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Comments on a Proposed Quantization of Interacting Fields 

U . E . S C H R Ö D E R 

Institut für Theoretische Physik der Universität Frankfurt (Main) 

(Z. Naturforsdi. 26 a, 1941—1944 [1971] ; received 31 July 1971) 

The meaning of a recently proposed formalism for quantization of interacting fields is discussed 
by studying the consequences of the time-dependent unitary transformation which is essential for 
this approach. It turns out that non-relativistic quantum electrodynamics in dipole approximation 
may serve as a useful, although rather singular, example for this method. In the relativistic case 
a different point of view is suggested in order to avoid inconsistent interpretation. It is further 
possible to give arguments for a reasonable choice of the unitary transformation concerned. 

1. Introduction 

In a recent paper concerning the quantization of 
interacting fields 1 it was pointed out that the ca-
nonical quantization rules, when applied to classical 
electrodynamics, do not lead to a unique formula-
tion of quantum electrodynamics ( Q E D ) . The rea-
son is that one can perform time-dependent unitary 
transformations before quantizing the electromag-
netic field. The proposed alternative for quantiza-
tion of interacting fields 1 uses the possibility of de-
composing the total Hamiltonian of the system (par-
ticle plus radiation field) into three terms: the Ha-
miltonian of the particle H0 (e. g. a bound or free 
electron), that of the free radiation field HTSl(J , and 
the interaction term Hmt. While the radiation field 
at first is considered as classical, the Hamiltonian 
H0 + Hint is subjected to a time-dependent unitary 
transformation U = e x p { z ' S ( j ) } - The motivation for 
the special choice of the transformation is that it 
should lead to a transformed system where the in-
teraction term is not present any more, or at least 
is minimized. The reaction of the particle on the 
field is then taken into account by quantizing the 
free radiation field and adding its Hamiltonian to 
Hq = TJ H0 U~1. On the resulting system, described 
by H0 + Hra(i, one now applies the inverse trans-
formation which leads to a Hamiltonian that is dif-
ferent from the usual one but should yield the same 
physics. The aim (or hope) of course is to obtain 
a description of the system that avoids the difficul-
ties inherent in the usual formulation. The method 
is illustrated in 1 by considering two cases. First the 
non-relativistic electron interacting with the radia-
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tion field (approximated by the dipole term) is 
studied, and then the possibility of generalizing to 
relativistic QED is discussed. And in fact in the 
case of the first example a Hamiltonian is obtained 
for which no explicit renormalization of the electron 
mass is necessary any more. The term usually ad-
ded to the Hamiltonian in an ad hoc way in order 
to get a finite non-relativistic Lamb shift appears 
here as the result of the transformation mentioned, 
after having quantized the radiation field. 

Because of this encouraging result and its pos-
sible generalization it seems necessary to look more 
closely at the proposed quantization procedure. The 
purpose of the present paper is to discuss and to 
clarify the interpretation of this formalism. In order 
to find the correct transformation a more general 
approach will be used. First we shall find that the 
non-relativistic case in dipole approximation indeed 
may serve as a useful, although rather singular, 
example for this quantization prescription. On the 
other hand, in the case of generalization to rela-
tivistic QED it turns out that the transformation 
under discussion is not able to transform the system 
to the free case as claimed in 1 . In order to avoid 
arbitrariness and inconsistent interpretation a dif-
ferent point of view regarding this problem is pro-
posed. 

2. The Time-Dependent Unitary Transformation 

To begin with we consider the Hamiltonian H 0 

of a massive particle m of charge e coupled by / / i n t 

to the classical radiation field /7 ra (j . Following the 
method proposed in 1 we first apply a time-dependent 

1 W . C. HENNEBERGER, Nucl. Phys. B 23, 365 [1970]. 



unitary transformation (containing the classical 
electromagnetic field) to the system described by 

3 
(H0 + Hmt) y ( r » 0 = « 3 7 y>(r,t) *• (1) 

More precisely one is looking for a transformation 
ip —y xp = U yj such that in the transformed system 
the interaction term H-int = U Hmt U~x is not 
present any more. In order to see how this could be 
achieved in general we apply the transformation, 
unspecified at first, 

U = exp{iS(t)} (2) 

to the system (1) and obtain 

{UHoU-i + UHteU-1} v = i \ u j t u - i \ v , 

j # 0 + Hint +Y[[S,Hint] + [5, [5, Hint] ] 

+ 3;3 [5, [5, [5, H-mt]]] + . . . | V (3) 

- - f f [5, [ 5 , 5 ] ] - . . . j v , 

because [5, 3 / 3 i ] \p = — Sxp. Putting now 

S = Hint, (4) 

the interaction Hamiltonian indeed cancels, but un-
fortunately the other terms will remain. Although 
the commutator series on each side of Eq. (3) look 
very similar 

{ H 0 + ± [5, Z/ int] + [5, [5, / / i n t ] ] + . . . } v 

= { f it + 2 i [ 5 ' + i f I 5 ' t 5 ' ] + •••) V ' 

they are not identical because of the slightly differ-
ent factorials in front of the commutators. There-
fore, if one wants to get rid of the interaction term 
Hi n t , besides condition (4) one has to require 

[5, H i n t ] = 0 , (5) 
and thus obtains 

H0ip = i(d/dt) xp. (6) 

3. Non-Relativistic Example 

It is indeed possible to find a transformation of 
this kind, at least in a special case. Consider for 

* h=c=1 
2 For the literature concerning this special case we point to 

the quotations in 

instance as in *»2 the Schrödinger equation for a 
bound non-relativistic electron (without spin) in a 
classical radiation field given by the transverse vec-
tor potential A(r,t) 

H0= ( p 2 / 2 m)+V(r) ; Hmt= - (e/m) A(t) p , 

where for A(r, t) the dipole approximation A(r, t) 
R=;A(0, t) is already introduced. According to (4) 
one has 

S — i(e/m) Z ( 0 ' V , (7) 
where 

Z(t) = f dr A ( T ) 
— oo 

is the Hertz vector of the electromagnetic field. Up 
to now A and Z are still classical quantities. There-
fore condition (5) evidently is fulfilled3 . At this 
stage the system is completed by including the 
quantized radiation field which has to satisfy the 
usual canonical commutation relations 4 . 

The total Hamiltonian then reads 

# total = H0 + # r a d , /7rad = i 2 (pi.a + 0)1 qi,a) (8) 

where pk,a and qk,a are the canonical conjugate 
operators as defined by the Fourier expansion of 
the radiation field A(r,t). Performing now the in-
verse transformation one has to take into account 
the commutation relations of the radiation field and 
the fact that in the Schrödinger picture U and //total 
are time-independent operators. The time derivative 
in the Schrödinger equation therefore does not ap-
ply to U and one obtains 

{H,+ U^Hr^U)xp = i(d/dt)xp. (9) 

The commutator series for £ / _ 1 / / r ad U breaks off 
at the third term and leads to the interesting result 

U ^ H ^ U = # r a d - (e/m) + 

where dm is the well known mass renormalization 
term 

Jc max 

o 

Therefore, in this formulation there is no need for 
an explicit mass renormalization in calculating for 
instance the non-relativistic Lamb shift. 

3 This is not true if A does depend on space coordinates. 
4 See Ref.1 , Eq. (11). 



4. Generalization to Relativistic QED 

It is of course tempting to generalize this method 
to relativistic QED. In this case it is shown in 1 that 
the interaction term proportional to e2 obtained by 
the analogous procedure does not contain contribu-
tions to second-order S-matrix elements which cor-
respond to (the diagonal terms such as) the electron 
self energy, photon self energy, and the disconnect-
ed graph. However, it should be remarked that in 
getting this interesting result a crucial assumption 
is made which, in our opinion, is not fulfilled. In-
deed it is assumed that the transformation under 
discussion (2) has been carried out before quantiz-
ing the radiation field. But it is easy to see that in 
this case condition (5) cannot be satisfied. From 
the relativistic interaction 

#int= -/d 3 r /„(r) A„(r,t); 

jAr) = ie :yj(r) y^ipir): 

one obtains according to (4) 

S= - / d3r (r) Z^r, t) (10) 

with the generalization of the Hertz vector Zß(v,t) 
satisfying 

g 
2fZJr,t) =AJr, t). 

A calculation of the commutator (5) leads to 

[S,Hint] = / d 3 r d 3 r ' Zß(r, t) Av{r\t) x 

x ^ l D . M O l + O , (11) 

because the commutator of currents does not vanish 
in general at equal times 5 

(r),/'„(r')] ~ 
f<5(r-r') y+(r) omny(r') for 4 
{ 0 for ,a = 4 ; v = 4; ju = v, 

where oßV = 1/2 i[yß, y v ] . 
Therefore the transformation with (2), (10) does 

not furnish the rotated Hamiltonian H0 which is a 
suitable starting point before introducing the quan-
tized radiation field. On the other hand one finds 
in 1 that only H0 has been used and the terms aris-
ing from the commutator [5, //;nt] 4= 0 have not 

5 See also for instance KÄLLEN 6, p. 225. We follow the no-
tation used in Ref. 

6 G. KÄLLEN, Handbuch der Physik, Bd. V/1, Springer-Verlag, 
Berlin 1958. 

been discussed. As a consequence it is no longer 
possible to maintain the statement that the Hamil-
tonian used in 1 yields the same physics as the usual 
one. Whether this holds true is still an open ques-
tion. 

One could of course avoid this inconsistency if 
one is willing to accept a rather different point of 
view. According to the usual treatment of canonical 
field quantization one adds to the free Hamiltonian 
of the system the interaction term (in correspon-
dence to the classical expression) and then imposes 
on the different fields the quantization rules. Instead 
of following this line or the equivalent procedure 
discussed in Sect. 3 one may propose to start with 
the free particle Hamiltonian H0 rotated by a spe-
cial time-dependent unitary transformation 

H0-+H0 = UH0 V-K 

For the rotated system the reaction of the particle 
on the radiation field is now taken into account by 
quantizing the radiation field according to the ca-
nonical commutation rules and adding the Hamil-
tonian / / r a ( j . Performing then the inverse rotation 
one obtains the Hamiltonian (in the Schrödinger 
picture) 

H = H0 + U~lHI&AU 

which now contains the interaction in the second 
term. 

The crucial question of course is to find (moti-
vate) a reasonable and unique choice of the trans-
formation U. Looking at the commutator series 

J-J~1 #rad ^ = #rad+ J7 [#rad > <$] 

+ ^f[[tfrad,S],S] + . . . (12) 

it seems natural to demand for instance that the 
first commutator should reproduce the usual cou-
pling of the charge current operator to the radiation 
field which corresponds to the interaction known 
from classical theory 

*'[ffrad.S] = - f d 3 r j j r ) AJr). (13) 

One finds that this condition can be realized by the 
expression 7 

5 = - / d 3 ( r ) 7 ; ( r ) Z M ( r ) . 

7 Notice that this expression for S just yields the transforma-
tion used in Ref. 



It should be emphasized that the interaction intro-
duced by the commutator series 

£/-i Hiad U = tfrad - / d3r j„(r) ^ ( r ) (14) 

+ ^rjjd3rdV[;,(r) Aß(r),jy{r') Zv(r')] + ... 

is different from the usual one. The term proportio-
nal to e2 in the series (14) leads to encouraging re-
sults which are discussed in 1. 

5. Conclusion 

In conclusion it should be remarked that the pro-
posed quantization scheme leads to the correct clas-

sical limit because for c-numbers the commutators 
in (12) vanish. But of course this treatment of in-
teracting fields has to be confronted with all the 
well established experimental results of QED. It 
may turn out that the commutator series (12) 
breaks off at some term for renormalizable theories, 
as found in the non-relativistic example. For an-
swering these questions a discussion of the higher 
commutators in (14) is necessary. 
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Optische Kern-Spin-Polarisation in Molekül-Kristallen * 
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This paper deals with the polarisation of nuclei in molecular crystals due to their hyperfine 
interaction with optically excited triplet states and excitons, a phenomenon which is termed optical 
nuclear polarisation (ONP). 

A theory is presented which extends the mechanisms of dynamic nuclear polarisation (Over-
hauser effect) to the case of spin systems containing triplet states with S = 1 and nuclei with / = l /2. 
In this mechanisms the optical electron polarisation (OEP) caused by symmetry selection rules for 
intersystem crossing to and from the magnetic triplet sublevels is assumed to be transferred to the 
nuclear magnetic substates by efficient hyperfine relaxation transitions. 

The adiabatic fast passage is used to detect the nuclear polarisation. The advantages and con-
ditions of this technique as compared to other nmr techniques are discussed. 

ONP results at room temperature are given as a function of the external field H0 , its orientation 
with respect to the crystalline axes, the intensity and frequency of the exciting light and the con-
centration and types of guest molecules. In phenazine crystals relative polarisation factors up to 50 
are found with marked orientation dependencies even in fields as high as 11 kG. These results can 
be interpreted in principle in terms of the presented theory. However, in low fields (0 — 200 G) 
where ONP caused by hyperfine relaxation vanishes, large polarisations are found in doped crystals 
of fluorene and anthracene. The maximum absolute polarisation in fluorene doped with acridine 
is 3 . 6 - 1 0 - 4 at H0 = 8 0 G corresponding to a relative polarisation factor of ~ 104. The effect of 
doping is discussed.. Reference is made to a possible ONP mechanism 3 which is able to produce 
large nuclear polarisations at low fields. 

I. Einleitung 

Die 1967 entdeckte 1 Polarisation von Protonen 
durch Licht beruht auf Wechselwirkungen zwischen 
Kernen mit dem Spin 7 = 1 / 2 und den beiden Elek-
tronen mit dem Spin 5 = 1 von optisch angeregten 
paramagnetischen Triplettzuständen. In dieser Arbeit 
wird über eine systematische Untersuchung dieses 

als optische Kernpolarisation (ONP) bezeichneten 
Effekts in aromatischen Molekülkristallen bei Zim-
mertemperatur berichtet. Dabei wurden folgende 
Parameter variiert: 

1. Art und Konzentration der Gastmoleküle, 

2. Größe des äußeren Magnetfeldes H0 und seine 
Orientierung relativ zu den Kristallachsen, 
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