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We investigate the possibility of selfconsistent solutions for antiferromagnetism in the Hubbard 
model in the decoupling of the Greens functions introduced by Hubbard in his first paper. On the 
base of this approximation Arai has calculated the band splitting for antiferromagnetism, but, as 
will be shown in this paper, Hubbard's approach fails to yield antiferromagnetism for nearest 
neighbour hopping in the same way as it does not yield ferromagnetism, and no selfconsistent 
solutions of the problem beyond the well known paramagnetic solution do exist. 

1. Introduction 

In the same paper in which Hubbard introduced 
his Hamiltonian for electron interactions in narrow 
energy bands, which is now commonly denoted as 
the HUBBARD model \ he gave a treatment of the 
correlation problem in terms of temperature depen-
dent Greens functions2 which is founded on two 
well-distinguished and independent suppositions. 
The first consists in a special decoupling of the 
hierarchy of Greens functions3 and the second is 
the assumption that the expectation value of the 
number of electrons of a given spin direction will 
not depend on the lattice site, to which the electrons 
are attached. This homogeneity on the lattice is 
equivalent to the assumption of ferromagnetic or-
dering (because it leads to ferromagnetism for a 
different partition of the electrons on the two spin 
directions) and will therefore be denoted as ferro-
magnetic hypothesis. 

Hubbard gets interesting results for the band 
splitting of the pseudo-particles, but the only self-
consistent solution of his equations is the para-
magnetic one, at least for a large class of reasonable 
single-centred densities of states for the free elec-
trons. That means, there is no ferromagnetism in 
the Hubbard decoupling. 

On the other hand, it has been established in the 
meanwhile both by the investigation of the ground 
state of the model4 and by single particle theo-
ries 5 - 7 which are more refined than the usual 
Hartree-Fock approach that antiferromagnetic order-
ing is more likely than ferromagnetism for the 
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nearly neutral model, i. e. if the number of electrons 
7Ve ^ the number of lattice sites N, at least for suf-
ficiently small electron coupling. 

Therefore, the question may be asked whether 
the Hubbard decoupling would lead to antiferro-
magnetism when the ferromagnetic hypothesis is 
given up in favour of a periodical variation of the 
expectation value of the number of electrons of a 
given spin on the lattice. 

Recently this problem has been attacked by ARAI 3 

for a general hopping interaction; Arai discussed 
the complicated effects of antiferromagnetism on 
band splitting, but he did not investigate the exis-
tence of selfconsistent solutions for this type of or-
dering. 

This problem will be considered in the present 
paper, but we shall restrict ourselves from the begin 
to the case of nearest neighbour interaction in AB-
lattices, where not only the density of the free elec-
trons is well known 9 but also the general evaluation 
of the formulae is much more straightforward than 
in the case of general hopping distances. 

The result of these investigations will mainly be 
a negative one, because we shall show that the 
Hubbard decoupling fails to yield antiferromagnetic 
solutions in the same way, as it fails to yield ferro-
magnetism. 

2. Hubbard-Decoupling and y4ß-Hypothesis 

To become concrete, we shall start from the 
Hamiltonian 

H = - 71 2 Cj+A,<r cjo + \ V0 2 njo nj-o, (1) 
jA.o j,o 
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where Cjä generates an electron in a Wannier state 
localized at the lattice site j, njt0 = CjaCj0, A com-
prehends all nearest neighbour vectors of a given 
lattice site, T is the hopping constant for nearest 
neighbour transitions and V0 is the repulsive inter-
action, which electrons of opposite spin feel when 
they are brought together to the same lattice site. 

Following Hubbard we consider the equation of 
motion of the quantum-statistical Greens functions 

G]k(E) = ((cja;cjta))E, (2) 

which after performing of the Hubbard decoupling 
is given by 

EGajk(E)=Fja\ol djk-Tiq+A.k\, (3a) 
[ I n a J 

with Fj a defined by 

Fr==^E-V0(l-(nj,.o)) 
E-V o 

(3 b) 

In fact this formula is identical with Eq. (51) of 
Hubbard's paper apart from the fact that due to the 
ferromagnetic hypothesis of this paper (njt _„) is 
taken independent of j and therefore also Fj~a does 
not depend on the lattice site 10. 

Clearly the method of solving the system (3) by 
a simple Fourier-transformation used by Hubbard 
is restricted just to this case. In order to get a com-
parably simple solution for spatially varying (n,ja) 
we now introduce an "A B hypothesis" by dividing 
the lattice into an A and a (mathematically equiva-
lent) B lattice and defining 

j nA : for j from the A lattice, 
^nja' = 1 n°B : for j from the B lattice; ( ' 

in this way we get two different quantities F~[a and 
F B ° . 

In fact this definition is slightly more general 
than the assumption of antiferromagnetism, because 
it comprehends also the ferromagnetic hypothesis 
for nA = riß. This will give rise to an useful check 
of our calculations, which must yield Hubbard's re-
sults under these circumstances. 

The next thing to note is that we may label also 
the Greens functions according to the sublattices to 
which the vectors j and fc belong, i. e. as GfuAa, 
GjkBa, GfkAa and GfkBa, and that for ) from the A 
lattice — say — all j + A occurring in Eq. (3 a) 
will be from the B lattice and vice versa. In order to 
decouple the equations for different sublattices we 

may write down Eq. (3 a) for the functions Gj+ Au> 
insert them into (3 a) and get the result 

R NAAa J? — a ^JK i-1 R — OR — oK' R'A Ao £ Lrjk =rA — h ~rr i1 A ZGJ+A+A ' , * 
y2 

2 71 

(5) 

or interchanging A and B the analogous formula 
for GfkBa. 

Now we may introduce the translation vector 
l = j - k of the sublattice (where it is important 
that the A and B lattices are equivalent) and as-
sume translation symmetry in the sublattices, such 
that (5) may be written as 

f2 

E 
R /~"AAA R — A 'U _I_ X JP — AP — A^R/^AACR 
t , G = t A — t A t B Z G J + a + A -2 71 

(6) 

As this is a system of coupled linear equations for 
GfAa, it may be solved by a Fourier-transformation 
on the sublattice, which will be introduced in the 
next section. 

3. The Sublattice Fourier-Transformation 

When the periodicity volume of the lattice con-
tains N lattice sites each sublattice will consist of 
N/2 sites. Therefore we introduce 

2 
N 2 Gi exp{ —iql}, (7 a) 

where I runs over all sublattice vectors and get 

Gi= 2Gqexp{iql}, (7 b) 

where q now runs over the Brillouin zone of the 
sublattice n . 

When we multiply Eq. (6) by (2/7V) exp{ - ikl} 
and sum over all sublattice vectors I we find for the 
last summand of (6) 

2 
T2 Ar 2 G / + A + A ' e x p { - i f c l } 

1\ lAA' 

= 2 Grexp{-ik(l' — (A + A ' ) ) 
N l'.A.A' 

= GkT2 2 exp{ife(A + A ' ) } 
4 4' 

and introducing 

Tk = T 2 exp{i fcA} 

(8) 

(9) 

this expression results in Gk T%. What is important 
to note is that A is no sublattice vector and there-
fore Tu is not a sublattice-Fourier transformed. 



GiA° (E) = (IIa) 

Introducing this into Eq. (6) we get the result 

{E* -TlFT F?} GtAa = 0— f . E Fj°. (10) 
l 71 /V 

Now we insert Eq. (3 b) into this equation, and 
solving for GiAa , we find 

1 2 PaA (E) 
2ti N Ql (E) ' 

where PA and Ql are the polynomials 

P°A (E)=E(E-V0){E-V0(l-nJ°)) ( l i b ) 

and 

Qi(E)=E*{E-V o)2 (11c) 

- 7 1 C E - V 0 ( l - n r ) ) ( E - V 0 ( l - n r ) ) 

respectively; G2Ba{E) is given by the same formula 
with A interchanged with B. It is worth mentioning 
here that P does not depend on the momentum and 
that the denominator Ql{E) is in common to GkAa 

and G?Ea. 

4. Resolution of Gk(E) into Partial Fractions 

In order to apply the special representation of 
the Greens functions later on it will be convenient 
to resolve Eq. (11a) into partial fractions. If all 
zeros E%?. of Ql (E) are simple and real we may 
write 

1 2 v nooi 
2 n N & E - E k 1 j GiA° (E) 

with the quantities Auf given by 

AAa _ PA{E°U) 
Ql'(Elx) ' 

where 

Ql' (EL) = 
d Ql 
d E E = E kX 

(12 b) 

(13) 

holds. 
As we shall show later on it will not be neces-

sary to know the zeros Fix explicitly, which would 
mean to solve an equation of fourth order. What 
we have to do is to assure that for one thing these 
zeros are real under all circumstances and for an-
other thing they are separated from one another by 
boundaries which do not depend on the momentum 
k. The latter point means, as to the band splitting 
of Gk(E), we do not have band overlap and all 
zeros are simple. 

Let the zeros El;, be ordered by Elx <E%,x+1 and 
let — without loose of generality — be nja ^ n]}c 

for fixed o. 

From the sketch given in Fig. 1 we see that the 
zeros El>. independently of k are separated from 
one another by the zeros of the nominators PA and 
PB , i- e. 

Eakl£0, 
0 V0(l-UBa), 

V,(l-nr)^El^ V0, (14) 

V0 £ El, 

holds; there are no zeros between F0(l — and 
V0(l -nj°). 

Fig. 1. f lot of Qk(E) (in solid line) and of PaA (E) and P°B(E) 
(in dashed lines). As is seen from the figure the zeros Ex of 
Qk(E) are separated by the zeros of Pa (E) and Pß(E), re-
spectively. Moreover the coefficients A^f [see Eq. (12)] are 

positive for all values of k. 

Moreover, we may take from Fig. 1 that all Ai?' 
are positive and may be written as 

Afx = | PA (Fl?) Ql (Eh 

which will be important for later use. 

( 1 5 ) 

5. Calculation of the Correlation Functions 

In order to draw thermodynamical conclusions 
from the Greens functions we conveniently may use 
the spectral theorem, which for the case of (nj), 
where C = A or B, respectively, reads 

nac = (cj(c)o Cj(c)o) (16) 

= i lim \ dE 
£-* + 0 J 

- O O 

G?£a0(E + ie)-GK°0 (E-ie) CCA 

As Gi=o = ziGk k 
( 1 7 



holds due to (7 b), this may be written in the form 

£ 2 2 A% 2ti N kx 

X lim 
d E 1 

+ oJ + l \ E + ie-El, E-ie-Eh 

= vr I 
d E 

Jck° (E), ( 1 8 ) 
N f J + \ 

where due to Dirac's identiy the spectral density in 
momentum space Jka (E) is given by 

JCk°(E) = 2 A%d(E-E°u). (19) 
x 

According to Eq. (15) this may be written as 

fk° (E)= 2\Pc {Eh)\ d(E-Eh)/\Qi (Eh)\ 

(20) 

and because of Fig. 1 we further find 

Ju° {E)=\Fb{E)\d{Ql{E)). (21) 
It is this formula which will be brought together 
with certain sums over the free electron states in the 
following. At first we note that due to Eq. (14) 
d(Qak(E)) = 0 holds for 

V0(l-nBa)<E<V0(l-nr). 

Outside this interval in consequence of (11c) it is 
of the form 

Ö{aß-Ti yx y2) 

and may be resolved into ^-functions, which are 
linear in T k with the final result 

x{d(Tk -r(E)) + d(Tk + r ( £ ) ) } , (22a) 
where r (E) is given by 

r(F) = J1E~V o) 
{ ) V(E-V0(l-nÄa))(E-V0(l-nr)) ' 

(22 b) 
Applying the formula 

+ OO 
d{a-x) = fdtd(a-t) 6{t-x) (23) 

- oo 

we may further transform 

1 1 / E - V 0 ( l - n Ä Ü ) 
Ju KCj) 2 y E-V0(l-nr) (24a) 

+ OO 
xfdt{d(t-Tk) +d(t + Tk)}d(t-r(E)) 

for E<V0(1-TIB°) or £ > F 0 ( l - n J C T ) 
and Jia (E) = 0 (24 b) 
for F 0 ( l - r i B a ) ^ E ^ V 0 ( l - n J a ) , 
and the same expression with A and B interchanged 
for Jk\{E). Now let us consider the sum 

(2/N) 2 Jt\E) 
k 

occuring in Eq. (18) and denote it by QA{E) . From 
Eq. (24) we find 

QA (E) =0 

for V 0 ( l - R I B ° ) ^ E £ V 0 ( L - N D ( 2 5 a ) 

and q«a (E) = (1 - n r ) 

( 1 - / 1 5 ° ) (25 b) 

xfdt{g+(t)+g-(t)}d{t-T(E)) 

otherwise, where we have used functions g± (t) de-
fined by 

9±(t)= N I d(t±Tk). (26) 

Introducing QA(E) into Eq. (18) finally yields 

n°A = d£ 
QAE) 

eßiB-f) + 1 (27) 

and identifies QA(E) as the effective density of sta-
tes of the pseudo-particles in the splitted bands; in 
analogy TIB is coupled to QB{E), which is defined 
by (25) when A and B are interchanged. 

In order to evaluate Eq. (27) we must investigate 
the functions g± (t). As can be shown these func-
tions are connected by 

g+(t)+g-(t)=g(t); (28) 

g(t) is the density of states function of the free 
electrons in the crystal lattice, which is defined by 

9(t)=NId(t-Tk), 
I\ k 

(29) 

where in this case k runs over the Brillouin zone 
of the original lattice and not over that of the sub-
lattice only. This function is well known for the s.c. 
and the b.c.c. lattice9. We shall not reproduce the 
proof of Eq. (28) in this paper 12, but we shall see 
in the subsequent section that this result is very sug-
gestive in the light of some simple limiting cases 
discussed there. 



6. Discussion and Specialization 
for Antiferromagnetism 

In this paper we are mainly interested in the tem-
perature T = 0 properties of the Hubbard model. 
We therefore may simplify the formula (27) to 

nc = f dE o°c (E) (30) 

(where C is A or B) and the final result for QA(E) 
following from (25) and (28) is 

(0: V0(l-nr) V0(l-nD 

QA(E) \ E-V0(l-nJ°) 
E-V 0(1 B°) 

E(E-V 0) 
(31) 

V{E-V,{l-nr)){E-V,(\-nBa)) 
otherwise; 

QB{E) is given by interchanging A and B in Equa-
tion (31). 

Therefore Eqs. (30) and (31) are a system of 
coupled nonlinear equations, the solutions of which 
yield selfconsistent values for the densities of the 
spin up and down electrons in the different sub-
lattices. 

Before we turn to the case of antiferromagnetic 
ordering we shall consider two simple limiting 
cases, which will help to clarify the meaning of 
these equations. 

At first let us investigate the limit of vanishing 
Coulomb repulsion F0 = 0, which clearly must give the 
results for the non-interacting model. 

Introducing this limit into Eq. (31) and observing 
the fact, that g(t) is a symmetric function of its ar-
gument, we immediately get 

Q°C{E)=g{E). (32) 

This is in fact the density of states of non-interacting 
electrons, which is independent of their spin orientation 
and of the sublattice and, therefore, leads to no mag-
netic ordering. Here we have a simple check of Eq. (28) 
because the function X(E) introduced in Eq. (22 c) re-
duces to | E | and therefore (32) is true iff (28) holds. 

For the second limiting case we assume ferromag-
netic ordering by postulating 

n°A = n°B = n" . (33) 

In fact, as we have clarified in Section 2, the AB-
hypothesis of this paper comprehends Hubbard's ferro-
magnetic hypothesis and, therefore, (33) is a legitime 
postulate. 

With it the difference of the two sublattices vanishes 
and we get 

Q°(E)=g 
E(E-V o) 

This expression is exactly the density of states of the 
pseudo-particles, which Hubbard finds in his paper 
[Eqs. (62) and (63) of *], as it must be under the 
special assumption of Equation (33). Again (34) is 
true if and only if Eq. (28) holds. 

Also in the strong coupling limit T —> 0 we find the 
correct result for the spectral density, as is seen most 
conveniently from Equation (20). 

Now let us contemplate the case of antiferromag-
netism with the aim of investigating whether the 
Eqs. (30) and (31) have selfconsistent solutions 
for antiferromagnetic ordering, which is the main 
goal of the present paper. That means, is the Hub-
bard approximation together with the ^-hypothesis 
sensitive enough to reproduce the antiferromagnetic 
groundstate, which according to 4 is found for a 
suitable range of electron concentrations (mainly 
Ne^aN) and coupling constants V0 . 

For antiferromagnetism the total electron density 
has the full translation symmetry, i. e. 

n\ +ni +n/ { =ne = Ne/N (35) 

and the local magnetization alternates, i. e 

ni - n j =2sa = -2s% = -n^ + n* (36) 

holds. Therefore we have the relation 

(37) 

This assumption is consistent with Eqs. (30) and 
(31) because the symmetry of Eq. (37) is reflected 
also in the density of states by 

Q B = Q r = Q ~ ° , (38) 

and therefore we may confine our further attention 
to the ^4-sublattice — say. 

If we introduce m for the difference in the occu-
pation of the two spin directions 

m = 2 s A =n\ - n j (39) 

the transcendental Eqs. (30) and (31) may be 
written as 

ne ) = fdE{Qt (*e, m, E) ±qI ( n e , m , E ) } (40) 

(34) 

where the plus-sign refers to ne and the minus-sign 
to m. 

As ne and V0 are given parameters, the two equa-
tions involved in (40) are to be used for a deter-
mination of the chemical potential ju as well as of 
the magnetization m. 

The first thing we note is that m = 0, i. e. n+ = nl , 
is a solution of (40) independent of ne and V0 . 



This solution is characterized by the absence of 
magnetic ordering and is identical with the un-
magnetic solution, which is the only existing one 
under Hubbard's ferromagnetic hypothesis. 

Moreover the symmetry of the Hamiltonian against 
reflections of all spin-directions has its counterpart 
in the property of (40) that for (//, m) being a 
solution also ( j l i, — m) solves the equations. There-
fore we may restrict our further attention to the 
case m ^ 0, i. e. ^ n J . 

The formulae (40) may be simplified with the 
following result: 

ne = } dE | 2 E - V0 (2 - ne) | qm (E), (41 a) 
— oo 

M {1 + vJjE A (E) Qm (E) j = 0 , (41b) 

where we have introduced an effective density of 
states 

0: $ V0(2 -ne-m) E £ \ V0(2 - ne + m) 
[ [ E - i V 0 ( 2 - n ) ] 2 - ( i V 0 ) 2 m 2 ] - ' / ! 

( E(E-V o) 
9\[[E-lV0(2-n)]2-(bV0)2m2y> 

: otherwise (42) 

QettiE) 

and A(E) is a sign-function, given by 

-1: E<iV0(2-n-m), 
ME) + 1: E> iV0(2-n + m), 

(43) 

i.e. — 1 in the lower and + 1 in the upper of the 
two splitted bands of the pseudo-particles. 

From Eq. (41 b) we see again that m — 0 is a 
permanent solution of the problem; for an anti-
ferromagnetic solution with m > 0, however, the 
part of (41 b) written in brackets must vanish. 

It is the crucial question of this paper whether 
this condition may be fulfilled together with Eq. 
(41 a) at least for a certain range of values for ne 

and V0 . This will be discussed by a mixture of 
computational and analytical arguments in the fol-
lowing. 

7. Investigation for Antiferromagnetic Solutions 

Let us begin the discussion of these equations for 
the case of the neutral model with ne = l, which 
due to the results of NAGAOKA 4 is most likely to 
yield antiferromagnetic order in the ground state. 

It has been proven as a rigorous result which also 
holds for the approximation of Eq. (41) that for 
the neutral model the chemical potential is given by 

f i ^ V 0 / 2 . (44) 

This means, exactly the lower one of the two split-
ted band is completely filled up with pseudo-particles 
and the condition for antiferromagnetism derives 
from Eq. (41 b) as 

hV,(l -m) 
l = V0fdE[(E- i V0)2 — (I F0m)2]1,1 

E(E-V0) 
(45) 

g\[(E- %V0)2-aV0m)2y''-
h F0(l— m) is just the upper bound of the lower 
pseudo-particle band. 

In Fig. 2 we have plotted the result of computa-
tions of the right hand side of this formula for the 
s.c. lattice as a function of m for three values the 
parameter V0 . As is seen from the figure, no solu-
tion of (45) exists for these V0 . 

.99 

Fig. 2. Plot of the right hand side of Eq. (45) for the neutral 
model (/ie = l) and F 0 = l , 5, and 30, the latter one in a modi-
fied scale. As is seen these functions are less 1 everywhere thus 

excluding a solution of Equation (45). 

Moreover, let us inspect formula (45) for the 
cases of m = 0 and m = l, respectively. In these 
cases we may substitute for the argument of the 
single particle density g and get for the right hand 
side of Eq. (45) 

+ oo _ 
9(e) 

i Vn \ de -7 2 ' 0 
— oo 

for m = 1 and 

Ve2+(iV0)2 

+ oo 

F°r£ Ve2+V02 

(46 a) 

(46 b) 

for m = 0, respectively. 



Integrals of this type are well known from 7 and 
have been discussed in length in this paper. What 
we may take from this discussion is that both in-
tegrals are less one and tend to 1 just in the limit of 
F0 oo . 

Therefore we may conclude that Eq. (45) does 
not possess a solution for finite V0 . This means, 
apart from the strong coupling limit V0—oo, in 
which a large number of magnetic structures are 
degenerated, the Hubbard decoupling does not lead 
to antiferromagnetism for a neutral nearest neigh-
bour Hubbard model in the s.c. lattice (but the ar-
guments given above hold also for the b.c.c. lattice). 

In Fig. 3 the results of computations of the in-

V„ = 30 

V =10 

N, = .5 

Fig. 3. Plot of —V0X the integral in Eq. (41 b) with fi com-
puted from Eq. (41 a) ; rce = 0.5 and V0=l, 10, and 30. As the 
curves are less 1 everywhere there exist no solutions of Eq. 

(41 b) apart from the trivial (m = 0) one. 

tegral in Eq. (41 b) are plotted for the case of 
ne = 1/2. Here the results miss the condition for 
antiferromagnetic ordering still more than in the 
neutral model. Therefore, together with the argu-
ments of NAGAOKA 4 we are led to conject that the 
Hubbard decoupling of the nearest neighbour model 
(at least in cubic ^-lattices) does not lead to an 
antiferromagnetic ordering in the same way, as it 
does not lead to ferromagnetism under the ferro-
magnetic hypothesis. 

Therefore the investigation of the band splitting 
by such an ordering is purely academic, because it 
is not based on selfconsistent calculations. 

The only selfconsistent solution resulting from 
Hubbard's decoupling both with respect to ferro-
magnetism and to antiferromagnetism is the para-
magnetic one. As we have shown in a preceeding 
paper 13 this solution leads to an approximation of 
the groundstate energy which for the neutral model 
is not so good than that one resulting from anti-
ferromagnetic single particle theories, but is in-
teresting for the fact that apparently part of the 
effects of magnetic order is simulated by the cor-
relations in the paramagnetic state, which are in-
volved in Hubbard's approach. 
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