
5 S. K. MAJUMDAR, Z. Astrophys. 47, 44 [1959]. 

Eine besondere Lösungsklasse von ( 2 ) , (3) sind 
die stromlosen Magnetfelder. Für sie ist a = 0, und 
man spricht von einem trivialen kraftfreien Magnet-
feld. Lösungen für a ^ 0 sind in speziellen Ko-
ordinatensystemen, d. h. unter Annahme spezieller 
Symmetrien, seit längerem bekannt 2 - 9 . Der Fall 
a = const — eine Lösung von (2) heißt dann ein 
TRKAL-Feld — wurde von C H A N D R A S E K H A R und 
K E N D A L L 1 0 1 9 5 7 vollständig gelöst. TRKAL-Felder 
zeichnen sich dadurch aus, daß sie immer divergenz-
frei sind, so daß Gl. (3) keine zusätzliche Bedin-
gung liefert. Außerdem sind sie die einzigen kraft-
freien Felder, für die j x rot ] = 0 gilt. Denn einmal 
sieht man sofort, daß in TRKAL-Feldern diese Be-
dignung gilt. Ist andererseits die Stromdichte zu 
ihrer Rotation parallel, so folgt mit (4) wegen 

rot ] = rot a f) = a ] + grad a x I), 

daß grad a = 0, also a = const gelten muß. In ana-
loger Weise sieht man: Ist f) ein kraftfreies Magnet-

6 G . J. BUCK, J. A p p l . P h y s . 3 6 , 2 2 3 1 [ 1 9 6 5 ] . 
7 R . N . HENRIKSEN, A p . Letters 1 , 3 7 [ 1 9 6 7 ] . 
8 F . G . FREIRE, A m e r . J. P h y s . 3 4 , 5 6 7 [ 1 9 6 2 ] . 
9 G . S . M U R T Y , A r k . F y s i k 2 1 , 2 0 3 [ 1 9 6 2 ] . 

1 0 S . CHANDRASEKHAR U. P . C . KENDALL, A p . J. 1 2 6 , 4 5 7 
[ 1 9 5 7 ] . 


