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In this paper equilibrium models for the calculation of the excess Gibbs free energy of binary 
liquid mixtures are developed, the component A of which undergoes chain-forming self-association 
whilst the component B acts as an 'inert ' solvent. It is shown that the extension of the well-known 
chain-association model of Mecke and Kempter, in which the probability of chain prolongation is 
assumed to be independent of chain length, is unable to establish satisfactory results because it 
does not exhibit sufficient unsymmetry. Reduction of the probability of chain growth with in-
creasing chain length leads to an improved model with the geometric series replaced by the expo-
nential series. This model, in which only two parameters are used, i. e. the equilibrium constants 
K for mutual solvation of A and B, and @ for self-association of A, allows fitting of isothermal 
experimental GE / i? T literature data on cycloalkanol-cycloalkane, alkanol-alkane, and NMF —CC14 
systems within the limits of experimental error. Compared with the two-parameter Wilson equation 
which gives equally small standard deviations, our equilibrium model has the advantage of allow-
ing passage from G E to H E data and of being applicable to liquid-liquid equilibria. 

This paper is concerned with the application of 
the equilibrium models which we have developed 
prev ious l y 1 - 3 to the calculation of the thermo-
dynamic excess properties of binary liquid mixtures 
the component A of which undergoes chain-forming 
self-association whilst the component B acts as an 
'inert' solvent. Lassettre 4, and Mecke and Kempter 5 

were the first to derive a relation between the con-
centration of the monomeric species A, c\ , and its 
analytical concentration, C\°, by applying the ideal 
law of mass action to the equilibrium 

A;_j + A = A,- ( £ = 1 , 2 , . . . , oo) . (1) 

The mathematical treatment is greatly simplified by 
the assumption that the equilibrium constant for 
chain prolongation, o, is independent of the 
actual chain length, £, and that there is no limitation 
of i. By applying the formula for the sum of an 
infinite geometric series, the concentrations of all 
species Aj , except monomeric A, can be eliminated, 
yielding a simple relation between cA, CA° , and Q. 
Several authors have used this model, with some suc-
cess, to interpret the observed dependence on con-
centration of specified physical properties of self-
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associating solutes, like alkohols or phenols, in 
dilute solutions in inert solvents 6' 7 . The same model 
has been applied by Redlich and Kister 8 to calculate 
the activity coefficients of alcohols in hydrocarbon 
solvents using Scatchard's equation for the excess 
Gibbs free energy 9. 

1. Contribution to GE/R T of the Change of the 
Number of Associative A—A* Bonds, Caused 

by Dilution of Pure Liquid A with B 

Our own attempts to extend the range of appli-
cability of the above model to binary liquid mix-
tures have been based on the fact that only the 
change of the number of associative bonds A — A*, 

NA°-J=f(NA°) ( ^ 0 ) , 

caused by dilution of A with B to result in one mole 
of mixture, as compared with the same quantity of 
pure liquid A, contributes to the thermodynamic 
excess functions. This quantity A^0 A is defined by 

NA°A = Z ( £ - 1 )NAt-NA*Z (£- l)NAt 
i i 

( £ = 1 , 2 , . . . , oo) , (2) 

with NAf, NAi and NA° being the mole fractions of 
the species A, in the mixture, in pure liquid A, and 
the analytical mole fraction of A, respectively. By 
stoichiometry, the relations 

IiNAi = NA° and IiNT
Ai = l (3) 

i i 



1652 F. Becker et al. • Thermodynamic Excess Functions of Binary Liquid Mixtures 

must hold. Insertion into Eq. (2) leads to 

NA»A = NA«2NT
Al-lNAl. (4) 

i i 

If o designates the equilibrium constant for the 
formation of one A — A* bond by the reaction (1 ) , 
the molar Gibbs free energy of formation of such a 
bond is — R T ln o, and the contribution of self-
association of A to CylR T becomes 

G f j R T = - A A M l n < ? . (5) 

Application of the ideal law of mass action to 
Eq. (1) yields 

A , M = [ 1 - (1 + 4 Q A a ° (1 - 7VA°))1/2]/[2(1 + Q ) ] . 

which is symmetric in NA°. This result is at variance 
with the experimental findings that the thermo-
dynamic excess functions of binary systems with an 
associating component A are unsymmetrie, having 
the greater positive, or resp., the smaller negative 
initial slope of GE/R T at A a ° = 0, i. e. when A is 
infinitely diluted by B. This fault is caused by the 
fact that competition between self-association of A 
and mutual solvation of A and B has not been ac-
counted for. 

a) Model 1 ('Geometric series') 

We therefore replace the 'chemical" equilibrium 
(1) by an exchange equilibrium between 'contact 
sites'. Each molecule A is assumed to have one 
'specific' and (2 — 1) 'non-specific' contact sites. For 
simplicity, we further assume that B has 2 non-
specific contact sites so that the total number of 
contact sites does not depend on the mole fraction. 
In an ideal mixture, the mole fraction NA-, of the 
species A(- is proportional to the probability of 
simultaneously meeting the specific contact sites of i 
monomeric molecules A, i. e. 

Na( ~ (Na°/Z) '. 
The analogous expression for a non-ideal mixture is 
obtained by weighting each specific contact site of 
A by the factor Q12, and each non-specific contact 
site of B by the factor KX/2, viz. 

NAl~(NAo Qxl2jz*)1 = xl (y.< 1) . (6) 

z* has the meaning of an 'effective total number 
of contact sites': 

z* =Na°(QV2 + Z- 1 ) + zKx'2(l-NA°) , ( 7 ) 

the first term of which on the right-hand side is the 
contribution of A, the second term that of B. The 

proportionality factor q [Eq. ( 6 ) ] is determined by 
using the stoichiometric relations (3 ) , 

2 iN A i = q x 2 i * i = q x j - ( 2 * 0 
i i ax i 

= qx/(l-x)2 = NA\ (8) 

giving 

A A ^ / V / a - * ) 2 * * - 1 and lNAi=NA°(l-x) . 
1 (9) 

The change of the number of associative bonds, 
NA° A, becomes now 

Na° A = Na° (x-xr) = -zNa° (1 - A a ° ) (10) 

• r ' ' V 1 / 2 / [ ^ ( o 1 / 2 + 2 - l ) ] • ' M o d e l l ' 

It can easily be seen that the quantity N.\° A fulfils 
the following requirements: (1) It vanishes at 
A a ° = 0 and at AA° = 1; (2) its limiting values at 
o—>0 and at o—>00 are zero because no association 
takes place at the lower limit and no dissociation at 
the upper l imit; (3) A a ° A is proportional to the 
weighted numbers both of the specific contact sites 
of A, A a ° £>12, and of the competing contact sites of 
B, z K l / 2 ( l - N a ° ) . 

The contribution of self-association of A to the 
slope of Gv/R T is 

(l/RT) (dCL/dAA°) 
= _ [ J + A a ° (dzl/dAA0)] l n p . (11) 

By inserting (10) into (11) one obtains the follow-
ing contribution of self-association to the unsym-
melrv of the limiting slopes of GE/R T: 

[ (dCass/d^A0) (A, + (dGfJdNA0)iV]/R T 
- [ z l ( 0 ) + (d/J/dAA°) (1)] ln () (12) 

= [ol/2ln£> (Q^ + Z-1-ZK"2)]/[(Q'I2 + Z-1)2] . 

If £ > 1 and (o l/2 + z - l ) > z 0 2 , the right-hand 
side of (12) will be positive, i . e . GE/RT has the 
greater positive, or, resp., the smaller negative 
initial slope at A a ° = 0, which is in qualitative ac-
cordance with experimental data on mixtures in 
which self-association of A is the main reason for 
unsymmetry. When dividing Eq. (12) by (Gf^/R T) 
one obtains a quantitv which we name 'relative un-
symmetry' of GvjR T I = RUS) : 

RUS = - [ (dGE/d/VA°)(o) (13) 

+ (dGK/dA'A°) (i)]/[ (/VA° zl) ( i / 2 ) T ln o] . 

Using Eqs. (10) and (12) one obtains 

RUS = 2 [ (o1/2 + z - I) /z Ki2 

-zKV2(ol'2 + z- 1 ) ] . ' M o d e l l ' (14) 
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Another informative quantity is the 'mean degree of 
association of A' which is defined by 

i= I i NaJZ NAi = Na°/2 NAt. (15) 
i i i 

Insertion of (9) into (15) yields 

f=i/(i-*) = i+Na° O1/2/ [Na° (z -1) (i6) 

+ z K 1 / 2 ( l - A r A 0 ) ] . 'Model 1' 

The limiting value of £ in pure liquid A, £r, is 
£R = 1 + QU*/ ( Z - 1 ) (17) 

which approaches infinity when Q—^OC. In Figs. 1 
and _2, examples of the functions NA° A = /(/V,\°) 
and £ = /(/VA°) as calculated by Eqs. (10) and (16) 
are reproduced. 

b) Model 2 ('Exponential series') 

In the preceding section we have shown that an 
extension of the chain-association model of Mecke 
and Kempter 5 to binary liquid mixtures is possible 
by applying it to exchange equilibria between pairs 
of contact sites. As will be seen from Table 1 and 
from the examples discussed later, model 1, how-
ever, does not exhibit sufficient unsymmetry. Of 
course, the rather drastic simplifications which this 
model implies must be responsible for this deficiency. 
The most serious simplification seems to be the use 
of a single association constant 0 for all values of 
i, i. e. the assumption that the probability of chain 
prolongation is independent from the actual chain 
length. Several au tho r s 1 0 1 1 have tried to improve 
the original model for dilute solutions by using two 
different association constants for the formation of 
dimers, and for all following chain prolongation 
steps. With regard to a reliable determination of the 
model parameters from experimental data we avoid 
to increase the number of independent equilibrium 
constants beyond two, i. e. K for mutual solvation 
of A and B, and o for self-association of A. 

Our model 2 takes account of the decreasing 
probability of chain growth with increasing chain 
length in the following way : The probability of 
reaction (1) is reduced by a factor which equals the 
ratio of the total numbers of contact sites of mono-
meric A, and of the species A ; , 

z / [ ( £ - l ) z - 2 ( £ - 2 ) ] = z / [ ( £ - l ) ( z - 2 ) + 2 ] , 
(18) 

the denominator of (18) being equal to the total 
number of contact sites of A,_i minus the contacts 

which have become inaccessible by the formation of 
(i — 2 ) A —A* bonds. To simplify calculation, we 
neglect the term + 2 compared with (i — l ) ( z — 2) 
in the denominator of (18 ) . Introduction of one 
factor (18) for each prolongation step into (6) 
yields 

NAi ~ [z/ (z - 2) ] ' •-:V (£ - 1) ! ( £ - 1 , 2 , . . . , « , ) . 

(19) 

If we further assume that each molecule A has one 
specific 'acceptor' and one specific 'donator' contact 
site, formation of an associative A — A* bond will 
require pairing among complementary contact sites. 
As chain prolongation can equally proceed from 
both chain ends, a factor 2 for each prolongation 
step, i . e . 2' 1 for A; , is introduced by this assump-
tion, now reading: 

NAt~x! [2 z/(z-2)V-i/(i- 1 ) ! (£= 1, 2 , . . . , oc) . 

(20) 

Chain associates A; may also be formed from shorter 
fragments by 

Ai_k + Ak = At (k = 1, 2, . . . , £ — 1) , (21) 

the number of different possibilities being propor-
tional to (£—1). Introduction of a factor (£— 1) 
into (19) leads bade to model 1 which displays in-
sufficient unsymmetry. We therefore do not make 
further use of Equation (21 ) . 

Again, the proportionality factor q of Eq. (19) is 
calculated from the stoichiometric relations (3 ) , 

I £N A t = q x 2 i [ z x / ( z - 2 ) ] i - i / ( i - l ) l ( 22 ) 
i i 

= qx[\+zx/(z-2)]exp{zx/(z-2)}=NA°, 

leading to 

0 e x p { - z x / ( z - 2 ) } - [ z x / ( z - 2 ) V - i 
At A [ 1 + z (z — 2) ] • (£ — 1 ) ! 

(23) 
and 

I i V A l = i V A 0 / [ H u / ( z - 2 ) ] . 'Model 2 a' (24) 
i 

The main difference between models 1 and 2 is 
that the sum of the geometric series in the former 
model has been replaced by the exponential func-
tion in the latter model. The change of the number 
of associative bonds, according to Eq. (4 ) , is now 
given by 

Na° A = Na° (Z — 2 ) [ l / ( z - 2 + z * r ) 

- l / ( z - 2 + z * ) ] , 
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D = [ ( . - S J F O W + . - L ) + ZO>*NA»} • MODEL 2 A ( 2 5 ) 

The contribution of self-association to the unsymmetry of GE/R T, cf. Eq. (12) , reads 

(l/RT) [ ( d C L / W W (dGL/d/VA°) (1)] 'Model 2 a ' 

* Q1'2 [(z-2) jo1'2 + z - I - z V'2) + 2 o 1 ' 2 ] .... 
= [ ( z - 2 ) ( e * + , - l ) e • (26) 

The relative unsymmetry of GF/R T, as defined by Eq. (13 ) , is 

] ~ Q1!2 + 2 — 1 + 2 O1/2/ (z — 2) I ' ( 2 7 ) 

The mean degree of association of A, i, according to Eq. (15) , is 

z Av° o1l2/(z-2) 
= 1 + • ' M o d e l 2 a ' < 2 8 ) 

The use of Eq. (20) ( = Model 2 b) instead of Eq. (19) ( = Model 2 a ) means that zo l ' 2 in Eqs. (22) to (27) 
has to be replaced by 2zo 1 ' 2 . Putting 2 = 4, the quantities AA° A read 

- 16 Nk° t l - Ni 0 )K 1 ' 2 o1!2 

A ~ t N S ( 5 3 ) : 4 i w m s i ^ s T ' M o d e l 2 b ' ^ 4 ) ( 2 9 ) 

A = [ 3 N S i e ' i ^ i n i J a X ' t k w T T ) • ' M o d e l 2 a ' ( 2 = 4 ) < 3 0 ) 

The differences between these two variants of 
model 2 are not very important. Introducing the 
factor 2 ('Model 2 b') enhances unsymmetry and 
causes more steepness of the function AA° A = 
f(N\°) a t = 0 and at A a ° = 1 and less curvature 
in the center. A comparison of RUS for both models 
is given in Table 1. Dropping the factor 2 is a 
means of making allowance of imperfect chain 
character of association as found in systems of 
aliphatic alcohols with alkanes, for instance. It 
must, however, be remembered that distinction be-
tween such minor variants of models requires very-
precise experimental Gv jR T data with small steps 

on the A A0 axis which are available in very few 
cases only. 

Whilst the qualitative properties of A a ° A and 
RUS, as calculated by models 1 and 2, are the same, 
there are considerable quantitative differences. This 
can clearly be seen from Fig. 1 in which the curves 
A a °/1=/(A a ° ) , with K1'2 = 0.9 and ^ 2 = 4.5, are 
reproduced. The enhanced unsymmetry of model 2 
results from the fact that the contributions of longer 
chains A; are strongly reduced by the factor (18). In 
Fig. 2 a comparison of i = / (/VA°) for both models is 
given. The curvatures of the function have opposite 
signs: Model 2 predicts a steeper increase of i at 

Table 1. Relative unsymmetry (RUS) of G?sS/ R T. calculated for models 1, 2 a, and 2 b, by Eqs. (14) and (27), with 
2 = 4. 

RUS RUS 
K 1 ' 2 Model no. K' / 2 f > ^ Model no. 

1 2 a 2 b l a 2 a 2 b 

0.6 5.0 6.07 14.73 .23.16 
0.7 5.0 5.01 12.54 19.80 
0.8 5.0 4.20 10.89 17.27 
0.9 5.0 3.54 9.60 15.30 
1.0 5.0 3.00 8.55 13.71 
1.1 5.0 2.54 7.69 12.41 
1.2 5.0 2.13 7.03 11.32 

0.8 2 1.84 4.91 7.63 
0.8 3 2.68 6.97 10.89 
0.8 4 3.46 8.95 14.10 
0.8 5 4.20 10.89 17.27 
0.8 6 4.91 12.82 20.43 
0.8 7 5.61 14.73 23.58 
0.8 8 6.29 16.63 26.73 
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Fig. 1. Change on mixing of the number of associative 
A - A * bonds, 7VAM = / ( i V A ° ) , calculated with Ki'2=0.9 
and o1/,2 = 4.5. Curve 1 = model 1, curve 2 = model 2 b, 

curve 3 = model 2 a. 
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Fig. 2. Mean degree of association of A, i = / ( N A ° ) . Solid 
curves: Model 2 b ; broken curves: Model 1. Calculated 
with Ki/2 = 0.9, o1/2 = 4.5 (curves l a and 2 a ) , and with 

K ' ^ - O . S , o J/2 = 9.0 (curves 1 b and 2 b ) . 

low NA0 and an asymptotic approach to a limiting 
value at high /VA0, which is in better accordance 
with experimental data. 

Table 1 contains some calculated RUS values of 
models 1, 2 a, and 2 b, taking 2 = 4. In all cases, 
RUS increases with increasing and with de-
creasing Ki/2, the ratio of the absolute values ap-
proximatively being 1 : 2.5 : 4. RUS also depends 
on the coordination number z; it rises when z de-
creases, and vice versa. 

2. Contribution to G ' / R T of the Mutual 
Unspecific Solvation of A and B 

In order to obtain the complete expression of 
GE/R T, the contribution of mutual unspecific solva-
tion of A and B, GlJ

0\v/R T, must be added to 
Gaas/R T. We first consider the simplest case that 
Glii\-/R T is symmetric in NA°. As we have shown 
previously formation of a binary mixture with 
both components having the coordination number 
2 = 1 , according to the exchange equilibrium 

| (A — A) + | (B - B) = A - B , (31) 

gives rise to an excess Gibbs free energy of 

Glw/RT= - [1/VAB + ^ A ° ( 1 - ^ V a 0 ) ] In K ( 32 ) 

with 

7VAb = K{K — S)/ (K2 — 1) and 
5 = [£ 2 + 4 A a 0 (1 - Na°) (1 - K2) ] . (33) 

As we have established in the preceding pa-
pers *~3, coupling of a 'chemical' and a 'statistical' 
equilibrium in Eq. (32) is required in order to 
obtain correct behaviour in liquid-liquid equilibria. 
Formation of a statistical mixture of A and B by 
proceeding from a less probable to a more probable 
state, and formation of nearest-neighbour pairs of 
molecules due to chemical interactions with decrease 
of Gibbs free energy, are two phenomena with in-
dependent causes. They only proceed in such a way 
that both, statistical order and Gibbs free energy of 
A — B pairing, are monotonously decreasing func-
tions. As these two phenomena independently lead 
to the same equilibrium state, both contributions 
must be incorporated into GE/R T. 

Addition of Eq. (32) , multiplied by z, to Eq. (5) 
leads to 

GE/R T = - 2 [ | NAn + /VA° (1 - /VA°) ] In K 
-NA°J\nQ. (34) 

Simple addition of GJoiv/R T and G&JR T in Eq. (34) 
means that solvation and self-association are assum-
ed to be fully independent. This may be approxi-
matively true if no preferential solvation of the 
functional groups of A being responsible for self-
association takes place. In other words, monomeric 
A and the associated species A, are nearly equally 
well solvated by B. Such a behaviour is indicated 
in systems in which intensive cooling does not cause 
liquid-liquid phase separation. As a counterpart, we 
must consider the case that the functional groups of A 



1656 F. Becker et al. • Thermodynamic Excess Functions of Binary Liquid Mixtures 

are specifically solvated by B, which means that there 
is strong competition between self-association and 
solvation, only non-associated A being specifically 
solvated by B. This can be accounted for by using 
an 'effective' equilibrium constant K*, given by 

K*=K/VU+Q) , ( 3 5 ) 

in Gluiy/RT. Even in systems which exhibit liquid-
liquid phase separation on cooling it is not very 
realistic to assume such a strong competition. An 
alternative, more flexible way which allows reduc-
ing competition to one (or two, resp.) contact sites 
of A is to express K* by 

K* =Kexp { - o1/2 In Q/Z( 1 + Q1'2)} ; (36) 

K* equals K if £>=/=() and if £? = 1, and corresponds 
to a molar Gibbs free energy of formation of one 
A - B pair of 

JGab/ä T=-[\nK- o1'2 In o/z(l + o1 '2) 1 . (37) 

Usually, the excess functions of binary liquid 
mixtures in which only unspecific mutual solvation 
occurs are endothermic and more or less un-
symmetric. An important reason for this unsym-
metry is the difference of the molar volumes, or 
molar contact surfaces, resp., of A and B. Numer-
ous examples of experimental Gh and H] data 
reveal that these functions are more endothermic if 
the component with the smaller contact surface is in 
excess, i . e . if 'endothermic solvation' of the com-
ponent with the greater number of contact sites is 
more complete ('endothermic solvation' means that 
the energy parameters of pair interaction show a 
positive deviation from the arithmetic mean, i . e . 
iv = wX\i - (waa + ^'bb)/2 > 0 ) . 

To make allowance for this effect, formation of 
nearest-neighbour complexes A; B ; with higher co-
ordination numbers must be considered in GK/RT. 
Retaining K as single equilibrium constant of A — B 
pairing, differences between the molar contact sur-
faces can be accounted for by attributing different 
coordination numbers, zA and *|$, to both compo-
nents, and assuming linear variation of 2 with the 
mole fraction of the mixture. As an example, we 
consider the case that z\ = 3 and ^ = 4, and that 6 
different nearest-neighbour complexes will be form-
ed: 

A 4 , A.J oB, AO.4BO, AI.0B3 , A0.8B4, B 5 . 

As can be seen from the maximum ratio of the 
components in the 'mixed" complexes, being 5 : 1 
for B : A. but only 3.2 : 1 for A : B. it is B which 

has the smaller contact surface. If A and B had 
equal contact surfaces, the numbers of pair inter-
actions in A 3 2B, A2 4B2 , A 1 6 B 3 , and A0 8B4 would 
be 3.2 — 4.8 — 4.8 — 3.2, resp. As covering of the 
contact surface of A becomes more compete with 
increasing ratio B : A, we must change these figures 
in such a way that the resulting deviation from the 
'symmetric' figures above falls linearly with /Vp>0, 
e . g . 1.6 — 3.0 — 3.6 — 2.8. These assumptions lead 
to the following expression for G*o\y/R T: 

Gfow/R T= - [0.8yVA3 ,B + 1.5.VA,.4B, (38) 

+ 1.8 yVAl. iB, + 1.4 yV A O ,B , + AA° (1 - A V ) ] In K . 

The contribution to the unsymmetry of GK/R T of 
Eq. (38) is : 

(IIRT) [(dG£iv/d/VA°)(0)+ (dGsEolv/d7VA°)(1)] 

= [o.8(dyvA3,B/W)(i) 
-1.4(dyVA o ,B4/dA fA°)(0)] ln^. (39) 

The right-hand side of (39) is positive, i. e. 
Gsolv//? T has the greater positive, or, resp., the 
smaller negative limiting slope at N\° = 0, if K< 1, 
which corresponds to an 'endothermic solvation'. 

3. Comparison between Predicted and 
Experimental G]/RT Data 

In Figs. 3 and 4, some Gh/RT model curves are 
shown, as calculated by Eqs. (34) , (10 ) , or (29) , 
taking 2 = 4 and (J1 2 = 4 .5 : 

RT=-2 { r + 2 (1 - na9) j,n k 
4 yVA° (1 - A a ° ) K12 o12 In o 

[ iVA°(o 1 2 + 3) JV A « ) ] (q112 + 3) ' 
(40) 

GK
 = \K(K-S) 

RT \ K2-l 
16 y V A ° ( l - ^ A ° ) K W o1 2 In o 

[/VA° (5 o 1 2 + 3) -: 4 A'1 2 (1 -NA°) ] (5 Q1'2 + 3) 

(41) 

(Model 1 = Eq. (40) ; Model 2 b = Equation (41) . 
Change of sign, with positive values of G[ /RT at 

lower /Va°i and negative values at higher A.j0, oc-
curs if K > ca. 1.15 (Model 1), and if A">ca. 1.05 
(Model 2 b ) . The ordinate scale of model 1 is 
shifted by 0.15 to more positive G' /RT values, as 
compared with model 2 b, and it is obvious that the 
former model exhibits less unsymmetry. 

+ 2 N\° (1 — yV \°) f In K 
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Fig. 3. G E /Ä T=/(NA°), according to model 1, with 2 = 4 
[Eq. (40)] , calculated with a n d K = 0 . 8 5 - 0 . 9 2 -
1 . 0 0 - 1 . 0 4 - 1 . 0 8 - 1 . 1 5 - 1 . 2 2 (solid curves). O Experi-
mental values of G. C. Benson et al. 12 for cyclohexanol (A) 
— cyclohexane (B) at 25 °C. Dotted curve: Least-squares 

fit with K = 0 . 9 8 and q1"=5.65 (see Table 2 ) . 

Fig. 4. GV/R r=/ (yVA°) , according to model 2 b, with 
2 = 4 [Eq. (41)] , calculated with = 4.5 and A:1/2 = 0.85 
- 0 . 9 2 - 1 . 0 0 - 1 . 0 4 - 1 . 0 8 - 1 . 1 5 - 1 . 2 0 (solid curves). O 
Experimental values of Benson et a l . 1 2 for cyclohexanol 
(A) — cyclohexane (B) at 25 °C. Dotted curve: Least-

squares fit with K = 0.877 and o1/2 = 4.49 (see Table 2 ) . 

For comparison, isothermal experimental GK/R T 
data at 25° of the system cyclohexanol (A)-cyclo-
hexane (B), due to Benson et a l . 1 2 are reproduced 
in Figs. 3 and 4, together with the theoretical curves 
obtained by a least-squares fit of K and Q, using 
Eqs. (40) and (41) , resp. Undoubtedly, the self-
association which cyclohexanol undergoes in cyclo-
hexane solution is not precisely chain-forming, par-
ticularly in concentrated solutions. From the fact 
that model 2 allows fitting of the experimental data 
within the limits of experimental error it may be 

argued that a good approximation of the concentra-
tion dependence of self-association has been found. 

More detailed results of a least-squares fit of 
models 1 and 2 b to isothermal GLjR T data at 25° 
on 4 different cycloalkanol-cycloalkane systems 12' 13 

are presented in Table 2. The sum of the squared 
deviations between experimental and calculated 
GE/R T values, 

U (K, Q) = 2 (G*JR T - Gllc/R T) „ 2 , (42) 

Table 2. Least -squares fit of models 1 and 2 b [Eqs. (40) and (41)] to isothermal experimental G^/R T data at 25° on 
4 cycloalkanol-cycloalkane systems from Benson et al. , 2 : 13. 

System: No. of M o d e l l [Eq. (40)] Model 2 b [Eq. (41)] 
exptl. 104- 104-

A B values K 2 Um\n o% K q1'2 Umin o % 

cy-C5H9OH cy-C5H10 14 0.965 5.12 5.04 1.54 0.874 4.25 0.712 0.59 
cy-C5H9OH cy-CgHj, 20 0.924 5.18 28.39 2.61 0.865 4.34 2.919 0.92 

cy-C 6 H n OH cy-C5H10 19 0.995 5.93 12.79 2.18 0.887 4.72 3.752 1.24 
cy -C 6 H u OH cy-CgHj, 23 0.980 5.65 13.65 1.96 0.877 4.49 2.799 0.90 
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Table 3. Least-squares fit of model 2 a [Eq. (30)] and of the Wilson equation [Eq. (44)] to isothermal G^/RT data 
at 25° on 4 cycloalkanol-cycloalkane systems, from Benson et al. [ I .e . ] . 

System: No. of Model 2 a [Eq. (30) ] Wilson equation [Eq. (44) ] 
exptl. 104- 104-

A B values K q1'2 Um in A B Um\n o% 

cy-C5H9OH cy-C5H10 14 0.882 5.37 0.321 0.39 0.0833 0.657 0.491 0.49 
cy-C5H9OH cy-C8H12 20 0.873 5.70 4.807 1.18 0.0685 0.616 6.822 1.41 

cy -C 6 H n OH cy-C5H10 19 0.896 6.31 2.441 0.95 0.0634 0.789 1.965 0.86 
cy-CgHnOH cy-CgH^ 23 0.886 5.96 1.880 0.73 0.0680 0.712 1.819 0.72 

has been minimized with respect to K and n by a 
numerical gradient procedure: 

dU/dK = 0 and dU/do = 0 (U = Umil{) . 
(43) 

The values of K and £>1/2 which correspond to Umj„ , 
together with Um-m, and the per cent standard 
deviation, o% ( = p.c. of the maximum value of Ghf 
RT), are incorporated in Table 2. Comparison of 
U and o of both models makes evident that model 
2 b is much superior to model 1. The rather large 
differences between the prediction of model 1 and 
the experiment are beyond experimental error, 
indicating that systematic deviations of curve shape 
exist. 

Table 3 presents the results of the application of 
model 2 a, and of the two-parameter Wilson equa-
tion 14, 

GE/R T = - A a ° In [ A a ° + A (1 - NA°) ] 
- (1 — /VA°) l n [ l - /VA° + B A\°] , (44) 

to the same cycloalkanol-cycloalkane systems as in 
Table 2. The standard deviations from the experi-
ment of model 2 a arc just as small as those of the 
Wilson equation, and, in both cases, are within the 
limits of experimental error. In contrast to our 
equilibrium models however, the Wilson equation 
suffers from the serious disadvantage that it is 
unable to predict limited miscibility. 

Recently published isothermal GK/R T data of 
Sayegh and Ratcliff16 on some pentanol-hexane 
systems (interpolated values in steps of 0.1 AA°) 

Table 4. Least-squares fit of model 2 b to isothermal GE / /? T 
data at 25° on mixtures of n-pentanol and isopentanol with 

isomeric hexanes, according to Sayegh and Ratcl iff1 6 . 

System: 104-
A B K Q1'2 Um\a o% 

n-pentanol n-hexane 0.8640 4.796 0.975 0.82 
n-pentanol 2-Me-pentane 0.8642 4.739 1.824 1.12 
n-pentanol 3-Me-pentane 0.8678 4.771 1.798 1.14 
n-pentanol 2,2-Di-Me-butane 0.8647 4.667 0.834 0.76 
n-pentanol 2,3-Di-Me-butane 0.8666 4.513 0.730 0.72 
isopentanol n-hexane 0.8603 4.292 0.087 0.24 

may serve as a further test of model 2 b (see 
Table 4 ) . Chain-branching of the alkane component 
causes a minor decrease of o1/2 whilst K remains 
virtually unchanged. By chain-branching of pentanol, 
however, qx!2 is markedly reduced. 

One of the best examples of a liquid in which 
chain-forming self-association takes place, is N-
methyl formamide (NMF). Table 5 presents the 
results obtained by applying model 2 b (with z = 4) 
to isothermal GE/R T data at 45° on the systems 
NMF-CC14 , and NMF - CGH6 17. The much greater 
standard deviations in Table 5 are caused by a 
marked scattering of the experimental values, and 
not by the inability of the models to fit the data. For 
the same reason probably, no differences between the 
use of K or K* can be detected. The calculated 
parameters K and £)12 indicate that CC14 is the 
poorer solvent and enhances self-association of NMF. 
This is also supported by the fact that the system 
NMF — CC14 has an upper critical solution tempera-
ture at 39.5 °C 17. 

Table 5. Application of model 2 b. with K [Eq. (41)] . and with K* [Eq. (36)] , to isothermal G^/RT data at 45 °C 011 
the systems NMF —CC14, and N M F - C 6 H 6 . according to Messow, Quitzsch et al. 

System: No. of with K with K* 
exptl. 

A B values K o1/-' 102-£/m in 0% K q^2 10 2-Um\n o% 

NMF CC14 23 0.809 3.75 1.106 4.04 0.824 3.74 1.143 4.11 
N M F C 6H 6 30 0.842 2.78 1.107 4.10 0.850 2.75 1.098 4.10 
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The diain association model presented in this 
paper can also be applied to systems in which only 
dimers of A are formed. To use model 2 b for 
dimerization, the stoichiometric relation (3) must 
be replaced by 

A A + 2 A A , = A A ° , ( 4 5 ) 

and the change of the number of associative A — A* 
bonds when mixing NA° moles of A with (1 — AA°) 
moles of B to obtain one mole of mixture, is 

A A M = A A j . - A A 0 - A i 2 . (46) 

Using Eqs. (6) and (20) , with 2 = 4, one obtains 

N A = X ; A A , = 2 * 2 ; 

A A y / 2 _ _ 
w.th * - N a 0 (q1/o + 3 ) + 4 £1/2 ( 1 _ yvA0) • 1 1 '> 

Inserting (47) into (46) yields 

A a M = 2 A a ° [ * / ( 1 + 4 * ) - * r / ( l + 4 * r ) ] , 

NA°A 
— 8Na° (1 — Aa°) K1'2 O1/2 

[Aa 0 (5 qx>2 + 3) + 4 K12 (1 - A a ° ) ] (5 o1/2 + 3 ) ' 
(48) 

which differes from model 2 b [Eq. ( 2 9 ) ] by a 
factor g only. 

In Table 6, the results of the application of 
Eq. (48) , together with Eq. (34 ) , to isothermal 
Gv /R T data on the system acetic acid-carbon tetra-
chloride at 20° and 40° 18, are reproduced. For 
comparison, the chain association model 2 b 
[Eq. ( 4 1 ) ] was fitted to the same data. Selectivity 
of the dimerization model for systems in which 
dimerization is predominant issues from the fact 
that this model gives the best fit with significantly 
smaller standard deviations. The least-squares fit by 
the Wilson equation [Eq. ( 4 4 ) ] , the results of which 

are also incorporated in Table 6, is inferior to that 
obtained by the dimerization model. 

From the examples given in this chapter it is 
evident that equilibrium models can serve as a 
powerful means of describing the excess Gibbs free 
energy and related thermodynamic quantities of 
binary mixtures in which chain association or 
dimerization of one component takes place. To sum-
marize, the main features by which equilibrium 
models are characterized and which, in our opinion, 
make them superior to other empirical models for 
liquid mixtures, are pointed out: 

(1) Equilibrium constants of well-chosen exchange 
equilibria among nearest-neighbour complexes, or 
among pairs of contacts sites, resp., prove to be 
advantageous parameters of theoretical models for 
the equilibrium properties of liquid mixtures. Their 
use allows reduction of the number of parameters 
needed to a minimum. 

(2) Equilibrium models can selectively be adap-
ted to the various types of intermolecular interac-
tions in liquid mixtures and therefore allow examina-
tion of the validity of the model assumptions. 

(3) Equilibrium models are consistent with 
equilibrium thermodynamics and can be applied to 
all equilibrium phenomena in liquid mixtures, in-
cluding partial miscibility. 

Part II of this paper which will be published 
forthcoming, will be concerned with the application 
of the chain association models presented here to the 
excess free enthalpies of mixing, and to liquid-
liquid phase equil ibria. 
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Table 6. Least-squares fit of the dimerization model [Eqs. (34) and (48)] , of model 2 b [Eq. (41)] , and of the Wilson 
equation [Eq. (44)] to isothermal G E / /? T data at 20 °C and 40 °C on the system acetic acid-carbon tetrachloride, according 

to Kohler et a l . 1 8 . (11 values of G^/R T in 0.1 steps of /VA°, additionally 0.05 and 0.95.) 

Model Temperature K 1 0 4 - f / m i n o% 
°C (A) (B) 

dimerization 20 0.8385 5.80 0.791 0.70 
40 0.8425 5.06 1.133 0.86 

chain association (model 2 b) 20 0.8600 2.49 3.576 1.50 
40 0.8585 2.19 3.752 1.56 

Wilson Eq. (Parameters A and B) 20 0.094 0.661 26.55 4.07 
40 0.181 0.530 5.104 1.82 
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