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An improved two-center model has been used to describe the elastic scattering potentials for 
the collision of identical nuclei. The macroscopic-microscopic approach includes liquid drop (LD) 
deformation energies, shell corrections and pairing energy corrections. As basis for the microscopic 
part a two-center shell model has been used with a Hamiltonian including a Thomas-type spin-
orbit potential and an correction term. The model is applied to the sudden and adiabatic type of 
scattering process, including a compression energy term in the LD part for the former case. Results 
are given as potential energy surfaces for the adiabatic scattering process and potential energy 
curves for the sudden scattering process. 

1. Introduction 

During the last years theoretical work on heavy 
ion reactions has become more and more interesting 
as facilities for mutual scattering of heavier and 
heavier nuclei with increasing energies are becom-
ing available. During such a collision many reac-
tions occur. In this paper we deal with the elastic 
scattering of identical particles and investigate the 
real part of the nucleus-nucleus potentials. The in-
vestigation of these potentials may illuminate the 
connection between nuclear fusion and nuclear fis-
sion as well as the problem of the existence of 
nuclear molecules. 

Experimental data on elastic scattering (excitation 
functions, angular distributions) can be reproduced 
by optical potentials1. Such potentials contain no 
theoretical interpretation and are not unique, so 
that they represent merely a kind of parametrization 
of the experimental data. It therefore is of great 
physical interest to derive optical potentials from 
more basic knowledge about the nuclear structure. 
To that end phenomenological collective models 2 ' 3 

as well as microscopic models4 have been developed. 
From the theory of fission it is well known that 

neither the pure microscopic (shell) nor the pure 
macroscopic (liquid drop) model describes the po-
tential properly. The best description of fission has 
been achieved by a hybrid approach, also known as 
a shell correction method, developed by Strutinsky5. 
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It was a quite natural step to use this model for the 
construction of real parts of optical nucleus-nucleus 
potentials. Here we use the deformation parameters 
of the compound system6 rather than the relative 
distance of the two colliding nuclei. This description 
has already been used4 ' 7>8, but the macroscopic 
part of the model was too rough, so that the Cou-
lomb-harriers were too high and the binding energy 
differences between the ground state of the colliding 
nuclei and the compound system were difficult to 
reproduce. 

In this work an improved parametrization of the 
macroscopic part of the model has been developed 
(Section 2 ) . Also an improved two-center single 
particle potential for the shell correction calculations 
is used. The prescription that the liquid drop (LD) 
surface should coincide with the nuclear equipoten-
tial surface which contains the nuclear volume, yields 
the connection to the single particle model which is 
then described in Section 3. Our systematic study of 
the sudden type potentials (connected with the ap-
pearance of nuclear compression) shows that even 
in the scattering of very heavy ions nuclear mole-
cules may be observed. We also investigate numer-
ous potential energy surfaces (PES) of the adiabatic 
type. The sudden and adiabatic potentials serve as 
limiting cases: For actual reactions the potentials 
are expected to be between the two, possibly closer 
to the latter one. The construction of the potentials 
and, finally, the results of our study on the sudden 
and adiabatic type scattering potentials are presented 
in Sects. 4 and 5. Section 6 contains the conclusions. 

Throughout the paper we make use of the rota-
tional symmetry of the potential as well as of the 
reflexion symmetry with respect to the middle plane. 
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2. Macroscopic Part of the Model 

As mentioned in Sect. 1 we are going to use the 
deformation parameters of the compound nucleus 
for the construction of the potential rather than the 
relative distance of the colliding nuclei. As usual, 
we let the surface of the liquid drop shape coincide 
with that equipotential surface F 0 of the two-center 
shell model which contains the nuclear volume. 

2.1. Liquid Drop Deformation Energies for the 
Adiabatic Processes 

We write the generating function of the shapes in 
cylindrical coordinates as 

o (z\ ß, h, / 0 ) = J [6 2 - / 0 z'2 (1 + c z' + dz ' 2 ) ] 1 / 2 

(1) 

where b, c and d still depend on V0, z0, ß, h and / 0 . 
The coordinate z is defined as 

— z0 if z^>0 , 
(2) lz + z0 if z < 0 

where ± z 0 ( z 0 > O ) denote the position of the cen-
ters of the shell model potential. 

The deformation parameter ß describes the 
(equal) elliptical deformation of each of the frag-

ments, i.e. the ratio of the figure axes. For 0 < / ? < 1 
one has the oblate and for ß > 1 the prolate defor-
mation (Fig. 1, lower part). The case ß = l de-
scribes spheres. The pure spheriodal form (for the 
compound nucleus) is given by Eq. (1 ) for z0 = c 
= d = 0, / 0 = 1. The constriction deformation pa-
rameter h is described by the ratio of the shell 
model potential (15) at the origin V(0, 0 ) and the 
surface potential V0, o (Fig. 1, upper 
part) and has the range 0 / i < cc . It can be easily 
seen that the touching configuration is characterized 
by h = l *. 

In the adiabatic case we have no compression and 
the figure axis b can be determined via volume con-
servation (a = bjß). It is the real root of the cubic 
equation 

b* + ! (z0 - * + ) b2 - f /o [ i d ( v 5 - *+ 5 ) 

- . ( d V + i c M V - * + 4 ) O ) 
+ (2 dz02 - c z0 + i ) (z03 - z+3) 
+ ( J z 0 4 - c z 0 3 + z0 2) {z»-z+)]-ß2r*A = 0 . 

The geometr ica l mean ing of the de fo rmat ion parameter h 
can be i l l u m i n a t e d as f o l l ows : A t the neck the radius of 
the compound system is g iven by the expression D = 
a(l — h)ll*. One can prove tha t fo r two separated ions D 
becomes imag ina ry ( / i > 1 ) . Th i s was the reason we used 
h as a de fo rma t ion parameter rather then D. 

Fig . 1. T y p i c a l T C S M po ten t ia l a long the z-axis w i t h the generated nuc lear shape. Le f t s ide : compound nucleus. R igh t 
s ide : separated ions. 
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The solution of (3) must be found iteratively be-
cause z + is an implicit function of b and represents 
the left edge of the right ion (see Figure 1) . z + is 
determined by the solution of the equation 

d-zA- {ldz0-c)z3 + (6dz02-3cz0+l)z2 

— (4 d z03 — 3 c z02 + 2 z0) z + d z04 — c z03 + z02 

- 6 2 / / 0 = 0 (4) 

in the region 0 < z < z 0 . For the compound nucleus 
(h 1) one should set z + = 0 in Equation (3 ) . 

The parameters c and d are describing the de-
viation from the ellipsoidal shape. As for j z | ^ z0 

we use a pure ellipsoidal shape, c and d vanish in 
that (outer) region. In the inner region |z|<z0 

they have the values 

1 / 4b2h\ , 1 / 3 b2h\ iC. 
C r = T \ 2 ' TT*)' dr= T^ 1 - TT* l z0 \ J0 -o / \ /o zo / 

for the right nucleus and Ci — — cr, d[ = dr for the 
left nucleus (reflectional symmetry). 

As already shown 9 the shell model potential has 
additional extrema in the region | z | < z0 if 
e = b2 A / z 0 2 < 1/6, / 0 = 1. This determines the range 
of / 0 as 

0 < / o ^ 6 « (6) 

in this region. The shell corrections depend only 
negligibly on / 0 while the liquid drop energies show 
a significant dependence on it. That fact led us to 
the following equation for calculating / 0 in the inner 
region 

3 W 3 / o = 0 . ( ? ) 

We may notice that E l d has only one minimum for 
0 < / 0 ^ 6 £. The fact that we are using pure ellip-
soidal shapes for 1 z j ^ z0 leads to / 0 = 1 in this 
outer region. 

The liquid drop deformation energy £ l d is de-
fined as usual: 

£ & > ( « ! ) - J ? L D ( O i ) - J ? L D ( 0 ) • ( 8 ) 

^ l d ( O ) is the liquid drop energy of two spherical 
ions at infinite relative distance (z0 —>- oo ) , and 
^Lü( a i ) represents the liquid drop energy for the 
actual values of the deformation parameter set 
a ; = { z 0 , ß, h}. The liquid drop energy £ l D itself 
is defined by : 

£ lJ) ( a i ) =-Evol + £surf(ai) +£'Curv(ai) 

^pair • ( 9 ) 

Because the question whether the curvature energy 
£curv(ai) should contribute to E l d or not has so 
far not been answered unambigously, our calcula-
tions are done both ways. The Coulomb energy 
£ e o u i ( a i ) h a s been calculated numerically according 
to Lawrence's method 10. We use two sets of LDM 
constants: The Lysekil set given by Myers and 
Swiatecki 11 for £ l d without curvature energy con-
tribution, and the set given by Groote and Hilf 12 

for E l d containing this contribution. Some calcula-
tions have also been made with the Leysin set of 
LDM constants given by Seeger 13. All these authors 
use the constant r0 from the empirical law R « r0Al/3 

also as a LDM constant. Since in their work they 
investigated only the nuclei with A ^ 40, but we 
are dealing also with the nuclei with A < 40, we 
shall use the experimental values of Tq in our cal-
culations. Table I shows the r.m.s. radii and the 
corresponding r0 for all the nuclei taken into con-
sideration. 

2.2. Liquid Drop Deformation Energies for the 
Sudden Processes 

We assume that even for extremely sudded proc-
esses the nucleons in the nuclei are moving in some 
average potential and thus there exists some average 
density during the scattering process. (The effects 
of the deviation from our assumption are studied in 
Ref. 14.) That allows us to construct the scattering 
potential by means of the potential energy surfaces. 
As during the sudden scattering process the indi-
vidual properties of the scattered nucleus should be 
conserved as far as possible, we are going to de-
scribe it by ( / ? 2 ( a ; ) ) 1 / 2 = (R2(z0= oo ) ) 1 / 2 , i .e. the 
r.m.s. radii should be kept constant throughout the 
whole process. This causes, of course, a loss of 
volume and increase of nuclear density in the com-
pound nucleus which yields compression energy. 
The assumption of uniform density distribution 
even within the compression zone should be under-
stood as a crude approximation arising from the 
nondynamical (static) treatment of the compression 
degree of freedom. The uniform density distribution 
is given by : 

e(ai)=A/v(ai) (10) 
where f ( a j ) is the nuclear volume for the parame-
ter set a ; . W e follow the suggestion of Scheid 15 

and set 

£com(«i) = - ^ f d t [ Q ( a i ) - Q 0 ] 2 (11) 
^ Pn vfai) 
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Tab le I . Expe r imen ta l r .m.s. r a d i i and reca lcu la ted h <x>c 
and r n values. 

Nucleus < r a )V, k «00 Refer-
[ f m ] [ M e V ] [ f m ] ence 

12C 2.42 15.42 1.36 32 
14N 2.45 15.31 1.31 33 
1«0 2.66 13.22 1.36 32 
2 0Ne 2.98 11.678 1.34 34 
2 4 M g 3.01 12.21 1.34 35 
28Si 3.086 12.13 1.35 35 
32S 3.244 11.73 1.31 35 
4 0 Ar 3.47 10.336 1.31 36 
40Ca 3.38 10.89 1.28 37 
4 2Ca 3.395 11.054 1.26 38 
4 4Ca 3.442 10.987 1.26 39 
48Ca 3.493 11.05 1.241 39 
46Xi 3.57 10.41 1.29 40 
5 2Cr 3.66 10.36 1.24 4 1 
5 4Fe 3.681 10.375 1.257 36 
56Fe 3.721 10.272 1.256 36 
58Nj 3.725 10.361 1.242 42 
60 N i 3.755 10.297 1.238 42 
62Nj 3.787 10.217 1.235 42 
64Ni 3.826 10.096 1.235 42 
6 4 Zn 3.925 9.593 1.267 36 
6 6Zn 3.938 9.606 1.258 36 
7 0 Zn 3.966 9.608 1.242 36 
88Sr 4.14 9.241 1.202 43 
9 0Zr 4 .261 9.171 1.228 36 
9 2 Mo 4.310 9.104 1.233 36 
9 4 Mo 4.351 9.039 1.235 36 
96Mo 4.383 8.976 1.236 36 
9 8 Mo 4.416 8.915 1.237 36 
100M o 4.456 8.855 1.239 36 
116Sn 4.55 8.427 1.204 44 
120Sn 4.64 8.333 1.214 44 
124Sn 4.67 8.242 1.209 44 
1 4 2 Nd 4.913 7.878 1.216 45 
144Nd 4.944 7.841 1.218 45 
146Nd 4.970 7.805 1.219 45 
148Nd 5.000 7.770 1.220 45 
150Nd 5.048 7.735 1.227 46 
152Sm 5.090 7.701 1.231 46 
182Dy 5.211 7.539 1.134 46 
164Dv 5.218 7.509 1.231 46 
168 E r 5.260 7.449 1.231 46 
170Er 5.264 7.419 1.227 46 
182"̂  5.357 7.252 1.220 46 
184^ 5.369 7.226 1.219 46 
186̂ /- 5.373 7.200 1.215 46 
206pb 5.4978 6.959 1.202 47 
208pb 5.49 6.937 1.196 48 

where £>0 is the density without compression and 
a f 0 m a model constant which has to be determined. 
Using Eq. (10) we carry out the trivial integration 
in Eq. (11) with the result 

r ( \ vo f y ( a i ) 1 2 
^com l^il — acc 2v(a{) 

- 1 A (12) 

During the scattering process the nuclear surface 
is getting smaller and smaller, and in the limiting 
case of the two colliding nuclei being compressed 
to the volume of one of them, it becomes half that 
of the separated nuclei. At the same time the nuclear 
surface density increases, and in the limiting case 
just mentioned there are twice as many nucleons 
per unit area than before the scattering process. 
This causes a change in surface tension. Usually one 
has ESUT{ = oS with o the surface tension and S the 
surface area. Now let the surface tension be density 
dependent: From Eq. (10) we get 

£surf(«i) = a s ^ s ( a i ) [ i ; ( a i ) / t ; 0 ] ^ 2 / 3 . (13) 
where as is the LDM constant and <7s(a;) = S ( a j ) / S 0 

is the usual surface ratio. Equation (13) indicates 
that the surface energy becomes volume dependent 
as in Ref. 3. 

The resulting liquid drop energy for the sudden 
process is given by 

£LD(oi) = £ v + £ s u r f ( a i) + £ , u r v ( a ; ) (14 ) 

+-^coul ( a i ) + -£com(ai) + £pair 
where the surface energy ESur{ is now given by Eq. 
(13) and the compression energy is given by Equa-
tion (11) 
the value 

For the model constant at.om of Eq. (11 ) 

A ^ M e V 

which yields the compression energy EC0m as a func-
tion of the nuclear volume. 

is used, as given in Ref. 3. This value produces the 
compression energy of 89 MeV for 32S when com-
pressed to the volume of an 1 6 0 nucleus. The total 
energy difference between the compressed 32S nu-
cleus and two 1 6 0 nuclei at infinite relative distance 
( z 0 - > o c ) is about 135 MeV. The preliminary 
study 14 of the experimental data for this case gives 
a value of approximately 130 MeV and the calcu-
lations within the Thomas-Fermi model yield similar 
values1 6 . If the total energy is calculated by the 
method of single particle energy summation, this 
difference turns out to be 270 MeV, which seems too 
high. 

3. Microscopic Part of the Model 

3.1. Two-Center Shell Model 

The basis of the two-center shell model (TCSM) 
was given originally by Holzer et alias 1 ' . Its refined 
potential can be denoted in cyclindrical coordinates 
as follows 

V({?, 2) = I M [co/ o2 + co2 z'2 f0(l + c z' + d z2) ] 
(15 ) 
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where M is the nucleon mass (M/h2 = 0 .024106 
M e V - 1 f m - 2 ) . The Hamiltonian of the TCSM has 
the form 

H = - h2 V2/2 M + V{o,z) + Vh(r, p, 8) + Vf{l). 

(16) 
The spin-orbit potential V/s is of Thomas-type 

(17) 
M co ̂  

The Vi- potential of the Nilsson model cannot be 
adapted in an analogous form, because there exists 
no set of the parameters { x , JLI} that reproduce the 
observed level sequence 18. Therefore, we keep the 
/2-term in the usual manner 

Vf = -hco00x/x[l2-±N(N + 3)dit] (18) 

where cox is the asymptotic frequency of the col-
liding nuclei. Further, means that we are con-
sidering only the contribution of the diagonal ma-
trix elements. As usual for the phenomenological 
shell model, we identify the equipotential surface 

V ^ l M o & R 2 (19) 

as a nuclear surface. R0 is the equivalent uniform 
radius that can be calculated from r.m.s. radius 
(R2)1'2 by R0=(§{R2))112. W e only notice that 
the spectra show the desirable asymptotic behav-
iour 1 7 ' 1 9 ' 20 in both, the sudden and the adiabatic 
case (Figure 2 ) . 

F ig . 2. S ing le par t i c le levels of Ham i l t on i an (16) ca lcu la ted 
fo r 1 2C — 1 2 C scatter ing. Each level is labeled by ß - T . Le f t 

s ide : ad iabat ic case. R i g h t s ide: sudden case. 

Here we need the energy levels for the calculation 
of the shell corrections. Therefore, we take only 
as many basis states as needed for their convergence 
to 10 keV accuracy. We found that we need, e .g . 

150 basis states for the 12C-12C- and 600 basis states 
for 238U-238U-system. 

While for the basis one only has to calculate the 
quantum numbers as function of the deformation, 
the definition of some interpolation prescription for 
the strength coefficients y. and of the V/s and Vf 
terms as a function of the deformation parameters 
is needed. The initial values x.\ and /u; for the in-
dependent nuclei and the final values y.f and //f of 
the compound nucleus are well known 1 8 ' 2 1 (see 
Figure 3 ) . In the sudden case we want to conserve 

F ig . 3. The values fo r x and JA as a f unc t i on of A113. Circ les 
and po in ts are the ad jus tment po in ts of JA an x , respect ively, 

accord ing to Ref . 21. 

the individual properties of the colliding nuclei, so 
we set y.(di) = Xf = xx and ju(a[) = jû  = jU[ without 
any interpolation. The adiabatic process is charac-
terized by the volume conservation. The compound 
nucleus is going to have y.{ and //f values that are 
different from those of the two individual nuclei. 
In the interpolation prescription we use, y. and JA 
depend only indirectly on the deformation parame-
ters. W e define namely the "intermediate mass num-
ber" A (a;) as fol lows: 

A / \ ^ ^CC 

( J w i ) (20) 
with 7 (a;) = 

1 + A2 exp { — (^oc/lOO z) } f o r / * < a , 
2 for h > 1, 

and put x ( a ; ) =y.[A (a,) ], ju(a;) = /A [A (a;) ] ac-
cording to Figure 3. Due to this interpolation the 
nuclei have their touching point ( A = l ) at increas-
ing relative distances (2 z0 ) with increasing nucleon 
number A x . Furthermore, in the overlap region the 
nuclear shapes without or with only a small neck-in 
are energetically prefered, as expected 8 . 
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4. Construction of the Scattering Potentials 

Until now we were interested only in the conser-
vation of the volume of that equipotential surface 
which corresponds to the nuclear surface ("surface 
volume conservation"). This kind of conservation 
gave us the connection between the macroscopic and 
the microscopic part of the model. For this purpose 
we have to determine the surface potential V0 which 
appears in ( 19 ) . As we are also dealing with nuclei 
with A < 4 0 for which r0 is not constant we redeter-
mine the usual 

hoJ0 = kA~1,3MeY (21) 

prescription with A; = 41 for V0 (see R e f . 2 2 ) . Here 
we follow Pruess 23 and use the virial law for the 
oscillator states: 

(Ji} = ( f i ) = l ^ ® 2 ( r r > = i ^ (22) 

Using the definition of the r.m.s. radius ( r 2 ) = 
A 

l/AZ(r-2) ignoring the spin-orbit and /2-inter-
i = 1 

actions for the moment and considering ( 2 2 ) , we 
obtain for lp-shell nuclei 

ho^= (2.5-4/A)h2/(M {r2)) (23 a) 

and analogously for the 

2 s - I d shell nuclei: (23 b) 

hco= (3.5 - 20/A) h2/(M(r2)) , 

2 p - l f shell nuclei: ( 2 3 c ) 

hco= (4.5 — 60/A)h2/(M ( r 2 ) ) . 

In the formulas (23 b, c) the spin-orbit and I2-
interactions are indirectly taken into account, as we 
replaced the oscillator shells with the states between 
two magic numbers. One can easily check that (23 c) 
describes the nuclei with 4 0 < A ^ 100. For nuclei 
in this region, r0 = 1.2 fm can be used and the value 
A; = 41 as given in Eq. ( 2 1 ) , appears already for 
88Sr. 

These values are very well established in the 
theory of nuclear fission. The value r0 = 1 . 2 f m is 
not changing very much for nuclei with A > 88, so 
that we use the value A; = 41 for all nuclei heavier 
than 88Sr. 

In general the volume is not conserved for every 
equipotential surface, but this is of negligible in-
fluence if the method of shell correction is used to 
calculate the deformation energy. In practice we use 
the method of the average volume conservation2 4 

with the volume conservation function / ( a ; , p ) 

/ ( a ; , p) = [b3 p 3 / 2 + f Z 0 b 2 p - / 0 d 2 0 5 ( 2 4 a ) 

-|c204 +|2o3)]1/3 (ß2 r03 A)-1/3 p~1'2 

for h ^ 1 and 

/ ( a , , p ) = { 6 3 p3'2 + f ( z 0 - z + ) b 2 p - f 0 (z* - z + 5 ) 

-l(dz0-\c) (z04-z+4) 

+ (3dz02-% c z 0 + i ) - ( z 0 3 - z + 3 ) 

— (3 rf z03 — f c z02 + 1 z0) (z02-z+2) 

+K<zz04-cz03+z02) (z0-z+nyis 

• (ß2r0*A)-1,3p-m (24 b ) 

for A > 1 , where p = V(q, z)/V0 . 

4.2. Shell Correction and Pairing Energy 
Corrections 

For the calculation of Strutinsky's shell correc-
tion ÖU we used Tsang's sixth order polynomial 22 

and a smearing width r= 1.2 h co 0 (a j ) . The insen-
sitivity of ÖU on T for 1 h « 0 < T < 2 h w0 (Ref . 2 2 ) 
is confirmed in the case of light and heavy nuclei, 
but for the super-heavies it is generally not obeyed 
(see Figure 4 ) . It might be possible that higher 

238U-238U 

BUpj lMeVl 

6 j- / Nv 

I rificoj j rh<o0) 

F i g . 4. Non-sat is factory convergence of shel l correct ions 
w i t h respect to the choice of smear ing factor r . 

order polynomials than that of Ref. 22 can solve this 
problem, but this kind of investigations lies beyond 
the scope of this paper. We used the method de-
scribed above also for the superheavy compound 
nuclei in order to give a consistent description for 
the whole systematics. 

To keep the computation time as low as possible, 
one might try to calculate dU as a function of 
Az = 2 z0 only- neglecting the /i-dependence. Fig-
ure 5 shows that the oscillations of 6U with Az = 
const have the same order of magnitude as the oscil-
lations for h = const. This shows that it is not at all 
allowed to neglect the A-dependence of 3U. 

adiabatic 
Az = 18 fm , h=V0 

6Un i I MeV] 
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6 U < [ M e V ] 
239 238, . ,. . 

U - U a d i a b a t i c 

10 A z = 19 f m 

Q i / i ^ 
h [ V J 

^ i w-
\ 0 . 5 / 1.0 1 .5 2 . 0 

- 1 0 -

6 U i [ M e V ] / - , 2 3 8 . . 2 3 8 , , .. , . . 
/ \ u - U a d i a b a t i c 

10 

n i 

/ \ h = 0 . 5 V o 

i l l i i m u 
5 10 \ 15 2 0 2 5 A z [ f m ] 

- 1 0 -

F i g . 5. She l l correct ions fo r /Jz = const ( le f t ) and Ä = const ( r i gh t ) i n the ad iabat ic scat ter ing process 238u_238 j j. 

The BCS-theory defines the total energy2 3 as 
(e. g. f or protons) : 

^ 0 8 = 2 2 ^ ^ - 4 - e J v (25) 

where the sums are over the single particle levels i 
with the energies £; occupied by two particles each. 
Mosel 25 defined the pairing energy corrections as: 

Z / 2 i V / 2 
AP = El es + £ Jc s - 2 2 « ( p ) - 2 2 «i (n) (26) 

i = l i = 1 

and used the pairing strength G as a free parame-
ter. Nilsson et al. 22 are using the same expression, 
but they include only 15 proton respectively neutron 
levels below and above the proton or neutron Fermi-
level. Equation (31) includes the assumption that 
the LDM constants are fitted to the experimental 
masses without any support from pairing energy, 
which may not be true, as the LDM constants con-
tain the smooth trend of the pairing energy. This 
definition may therefore be reasonable for the cal-
culation of the deformation energy by the method 
of summation of single particle energies. As we are 
using Strutinsky's method for the shell corrections, 
we also have to use his method for the pairing 
energy corrections 5. 

4.3. Definition of the Scattering Potential 

In analogy to the fission potential the scattering 
potential is defined by means of the deformation 
energy £ D ( « ; ) . Within the macroscopic-microscopic 
method £ D ( a ; ) is usually given b y 5 : 

£ D ( « i ) =^LD(« i ) +W(a{) +SP(ai) (27) 

with <51/(aj = d U z ( a i ) +<dUN{ai) and S P ( a i ) =•-
dP% (et;) +<5/ ,N(oti) as shell and pairing energy cor-
rection respectively. The scattering potential can 

now be defined as: 

Vsc(a;) = £ D ( a ; ) - £ D ( G S ; A = o o ) (28) 

i. e. the numerical value of the scattering potential 
for the deformation a; is the difference between the 
deformation energy of the system at this deforma-
tion, £ ' D ( a i ) , and the deformation energy of two 
infinitely separated (Az = oc ) nuclei in their ground 
state £ D ( G S ) . 

5. Results and Discussion 

From the definition of the scattering potential 
(28) it is obvious, that the TCSM describes only 

Fig . 6. Po ten t ia l energy curve fo r 1 2C — 1 2C scat ter ing i n a 
sudden approx imat ion . L D M constants are given i n Ref . 10. 



F i g . 7 . T h e same as F i g . 6 f o r 1 4 N - 1 4 N scat te r ing . T h e 
po ten t i a l m i n i m u m is s t i l l l owe red b y the she l l cor rec t ions 

s im i l a r to 12C — 1 2 C p o t e n t i a l curve. 

po ten t i a l m i n i m u m is f la t tened compared w i t h the p u r e L D 
va lue. 

A Z [ fm] 

F i g . 9. Po ten t i a l energy curve fo r 2 0 N e - 2 0 N e , 2 4 M g — 2 4 M g 
and 2 8 S i — 2 8 S i sca t te r ing i n a sudden app rox ima t i on . T h e 

po ten t i a l m i n i m a increase i n dep th w i t h inc reas ing A. 

F i g . 10. T h e same as F ig . 6 for 3 2 S - S 2 S and 4 0 A r - 4 0 A r scat-
t e r i ng . I n the 4 0 A r — 4 0 A r co l l i s ion the largest p o t e n t i a l 

m i n i m u m dep th has been achieved. 



E L D • 
s u d d e n 

i 0 C a - i 0 C a 

15 
A Z [ f m ] 

F ig . 11. T h e same as F i g . 6 fo r Ca-isotopes. T h e anomalous 
behav iou r of the 4 8Ca — 4 8 Ca p o t e n t i a l is due to the er-

roneous d e t e r m i n a t i o n 27 of the r .m.s. r ad i us of 4 8Ca. 

e l d * 5 U 

s u d d e n 

15 
A Z [ f m ] 

F i g . 13. T h e same as F i g . 6 f o r Fe-isotopes. I n t he i so top ic 
chain the po ten t i a l m i n i m u m d e p t h is i nc reas ing w i t h in -

creas ing A. 

E L D • 6U • 6 P 
s u d d e n 

E L O + 6 U + 6 P 
s u d d e n 

6 0 Ni - 6 0 Ni 

Ni- Ni 

F i g . 12. T h e same as F i g . 6 fo r « T i — 4 6 T i a n d 5 2 C r _ 5 2 C r 
scat te r ing . T h e dep th of the p o t e n t i a l m i n i m u m decreases 

w i t h the inc reas ing A. 

15 Az[fm] 

F i g . 14. T h e same as F i g . 6 fo r Ni - isotopes. F o r the iso top ic 
chain there is a s h i f t o f the p o t e n t i a l m i n i m u m t o w a r d smal-

ler separat ions Az f o r i nc reas ing A. 



F i g . 15. T h e same as F i g . 6 f o r Zn- isotopes. T h e Cou lomb 
b a r r i e r is s h i f t e d t o w a r d l a rge r separat ions Az w i t h in-

c reas ing A. 

V 1 [MeV] I \ 
E l d + 6 U + 6 P 

2 0 0 I i 
s u d d e n 

/ l _ 1 0 Z r _ 9 0 Z r 

190 \ \ 

180 \ / U V 8 S r - 8 0 S r 

170 -

! \ l \ ~ 

F i g . 16. T h e same as F i g . 6 f o r 8SSr — 8 8 Sr and 9 0 Zr — 9 0 Zr 
scat te r ing . T h e p o t e n t i a l m i n i m u m dep th of the 9 0 Zr — 9 0 Zr 
sca t te r ing p o t e n t i a l is smal le r t hen 8 8Sr — 8 8 Sr po ten t i a l 

m i n i m u m dep th . 

F i g . 17. T h e same as F i g . 6 f o r Mo- isotopes. T h e pos i t ions 
of the C o u l o m b ba r r i e rs a n d p o t e n t i a l m i n i m a are sh i f t ed 
to the l a rge r separat ions Az w i t h inc reas ing A. T h e depths 

of the po ten t i a l m i n i m a increase w i t h i nc reas ing A. 

F ig . 18. T h e same as F i g . 6 f o r Sn-isotopes. T h e depths of 
the p o t e n t i a l m i n i m a are a l ready sma l l compared w i t h the 

po ten t ia ls of the l i g h t e r n u c l e i (F ig . 6 — F i g u r e 1 7 ) . 
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m i n i m a are so flat t ha t no m o l e c u l a r states (resonances) can 
be expected f o r the co l l i s ions of i d e n t i c a l Nd -nuc le i . 

V [MeV A E l d + 6 U + 6P 

A 40 ^ s u d d e n 

430 -

\ 1 6 2 D y - 1 6 2 D y 
V T 

1 6 i D y - 1 6 4 D y \ 

420 

410 -

400 
i i i i i \ 

Az [ fm] 
i i — 

F ig . 20. T h e same as F i g . 6 f o r Dy- isotopes. F o r the col-
l i s i on of the i d e n t i c a l Dy -nuc le i no p o t e n t i a l m i n i m a can be 

observed. 

The Cou lomb bar r i e r is s t i l l l owered and sh i f t ed towards 
la rger separat ions Az f o r i nc reas ing A. 
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Pb-isotopes, the r i g h t side scale to 238u_238] j Cou lomb 
bar r ie r is ind ica ted on ly by the change i n the po ten t ia l slope. 

the static effects of the heavy ion scattering process. 
For the dynamic aspects of this problem we refer to 
some interesting statements in References 14? 26. 

We now discuss systematically the results for the 
heavy ion scattering potentials in the sudden case. 
The Figs. 6 — 23 show several such potential curves 
especially in the vicinity of the Coulomb barrier. In 
the numerical calculations steps of 0.2 fm for Az 
have been used. All the potentials have been nor-
malized to zero for infinite separation. For this 
series of the potentials we used the LDM parameters 
as given in Ref. n . The oscillator frequencies have 
been recalculated from the r.m.s. radii by the pre-
scription described above. 

The expected results are firstly: The shift of the 
Coulomb-barrier towards higher values of Az for 
increasing nuclear mass A. One can see that shift 
e .g . for the Mo-isotopes in Fig. 17 and for the Ca-
isotopes in Figure 11. The anomalous behaviour of 
the 48Ca-48Ca scattering potential may be explained 
by the error in the determination of the r.m.s. ra-
dius, as the neutron form factor has not be taken 
into account properly Secondly, one can see that 
the potential minima, responsible for the formation 
of the nuclear molecules, deepen with increasing A, 

obtaining their largest depth for the 40Ar-40Ar scat-
tering potential (ca. 30 M e V ) , and are flattening 
for nuclei heavier than 4 0Ar. Also for the isotopic 
chains the potential depths vary as expected: The 
heaviest isotopes have the deepest minima due to 
the Coulomb energy. This minimum disappears in 
the rare earth region: The Nd-isotopes (Fig. 19) 
have very flat minima, so that one can expect no 
molecular states for these potentials. For the heavier 
nuclei the molecular minima disappear completely: 
the Couomb barrier vanishs at all, and only the 
change in the potential slope indicates, in Fig. 23, 
the touching point of nuclei. The absence of the 
potential minima has no influence on the main reso-
nance structure of the excitation function as already 
seen for 1 6 0 - 1 6 0 elastic scattering at high c. m. 
energies 28. 

The influence of the shell corrections can be 
studied in Figures 24 — 26. For 12C-12C and 

E[MeV] 1JC-12C 

F ig . 24. Shel l correct ions (absolute value) for 12C — 12C 
scat ter ing i n the sudden approx imat ion . 

14N-14N scattering the shell corrections lower the 
potential minimum while for 1 6 0 - 1 6 0 scattering we 
notice the flattening of it. It is evident that the shell 
corrections change systematically and, starting with 
positive values for the 12C-12C scattering potential, 
they fall towards negative values for the 1 6 0 - 1 6 0 
system. 



the p o t e n t i a l energy curve (compare w i t h F i g u r e 7 ) . 

the p o t e n t i a l m i n i m u m . 

F i g . 28. The same as F i g . 24 f o r Ca-isotopes. T h e absolute 
he ights of the Cou lomb ba r r i e r and p o t e n t i a l m i n i m u m are 
decreased compared w i t h F i g . 11 (no cu rva tu re energy 
t e r m ) . T h e re la t i ve depths of the p o t e n t i a l m i n i m a are 

la rger t han i n F i g u r e 11. 
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Fig . 29. The same as F ig . 27 fo r « T i - 4 6 T i and 5 2 C r - 5 2 C r 
scat ter ing. T h e compar ison w i t h F ig . 12 shows a decrease 
of the absolute he ight of Cou lomb har r ie r and po ten t ia l 
m i n i m u m as w e l l as an enlargement of the re lat ive depth 

of the po ten t ia l m i n i m u m due to the curvature energy. 

The Figs. 27 — 29 show the scattering potentials 
including the curvature term in the LD part of the 
model. The comparison with the Figs. 9, 11, 12 
shows, that the curvature term tends to increase the 
relative depth of the potential minima. The Coulomb 
barriers have not changed their position, but the 
whole potentials have been reduced. 

The main effect is of course the change in the 
relative depth of the minima. This can be explained 
by the fact that with increasing overlap of the nuclei 
during the scattering process, the curvature of the 
compound system decreases which leads to the 
smaller absolute value of the curvature energy. 

For studying the scattering potentials in the 
adiabatic approximation, the total PES need to be 
known. The dynamics of the scattering process 
develops within these PES and can be studied after 
the kinetic part of the scattering Hamiltonian is 
calculated. We restrict ourselves here to the PES 
only, which are presented in the Figures 30 — 35. 

a) 12C-12C (Fig. 30) 

For this PES we had to change the surface con-
stant of the LDM, to achieve the proper binding 

c - c a d i a b a t i c 

Fig . 30. Poten t ia l energy surface for 12C — 1 2C co l l i s ion i n 
ad iabat ic approx imat ion . T h e surface energy constant as 
has been changed to —14.5 M e V . T h e distance between 
the contour l ines is g iven i n M e V un i ts . The compound 
nucleus 2 4 M g has a h i g h l y de fo rmed g round state (Zlz = 3 fm, 

h=0). 

energy difference between the 24Mg nucleus and two 
12C nuclei, the value being as = — 14.5 MeV. The 
main feature of this PES is, that one may expect the 
Coulomb barrier to be situated somewhere at Az 
= 5 fm. This means, if we compare it with the sud-
den approximation where the Coulomb barrier ap-
pears at Zh = 7 . 4 f m , that both 12C nuclei deform 
very much before touching. The PES minimum of 
the 24Mg ground state is situated at the deformation 
coordinates Az ^ 3 fm, h = 0. This is a reasonable 
result as there exists the estimate zlz = 3 . 1 6 f m for 
the 24Mg ground state 15 based on the recalculation 
of the 24Mg-quadrupole moment in terms of TCSM 
deformation coordinates. The height of the Coulomb 
barrier is also satisfactorily reproduced compared 
wiht the experimental results 29. 

b) 1 6 0 - 1 6 0 (Fig. 31) 

Here one finds two minima in the PES. The 
spherical minimum is deeper ( — 13.5 MeV) while 
the second minimum at the large prolate deforma-
tion Az = 5 fm, li = 0.05 is only - 9 . 8 MeV deep 
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a d i a b a t i c ß = 1 

Az = 0 fm , h = 0 and Az = 5 fm, h = 0.05 there occur two 
m i n i m a wh ich cont r ibu te to the g round state conf igura t ion 

of the compound nucleus 32S. 

This second minimum has also been predicted by 
Hartree-Fock type calculations 30. The Coulomb bar-
rier is situated at Zlz = 8.1 fm similar to the Cou-
lomb barrier in the sudden approximation. The 
height of 13 MeV seems to be about 2 MeV too 
high if compared with experiment 29. 

c) 24Mg-24Mg (Fig. 32) 

In this case there exist two saddles at the touch-
ing line h = 1. The saddle at zfz = l l f m has the 
height of 19.8 MeV while the height of the other 
one at Az = 9 fm is 20.3 MeV. In between one finds 
a maximum of 21.7 MeV. Obviously there exist 
two paths through this PES and one can expect that 
these two possible scattering processes interfere. 
Only dynamic calculations can clarify this point. It 
should be interesting indeed to study the excitation 
function in this energy region. From this PES the 
deformed ground state of 48Cr (Az = 1 im, h = 0) 
can be predicted. 

2 / ,Mg - 2^Mg 

Fig . 32. The same as F ig . 31 fo r 2 4 M g — 2 4 M g scat ter ing. 
A t the touch ing l ine [h = 1) two saddles appear (at Az= 
11 f m and A z = 9 i m , respect ively) wh ich lead to two col-
l is ion paths th rough th is PES. T h e compound nucleus 4 8Cr 

has a deformed ground state ( J z = l fm , h = 0 ) . 

d) 28Si-28Si (Fig. 33) 

Between Az = 0 and Az = 3 fm, h = 0, one can 
find a valley of uniform depth ( — 27 MeV) which 
describes the quite complicated ground state of 5CNi. 
A second flat minimum is situated at very large 
prolate deformation Zlz = 1 2 f m . It is obvious that 
this minimum with the depth of —3.7 MeV has 
no influence on the ground state shape, but it is 
possible that it has some influence on the scattering 
path. 

The Coulomb barrier, which can be found at Az 
—14 fm, is somewhat underestimated31. The ap-
pearance of the Coulomb barrier at such large 
prolate deformations is due to the softness of the 
28Si nuclei which can be easily deformed even be-
fore touching. 

e) 32S-32S (Fig. 34) 

The structure of this PES is similar to the one of 
28Si-28Si. The shell correction effect at large prolate 
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h 

1.5 

1.0 

0.5 

0 10 15 Az[fm] 

F ig . 33. The same as F ig . 31 for 2 8 Si— 2 8 Si scatter ing. T w o 
m i n i m a can be observed: at z J z = 0 — 3 fm, h = 0 and Az = 
12 fm , h = 0. T h e second m i n i m u m has no inf luence on the 

g round state of the compound nucleus 5 6 Ni . 

15 Az[fm] 

F ig . 34. The same as F ig . 31 fo r 32S —3 2S scatter ing. The 
compound system shows two m in ima , at Az=0 fm , h = 0 and 
Az=2im, h = 0 respect ively, separated by a low bar r ie r . 
T h i s conf igura t ion describes an anharmonic v ib ra t i ona l 

nucleus. 

deformation is still present (Z l . z=15 fm) . The Cou-
lomb barrier can be found at z l z = 1 1 . 5 f m which 
indicates that the 32S nucleus is more difficult to 
deform than the 28Si nucleus. The compound system 
has two minima: a spherical one with — 14.3 MeV 
depth and a deformed one at Az = 2 fm, h = 0 with 
— 13.7 MeV depth. This configuration describes an 
anharmonic vibrational nucleus which we also ex-
pect for the 32S nucleus itself. 

Fig . 35. T h e same as F ig . 31 fo r 238 U _238 U s c a t t e r i n g . N o 
m i n i m u m can be observed i n th is PES. The contour l ines 
have 10 M e V equid is tance and the i r value has to be m u l t i -

p l i ed by a factor 10. 

f) 238U.238U ( F i g - 35) 

The investigation of this superheavy system shows 
that there exists no minimum for the compound 
system. The compound system, even readied, should 
immediately undergo fission, at least with respect to 
symmetric fission. Otherwise it is possible that the 
asymmetry effects may produce a quasi stable state 
during rearrangement from the symmetric to the 
asymmetric geometrical shape. The electronic bind-
ing energy may also cause the same effect. An in-
vestigation on that point is in progress. 

The Coulomb barrier can be determined by a 
change in the potential gradient somewhere between 
Az = 1 9 and Zfz = 2 1 f m . 

All PES are calculated using steps of 1 fm in /In-
direction and 0.1 in A-direction. The computation 
time was between 0.5 and 2 min/deformation point 
on the UNIVAC 1108, depending on the number 
of the basis set functions used. 

6. Concluding Remarks 

In this article we have calculated real scattering 
potentials using the Two Center Shell Model 
(TCSM). In the macroscopic part of the model we 
improved the nuclear shape parametrization and 
connected it successfully with an improved micro-
scopic part. That enabled us to describe most of the 
possible nuclear shapes that may occur during the 
scattering process, starting with the separated ions 
up to the compound nucleus. This description has 
been used for two types of possible scattering 
processes, the adiabatic and the sudden one. 
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We described the static effects of nuclear collision. 
It is natural to proceed to dynamic calculations con-
taining besides the static potentials also the dynamic 
masses. It should also be noted that our results are 
in good agreement with the scattering potentials 
calculated within the framework of the Hartree-
Fock model 3 0 in those cases (12C-12C and 1 6 0 - 1 6 0 ) 
which allow the comparison. Our main result is that 
nuclear molecular states (resonances) in nucleus-
nucleus collisions should disappear for system 

around Nd or Dy. With the new heavy ion accelera-
tors this should be subject to experimental tests. 
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