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Abstract 20 

Dual coding theories of knowledge suggest that meaning is represented in the brain by a double code, 21 
which comprises language-derived representations in the Anterior Temporal Lobe and sensory-derived 22 
representations in perceptual and motor regions. This approach predicts that concrete semantic features 23 
should activate both codes, whereas abstract features rely exclusively on the linguistic code. Using 24 
magnetoencephalography (MEG), we adopted a temporally resolved multiple regression approach to 25 
identify the contribution of abstract and concrete semantic predictors to the underlying brain signal. Results 26 
evidenced early involvement of anterior-temporal and inferior-frontal brain areas in both abstract and 27 
concrete semantic information encoding. At later stages, occipito-temporal regions showed greater 28 
responses to concrete compared to abstract features. The present findings shed new light on the temporal 29 
dynamics of abstract and concrete semantic representations in the brain and suggest that the concreteness 30 
of words processed first with a transmodal/linguistic code, housed in frontotemporal brain systems, and 31 
only after with an imagistic/sensorimotor code in perceptual and motor regions. 32 
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1. Introduction 36 

Abstract and concrete semantic representations form fundamental aspects of word meaning. For instance, 37 
concrete features (e.g., four legs, red fur), as well as abstract features (e.g., intelligent, aggressive), 38 
contribute to the representation of a fox in semantic knowledge (Borghesani & Piazza, 2017; Smith et al., 39 

1974). Although the ability of the brain to retrieve these representations is at the core of human semantic 40 
knowledge, the neural underpinnings of this process are not completely understood. 41 

To explain how various sorts of knowledge guide a broad range of behaviors, Dual Coding Theories 42 
(DCT; Paivio, 1986, 1991) put forward the idea that, in the brain, semantic knowledge is represented in a 43 
dual coding system comprising a linguistic code, and an imagistic/sensorimotor code. In DCT, abstract and 44 
concrete concepts can both be represented through the linguistic code, whereas the imagistic/sensorimotor 45 
code is available only for concrete aspects of meaning. In experimental psychology, the fact that concrete 46 
words are recognized faster (Kroll & Merves, 1986; Schwanenflugel et al., 1988; Schwanenflugel & Stowe, 47 

1989) and memorized better (Allen & Hulme, 2006; de Groot, 1989; Fliessbach et al., 2006) than abstract 48 
words (i.e., the concreteness effect) has been traditionally taken as evidence in favor of the dual coding 49 
approach:  only concrete concepts can activate both codes (linguistic and sensorimotor), a condition which 50 
gives them a processing advantage (Connell & Lynott, 2012; Paivio, 1986). However, the study of the 51 
concreteness effect in congenitally blind people has cast doubts on this interpretation (Bottini et al., 2021). 52 
Despite lacking a sensory code for visual features, early blind people processed visual unimodal-concrete 53 
words (e.g., “red,” “multicolor,” “transparent”) faster than abstract words, showing a concreteness effect that 54 
was indistinguishable from the one of sighted people (Bottini et al., 2021) and suggesting that the 55 
concreteness advantage is not driven by the availability of a double code for concrete words. 56 

If, on the one hand, the study of blind people has shaken the confidence in psychological evidence 57 
considered a hallmark of dual coding models, on the other hand, it has revived the interest in DCTs from a 58 
neuro-cognitive perspective. Are sensory-derived and non-sensory-derived representations encoded in 59 
dissociable brain codes? A recent line of studies exploring the brain basis of visual knowledge in the 60 
absence of vision has provided alternative neurocognitive evidence for a dual code of semantic knowledge 61 
in the brain (see Bi, 2021). Two studies focusing on color representations in sighted and congenitally blind 62 
have shown that posterior brain areas in the V4 complex encode the similarity of color words, but only in 63 
sighted people. However, color similarity is also encoded in the dorsal anterior temporal lobe (ATL) in both 64 
sighted and blind (Bottini et al., 2020; X. Wang et al., 2020). Thus, the dorsal ATL seems to provide a non-65 
sensory code to represent knowledge, both concrete and abstract, whereas a perceptual code for concrete 66 
representations relies on posterior perceptual regions and may not be available in the case of sensory 67 
deprivation (Bi, 2021).  68 

Beyond research with populations devoid of specific aspects of perceptual experience, functional 69 
resonance imaging (fMRI) studies investigating topological as well as functional properties of the semantic 70 
network provide additional evidence in favor of a dual-code account of semantic knowledge in the brain 71 
(e.g., Bi, 2021; Xu et al., 2017). From a network perspective, the dorsal anterior temporal lobe (dATL) and 72 
posterior sensory and motor regions are components of dissociable brain systems. The dATL belongs to 73 
the high-level linguistic system in the left perisylvian network, encompassing the inferior frontal gyrus, the 74 
lateral temporal cortex, and the inferior parietal cortex (for instance, Fedorenko et al., 2011; Friederici, 75 
2011). It has stronger connections to the other regions in the language network than the sensorimotor 76 
regions(Jackson et al., 2016; X. Wang et al., 2020). The left perisylvian language network is consistently 77 
activated in semantic tasks (Binder et al., 2009; Xu et al., 2017), and is considered to play a role in 78 
language-supported semantic processing (Xu et al., 2017). Beyond DCTs, other models suggest that both  79 
codes are present in the ATL, arranged in a continuous transmodal gradient (e.g., Lambon-Ralph et al., 80 
2017). That is, the ATL is considered a transmodal/graded hub with a linguistic neural code in its dorsal 81 

part, and a perceptual code in its ventral part (Hoffman et al., 2015; Visser & Lambon Ralph, 2011). 82 
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On the contrary, visual regions (including the color region V4) belong to the highly distributed 83 
sensorimotor brain system, (see Wang et al., 2020) which reflects relevant perceptual dimensions of the 84 

input such as visual, tactile, auditory, etc. (Barsalou et al., 2003; Binder et al., 2005, 2009; Binder & Desai, 85 

2011; Hoffman et al., 2015; Kana et al., 2012; Sabsevitz et al., 2005). These regions are usually more active 86 

for concrete compared to abstract concepts (Binder et al., 2005, 2009; Binder & Desai, 2011; J. Wang et 87 

al., 2010) and may host sensorimotor simulations of perceptual referents during semantic processing. 88 

However, as fMRI suffers from poor temporal resolution, several questions about the spatiotemporal 89 
dynamics of the dual code of knowledge in the brain remain unanswered. For instance, it is unclear whether 90 
transmodal/language-derived representations in the ATL are activated before, after, or at the same time as 91 
sensorimotor representations in perceptual regions. This missing information is crucial to understand the 92 
neural dynamics of conceptual processing and, in particular, how concreteness (abstractness) is encoded 93 
in the brain. 94 

To answer these questions, we took advantage of the high temporal resolution of 95 
magnetoencephalography (MEG) signals combined with source-reconstruction techniques to assess the 96 
spatiotemporal dynamics of abstract and concrete semantic representations. Forty-six participants 97 
performed a semantic categorization task on 438 written words. Each word referred to a concept (e.g., 98 
chair, dog, policeman) that was independently rated across 65 feature dimensions (e.g., color, shape, 99 
happiness, arousal, cognition, etc.; Binder et al. 2016). Using principal component analysis (PCA), we 100 
reduced the dimensionality of this feature space into one abstract and one concrete semantic principal 101 
component. We then used a combination of multiple linear regression analysis and source reconstruction 102 
methods to assess neural dynamics of abstract and concrete semantic representations while keeping into 103 
account other types of psycholinguistic information processed during visual word recognition. 104 

 105 

2. Material and Methods 106 

 107 

2.1. Participants 108 

Forty-six native Italian speakers (29 female, aged 24.8 ± 4.2 years) participated in the study. All 109 
participants were right-handed and had no history of neurological or psychiatric disorders. Before testing, 110 
participants gave their written informed consent and received monetary reimbursement for their 111 
participation. The experiments were conducted in accordance with the Declaration of Helsinki and were 112 
approved by the local ethical committee of the University of Trento. 113 

 114 

2.2. Experimental design 115 

We derived our stimulus set from a previous work by Binder and colleagues (Binder et al., 2016). 116 

Out of 535 English words filed in Binder et al.'s (2016) original work, 438 were translated into Italian (352 117 

nouns in the singular form, 54 verbs in the infinite tense, and 32 adjectives in the singular masculine form). 118 
Selected words could be unambiguously translated into Italian. Participants were instructed to categorize 119 
each stimulus as either related to sensory-perception (i.e., they express something that is related to one or 120 
more of the senses), or unrelated to sensory perception. Visual stimuli were projected on a translucent 121 
whiteboard (1440x1080 pixel resolution) using a ProPixx DLP projector (VPixxTechnologies, Canada) at a 122 
120 Hz refresh rate. Stimulus presentation was controlled via Psychtoolbox (Kleiner et al., 2007) running in 123 
a MATLAB 2015a environment. At the beginning of each trial, a 1s blank screen followed by a 0.5s fixation 124 
cross preceded stimulus appearance. Words appeared in a white monospaced bold font on a dark gray 125 
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background, covering on average 3.2 degrees of visual angle (SD = 0.8). Stimuli remained on the screen 126 
for 0.3s, followed by a 1.7s blank screen. After this delay, a text (“Was it a word related to the senses? YES 127 
- NO”) prompted participants’ responses via button press operated with the dominant hand’s index and 128 
middle fingers. The response mapping was counterbalanced across participants. The maximum time given 129 
to respond was set to 2s and was followed by an interstimulus interval randomly jittered between 0.3s and 130 
0.6s. Participants were familiarized with a short version of the task (30 trials taken from a different stimulus 131 
set) on a portable PC outside the MEG chamber. Each testing session lasted approximately 2 hours and 132 
was divided into twelve seven-minutes runs separated by eleven short breaks and one 30 min break.  133 

 134 

2.3. MEG Data acquisition and preprocessing 135 

MEG data were recorded using a whole-head 306 sensor (204 planar gradiometers; 102 136 
magnetometers) Vector-view system (Elekta Neuromag, Helsinki, Finland). Five head-position indicator 137 
coils (HPIs) were used to continuously determine the head position with respect to the MEG helmet. MEG 138 
signals were recorded at a sampling rate of 1 kHz and an online band-pass filtered between 0.1 and 300 139 
Hz. At the beginning of each experimental session, fiducial points of the head (the nasion and the left and 140 
right pre-auricular points) and a minimum of 300 other head-shape samples were digitized using a 141 
Polhemus FASTRAK 3D digitizer (Fastrak Polhemus, Inc., Colchester, VA, USA).  142 

The raw data were processed using MaxFilter 2.0 (Elekta Neuromag ®). First, bad channels 143 
(identified via visual inspection) were replaced by interpolation. External sources of noise were separated 144 
from head-generated signals using a spatio-temporal variant of signal-space separation (SSS). Last, 145 
movement compensation was applied, and each run was aligned to an average head position. All further 146 
analysis steps were performed in MATLAB 2019a using non-commercial software packages such as 147 
Fieldtrip (Oostenveld et al., 2011), Brainstorm (Tadel et al., 2011) and custom scripts. Continuous MEG 148 
recordings were filtered at 0.1 Hz using a two-pass Butterworth high-pass filter and epoched from -1.5 s 149 
before to 2s after stimulus onset. Time segments contaminated by artifacts were manually rejected (total 150 
data loss of M = 2.4% SD = 1.8%). A Butterworth low-pass filter at 40Hz was applied to the epoched data. 151 
Before encoding, each trial segment was baseline corrected with respect to a -500 to -100ms time window 152 
before stimulus onset. 153 

 154 

2.4. Multiple linear regression analysis 155 

Multiple linear regression analysis was applied to MEG data following the approach used in 156 
previous M/EEG studies (Chen et al., 2013, 2015; Hauk et al., 2006, 2009; Miozzo et al., 2015). The solution 157 
of a multiple regression provides the best least-square fit of all variables simultaneously to the data (Bertero 158 
et al., 1985). For each time point, channel and subject we calculated event-related regression coefficients 159 
(ERRCs) reflecting the contribution of each predictor to the MEG signal. We focused on four predictors 160 
spanning word-form, lexical and semantic aspects of word retrieval (i.e., word length/duration, word 161 
frequency and an abstract and a concrete semantic predictor obtained via dimensionality reduction 162 
techniques of a 65 features’ space, see 2.5.). Before entering the regression model, regressors of interest 163 
(i.e., word length, word frequency, abstract semantic component and concrete semantic component) were 164 
orthogonalized via varimax rotation. Before encoding the predictors of each model were converted to 165 
normalized z-scores and tested for multicollinearity using a condition number test (Belsley, 1982). The 166 
output of the test is a condition index, which in the present study never exceeded a threshold of 2 (with test 167 
values < 6 collinearity is not seen as a problem).  168 

 169 
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2.5. Predictor variables 170 

The aim of the present study was to investigate the contribution of abstract and concrete semantic 171 
dimensions of knowledge to concepts representations. On this account, we derived our stimulus set from a 172 
previous work by Binder and colleagues (Binder et al., 2016). These authors collected ratings of the 173 
salience of 65 biologically plausible features to word meaning (for a detailed description of the procedure 174 
see Binder et al. 2016). For every word in the database (e.g., lemon), more than one thousand participants 175 
were asked to rate how each of the features (e.g., color) was associated with that aspect of the experience 176 
(e.g., would you define a lemon as having a characteristic or defining color?). The result is a semantic space 177 
where concepts can be represented as single entities into a multidimensional space having perceptual (e.g., 178 
sound, shape, smell) and conceptual (e.g., arousal, social, sad) features as dimensions. Crucially, features 179 
spanned both abstract and concrete domains of conceptual knowledge thus represent an ideal framework 180 
to operationalize our assumptions. 181 

 182 

2.5.1. Semantic components 183 

As mentioned above, more than sixty features composed our semantic space. Encoding the entire 184 
space in one single model, however, would be suboptimal. In fact, features are highly intercorrelated with 185 
each other, leaving us with a multicollinearity issue. One way this can be avoided is through dimensionality 186 

reduction techniques (Cunningham & Yu, 2014), such as principal component analysis (PCA). PCA 187 

generates a series of principal components (PCs) representing the same data in a new coordinate system, 188 
with the first PC usually accounting for the largest percentage of data variance. Following the concrete 189 
versus abstract labeling provided in the original database (Binder et al., 2016), we separated the entire 190 
semantic space (65-features) into concrete features (N = 31, encompassing Vision, Somatic, Audition 191 
Gustation, Olfaction and Motor domains) and abstract features (N = 31, encompassing Spatial, Temporal, 192 
Causal, Social, Emotion, Drive and Attention domains). Three features (i.e., Complexity, Practice, Caused) 193 
were excluded due to incomplete ratings. Thus, each word could be considered as a point in a concrete 194 
semantic features’ space (see Figure 1A), and in an abstract semantic features’ space (see Figure 1B). We 195 
used PCA to reduce the dimensionality of the dataset and adopted the first concrete semantic component 196 
(Figure 1C; 24.7% of variance explained) and the first abstract semantic component (Figure 1D; 27.4% of 197 
the variance explained), to represent the same data in a new one-dimensional coordinate system. 198 
Importantly, the resulting semantic components do not simply reflect how concrete and how abstract a word 199 
is, but instead represents concrete and abstract aspects of concepts in a new low-dimensional space that 200 
encodes the most salient structural features of the high-dimensional space from which it is derived. For 201 
instance, in the concrete principal component, “moose” is more similar to “street” than to “hug”, whereas 202 
the opposite is true in the abstract principal component (Figure 1, C-D). 203 

 204 
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 205 

 206 

Figure 1. Dimensionality reduction. A) Schematic representation of a 3-D semantic space where each word is viewed in a 207 
coordinate system defined by concrete features such as Touch, Sound and Color (the actual multidimensional space 208 
comprised 31 dimensions, here reduced to 3 for visualization purposes). B) Schematic representation of a 3-D semantic 209 
space where each word is viewed in a coordinate system defined by abstract features such as Arousal, Pleasant and Social 210 
(the actual multidimensional space comprised 31 dimensions). C) Words’ weights along the first principal component of the 211 
concrete space. D) Words’ weights along the first principal component of the abstract space.  212 

 213 

2.5.2. Linguistic features 214 

For each of the selected words, we obtained psycholinguistic features: Word Frequency (in Zipf’s 215 
scale, M = 4, SD = 0.8; van Heuven et al. 2014) was calculated as the frequency of occurrence of a given 216 
word in a large corpus of text samples (SUBTLEX-IT; Crepaldi et al. 2015). Word length was encoded as 217 
the number of letters of each word (M = 6.9, SD = 1.6). 218 

 219 

2.6. Source reconstruction 220 

Distributed minimum-norm source estimation (Hämäläinen & Ilmoniemi, 1994) was applied 221 

following the standard procedure in Brainstorm (Tadel et al., 2011). Anatomical T1-weighted MRI images 222 
were acquired during a separate session in a MAGNETOM Prisma 3T scanner (Siemens, Erlangen, 223 
Germany) using a 3D MPRAGE sequence, 1-mm3 resolution, TR = 2140ms, TI = 900ms, TE = 2.9ms, flip 224 
angle 12°. Anatomical MRI images were processed using an automated segmentation algorithm of the 225 
Freesurfer software (Fischl, 2012). Co-registration of MEG sensor configuration and the reconstructed scalp 226 
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surfaces was based on ~300 scalp surface locations. When no individual MRI was available (6 participants), 227 
we warped participants’ head shapes to a standard ICBM152 brain template. The data noise covariance 228 
matrix was calculated from the baseline interval (-500ms to -100ms) of the different trials. The forward 229 
model was obtained using the overlapping spheres method (Huang et al., 1999) as implemented in the 230 
Brainstorm software. We then: i) Estimated current density maps for event-related regression coefficients  231 
onto a 15000 vertices boundary element. Dipole sources were assumed to be perpendicular to the cortical 232 
surface. ii) Normalized current density values with respect to a -500ms to -100ms baseline period (z-233 
transform). iii) Rectified current density values (converted to absolute values). iv) Spatially smoothed the 234 
source maps using an 8mm full width at half the maximum smoothing parameter (FWHM) and, finally, v) 235 
the individual results were projected to a default template (ICBM152). 236 

 237 

2.7. Sensor-level statistical analysis and visualization 238 

In line with previous studies (Chen et al., 2013, 2015; Hauk et al., 2006, 2009; Miozzo et al., 2015),  239 
we depicted the time course of different regressors as the root-mean-square (RMS) of the signal-to-noise 240 
ratio (SNR) of ERRC. The SNR was computed on the grand mean of all subjects by dividing the MEG signal 241 
at each channel and time point by the standard deviation of the baseline. This provided a unified 242 
(magnetometers and gradiometers are combined together) and easy-to-interpret measure of sensor-level 243 
activity. Statistical significance was assessed with t-test from -.5s to 1s after stimulus onset (FDR corrected 244 

for multiple comparisons, p < .05,  Benjamini & Hochberg, 1995) on ERRC, separated for magnetometers 245 

and planar gradiometers (see Groppe et al., 2011). We additionally imposed temporal (a minimum duration 246 
of 20ms) as well as spatial (at least 2 concurrently significant channels) constraints on the reported results. 247 

 248 

2.8. Source-level statistical analysis and visualization 249 

Cortical responses to individual predictors (i.e., abstract semantic component, concrete semantic 250 
component, word frequency and word length; Figures 2 to 5, B) are illustrated as 20ms averages of source-251 
reconstructed brain activity thresholded to the 80% of the local maxima. We additionally imposed temporal 252 
(a minimum duration of 20ms) as well as spatial (a minimum cluster size of 10 adjacent vertices) constraints 253 
on the reported results. Source-magnitude statistical maps (i.e., Concrete > Abstract, Figure 6) were 254 
computed using whole-brain t-tests (two-tailed), on consecutive 100ms average time windows (FDR 255 
corrected for multiple comparisons, p < .05, minimum number of 10 vertices). 256 

 257 

3. Results 258 

 259 

3.1. Behavioral results 260 

Participants were instructed to categorize each stimulus as either related to sensory perception 261 
(i.e., they refer to something that can be easily perceived with the senses, like “red” and “telephone”), or 262 
unrelated to sensory perception (i.e., they refer to something that cannot easily be perceived with the 263 
senses, like “agreement” and “shame”). We expected participants to categorize relatively concrete words 264 
as related to sensory perception and relatively abstract words as unrelated to sensory perception. To 265 
assess this, we correlated participants’ responses with the semantic principal components (see below). The 266 
results indicated a significant association between participants’ responses and our semantic dimensions 267 
(concrete semantic dimension: r(436)= .80, p < .001; abstract semantic dimension: r(436)= -.23, p < .001). 268 
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We did not analyze reaction times because participants’ responses were delayed in order to avoid motion-269 
related artifacts in the MEG signal (i.e., see Material and Methods for details).  270 

 271 

3.2. Neural dynamics of lexical and semantic features 272 

We first localized, in space and time, the encoding of the word length regressor (i.e., number of 273 
letters in a word). As predicted, this low-level visual information was encoded in and around primary visual 274 
cortices (bilaterally, Figure 2B), starting approximately 100ms after word appearance, peaking shortly after 275 
and remaining sustained up until 600ms after word onset (see Figure 2A). Such a highly predictable result 276 
served as a manipulation check for our source-localization procedure. At late time stages, word length 277 
information encoding saw the contribution of left inferior frontal and right anterior temporal and middle frontal 278 
brain systems. 279 

 280 

 281 

Figure 2. Spatiotemporal dynamics of word length information encoding. A) Sensor-level results depicted as the root-mean-282 
square of the SNR of ERRC of the word length predictor. Significant time intervals (FDR corrected, p < .05) are indicated with 283 
a thicker line and a shadowed gray area. 0s = stimulus onset. B) Source-reconstructed maps of the word length predictor 284 
displayed as 20ms time averages (threshold 80% of local maxima, min cluster size 10, min duration 20ms) around the first 285 
significant time point (100-120ms), the peak of activation (146-166ms) and the last significant time point (856-876ms).  286 

 287 

Lexical access occurred shortly after processing of word-form related information. This is illustrated 288 
in Figure 3A, where encoding of the word frequency predictor (Zipf; van Heuven et al. 2014) begins around 289 
300ms after visual word presentation, peaks at 580ms and continues until one second after stimulus onset. 290 
Source-level results are illustrated in Figure 3B. Encoding of information related to how frequent a word is 291 
in the language involves generators in the left ventral occipitotemporal cortex (approximately in the location 292 
of the Visual Word Form Area; Cohen et al. 2002) and anterior frontal brain regions. At the peak 293 
(approximately 600ms after word onset), these encompassed inferior frontal, anterior temporal, middle 294 
temporal and superior temporal brain areas with an overall moderate left lateralization. At later time points, 295 
the word frequency predictor was encoded in inferior frontal and anterior temporal brain areas, bilaterally 296 
(see Figure 3B).  297 
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 298 

Figure 3. Spatiotemporal dynamics of word frequency information encoding. A) Sensor-level results depicted as the root-299 
mean-square of the SNR of ERRC of the word frequency predictor. Significant time intervals (FDR corrected, p < .05) are 300 
indicated with a thicker line and a shadowed gray area. 0s = stimulus onset. B) Source-reconstructed maps of the word 301 
frequency predictor displayed as 20ms time averages (threshold 80% of local maxima, min cluster size 10, min duration 302 
20ms) around the first significant time point (300-320ms), the peak of activation (570-590ms) and the last significant time 303 
point (990-1000ms). 304 

 305 

Abstract semantic information processing began approximately 300ms after stimulus onset to peak 306 
200ms after (see Figure 4A) and involved generators in prefrontal, inferior-frontal and anterior-temporal 307 
brain areas, bilaterally (see Figure 4B).  308 

 309 

Figure 4. Spatiotemporal dynamics of abstract semantic information encoding. A) Sensor-level results depicted as the root-310 
mean-square of the SNR of ERRC of the abstract semantic component. Significant time intervals (FDR corrected, p < .05) are 311 
indicated with a thicker line and a shadowed gray area. 0s = stimulus onset. B) Source-reconstructed maps of abstract 312 
semantic information encoding predictor displayed as 20ms time averages (threshold 80% of local maxima, min cluster size 313 
10, min duration 20ms) around the first significant time point (324-344ms) and the peak of activation (490-510ms). 314 
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Encoding of concrete semantic information showed transient responses in the 300 to 500ms time 315 
window and a more sustained response from 600ms to 1s after stimulus onset (see Figure 5A). Source-316 
level activation maps showed that concrete semantic information is encoded in prefrontal, inferior frontal 317 
and anterior temporal brain areas bilaterally (see Figure 5B).  318 

 319 

Figure 5. Spatiotemporal dynamics of concrete semantic information encoding. A) Sensor-level results depicted as the root-320 
mean-square of the SNR of ERRC of the concrete semantic component. Significant time intervals (FDR corrected, p < .05) 321 
are indicated with a thicker line and a shadowed gray area. 0s = stimulus onset. B) Source-reconstructed maps of concrete 322 
semantic information encoding predictor displayed as 20ms time averages (threshold 80% of local maxima, min cluster size 323 
10, min duration 20ms) around the first significant time point (320-340ms) and the last significant time point (972-992ms). 324 

 325 

Last, we investigated source-magnitude activity of abstract and concrete semantic regressors which 326 
allowed us to describe in statistical terms brain areas showing greater responses to one or the other type 327 
of information. Results are illustrated in Figure 6 and evidenced greater activations for concrete semantic 328 
information in a distributed network of regions encompassing occipital, ventral occipito-temporal, inferior 329 
fusiform cortex and inferior-frontal brain areas approximately 700ms after word presentation. In line with a 330 
dual-coding approach, no brain region showed a greater activation for abstract compared to concrete 331 
features. 332 
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 333 

 334 

 335 

Figure 6. Analysis of source-level magnitude activations. Source-reconstructed statistical maps of the contrast Concrete > 336 
Abstract (paired-sample t-test (two-tailed), FDR-corrected p < .05, min cluster size 10) in consecutive 100ms average 337 
intervals. 338 

 339 

4. Discussion  340 

We took advantage of the high spatiotemporal resolution of MEG signals to test when and where 341 
abstract and concrete information is processed in the human brain. Using a multiple linear regression 342 
analysis of MEG-recorded brain activity, we obtained for every time point, channel, and subject event-343 
related regression coefficients (ERRC) reflecting the contribution of each predictor to the data. Predictors 344 
of interest included variables associated with low-level visual information (the number of letters), lexical 345 
information (the frequency), as well as semantic properties (abstract and concrete feature dimensions) of 346 
each word.  347 

Typically, the early stages of visual word recognition are dominated by the processing of low-level 348 
features (Carreiras et al., 2014). This is illustrated in Figure 2, where encoding of information related to the 349 
length of a word begins 100ms after stimulus onset and peaks shortly after (for similar findings, see Dufau 350 
et al., 2015; Hauk et al., 2009). Source analysis localized this result in bilateral occipital areas, reflecting 351 
the visual nature of these early contributions (see also Dhond et al., 2007; Hauk et al., 2009; Marinkovic et 352 
al., 2003). Sub-lexical information encoding was followed (~200ms after) by lexico-semantic information 353 
encoding. That is, the word frequency predictor, the abstract semantic predictor, and the concrete semantic 354 
predictor all showed significant effects at around 300ms after stimulus onset (see Figures 3-4-5, A). The 355 

present findings reflect the cascade of underlying processes involved in visual word recognition (Grainger 356 

& Holcomb, 2009). A feedforward sweep of information cascades across sub-lexical and lexico-semantic 357 

stages resulting in parallel activations of lexical and semantic information approximately 300ms after word 358 

presentation (for similar findings, see Chen et al., 2015; Halgren et al., 2002; Pylkkänen & Marantz, 2003). 359 

At these latencies, the processing of information related to word frequency involved frontotemporal and left 360 
ventral occipitotemporal brain areas, consistent with functional imaging results of reading material (see, for 361 
instance, Kronbichler et al., 2004; Schurz et al., 2010; Schuster et al., 2016). Abstract and concrete 362 
semantic information processing, instead, involved a distributed network of brain areas encompassing both 363 
anterior frontal, anterior temporal and posterior brain areas (for similar findings, see Binder et al., 2009; 364 
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Kana et al., 2012; Lambon-Ralph et al., 2017; Sabsevitz et al., 2005; Striem-Amit et al., 2018; J. Wang et 365 
al., 2010).  366 

Recent dual coding accounts of knowledge suggest that meaning is represented in the brain by a 367 
double code, which comprises language-derived representations in the (dorsal) ATL and sensory-derived 368 
representations in perceptual and motor regions (Bi, 2021). This approach further predicts that anterior 369 
temporal regions should encode both concrete and abstract features, whereas perceptual and motor 370 
regions (e.g., occipital cortex) should encode mostly concrete features. Our results are in keeping with this 371 
view and provide additional information with respect to the temporal dynamics possibly underlying this 372 
cognitive model: As illustrated in Figures 4 and 5, encoding of both abstract and concrete semantic 373 
information showed early (300ms after word onset) engagement of anterior temporal and inferior frontal 374 
brain areas, suggesting that representations of word’s concreteness is not initially contingent on the 375 
activation of sensorimotor simulations or imagistic representations in perceptual and motor regions of the 376 
brain (Hauk et al., 2006; Hultén et al., 2021). Moreover, source-level analysis contrasting the abstract and 377 
concrete semantic regressors revealed that: (i) there was no brain region that was activated more by 378 
abstract compared to concrete features, as predicted by DCT; (ii) fusiform, lateral occipitotemporal, 379 
precentral and orbitofrontal regions preferentially encode concrete semantic features over abstract ones, 380 
in keeping with the prediction of DCT; (iii) finally, this neural signature emerged relatively late, around 381 
700ms from word onset, suggesting a late activation of the sensorimotor/imagistic code during semantic 382 
processing.  383 

Contrary to previous studies, a direct comparison of abstract and concrete semantic information 384 
encoding did not evidence stronger activations to abstract semantic information (see Figure 6). Whereas 385 
this result is in line with DCT, which predicts no differences between abstract and concrete representation 386 
in linguistic coding, greater activations to abstract concepts as to concrete concepts were reported in the 387 
linguistic areas in the inferior frontal cortex and the anterior temporal lobe (see, for instance, Binder et al., 388 
2005; Hoffman et al., 2015). Our results did not confirm these observations, and this discrepancy might be 389 
due to task-induced mechanisms. Whereas our semantic categorization task (“Was it a word related to the 390 
senses? YES - NO”) put large emphasis on perceptual and motor representations of word meaning, several 391 
previous studies adopted tasks that emphasize linguistic properties of the stimuli (e.g., a lexical decision 392 
task, synonym judgment task; see for instance Binder et al., 2005; Hoffman et al., 2015). Wilson-393 
Mendenhall et al. (2013) showed that under task conditions which require deeper conceptual processing, 394 
the linguistic system did not show stronger engagement with abstract concepts as compared to concrete 395 
concepts, in line with our results. It is possible that language-related tasks show greater sensitivity to 396 
symbolic/linguistic representations of abstract words, inducing a greater activation for such items in the 397 
language/symbolic network (Wilson-Mendenhall et al., 2013). However, it is also possible that lexical 398 
decision or synonym judgment foster the processing of lexical-semantic features such as semantic diversity 399 

(Hoffman et al., 2013), age of acquisition (Brown & Watson, 1987) or contextual availability 400 

(Schwanenflugel et al., 1988; Schwanenflugel & Stowe, 1989) which are often unbalanced between 401 

abstract and concrete words (abstract words usually have higher semantic diversity, lower contextual 402 
availability and are learned later in life). In this case, the higher activation of the language/symbolic network 403 
by abstract words could be due to the sensitivity of the network to such properties more than the preferential 404 
encoding of abstract semantic features per se.  405 

Overall, the present findings suggest that contributions from a transmodal/linguistic code, housed 406 
in the perisylvian brain network, precede those of the imagistic/sensorimotor code in perceptual and motor 407 
regions, at least in the case of semantic concreteness. We cannot, however, exclude the prospect that, 408 
under different circumstances, this sequence of events would unfold differently. The case of action verbs 409 
may be a paradigmatic one, with many studies showing an early (~200ms) activation of primary motor 410 
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regions (e.g., M1) in response to action verbs (Hauk et al., 2008; Pulvermüller, 2013; Pulvermüller et al., 411 
2005; van Elk et al., 2010). For instance, Garcia and colleagues (García et al., 2019), have recently shown 412 
that a machine learning classifier can distinguish action verbs (e.g., grasping) from nonaction verbs (e.g., 413 
sleeping), in M1, as early as 150ms after word onset. Interestingly, the same classification was found in 414 
ATL, but only later, around 250-300ms, thus revealing a reversed time course (sensorimotor regions before 415 
ATL) than the one we report here. Although their analyses were limited to these two regions of interest 416 
(ROIs), without control regions, and a limited number of participants, this data suggest that action verbs 417 
can activate simulations in primary motor regions during the very early stages of word processing (actually, 418 
as early as the peak of activation we found in primary visual cortex for word length; Figure 2). 419 

However, taking into account the relevant exception of action verbs, in this experiment we showed 420 
that even when the task emphasized perceptual and motor representations of word meaning, posterior 421 
temporal, lateral occipital and precentral regions associated with a sensorimotor/imagistic code are 422 
preferentially activated by concrete features only during later stages of word processing. This finding 423 
supports the hypothesis that the concreteness advantage observed behaviorally during the early stages of 424 
word recognition can hardly be attributed to the activation of a sensorimotor/imagistic code in the 425 
sensorimotor regions of the brain (Bottini et al., 2021).  426 

Dual code theories of knowledge in the brain successfully account for a large number of behavioral 427 
as well as neuroimaging findings (Bi, 2021; Paivio, 1986). Several aspects of this model, however, are still 428 
to be uncovered. It is for example unclear what is the exact nature of conceptual representations in the 429 
(dorsal) ATL? Is it really a language-based code that is “necessarily ‘amodal,’ ‘symbolic’ and independent 430 
from sensory experience” (Bi, 2021, p. 8)? In this view, the type of meaning supported by the linguistic code 431 
would be similar to the one encoded by current computational models in the field of natural language 432 
processing (NLP) and based on the statistical relationships with other words in speech (for a review Günther 433 
et al., 2019). In other words, the meaning is supported in language contexts (Barsalou et al., 2008; Vigliocco 434 
et al., 2009; Xu et al., 2017). However, this state of affairs begs the actual question behind the grounding 435 
problem (Harnad, 1990): If the linguistic code is ultimately granted by links between word forms, how can 436 
they entail meaning in the sense of referring to something beyond other words? Under this assumption, if 437 
congenitally blind people could rely only on the amodal, ungrounded and sensory independent linguistic 438 
code to understand the meaning of “red” they would find themselves trapped in the Chinese Room (Searle, 439 
1980).  440 

To solve this problem, several influential theories focus on the link between the two codes. One 441 
such example is “hub and spokes mode (H&S; Patterson et al., 2007). H&S assumes that modality-specific 442 
sources of information (i.e., “spokes”), distributed across neocortical regions, encode different information 443 
sources (e.g., visual information in the occipital cortex, haptic in the sensorimotor cortex, linguistic in the 444 
perisylvian regions) that are integrated in the ATL “hub” (Lambon-Ralph et al., 2017; Patterson et al., 2007). 445 
In this model, the ATL is considered the home of transmodal representations that are not strictly language 446 
derived (language regions are one of the spokes in the model and simply one source of such integrated 447 

representations) but abstracted enough to affect all domains of knowledge (A. R. Damasio, 1989; H. 448 

Damasio et al., 1996; Patterson & Erzinçlioǧlu, 2008; Rogers & Patterson, 2007). Studies on functional 449 

connectivity corroborate this interpretation. By applying a graph-theoretic approach to the semantic brain 450 
network, Xu et al. (2017) highlighted two segregated systems for different types of semantic 451 
representations: a multimodal experiential content system in the default mode network and language 452 
supported content system in the perisylvian brain network. In this framework, anterior temporal areas are 453 
not the house to either linguistic or sensorimotor representations but are where these two representations 454 
converge (Xu et al., 2017). It has been also proposed that the ATL hub is organized according to a gradient 455 
of abstractness: The dorsal ATL would be more active for abstract concepts, given its preferential 456 
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connectivity with perisylvian language regions; Whereas the ventro-medial ATL would be more active for 457 
concrete concepts given its connections with visual brain regions. However, the spatial resolution of MEG 458 
is limited and makes the distinction between subparts of the ATL difficult to achieve. Finally, our design, 459 
does not allow to disentangle whether linguistic, or integrated representations (or both) encoded abstract 460 
and concrete semantic features in anterior temporal regions.  461 

 462 

5. Conclusions 463 

To conclude, the present findings shed new light on the spatiotemporal dynamics of abstract and concrete 464 
semantic representations in the brain. At early processing stages, abstract and concrete semantic 465 
information encoding was underpinned by common neural substrates in the anterior temporal lobe, whereas 466 
at later latencies, sensory-motor areas showed preferential responses to concrete information only. We 467 
suggest that concreteness is encoded in the brain via the early contribution of a transmodal/linguistic code 468 
(housed in frontotemporal brain systems), followed by the activation of an imagistic/sensorimotor code in 469 
perceptual regions. Results are broadly consistent with a dual-coding approach, although the strictly 470 
linguistic nature of ATL representations remains putative and waits for further empirical studies.  471 
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