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Supplementary Information

Supplementary Note 1

Image similarity metrics

The HAWK Method for the Assessment of Nanoscopy (HAWKMAN) is an analysis algorithm to
assess image similarity between two super-resolution images. HAWKMAN outputs a structure
map, sharpening map, and an error map. This method suppresses nonlinearity in
reconstructions between two images (reference and test) which arise due to intensity
differences and degree of sampling, instead focusing on structural similarity. The structure map
is an overlay of blurred, binarised, and skeletonised reference and test images which provides a
final image with fine structural information. The sharpening map blurs and binarises the images
to produce a final overlay which provides information on the local density of the structures.
Density differences between the two images are described as artificial sharpening. Overlap
between structures are presented in yellow, while a cyan region indicates an area that is not
reconstructed in the test image, and magenta indicates artificial sharpening (false
structures/loss of fine structures by the merging of features/increased density of structures) in
the test image. The confidence map reports the confidence of a local region according to the
cross-correlation of the structure and sharpening results, and intensity information. Both
structure and sharpening maps also output a Pearson’s Correlation Coefficient value 1.

Super-resolution quantitative imaging rating and reporting of error locations (SQUIRREL) is an
analysis method that is based on the premise of comparing a super-resolution image (test
image) to its diffraction-limited counterpart (reference image) to determine the completeness of
the super-resolution reconstruction and intensity differences. The super-resolution image is
resolution-scaled to match the resolution of the diffraction-limited image and a pixel-by-pixel
absolute difference calculation between the diffraction-limited and resolution-scaled
super-resolution image is performed to output an error map. In addition, the resolution-scaled
Pearson coefficient (RSP) which is the Pearson’s Correlation Coefficient and the
resolution-scaled error (RSE) which is the root-mean-squared error (lower value indicates lower
error) between both images are calculated 2. We also performed a modified SQUIRREL analysis
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here which uses the DeepSTORM predicted image as the reference image since it reports a
higher decorrelation resolution value. By using this adapted approach, we were able to compare
the images on a super-resolution scale (Supplementary Fig. 4).

Multi-Scale Structural Similarity Index (MS-SSIM) is a combined measure of the luminance,
contrast, and structure similarity between two images calculated at different image scales. 3.

Supplementary Note 2

The minimum number of frames required to obtain a completely reconstructed image using
DeepSTORM was determined by comparing predicted images generated from 50 to 2,000
frame lengths to the GT image and obtaining structural similarity values using HAWKMAN
(Supplementary Fig. 1). We found that at a concentration of 5 or 10 nM, a completely
reconstructed image could be obtained with only 400 frames (dotted lines) for both α-tubulin and
TOM20. The performance of the single-molecule localisation algorithm Picasso was also tested
using a 10 nM TOM20 high-density dataset (Supplementary Fig. 2) which showed incomplete
reconstruction in TOM20 regions (white circles).

An α-tubulin-labelled region in tissue with 1D (left) and 2D (right) structures from the same
image are compared side by side (Supplementary Fig. 3a). The structure and sharpening map
both show that 1D α-tubulin filaments are predicted well by DeepSTORM (yellow structures;
yellow arrows) but the strong presence of local cyan structures (white arrows) indicates 2D
α-tubulin bundles are lacking structural density in the predicted images (Supplementary Fig.
3bc). The confidence maps corroborate these findings where low reconstruction correlation in
the 2D regions and good correlation in the 1D regions are evident (Supplementary Fig. 3d).

Image prediction similarity was assessed for α-tubulin- and TOM20-labelled images using
HAWKMAN, SQUIRREL, MS-SSIM, and decorrelation resolution (Supplementary Fig. 4). The
overlay between GT and predicted images (5, 10, or 20 nM) indicate either structural agreement
(white), denser GT structures (cyan) or denser predicted structures (magenta) (Supplementary
Fig. 4a). Visual comparisons indicate that 5 nM and 10 nM predictions of α-tubulin are highly
similar (Supplementary Fig. 4a i-ii) whereas a noticeable difference is observed in 20 nM where
the cyan in structurally dense regions are more prominent (Supplementary Fig. 4a iii; yellow
arrows), suggesting incomplete reconstruction of the predicted image. Here, DeepSTORM loses
its prediction quality at 20 nM for dense 2D α-tubulin structures while maintaining the
reconstruction of 1D structures. The comparison of a particularly dense 2D structural region of
an axon 4 was chosen to observe the challenges of our NN model when applied to a
high-density hotspot. GT (cyan) and predicted 5, 10 and 20 nM concentration (magenta) images
were assessed (Supplementary Fig. 4b). We found the prediction quality for extremely dense 2D
structures was low with pixelated rendering artefacts, exacerbated by increasing imager strand
concentrations (Supplementary Fig. 4b i-iv). SQUIRREL error maps indicate larger errors with
increasing concentration of imager strands and dissimilarities in structures can be seen in blue
and green regions, while yellow regions indicate differences in intensity (Supplementary Fig. 4b
v-vii).
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Visual inspection of TOM20 predicted images compared to GT indicate that an imager strand
concentration of 5 nM is not sufficient to completely reproduce mitochondrial structures (high
cyan density), whereas at 10 nM there is better similarity between GT and the predicted image
(Supplementary Fig. 4c i-ii). At 20 nM hallucination artefacts are being predicted in the
DeepSTORM image which are not found in GT, seen as an increase in magenta structures
(Supplementary Fig. 4c iii). A magnified region of a single mitochondria shows that the GT
image is finer and more punctate compared to the larger and diffuse points of the predicted
images (Supplementary Fig. 4d i-iv). While the mitochondrial structure and shape were
effectively reconstructed in all three predicted imager strand concentrations, the 5 nM imager
strand prediction is incomplete (yellow arrows, Supplementary Fig. 4d ii). At 10 nM, the
mitochondrial shape is more defined and better reproduced, and at 20 nM hallucination artefacts
(features that do not exist in GT) are formed (magenta arrows, Supplementary Fig. 4d iv). The
error maps show very subtly that 10 nM imager strand concentration has the lowest structural
error. Strong yellow regions dotted around the structure reflect differences in intensity rather
than structural inconsistencies possibly due to differences in emitter photon intensity or degree
of sampling between the datasets during image acquisition (Supplementary Fig. 4d v-vii; white
arrows; 1.
The quality of DeepSTORM predicted structures compared to GT were quantitatively assessed
(Supplementary Fig. 4e). For SQUIRREL analysis, α-tubulin showed slightly higher RSP values
for 5 nM imager strand concentrations while no difference was observed for TOM20 RSP values
in all imager strand concentrations. α-tubulin and TOM20 both have the lowest RSE at 5 nM (p
α-tubulin = 0.02; ANOVA). This suggests that an increase in imager strand concentration
contributes to higher background fluorescence which affects image prediction quality. The
MS-SSIM for α-tubulin had the highest structural similarity at 5 nM imager strand whereas in
TOM20-labelled structures only 20 nM was unsuitable for prediction. In the HAWKMAN analysis
for both structural reconstruction and artificial sharpening, α-tubulin at 5 nM performed well (p =
0.02; ANOVA) whereas TOM20 had comparable structural correlation for 5 and 10 nM and
better sharpening correlation at 10 nM. Decorrelation resolution for both α-tubulin and TOM20
are lower in all predicted images compared to their respective GT images (~35 nm) by
approximately 10 nm.

We applied SQUIRREL analysis on the super-resolved low-density emitter (0.5 nM, 10,000
frames, DNA-PAINT) and high-density predicted DeepSTORM images (5, 10, 20 nM; 400
frames) against their respective diffraction-limited DNA-PAINT frames obtained by z-projection
(Supplementary Fig. 5). The low-density emitter image showed the best RSP value and the
lowest RSE compared to DeepSTORM predicted images, also reflected in the error map
showing high image correlation (Supplementary Fig. 5a iii). With the increase in imager strand
concentrations for predicted images, the RSP, RSE, and error map become worse. While the
filamentous 1D structures on the left side of the images are largely unchanged in the error map,
the prediction quality of 2D dense structures (right side) become noticeably poor
(Supplementary Fig. 5a iv-vi). Similar to α-tubulin, the low-density emitter image for TOM20
showed the best outcome with the highest RSP and lowest RSE value compared to predicted
images (Supplementary Fig. 5b iii-vi). Again, both the RSP and RSE values suffered with
increasing imager strand concentrations, although the difference between 5 and 10 nM was low
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in mitochondrial structures. Image prediction quality suffers with increasing imager strand
concentrations and may be attributed to excessive overlap of emitters and high background
fluorescence. The prediction is also affected by structure dimensionality, whereby 1D structures
were predicted better than 2D structures.

We sought to determine the generality of our model by extending the range of protein target
prediction using 2-target Exchange-PAINT. We found that our model could predict
nanostructures on a scale of ~100 nm for Bassoon and Homer structures (Supplementary Fig.
7ab) and differentiate between cells in MNTB tissue such as neurons and astrocytes
(Supplementary Fig. 7cd). Furthermore, the model was stable over many months since training
provided the optical setup was unchanged (Supplementary Fig. 8).

A post-processing extension of DeepSTORM functionality was developed in the
ZeroCostDL4Mic platform which extracts localisations from points in the predicted DeepSTORM
image. Benefits of having SMLM localisations are the ability to perform drift correction, rendering
a super-resolution image with different algorithms, and performing coordinate-based image
analysis. We briefly studied the localisation output of the post-processing function in the Colab
notebook. An experimental and artificial high-density TOM20 dataset was used for image
prediction in DeepSTORM and subsequently post-processed to extract DeepSTORM
localisations. The localisations were rendered in Picasso using the same rendering method
used for the GT. The image similarity of GT, DeepSTORM predicted image, and DeepSTORM
localisations rendered in Picasso were compared using HAWKMAN and MS-SSIM
(Supplementary Fig. 10). In general, there was a very slight increase by 0.02 in the similarity
metrics of GT vs DeepSTORM localisations in the experimental dataset (Supplementary Fig.
10a). Although this difference is negligible, generally an improvement in the image analysis
metrics can be attributed to the similar rendering method in Picasso using the One-Pixel Blur.



Supplementary Figure 1: Optimization of frame length for complete image reconstruction using
DeepSTORM. High density frames at 5 (red), 10 (blue), and 20 (cyan) nM imager strand
concentrations at frame lengths of 50, 100, 200, 400, 600, 1,000, and 2,000 were predicted with
DeepSTORM and the predicted image similarity evaluated against GT images. HAWKMAN
image similarity metric was applied to the whole image to determine the minimum number of
frames required for complete image reconstruction. Vertical stippled line marks frame length at
400; n = 3 images per data point, error bars = SD. Source data are provided as a Source Data
file.

Supplementary Figure 2: Predicting a high-density dataset with single-emitter localisation
algorithm Picasso. A magnified TOM20 (a) ground truth (GT) low-density image (0.5 nM 10,000
frames) rendered with Picasso, (b) DeepSTORM predicted high-density image (10 nM 400
frames), and (c) Picasso-rendered high-density image (10 nM 400 frames). Circled regions in c
highlight areas of incomplete structural reconstruction. N = 1 cropped ROI; scale bars 0.2 µm.



Supplementary Figure 3: Quantitative analysis of image similarity between ground truth (GT)
and predicted super-resolution images using HAWKMAN. (a) GT (cyan; yellow Picasso icon)
and DeepSTORM predicted images (magenta; DeepSTORM icon) of an α-tubulin-labelled
structure recorded for imager strand concentrations of 0.5, 5, 10, and 20 nM. (b) Structure map
with Pearson correlation coefficient (PCC) indicating regions of good overlap between GT vs
predicted image (yellow structures; yellow arrows), denser GT structures (cyan structures; white
arrows) or denser DeepSTORM predicted structures (magenta structures). (c) Sharpening map
indicating regions of artificial sharpening with the same colour scheme as the structure map. (d)
Confidence map highlighting structures of high confidence (cyan) and low confidence (red). (b,
c, & d; first column) Schematic explaining HAWKMAN maps. HAWKMAN applied to n = 1 ROI
(a-d); scale bars 1 µm.





Supplementary Figure 4: Quantitative assessment tools for the analysis of predicted
super-resolution images. (a) Overlay of GT α-tubulin-labelled images (0.5 nM, 10,000 frames;
cyan; yellow Picasso icon) with (i) 5 nM, (ii) 10 nM, and (iii) 20 nM DeepSTORM predicted
images (400 frames; magenta; DeepSTORM icon). (b) A magnified region of a very dense axon
structure from a with (i) GT; cyan, (ii) 5 nM, (iii) 10 nM, and (iv) 20 nM predicted images
(magenta). SQUIRREL error map between GT and (v) 5 nM, (vi) 10 nM, and (vii) 20 nM
predicted images. (c) Same as a for TOM20. (d) Same as b for TOM20. (e) Boxplot (median as
centre line, mean as centre point, top and bottom lines as Q1 and Q3, whiskers are outliers)
with random jittered data points of DeepSTORM predicted image quality assessment against
GT image using RSP (Resolution Scaled Pearson) and RSE (Resolution Scaled Root Mean
Squared Error) from SQUIRREL; MS-SSIM (Multi-Scale Structural Similarity Index); Pearson
Correlation-based (PCC) structure similarity and image sharpening with HAWKMAN; and
decorrelation resolution; n = 5 images per condition. Yellow arrows pointing to cyan regions
indicate incompletely predicted structures. White arrows indicate structures with high intensity
differences. Magenta arrows indicate hallucination artefacts. Asterisks indicate statistical
significance at <0.05 using One-way ANOVA. Scale bar 4 µm (a & c), 0.5 µm (b & d). Source
data are provided as a Source Data file.



Supplementary Figure 5: SQUIRREL analysis between super-resolution and diffraction-limited
images to measure nanostructure reconstruction. (a) α-tubulin-labelled structure with (i) a
diffraction-limited image (grey) and (ii) corresponding DNA-PAINT low-density emitter
super-resolution image (0.5 nM imager strands for 10,000 frames; cyan; Yellow Picasso icon).
SQUIRREL analysis (iii) comparing ii and i, and comparing DeepSTORM predicted images
(DeepSTORM icon) with diffraction-limited images (400 frames) for (iv) 5 nM (v) 10 nM and (vi)
20 nM imager strands (b) Same as a for TOM20-labelled structures. SQUIRREL applied to ROI
of n = 1 (a & b); scale bar 2 µm.



Supplementary Figure 6: Magnified super-resolution large-sample image with DeepSTORM
DNA PAINT to observe nanostructures. (a) A large-ROI super-resolution α-tubulin image (in Fig.
5). (b) Magnification of a region in a showing two cells (cyan stippled lines) and a column of
axon filaments (green stippled lines). (c) Magnification of part of the cell and cross-sections of
axon bundles (yellow stippled lines). (d) Cross-section of a single axon bundle showing the
nanostructure features that can be extracted by large sample super-resolution imaging. N = 1
tissue sample; scale bar (a) 20 µm, (b) 5 µm, (c) 2 µm, (d) 0.25 µm.



Supplementary Figure 7: One DeepSTORM model predicts different protein structures. Different
protein targets were imaged using 2-target Exchange-PAINT to observe DeepSTORM image
prediction using the same model on different structures. (a) Ground truth (GT) and (b) predicted
image of Bassoon (cyan; 5 nM P1) and Homer (red; 5 nM P5). Magenta arrows indicate typical
Bassoon and Homer juxtaposed nanostructures in the active zone of synapses. (c) GT and (d)
predicted image of neurofilament M (NF-M; cyan; 5 nM P1) and glial fibrillary acidic protein
(GFAP; red; 1 nM R1) labelling neurons and astrocytes, respectively. Fiducial markers are used
to register multi-target images (yellow arrows). N = 1 image (a-d); scale bar (a & b) 2 µm, (c & d)
5 µm.



Analysis Metrics 5 nM 10 nM 20 nM

HAWKMAN Structure
Sharpening

0.51
0.55

0.47
0.56

0.44
0.49

SQUIRREL RSP
RSE

0.55
59

0.54
62

0.51
61

MS-SSIM - 0.71 0.67 0.65

Decorrelation
resolution

38 nm (GT) 42 nm 42 nm 43 nm

Supplementary Figure 8: Longevity of the trained model. A TOM20 dataset was imaged and
predicted with DeepSTORM months after training the model. (a) Overlay of ground truth (GT;
0.5 nM, 10,000 frames; cyan) with DeepSTORM predicted image (10 nM, 400 frames;
magenta). A magnified region of (b) GT and (c) predicted image. (Table) Image similarity
metrics on the whole image for 5, 10 and 20 nM imager strand concentrations. N = 1 image;
scale bars (a) 5 µm, (b & c) 0.2 µm.



Supplementary Figure 9: Comparison of experimental high-density data to ground truth (GT)
data, and of artificially-generated high-density data to GT data. DeepSTORM predicted images
from experimental datasets (5, 10, and 20 nM imager strands; 400 frames; blue) and
artificially-generated datasets generated from imaging data recorded with 0.5 nM imager strand
concentration (Sum10, Sum20, and Sum40; 400 frames; pink) for α-tubulin and TOM20 were
compared to GT images (0.5 nM, 10,000 frames) using HAWKMAN. Image similarity metrics on
the whole image, n = 1. Source data are provided as a Source Data file.



Supplementary Figure 10: DeepSTORM extracts single-molecule localizations for
super-resolution image reconstruction. (a) From a TOM20-labelled sample, (i) low emitter
density frames were imaged (0.5 nM 10,000 frames) and (ii) a GT image was reconstructed with
Picasso (Yellow Picasso icon; yellow arrows). (iii) High density frames were obtained by image
acquisition of the sample with 10 nM imager strands. (iv) The high density dataset was used to



predict an image with the DeepSTORM model (blue arrows) and post-processing was
performed in DeepSTORM on the predicted image to extract emitter localisations (green
arrows). (v) DeepSTORM-extracted localisations were rendered in Picasso. Image similarity
was analysed using HAWKMAN and MS-SSIM for (vi) GT vs DeepSTORM predicted image,
(vii) GT vs DeepSTORM-extracted localisations, and (viii) DeepSTORM predicted image vs
DeepSTORM-extracted localisations. (b) Similar to (a) except (iii) artificially-generated high
density frames were prepared by summing up groups of 20 frames from the low density dataset
in i. Yellow arrows indicate GT image processing, blue arrows indicate DeepSTORM image
processing, and green arrows indicate DeepSTORM localisation processing. Image similarity
metrics performed on the whole image, n = 1; scale bar 1 µm.

Supplementary Table 1: Parameters for DeepSTORM training and prediction.

Training

Neural network Raw frame size Emitter density
of raw frames

Patch size # of patches Emitter density

DeepSTORM
v1.12

512 x 512 0.028 em/µm² 16 x 16 30,000 2 em/µm²

Server GPU # of epochs Batch size Learning
rate

Upsampling
factor

Percentage
validation

Training
time

Google
Colab Pro

Tesla V100 100 256 1e-5 8 0.15 35 min

Prediction

Neural network Server GPU Frame size # of frames Prediction time

DeepSTORM
v1.13

Google
ColabPro/Colab

Tesla P100/
Tesla K80

512 x 512 400 7 - 25 min
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